THE INFLUENCE OF SMALL FARM RESERVOIR NETWORKS CHARACTERISTICS ON THEIR CUMULATIVE HYDROLOGICAL IMPACTS

Supplementary material

S 1 Relationship volume - area of reservoirs

To compute the evaporation on reservoirs, the model needs the current surface of reservoirs. The general shape of reservoirs is taken form the study of Liebe et al. (2005), and it corresponds to a reversed half-pyramid. With this geometry, volume (V') and area (A') are linked at any time step with the following relation:

$$A' = \left(\frac{V'}{V_{max}}\right)^{\frac{2}{3}} A_{max} \tag{1}$$

 V_{max} is the maximum volume (m^3) , and A_{max} is the maximum area (m^2) . Both are linked with a third parameter, the maximum depth of the reservoir $(h_{max}, in m)$:

$$V_{max} = \frac{1}{3} A_{max} h_{max} \tag{2}$$

In the numerical experiment, we decided to set the value of h_{max} to 4 m. This guaranties that, at fixed total capacity stored on the basin, the maximum area of reservoirs is the same.

S 2 Complement to the representation of withdrawals and irrigation in the model

Each small reservoir is connected to a defined set of SU (surface units, i.e. fields), which will be irrigated if needed with water coming from the reservoir. Each day, irrigation needs on the connected SUs are determined based on a decision model (Murgue et al., 2014). The total water demand is compared to the available stock in the reservoir. If the stock is sufficient, all needs are covered. Otherwise, all available stock is used and distributed on the corresponding SU proportionally to demands and surfaces. The maximum stock for irrigation corresponds to 3/4 of reservoir total capacity. During a cropping season, total withdrawals can exceed this maximum stock if there is enough water flowing in the river to fill the reservoir during the season.

In the decision model, each crop is associated to a set of decision rules for irrigation in the form of a list of conditions to verify to trigger irrigation. The conditions are presented below and an example is provided in Table S1 for maize, soybean, and straw cereals:

- Current date is within the correct time window.
- Crop development stage is within the correct physiological window.
- Rainfall in the X previous day is less than the defined threshold.
- The field has not been irrigated for X days.
- Soil humidity is lower/higher than a defined threshold.

Table S1: Decision rules for irrigation for the main irrigated crops on the Gélon catchment. The rules have been simplified to fit in one summary table (there can be sub-periods with different parameters for each crop, and there are more than one rainfall threshold). Vscale is the vegetation scale and is an indicator of phylosiogical crop development used in the model. A value of 1 corresponds to flowering.

Crop	Irrigation dose (mm)	Period of irrigation	Vscale range	Number of days between two irrigations	Rainfall threshold	Soil humidity threshold
Maize	30	20 mai - 20 september	0.9 - 2.5	7	25 mm in the last 3 days	0.5
Straw cereal	30	15 mai - 14 june	0.8 - 1.3	7	15 mm in the last 7 days	0.75
Soybeans	30	1 june - 15 september	0.45 - 1.4	7	30 mm in the last 3 days	0.75

S 3 Complement to the method for reservoir distribution on the hydrological network

S 3.1 The two pools of RS

Figure S1 shows the breakdown of the hydrological network into two pools of reach sections (RS). The used criteria is the maximum area drained by a first-order stream in the Strahler classification (Strahler, 1957). As a result, we can see that all first order streams are included in the upstream pool. After few confluences, the RS are associated to the downstream pool. This leads to two pools with different number of RS, but that are equilibrated in terms of network length. The main advantage is that they are defined with a morphological criteria, which results in a "natural" decomposition of the network.

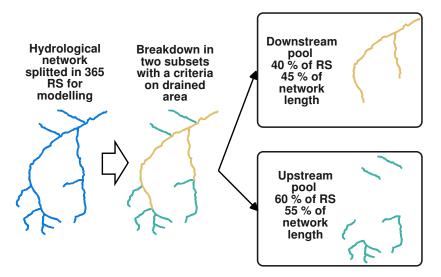


Figure S1: Method for the construction of the two subsets of reach sections (RS) and visualization of the two pools.

S 3.2 Illustration of network generation method

In Figure S2, we summarize the 4 main steps of the generation of a reservoir network for the simulation. In step 2, the area of parcels near reservoirs is reduced to consider reservoir spatial extend.

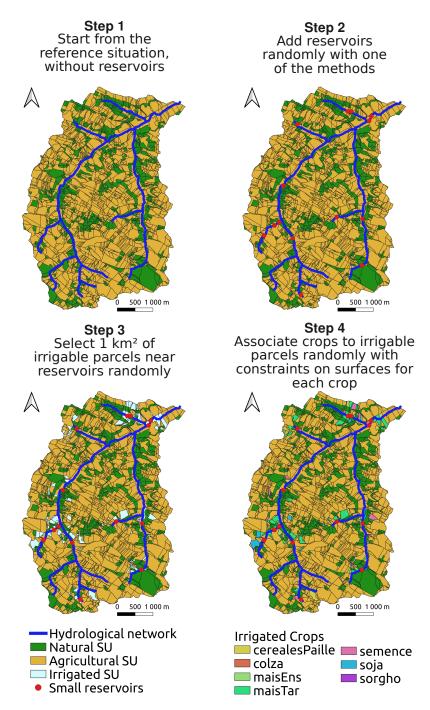


Figure S2: The four processing steps to generate a network of reservoir with associated irrigable parcels.

S 3.3 Example of reservoir distributions on the hydrological network

Figure S3 shows three example of networks generated with our method. For the upstream network (S3a), most reservoirs are located on first order streams. For the downstream network (S3c), most reservoirs are located on the main channel. For the balanced network, there are reservoirs on first and higher order stream without clear majority.

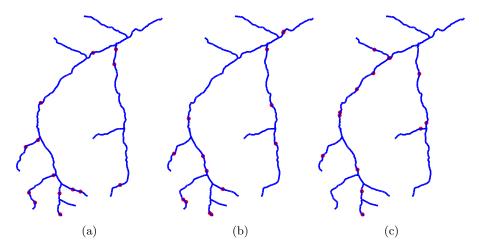


Figure S3: Example of three networks of reservoirs generated with the ustream (a), balanced (b), and downstream (c) method for the distribution along the stream.

S 3.4 Characterization of produced networks of reservoirs in terms of drained area

We verified that our method for the random placement of the reservoirs led to contrasted situations in terms of the mean drained area of the reservoirs (Figure S4). There is only little overlapping between the boxes so we can consider that the method produces contrasted situations.

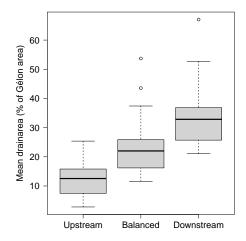


Figure S4: Boxplot of the mean drained area of the reservoirs in each situation depending on the method used for the placement of reservoir (n=30 per box).

S 4 Complementary figures to the result section

S 4.1 Seasonal withdrawals in reservoirs

Figure S5 shows the seasonality of withdrawals in reservoirs. There is no withdrawals in autumn and in winter, and withdrawals are much higher in summer than in spring. In spring, there is little variability of withdrawals between the different situations. Since withdrawals are lower than the 3/4 of capacity threshold, the storage is not a limiting factor and there is no reason for withdrawals to be higher in one or the other situation. In summer, there is a large variability between the different situations, and the storage capacity is an important factor. In situation with $140000 \ m^3$ f storage capacity, summer withdrawals exceed the 3/4 threshold for almost all years. It happens rarely for situations with $280000 \ m^3$ of storage capacity.

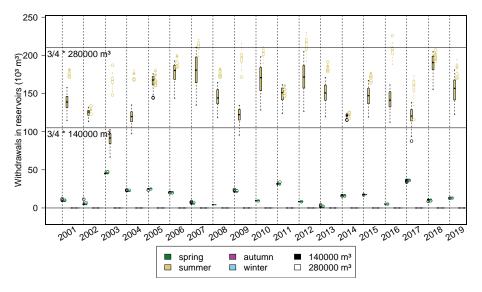


Figure S5: Boxplot of the seasonal withdrawals in reservoirs for each value of total storage capacity. n=45 per box. The black lines indicate...

S 4.2 Comparison of seasonal withdrawals and evaporation in reservoirs

In Figure S6, we compare the evaporation and the withdrawals in reservoirs. Since there is no withdrawals in autumn and in winter, the main loss term in these month is the evaporation. The evaporation in autumn and in winter is in the same range, and lower than in the other seasons. In spring, the main loss terms on reservoirs is also the evaporation. Evaporation and withdrawals are close. In summer, evaporation loss are in the same range as in spring. Withdrawals, however, are much higher. Evaporation is always higher for situations

with more storage capacity. This is expected since bigger reservoirs also have larger surfaces.

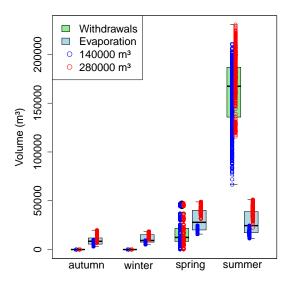


Figure S6: Boxplot of the withdrawals and evaporation in the reservoirs for each season. Each box contains 20 values (for the 20 years) times 90 simulations. Individual values for situations with $140000\ m^3$ or $280000\ m^3$ of storage capacity are shown in each box to represent the effect of this factor.

S 4.3 Low flow at the outlet vs proportion of network in low flow

Figure S7 shows that the relationship between the annual number of low-flow days at the outlet and the annual proportion of network in low flow is coarse, even in the reference situation. Generally, the number of days with low-flow at the outlet increases with the proportion of network in low-flow, but the dispersion is high. Therefore, the number of low-flow days at the outlet is not a good proxy for the proportion of network in low flow and the proportion of network in low flow is preferred to describe the hydrological state of the stream. There is no relation either in the other seasons.

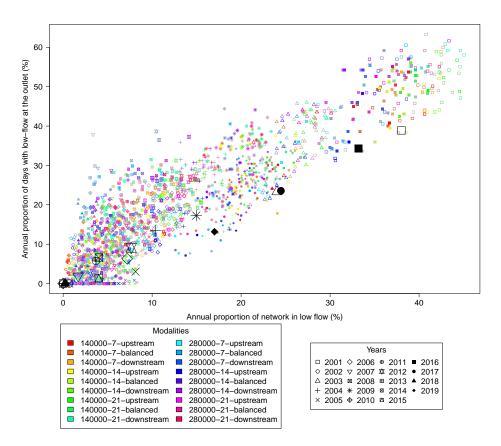


Figure S7: Comparison of the annual proportion of network in low flow and the number of low-flow days at the outlet (expressed in terms of % of total year days). The bigger black symbols are values in the reference situation.

S 5 Ecological flow vs low-flow threshold

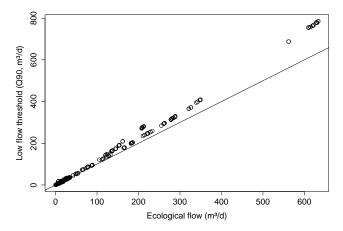


Figure S8: Comparison of the ecological flow and the low flow threshold for each RS of the hydrological network. The line indicates the x=y curve.

There are two thresholds to characterize low flows in each point of the hydrological network :

- The ecological flow: it represent the flow that a reservoir must legally let pass if upstream flows are not null. It is computed based on flow measurements at the closest downstream station, and values 10 % of the mean annual discharge at the gauging station adjusted with drained areas. When we place a reservoir in a random position of the network, we automatically calculate this ecological flow in $m^3.s^{-1}$ with the following formula: $0.1 \times \frac{drained\ area\ (m^2)}{19822640} \times 0.0733$.
- The low-flow threshold: it represent the daily Q90 at the RS computed on the 20 years in the reference situation. It is used to calculate the proportion of network in low-flow.

In Figure S8, we can see that the two thresholds are different and not exactly related. This is normal since the method to calculate them is different. The ecological flow is usually lower than the low-flow threshold. This means that if a reservoir is located on such an RS, and that it is refilling, the flow that will be transmitted downstream (the ecological flow) will be inferior to the low-flow threshold, and downstream RS will be considered as in low flow with our indicator of low-flow proportion.

The values are different as both thresholds are defined for different purposes. The ecological flow is a legal value that is computed with available data and must be applied. On the Gélon, the reference data comes from a downstream

gauging station. The low-flow threshold is fixed to have a more rigorous approach to the characterization of the current hydrological state of the stream in our context of research.

Finally, in Figure S9, we see that the area drained by a RS can already be drained by the upstream RS, i.e. the contribution of runoff and baseflow directly in these RS is low. This means that, if a reservoir is placed upstream of the RS, the only discharge going through the RS comes from the reservoir. These RS are more likely to be impacted by the presence of a reservoir.

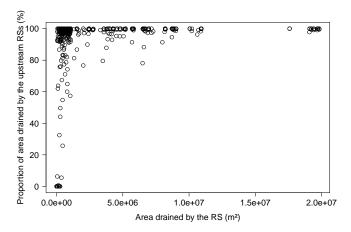


Figure S9: Proportion of area drained by a RS that is also drained by the upstream RSs.

References

- J. Liebe, N. van de Giesen, and M. Andreini. Estimation of small reservoir storage capacities in a semi-arid environment: A case study in the Upper East Region of Ghana. *Physics and Chemistry of the Earth, Parts A/B/C*, 30(6): 448–454, January 2005. ISSN 1474-7065. doi: 10.1016/j.pce.2005.06.011.
- Clément Murgue, Romain Lardy, Maroussia Vavasseur, Delphine D Burger-Leenhardt, and Olivier Therond. Fine spatio-temporal simulation of cropping and farming systems effects on irrigation withdrawal dynamics within a river basin. Santiago, United States, 2014. International Environmental Modeling and Software Society (iEMSs).
- Arthur N. Strahler. Quantitative analysis of watershed geomorphology. *Eos, Transactions American Geophysical Union*, 38(6):913–920, 1957. ISSN 2324-9250. doi: 10.1029/TR038i006p00913.