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Abstract. Effective monitoring of air pollution is essential for the development of environmental and public health policies.

Comprehensive air quality management requires precise tools and strategies to assess the spatial and temporal distribution of

pollutants. This study investigates the correlation between nitrogen dioxide (NO2) concentrations detected by the Sentinel-5

Precursor (S5p) satellite and those measured at ground stations by Catalonia’s official air quality monitoring network during

2022 and 2023. The methodology integrates satellite and surface data aligned in space and time. The relationship between5

both measurements is analyzed under different frameworks: (i) global, considering the entire territory; (ii) by geographic zone

(urban, suburban, rural; as well as inside and outside the Barcelona Metropolitan Area (BMA)); (iii) according to the type of

stations (traffic, background, industrial); and (iv) at a seasonal level, covering different quarters of the year. Statistical tools

are then used to identify patterns and differences based on zones, typology, and seasonality characteristics. The results show a

moderate positive correlation at global level, with r = 0.66. By zones, the analysis reveals that suburban (r = 0.66) and non-10

BMA zones (r = 0.67) present stronger correlations compared to urban zones (r = 0.55), traffic typology (r = 0.61) or stations

located in the BMA zone (r = 0.42). Seasonally, the correlation peaks in winter (r = 0.70) and autumn (r = 0.66), periods with

more stable atmospheric conditions for NO2 concentrations, while it is lowest in spring (r = 0.61) and summer (r = 0.57).

These findings highlight the utility of the S5p satellite as a complement to ground-based networks in NO2 monitoring, while

revealing the limitations of applying a direct relationship between both types of data at the regional level and across different15

geographic zones.

1 Introduction

Air pollution exposure imposes a significant impact on human health globally, contributing to a substantial burden of disease.

It is estimated that millions of deaths and years of healthy life are lost annually due to air pollution, making it a major global

health risk, comparable to unhealthy diets and tobacco smoking (World Health Organization, 2021).20

To address this issue, effective air quality monitoring is crucial for public health, environmental management, and urban

development policies (Balestrini et al., 2021; Verma et al., 2024; World Health Organization, 2016). Traditional monitoring

systems, such as fixed ground stations, face challenges due to limited data availability and coverage. In response, there has been
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a growing interest in advanced remote sensing technologies that provide a broader and more continuous view of the dispersion

of atmospheric pollutants globally (e.g., Mauro and Ullo, 2023; Morillas et al., 2024a, b; Jimenez and Brovelli, 2023; Petetin25

et al., 2023).

Among the numerous pollutants that affect air quality, nitrogen dioxide (NO2) stands out for its significant impacts on health

and the environment, making it the focus of this study. It is primarily emitted from combustion processes such as vehicle

engines, power plants, and industrial activities. In the atmosphere, NO2 plays a role in the formation of tropospheric ozone

(O3) and particulate matter (PMX ), both of which have detrimental effects on human health and the environment (Filonchyk30

and Peterson, 2024). Gaseous NO2 can also undergo chemical reactions to produce nitric acid and nitrate particles, contributing

to acid rain and affecting ecosystems (Dvorak et al., 2010). The reactions of NO2 are influenced by factors such as sunlight

intensity, temperature, humidity, and atmospheric stability. Higher temperatures and intense sunlight accelerate photochemical

reactions that generate O3, especially in warm and sunny climates. Humidity can modify the concentration of O3 precursors

and the efficiency of these reactions, while atmospheric stability can lead to pollutant accumulation, particularly under high-35

pressure and low-wind conditions (Douros et al., 2023; Han et al., 2011; Morillas et al., 2024b; Voiculescu et al., 2020).

Remote sensing techniques enable the measurement of atmospheric NO2 by detecting how these molecules absorb sunlight

in the atmosphere (ESA, 2022; Veefkind et al., 2012). Several satellite missions are currently in operation, capturing data on

atmospheric gases and pollutants to provide information for air quality monitoring. This landscape is evolving rapidly; satellites

with high temporal coverage, such as the Geostationary Environmental Monitoring Spectrometer (GEMS), operating in East40

Asia, and the Tropospheric Emissions: Monitoring Pollution (TEMPO), operating in North America, are already operational

but do not provide data for Europe (Kim et al., 2020; Zoogman et al., 2017). The upcoming Sentinel-4, planned for launch in

the summer of 2025, will be the first geostationary air quality monitoring mission in Europe and will provide hourly data on

key air pollutants (Copernicus, 2025). In the meantime, the Sentinel-5 Precursor (S5p) satellite remains the primary satellite

source for air quality monitoring in Europe. S5p is widely used for regional air quality monitoring, leveraging its advanced45

TROPOspheric Monitoring Instrument (TROPOMI), which provides daily global maps (3.5× 5.5 km2) of multiple species,

including NO2 gases (Douros et al., 2023; Ialongo et al., 2020; Jimenez and Brovelli, 2023; Morillas et al., 2024a, b; Pinardi

et al., 2020; Omrani et al., 2020; Veefkind et al., 2012).

S5p data enhance the monitoring and understanding of air pollution on a regional scale, complementing traditional air quality

monitoring systems, which often have limited coverage. Using TROPOMI, S5p measures the spectral signature of sunlight after50

it has passed through the atmosphere and reflected back into space. These observations are processed to produce vertical column

densities (VCDs) of NO2, which represent the total amount of NO2 in a column of air extending from the Earth’s surface to

the top of the atmosphere (Choo et al., 2023). These measurements provide a comprehensive overview of the horizontal

distribution of NO2, and are particularly useful in regions with scarce or non-existent ground monitoring. Nonetheless, satellite

measurements may not always accurately reflect actual ground-level NO2 concentrations (Dimitropoulou et al., 2020). Despite55

the advanced capabilities of satellite remote sensing, a key research question remains: How strongly do NO2 measurements

obtained by the S5p satellite correlate with ground-based monitoring data in a geographically diverse region?
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In this context, Catalonia, located in the northeast of the Iberian Peninsula, constitutes an ideal case study. The region is

characterized by diverse topography, land use and climate variability within a compact area. These conditions make it an ideal

region to assess the correlation between satellite-derived NO2 measurements and ground-based monitoring data. To address this60

comprehensively, the following research questions were explored: how closely do S5p satellite NO2 data correlate with surface

measurements from the official measurement of air pollution network in Catalonia, considering the geographic diversity; how

does the correlation between satellite data and station data vary depending on the zone or station type; how does seasonality

(winter, spring, summer and autumn) influence the correlation between satellite NO2 measurements and surface observations

in Catalonia; and what are the benefits and limitations of using S5p data to complement surface-measured NO2 information,65

and how could they be integrated into monitoring strategies and public policies in Catalonia?

Answering these questions is essential to understanding the reliability and limitations of satellite data when applied to

regional air quality studies. Although several initiatives have examined the integration of S5p data with ground-based obser-

vations, most have focused on individual urban areas or on regions with environmental and geographical contexts that differ

from broader and more diverse areas like Catalonia (e.g., Hu et al., 2024; Jimenez and Brovelli, 2023; Morillas et al., 2024a, b;70

Petetin et al., 2023). An exception is the study conducted by Petetin et al. (2023), which included the Iberian Peninsula but

did not specifically address the heterogeneity of Catalonia. To the authors’ knowledge, no previous research has applied a

similar methodology exclusively to the diverse landscape of Catalonia, and compared to existing studies, this research makes

three key contributions: it focuses on geographic heterogeneity by analyzing Catalonia’s diverse topography and land use

within a compact area; it employs a layered approach, going beyond simply comparisons between Sentinel-5P data and surface75

measurements by analyzing correlations between zones and station typologies; and it examines seasonal variability, studying

correlations based on the season of the year, both for the complete dataset and for data grouped by zones and station typologies.

From a scientific perspective, these contributions are crucial for refining air pollution mitigation strategies and public health

policies. Integrating observations of the NO2 tropospheric column from the S5p satellite with point measurements from the

ground-based air quality monitoring network aims to identify optimal correlation strategies between these datasets to improve80

the accuracy of air quality assessments.

This paper is structured as follows. Section 2 provides an overview of previous studies on the use of S5p satellite data for

NO2 monitoring, with emphasis on data integration approaches and current methodological challenges. Section 3 offers a brief

explanation of the methodology and data used in this work. Section 4 presents the obtained results and Sect. 5 discusses the

findings. Section 6 outlines the conclusions and future work for this research.85

2 Related research

Recent investigations have explored the efficacy of integrating S5p satellite data with other data sources to accurately esti-

mate ground-level NO2 concentrations. For instance, Mauro and Ullo (2023) used machine learning approaches, specifically

categorical boosting, demonstrating the potential of advanced algorithms in translating satellite observations into meaningful

ground-level data (Verma et al., 2024). However, their study does not address the impact of geographical variability or regions90
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with limited ground-based monitoring data. Similarly, Hu et al. (2024) refined these models by examining various machine-

learned models for surface NO2 concentration mapping, significantly improving model accuracy by incorporating domain

knowledge. Despite these advancements, unresolved challenges remain, such as error propagation in satellite-derived inputs

and the need for further algorithmic improvements to enhance prediction reliability.

The work presented in Morillas et al. (2024a) investigated the correlation between S5p NO2 data and ground-based ob-95

servations in the Community of Madrid, Spain. They found a high linear correlation coefficient between daily NO2 data and

ground-based measurements, which increased when considering only the data within the satellite overpass time. Expanding on

this research, Morillas et al. (2024b) examined the relationship between NO2 data from air quality networks and S5p with O3

and meteorological variables across Spain’s largest cities. Their findings underscore the complex interactions between various

pollutants and environmental factors, further emphasizing the need for integrated approaches in urban air quality management.100

In addition, Petetin et al. (2023) explored the capability of the TROPOMI instrument to analyze spatiotemporal variations of

NO2 as a function of land use, highlighting anthropogenic factors that influence pollutant concentrations in observations from

the Iberian Peninsula. Nevertheless, more information is required to better define the profile of the observations as a function

of land use, especially in regions with geographical heterogeneity and varied human activities.

Moreover, Jimenez and Brovelli (2023) estimated NO2 concentrations at ground level in Milan using S5p satellite images105

and ERA5 meteorological data. Their model, which offered a cost-effective solution for air quality assessment in low- and

middle-income countries, achieved a significantly lower Root Mean Square Error (RMSE) than the standard deviation of real

measurements, indicating precise air quality monitoring from space. However, their study did not fully explore the applicability

of such methods in regions with significant geographical diversity or under varying atmospheric conditions.

Collectively, these studies underscore the critical role of satellite data in enhancing the spatial resolution of air quality110

monitoring systems. While they reveal the potential of integrating satellite data with ground-based observations and advanced

modeling techniques, they also highlight important limitations, particularly in addressing geographical heterogeneity and the

accuracy of surface-level estimates. These gaps underscore the necessity for further research to refine methodologies and extend

their applicability by incorporating geographically diverse areas, measurements across different zones, station typologies and

seasons, providing information to optimize air quality assessment models in complex regions.115

3 Data and methodology

This section provides detailed information on the data and methodology of this study. The data from the S5p satellite and the

surface data collected by the official air quality monitoring network in Catalonia are presented. Additionally, it provides an

overview of the study area in Catalonia, highlighting the Air Quality Zones (AQZs) and the characteristics of the station net-

work. The section ends with a short description on the mathematical models implemented to examine the correlation between120

air quality data.
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3.1 Study area

The study focuses on Catalonia, a region in northeast Spain with an area of approximately 32,108 km2. Its geographic diversity,

illustrated in Fig. 1, which includes mountains over 3,000 meters high, plains, and coasts, plays a significant role in the region’s

air quality (Gencat, 2022a, b; Idescat, 2020).125

Catalonia presents a variety of landscapes and climates that influence the dispersion and concentration of atmospheric pol-

lutants. Key geographic features include the Pyrenees, the Central Catalan System, and the Lleida Plain. Climatically, most of

Catalonia experiences a mediterranean climate, while the Pyrenees have a mountainous climate characterized by colder and

wetter conditions (Gencat, 2022b). The Pyrenees influence air currents and can act as a barrier to pollutant dispersion. The

Central Catalan System, separated by the coastal plain, presents a relief that affects air circulation and pollutant dispersion,130

creating local microclimates. Catalonia also has a significant urban center, Barcelona, whose surrounding areas are known as

the Barcelona Metropolitan Area (BMA), a region of considerable demographic and economic impact. In the interior, Lleida’s

extensive agricultural activity contributes to thermal inversion conditions. Along the coast, sea breezes can help disperse pol-

lutants in coastal areas, but they can also transport them inland.

Other factors such as hydrography and anthropogenic influences also play a significant role in air quality. Major rivers such135

as the Ebro, Ter, Llobregat, and Besós are key features of the region. These river valleys frequently experience thermal inversion

phenomena during winter, trapping pollutants close to the ground and affecting nearby populations.

3.2 Ground air quality data source

The ground data for this study are obtained from the Xarxa de Vigilància i Previsió de la Contaminació Atmosfèrica (XVPCA)

network of Catalonia, which provides near-real-time (NRTI) air quality data across the study area. The XVPCA network140

operates monitoring stations that measure various pollutants, including NO2, PM10, PM2.5, O3, carbon monoxide (CO), and

sulfur dioxide (SO2). These stations are strategically distributed across different geographic zones and typologies, providing

hourly data and comprehensive coverage of the region’s air quality (Gencat, 2024a).

The XVPCA network follows the European Standard EN 14211:2012 for the measurement of NO2 concentrations, which

defines the chemiluminescence method for determining NO2 and NOx levels (Gencat, 2024a). This standardized approach145

ensures typical uncertainties of approximately ±10% under standard operating conditions (CEN, 2012).

3.2.1 Air quality zones in Catalonia

Catalonia is divided into several Air Quality Zones (AQZs), established to monitor and manage atmospheric pollution levels

across the region. The aim of these zones is to be representative of the entire territory due to a combination of geographic,

demographic, and economic activity criteria (Gencat, 2024b). The Generalitat de Catalunya regulates these zones to ensure150

compliance with air quality standards set by the European Union and national legislation. Figure 1 illustrates the geographical

features of Catalonia and the distribution of air quality monitoring stations in urban, suburban, and rural zones. The detailed
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specifications of these stations—including their zones, typology, measured pollutants, technology, and equipment—are pro-

vided in the Appendix A of this paper, offering further insights into the characteristics of the XVPCA network.

Figure 1. Map showing the geographical features of Catalonia and the distribution of air quality monitoring stations.

3.3 NO2 satellite data source155

The S5p satellite is part of the European Union’s Copernicus Earth observation programme and it is the first Copernicus

mission specifically dedicated to atmospheric monitoring. The S5p data, freely accessible through the Copernicus platform,

are essential for global air quality monitoring (Veefkind et al., 2012). These data, after being corrected, are provided in Network

Common Data Form (NetCDF), a widely used format for storing and sharing multidimensional scientific data (ESA, 2022).

S5p provides daily and global data on various atmospheric pollutants, including O3, CO, NO2, SO2, methane (CH4),160

formaldehyde (HCHO) and aerosols (AOD) (Veefkind et al., 2012). It uses the TROPOMI instrument to collect these data,

covering a width of 2,600 kilometres, allowing the entire planet to be mapped in a 24-hour period (ESA, 2024; van Geffen et

al., 2022). Of the different data provided by S5p on NO2, in this study, the band containing the information on the tropospheric

column of NO2 has been specifically used. This field provides the total amount of NO2 present in the troposphere column,

which is the most relevant atmospheric region for air quality monitoring, as it reflects the direct impact of NO2 at ground level165

(see Fig. 2).

Datasets downloaded directly from the Copernicus platform (Level 2 data) have a native spatial resolution of approximately

3.5× 5.5 km2 (ESA, 2022). Based on mission requirements and validation reports, the random precision (1-σ) of the tropo-
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spheric NO2 column is 0.7×1015 molec cm−2, while the systematic uncertainty (bias) ranges from 25% to 50% (ESA, 2015).

In our study, however, NO2 values were extracted from the Sentinel-5P Level 3 dataset using the Google Earth Engine (GEE)170

platform. These Level 3 data are provided on a regular 0.01◦×0.01◦ grid (approximately 1.1×0.85 km over Spain), generated

by applying the harpconvert tool to the Level 2 product after filtering out pixels with qa_value < 0.75 (GEE, 2019). This

process remaps the data spatially but does not recalculate or propagate the precision band, so the official Level 2 uncertainties

are retained.

It is important to note that these data can occasionally show negative values, an observation that has been documented in175

previous studies (Jimenez and Brovelli, 2023; Finch et al., 2022; Douros et al., 2023; Tonion and Pirotti, 2022). These nega-

tive values in tropospheric NO2 columns can arise due to uncertainties inherent to the data retrieval process, which involves

separating the tropospheric component column from the total NO2 column by subtracting the estimated stratospheric contri-

bution using Differential Optical Absorption Spectroscopy (DOAS) techniques (ESA, 2022; Veefkind et al., 2012). Since this

separation process can be subject to errors, especially under very low NO2 concentrations, negative values are generally con-180

sidered to be retrieval artifacts or instrumental noise rather than physically meaningful concentrations (Jimenez and Brovelli,

2023; Finch et al., 2022; Douros et al., 2023). In particular, these cases are more likely to appear in regions with minimal NO2

concentrations or complex atmospheric conditions, being within the typical instrument uncertainty range.

Figure 2. Tropospheric Nitrogen Dioxide column over Catalonia, measured by the Sentinel-5 Precursor satellite during the period 11–17

December 2023. Values are expressed in µmol m−2.

The products are available in NRTI and Offline (OFFL) modes. NRTI data are typically made available within 2 to 3 hours

of acquisition by the satellite (van Geffen et al., 2022), making them ideal for applications requiring almost instantaneous185
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information, such as air quality monitoring, early pollution alerts or environmental emergencies. On the other hand, OFFL

data, typically available 1-2 days after acquisition (Verhoelst et al., 2021), offer more comprehensive processing, with more

accurate atmospheric and meteorological models, making them more suitable for detailed scientific analysis and long-term

climate studies.

In addition to being available for direct download from the Sentinel-5P Pre-Operations Data Hub, its datasets are also190

available on Google Earth Engine (GEE), a platform that allows accessing and working with historical and NRTI atmospheric

data (Salmani et al., 2023). Since analysis of large volumes of NetCDF data can be computationally expensive and slow,

accessing and processing through GEE provides a more efficient alternative. In GEE, S5p data can be integrated with other

datasets, such as from the XVPCA network, facilitating broader and faster analysis.

3.4 Methodology195

The main objective of this study is to characterize the correlation between NO2 measurements obtained from the S5p satellite

and those recorded by the XVPCA surface monitoring network in Catalonia. This analysis takes into account the geographical

diversity of the study area, as well as the distinctive characteristics of the monitoring stations and seasonal variations. Previous

studies (Morillas et al., 2024b; Jimenez and Brovelli, 2023), have explored the integration of meteorological data in air quality

analysis. However, incorporating such data at this stage could mask the direct relationship we aim to establish between satellite200

and ground-based NO2 measurements. By focusing on this direct relationship, we aim to identify the most appropriate methods

to estimate ground-level air quality using satellite data in Catalonia, leaving the integration of meteorological variables for

future research.

The methodology is organized into several steps. First, data preprocessing is performed, including spatial alignment of

satellite pixels with ground station locations and temporal synchronization of measurement times. Next, the analysis begins205

with a global approach and becomes more specific, focusing on zone-based, typology-based, and seasonal aspects. Finally,

statistical methods, including correlation plots, Pearson correlation coefficients (r), regression analysis, and Coefficient of

variation (CV), are applied to evaluate the relationship between satellite and ground-based data.

3.4.1 Data preprocessing

To achieve the objective, it is essential to accurately match satellite and ground-based data. This matching process involves210

spatial and temporal alignment of data from the years 2022 and 2023.

1. Spatial matching: For each ground station in the XPVCA network, the corresponding satellite pixel values are assigned

based on its geographic coordinates. This ensures that the data accurately reflect the same geographic conditions. In our study,

NO2 values were extracted from the S5p Level 3 dataset (0.01◦×0.01◦, approximately 1.1×0.85 km) using GEE. Due to this

relatively high resolution and the spatial distribution of monitoring stations, we did not encounter cases of multiple stations215

falling within the same pixel.
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However, in other study areas or when using S5p level 2 data, multiple ground monitoring stations could indeed be located

within the same pixel. In such scenarios, the presence of multiple stations per pixel can be valuable for exploring within-pixel

variability, revealing how surface NO2 concentrations can differ even within the same satellite measurement.

2. Temporal matching: The S5p satellite passes over the study area daily around 12:00 Coordinated Universal Time (UTC)220

(Verhoelst et al., 2021), with data sometimes being recorded as late as 13:00 UTC. Ground stations, however, record hourly

data in Central European Time (CET) or Central European Summer Time (CEST), depending on the season (Gencat, 2024c).

For consistency with the satellite overpass and the subsequent analysis, the time references of ground-based measurements

were standardized to UTC. This process of temporal synchronization is essential for achieving closer alignment, enabling the

analysis to be performed for all time slots, relating the hourly ground-based measurements with the daily satellite overpass.225

This synchronization reduces discrepancies and allows for robust correlations between satellite and ground-based NO2 data

(Verhoelst et al., 2021; Nawaz et al., 2024; Ialongo et al., 2020).

3.4.2 Variable-based correlation analysis

The correlation between satellite and ground-based data is analyzed globally across the region, as well as by geographical

zones, typology and season. This approach allows us to assess how different environments and seasonal factors affect the230

relationship between satellite and ground-based measurements.

1. Global: An overall correlation analysis is performed on all paired data points, providing a comprehensive view of the

relationship between satellite and ground NO2 levels. This study utilizes data from 65 XVPCA stations that provide NO2

measurements.

2. Zone-based: Stations within the study area are categorized into two groups. The first classification is based on zones—urban,235

suburban, and rural—according to the definitions provided by the XVPCA network (see Table 1). The second categorization

divides stations into those within the BMA zone, which includes seven urban stations, and those outside the BMA zone (non-

BMA), as shown in Table 1. This categorization enables us to analyze the influence of varying population densities, urban

infrastructure, and environmental conditions on the correlation between satellite and ground-based data.

Table 1. Number of XVPCA stations by zones and typology.

Zone-based Typology-based

Urban 22 BMA 7 Traffic 16

Suburban 28 non-BMA 58 Background 37

Rural 15 Industrial 12

3. Typology-based: To address the localized impact of pollution sources, such as vehicular traffic or industrial activity, which240

may affect the relationship between satellite and ground-level NO2 measurements, correlation analyses are performed for each

station typology: traffic, background, and industrial (Table 1).
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4. Seasonal: To investigate the influence of seasonal variations on the correlation, the data were grouped into four quarters of

the year as an approximation for dividing the data by seasons (winter, spring, summer, autumn). This approach was necessary

because the use of annual data did not allow for precise alignment with the exact start and end dates of each season. This245

analysis aims to identify whether seasonal factors, such as temperature and sunlight intensity, impact the correlation between

satellite and ground-based measurements.

3.4.3 Statistical tools for correlation analysis

To comprehensively assess the relationship between satellite- and ground-based NO2 measurements, it is essential to employ

robust statistical tools. In this section, we describe the methods proposed to analyze the correlation between these two data250

sources, ensuring a complete understanding of the behavior of the data across geographic regions and timescales.

1. Correlation plots: These plots visually represent the relationship between satellite and ground-based NO2 measurements,

helping identify patterns, trends, and outliers. They provide a visual basis for assessing the linearity and differences across

geographic and seasonal contexts (Boslaugh and Watters, 2008; Kutner et al., 2004).

2. Pearson correlation coefficient: The r quantifies the strength and direction of the linear relationship between satellite and255

ground measurements, ranging from -1 (strong negative correlation) to +1 (strong positive correlation). This metric comple-

ments regression analysis by assessing the overall relationship between both data sources (Boslaugh and Watters, 2008; Kutner

et al., 2004).

3. Regression analysis: Linear regression models are used to quantify the relationship between satellite- and ground-based

NO2 measurements. The slope (β1) indicates changes in ground-level NO2 concentrations per satellite unit, while the intercept260

(β0) reflects potential biases. The coefficient of determination (R2) measures how well the model explains the relationship

between both measurements (Boslaugh and Watters, 2008; Kutner et al., 2004; Chatterjee and Hadi, 2012).

4. Coefficient of variation: The CV is defined as the ratio of the standard deviation to the mean (CV = σ/µ) and provides

a measure of the relative dispersion of the data. In this study, it has been applied to seasonal data to compare the variability of

NO2 measurements over the course of the year (Boslaugh and Watters, 2008; Kutner et al., 2004).265

4 Results

This section presents the results of the correlation analysis between NO2 concentrations measured during 2022 and 2023 using

data from the S5p satellite and ground-based measurements from the XVPCA network in Catalonia. The analysis examines the

overall correlation across the entire study area and evaluates specific correlations for datasets grouped by geographical zone,

station typology, and seasonality.270

The initial step of the analysis involved calculating the Pearson correlation coefficient (r) between the single daily satel-

lite data and ground-based NO2 concentrations recorded at each hour. Figure 3 presents the resulting correlations for both

years, highlighting how the strength of this relationship varies throughout the day. In this figure, the X-axis corresponds to

measurement times, while the Y-axis represents the correlation coefficients, standardized to UTC.
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Figure 3. Hourly Pearson correlation coefficients between NO2 concentrations measured by the S5p satellite (single daily measurement) and

the ground-based XVPCA network (hourly measurement) for 2022 and 2023. The data are color-coded by year, and the subpanels correspond

to: (a) Global correlation, (b) Zone-based correlation: BMA, (c) Zone-based correlation: non-BMA, (d) Zone-based correlation: urban, (e)

Zone-based correlation: suburban, (f) Zone-based correlation: rural, (g) Typology-based correlation: traffic, (h) Typology-based correlation:

background, (i) Typology-based correlation: industrial.

The results indicate that the highest correlation between the datasets predominantly occurs at 13:00 UTC, coinciding with275

the approximate overpass time of the S5p satellite. A secondary peak is observed at 19:00 UTC in most zones, except in rural

zones, where no secondary peaks are detected. The only exception to this pattern is the BMA zone, where correlations at

13:00 UTC and 19:00 UTC are similarly high. Although the analysis was performed for all time slots, for clarity and better

understanding, this paper focuses on the results corresponding to 13:00 UTC.
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4.1 Global280

Before presenting the results we would like to note that in the presentation of the dispersion results and statistical calcu-

lations, the original data types have been retained: surface concentration (µg m−3) for ground-based measurements and

column-integrated values (mol m−2) for satellite observations. This approach was chosen because the conversion from column-

integrated values to surface concentration involves complex calculations that require additional assumptions about the vertical

distribution of NO2 within the atmospheric column. Factors such as temperature, pressure, solar radiation and local meteo-285

rological conditions significantly influence this conversion. Including these variables would introduce an additional layer of

uncertainty into the analysis, potentially altering the direct relationship between the data sets.

Hereafter we present two scatter diagrams comparing the NO2 concentrations measured by the S5p satellite and by the

XVPCA ground-based network (Fig. 4), along with a table containing the correlation coefficient r and regression parameters

(Table 2). The global analysis of the data considers all the values measured in Catalonia during the years 2022 and 2023 without290

applying any filters or divisions to the data set.

Figure 4. Global scatter plots comparing NO2 concentrations measured by Sentinel-5P (mol m−2) and ground-based stations (µg m−3) from

the XVPCA network in Catalonia for 2022 (a) and 2023 (b). Each panel includes the linear regression line with its corresponding equation,

the number of data points (n), the Pearson correlation coefficient (r), and the coefficient of determination (R2). Calculations are based on

daily satellite data matched with surface NO2 measurements recorded at 13:00 UTC.

Table 2. Pearson correlation coefficient (r), slope (β1), intercept (β0), and coefficient of determination (R2) for NO2 levels in Catalonia

during 2022–2023. Calculations are based on daily satellite data matched with surface NO2 measurements recorded at 13:00 UTC.

Year r β1 β0 R2

2022 0.65 3.00e-06 2.57e-05 0.43

2023 0.66 2.75e-06 2.84e-05 0.43
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In this study, the negative values of satellite measurements were kept in the scatter diagrams and statistical calculations

because the main objective is to understand the direct correlation between NO2 measurements from the S5p satellite and those

recorded by the XVPCA terrestrial network in Catalonia. Keeping these values in the analyses provided us with valuable

information on that correlation in urban zones.295

In the global results (Fig. 4 and Table 2), the r was 0.65 in 2022 and 0.66 in 2023, indicating a moderate positive correlation

between measurements made by the S5p satellite and surface stations. Table 2 shows that the β1 values remained close between

the two years, with a value of 2.4e-06 in 2022 and 2.2e-06 in 2023, indicating that the sensitivity of satellite measurements to

changes in terrestrial NO2 concentrations is constant.

However, using satellite measurements in their original unit (mol m−2) does not allow a direct interpretation for the analysis300

of the regression line. For this reason, we present a conversion to equivalent units (µg m−3) to facilitate result interpretation.

This conversion do not take into account the atmosphere complexity and just consider it as homogeneous. Consequently, the

regression lines have been recalculated, this time using values measured by S5p converted to µg m−3. The results of these lines

reveal, in general, a low β1 in the analyzed data. For the global dataset, the β1 value of 0.0163 indicates that, for each increase

of 1 µg m−3 in the NO2 concentration measured at the surface, the concentration measured by the S5p satellite only increases305

by 0.0163 µg m−3. Additionally, the β0 of 11.5 µg m−3 suggests that even when surface measurements are zero, the satellite

still predicts a positive concentration. The R2 obtained is 0.43 for both years, indicating that 43% of the variance in satellite

measurements is explained by surface measurements.

4.2 Zone-based

A correlation analysis was performed for two groups based on zones: one based on urban, suburban, and rural zones, and the310

other distinguishing between BMA and non-BMA zones. This approach allowed us to assess variations in correlation patterns

across different zone types.

4.2.1 Urban, suburban, and rural zones

The first analysis focuses on data grouped by urban, suburban, and rural zones, as shown in Fig. 5, with the statistical results

presented in Table 3.315

In urban zones, moderate correlation coefficients were observed in both 2022 and 2023 (Table 3), with r values of 0.54 and

0.55, respectively. Suburban zones exhibit the strongest correlations in this dataset, with values of 0.68 in 2022 and 0.66 in

2023. Meanwhile rural zones show moderate correlations, with r of 0.58 in 2022 and 0.55 in 2023.

In terms of the regression parameters (Table 3), β1 values are relatively consistent across zones and years, ranging from

2.24×10−6 to 3.21×10−6, indicating a generally stable relationship between satellite and ground-based measurements. How-320

ever, β0 shows greater variability, with higher values in urban zones (3.98×10−5 in 2022 and 4.15×10−5 in 2023), suggesting

a systematic overestimation of NO2 concentrations by the satellite in these zones when surface values are low. Conversely, sub-

urban zones achieve the highest R2 values (0.46 in 2022 and 0.44 in 2023), reflecting better alignment between satellite and

ground measurements in these less complex environments.
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Figure 5. Scatter plots comparing NO2 concentrations measured by Sentinel-5P (mol m−2) and ground-based stations (µg m−3) from the

XVPCA network in Catalonia for 2022 and 2023, grouped by zone type: (a) urban 2022, (b) urban 2023, (c) suburban 2022, (d) suburban

2023, (e) rural 2022, and (f) rural 2023. Each panel includes the linear regression line with its corresponding equation, the number of data

points (n), the Pearson correlation coefficient (r), and the coefficient of determination (R2).
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Table 3. Pearson correlation coefficient (r), slope (β1), intercept (β0), and coefficient of determination (R2) for NO2 levels in different zones

(Urban, Suburban, and Rural) during 2022–2023. Calculations are based on daily satellite data matched with surface NO2 measurements

recorded at 13:00 UTC.

Zone
2022 2023

r β1 β0 R2 r β1 β0 R2

Urban 0.54 2.53e-06 3.98e-05 0.29 0.55 2.24e-06 4.15e-05 0.31

Suburban 0.68 3.21e-06 2.16e-05 0.46 0.66 3.00e-06 2.52e-05 0.44

Rural 0.58 2.83e-06 1.97e-05 0.33 0.55 2.73e-06 2.15e-05 0.30

4.2.2 BMA and non-BMA zones325

The second analysis focuses on data grouped by BMA and non-BMA zones, as shown in Fig. 6, with the corresponding

statistical results presented in Table 4.

Table 4. Pearson correlation coefficient (r), slope (β1), intercept (β0), and coefficient of determination (R2) for NO2 levels in BMA and

non-BMA zones during 2022–2023. Calculations are based on daily satellite data matched with surface NO2 measurements recorded at 13:00

UTC.

Zone
2022 2023

r β1 β0 R2 r β1 β0 R2

BMA 0.47 2.11e-06 5.68e-05 0.22 0.51 1.86e-06 5.55e-05 0.26

non-BMA 0.67 3.12e-06 2.26e-05 0.45 0.67 2.88e-06 2.58e-05 0.44

Despite the difference in the number of monitoring stations (see Table 1) between the urban zone (22 stations) and the BMA

zone (7 stations), the r results for these two zones are quite similar. In the BMA zone (Table 4), the values were slightly lower

(0.47 and 0.51) for the years 2022 and 2023, respectively. Furthermore, as observed in panels (a) and (b) of Fig. 6, no negative330

satellite values were detected at the locations of the BMA ground-based stations.

4.3 Typology-based

Hereafter, we present the correlation analysis based on different station typologies: traffic, background, and industrial stations.

This analysis allows us to assess how NO2 concentrations align with satellite data, depending on the type of activity in the

vicinity of the stations. The results for 2022 and 2023 are illustrated in Fig. 7, which displays scatter plots and regression lines335

for each typology. The corresponding statistical values are summarized in Table 5.

For traffic stations, the correlation values were moderate, at 0.63 in 2022 and 0.61 in 2023. Background stations showed

slightly higher correlations, with values of 0.66 in 2022 and 0.68 in 2023. Similarly, industrial stations demonstrated correla-

tions of 0.68 in 2022 and 0.66 in 2023.
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Figure 6. Scatter plots comparing NO2 concentrations measured by Sentinel-5P (mol m−2) and ground-based stations (µg m−3) from the

XVPCA network in Catalonia for 2022 and 2023, grouped by BMA and non-BMA zones: (a) BMA 2022, (b) BMA 2023, (c) non-BMA

2022, and (d) non-BMA 2023. Each panel includes the linear regression line with its corresponding equation, the number of data points (n),

the Pearson correlation coefficient (r), and the coefficient of determination (R2).

Table 5. Pearson correlation coefficient (r), slope (β1), intercept (β0), and coefficient of determination (R2) for NO2 levels based on station

typology: Traffic, Background, and Industrial during 2022–2023. Calculations are based on daily satellite data matched with surface NO2

measurements recorded at 13:00 UTC.

Typology
2022 2023

r β1 β0 R2 r β1 β0 R2

Traffic 0.63 2.61e-06 2.62e-05 0.39 0.61 2.35e-06 3.01e-05 0.37

Background 0.66 3.54e-06 2.51e-05 0.44 0.68 3.24e-06 2.80e-05 0.46

Industrial 0.68 2.89e-06 2.06e-05 0.46 0.66 2.71e-06 2.32e-05 0.43
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Figure 7. Scatter plots comparing NO2 concentrations measured by Sentinel-5P (mol m−2) and ground-based stations (µg m−3) from the

XVPCA network in Catalonia for 2022 and 2023, grouped by station typology: (a) traffic 2022, (b) traffic 2023, (c) background 2022, (d)

background 2023, (e) industrial 2022, and (f) industrial 2023. Each panel includes the linear regression line with its corresponding equation,

the number of data points (n), the Pearson correlation coefficient (r), and the coefficient of determination (R2).
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4.4 Seasonal340

Finally, we present in Table 6 a seasonal analysis that covers all recorded values from 2022 and 2023 and provides a detailed

view of how seasonal factors—such as temperature and atmospheric conditions—affect both the r correlation and the coef-

ficient of variation (CV) between satellite and surface measurements of NO2 throughout the year. Additionally, Tables 7 and

8 summarize the regression analysis results, including β1, β0, and R2, for NO2 measurements across different seasons and

typologies, highlighting the seasonal variability observed in the data.345

Table 6. Pearson correlation coefficients (r) for NO2 levels across different seasonal periods in 2022 and 2023, categorized by global values,

zones, and typologies. The coefficient of variation (CV) provides an additional measure of relative variability across the seasonal periods,

calculated using data from both years. Calculations are based on daily satellite data matched with surface NO2 measurements recorded at

13:00 UTC.

Type
Winter Spring Summer Autumn CV

2022 2023 2022 2023 2022 2023 2022 2023 (%)

Global 0.70 0.70 0.57 0.61 0.55 0.57 0.63 0.66 9.46

Zone-based - Urban, Suburban, and Rural

Urban 0.62 0.60 0.43 0.49 0.38 0.45 0.50 0.55 16.61

Suburban 0.71 0.69 0.61 0.60 0.56 0.54 0.63 0.66 9.56

Rural 0.64 0.62 0.52 0.45 0.49 0.42 0.48 0.51 14.97

Zone-based - BMA and non-BMA

BMA 0.66 0.55 0.32 0.40 0.23 0.41 0.46 0.56 31.03

non-BMA 0.70 0.70 0.61 0.64 0.59 0.57 0.64 0.66 7.46

Typology-based

Traffic 0.68 0.66 0.56 0.54 0.47 0.56 0.59 0.63 11.75

Background 0.74 0.70 0.55 0.64 0.58 0.59 0.64 0.67 10.02

Industrial 0.69 0.71 0.63 0.58 0.59 0.49 0.65 0.66 11.28

The correlation coefficients show marked seasonal variability throughout the year. Overall, winter and autumn stand out with

the highest correlations, reaching a value of 0.70 in both years. In contrast, during spring and summer, significant decreases

are observed in all zones and typologies, with the global minimum being 0.55 in the summer of 2022 and 0.57 in 2023. This

seasonal reduction is especially evident in urban and the BMA zones, where correlations dropped to 0.38 and 0.23, respectively,

in the summer of 2022.350

The CV supports these observations by providing a measure of the relative variability of the seasonal correlations. The

urban and BMA zones showed the highest CVs, at 16.61% and 31.03%, respectively, indicating a high degree of fluctuation.

By contrast, the non-BMA zone exhibited a much lower CV (7.46%), reflecting more consistent correlations with reduced

variability throughout the year.
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Table 7. Regression analysis results showing slope (β1), intercept (β0), and coefficient of determination (R2) for NO2 levels measured during

Winter and Spring in 2022 and 2023, divided by global values, zones, and typologies. Calculations are based on daily satellite data matched

with surface NO2 measurements recorded at 13:00 UTC.

Type

Winter Spring

2022 2023 2022 2023

β1 β0 R2 β1 β0 R2 β1 β0 R2 β1 β0 R2

Global 3.74e-06 2.42e-05 0.49 3.44e-06 2.83e-05 0.49 2.04e-06 3.01e-05 0.33 2.30e-06 2.92e-05 0.37

Zone-based - Urban, Suburban, and Rural

Urban 3.58e-06 3.64e-05 0.38 2.97e-06 4.24e-05 0.36 1.31e-06 4.70e-05 0.19 1.65e-06 4.46e-05 0.24

Suburban 3.54e-06 2.38e-05 0.50 3.53e-06 2.65e-05 0.47 2.84e-06 2.20e-05 0.37 2.81e-06 2.37e-05 0.36

Rural 3.17e-06 2.05e-05 0.41 3.15e-06 2.22e-05 0.38 2.50e-06 1.96e-05 0.27 2.36e-06 2.12e-05 0.20

Zone-based - BMA and non-BMA

BMA 4.24e-06 4.43e-05 0.43 2.57e-06 5.74e-05 0.30 7.11e-07 6.36e-05 0.10 1.06e-06 5.87e-05 0.16

non-BMA 3.45e-06 2.45e-05 0.49 3.52e-06 2.61e-05 0.50 2.58e-06 2.42e-05 0.38 2.75e-06 2.44e-05 0.41

Typology-based

Traffic 3.31e-06 2.00e-05 0.47 3.17e-06 2.78e-05 0.44 1.73e-06 3.33e-05 0.31 1.72e-06 3.60e-05 0.29

Background 4.69e-06 2.07e-05 0.55 3.77e-06 2.94e-05 0.49 2.19e-06 3.12e-05 0.30 2.96e-06 2.67e-05 0.41

Industrial 3.10e-06 2.40e-05 0.48 3.38e-06 2.27e-05 0.51 2.91e-06 1.91e-05 0.40 2.53e-06 2.22e-05 0.34

Results by station typology indicate that background stations maintained the highest correlations throughout the year, peak-355

ing at 0.74 in winter 2022 and a CV of 10.02%, suggesting stable seasonal performance. Industrial stations also demonstrated

strong seasonal stability (CV 11.28%), with correlations exceeding 0.65 during the colder months. In contrast, traffic stations

exhibited the greatest seasonal variability, with correlations falling to 0.47 in summer 2022 but recovering to 0.68 in winter

2022. Nevertheless, their CV of 11.75% highlights this intermediate level of variability.

The regression analysis, summarized in Tables 7 and 8, supports these findings. β1 and R2 were highest in winter and360

autumn, reflecting a stronger sensitivity of satellite measurements to ground-level NO2 during these seasons. Conversely, the

summer months exhibited lower values for both. The β0 are consistently positive, with higher values observed in urban zones

during summer and autumn.

5 Discussion

This section discusses the results, focusing on the interpretation across the entire study area, as well as the differences by365

geographical zones, station typology, and seasonality. Additionally, the implications of these findings are contextualized within

existing literature.
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Table 8. Regression analysis results showing slope (β1), intercept (β0), and coefficient of determination (R2) for NO2 levels measured

during Summer and Autumn in 2022 and 2023, divided by global values, zones, and typologies. Calculations are based on daily satellite data

matched with surface NO2 measurements recorded at 13:00 UTC.

Type

Summer Autumn

2022 2023 2022 2023

β1 β0 R2 β1 β0 R2 β1 β0 R2 β1 β0 R2

Global 2.20e-06 2.83e-05 0.30 2.04e-06 2.70e-05 0.33 2.83e-06 3.00e-05 0.40 2.48e-06 3.43e-05 0.44

Zone-based - Urban, Suburban, and Rural

Urban 1.37e-06 4.54e-05 0.15 1.54e-06 3.88e-05 0.21 2.33e-06 4.96e-05 0.25 1.99e-06 4.97e-05 0.31

Suburban 2.79e-06 2.30e-05 0.31 2.06e-06 2.58e-05 0.29 2.84e-06 2.60e-05 0.39 2.62e-06 3.20e-05 0.44

Rural 2.50e-06 1.81e-05 0.24 2.15e-06 1.94e-05 0.18 2.28e-06 2.39e-05 0.23 2.35e-06 2.57e-05 0.26

Zone-based - BMA and non-BMA

BMA 6.81e-07 6.35e-05 0.05 1.21e-06 5.06e-05 0.17 1.93e-06 6.83e-05 0.21 1.94e-06 6.38e-05 0.32

non-BMA 2.64e-06 2.34e-05 0.34 2.11e-06 2.50e-05 0.32 2.90e-06 2.67e-05 0.41 2.47e-06 3.23e-05 0.43

Typology-based

Traffic 1.55e-06 3.57e-05 0.22 1.73e-06 2.86e-05 0.31 2.57e-06 3.10e-05 0.34 2.16e-06 3.51e-05 0.40

Background 3.04e-06 2.50e-05 0.34 2.64e-06 2.57e-05 0.35 3.14e-06 3.13e-05 0.41 2.84e-06 3.52e-05 0.45

Industrial 2.43e-06 2.05e-05 0.34 1.60e-06 2.42e-05 0.24 2.52e-06 2.37e-05 0.43 2.40e-06 2.79e-05 0.44

The consistently high correlation coefficients (r) at 13:00 UTC (Fig. 3) across most datasets and both years confirm that

the strongest correlation between satellite and surface measurements tends to occur at the approximate overpass time of the

S5p satellite (Verhoelst et al., 2021). However, the behavior in the BMA zone diverges from this trend, showing similarly high370

correlations at both 13:00 UTC and 19:00 UTC. This distinct pattern underscores the complexity of representing surface-level

NO2 in densely urbanized zones, likely influenced by evening traffic emissions typical of high-density urban areas.

5.1 Global

The 2022 scatter plots (Fig. 4) shows a greater dispersion of the measurements when compared to the 2023 graph. This

difference is partly attributed to improvements implemented in the processing and calibration of the S5p data, which have375

reduced the bias and increased the accuracy of the measurements (ESA, 2023). These refinements demonstrate the impact of

continuous updates in satellite data processing on improving the reliability of satellite-ground correlations.

The global results indicate a moderate positive correlation between measurements made by the S5p satellite and surface

stations, Table 2. This result verifies that there is a general correspondence between both data sets, although it is not strong

enough to be considered as a good agreement between the data. Similar observations have been reported in previous studies.380

For instance, Ialongo et al. (2020) found a moderate positive correlation coefficient (r = 0.68) between TROPOMI NO2 total

column and ground-based measurements in Helsinki.
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In contrast, the results obtained by Morillas et al. (2024a) in a study conducted in Madrid reported moderately higher

correlation coefficients (r = 0.78) compared to those presented in Table 2 of this study. A notable difference between the

two studies is that, while the analysis conducted here observed higher correlations in rural zones than in urban zones, the385

study in Madrid identified the opposite trend. Finally, in the same study, the authors agreed that the geographic distribution of

monitoring stations can significantly influence the correlation coefficients obtained. These differences in results can be directly

attributed to the size of the study areas. While their research focused exclusively on the city of Madrid (8,028 km2), the present

analysis covered the entire region of Catalonia (32,108 km2). This larger area introduces variations in geography and area

characteristics that influence the results.390

Regression analysis, using S5p values converted to µg m−3, reveals a β1 of 0.0163 and a β0 of 11.5 µg m−3. The low β1

suggests that variations in surface measurements are not proportionally captured by the satellite. The positive β0 implies a bias

in the data, even when surface measurements are 0, the satellite predicts a positive value. As with r, where the results indicate

a general correspondence, the R2 (Table 2) obtained indicates that 43% of the variance in satellite measurements is explained

by surface measurements, leaving 57% of the variance attributable to other factors not captured by ground-based monitoring.395

These values are essential for studies that seek to estimate surface concentrations from satellite data. In this analysis, are

important for understanding how the correlation between satellite and surface data evolves in response to changes in measured

air pollutant levels.

5.2 Zone-based

This section analyzes how the correlation between satellite measurements and surface data varies depending on the two groups400

defined by zones (urban, suburban and rural) and (BMA and non-BMA). The discussion focuses on interpreting the patterns

observed in the correlation coefficients and in the regression adjustments.

5.2.1 Urban, suburban, and rural zones

The results in Table 3 and Fig. 5 show that the highest correlations are observed at stations classified as suburban zone (r = 0.68

in 2022, panel (c), and r = 0.66 in 2023, panel (d)), followed by rural, and finally urban zones. These correlation results are405

consistent with the R2 values, which remain moderate—0.43 for the global results, and 0.46 and 0.44 for suburban zones in

2022 and 2023, respectively. This pattern can be attributed primarily to the intensity and distribution of emissions in each zone

type. In suburban zones, the moderate NO2 concentrations reflect a mix of emission sources that are more dispersed than those

in strictly urban environments. These results align with previous findings highlighting the influence of emissions in less dense

environments on satellite-ground consistency (Wang et al., 2022; Munir et al., 2021).410

Taken together, these findings underscore the importance of emission source density, source types, and spatial representa-

tiveness of measurements when interpreting relationships between NO2 values derived from satellite data and ground stations.

The scatter plots reveal distinctive patterns across the three zone types. Rural stations present a compact cloud of points

concentrated at low values, indicating that most measurements fall within the low-concentration range. In contrast, urban

stations show very few points near zero, reflecting consistently high NO2 levels characteristic of dense urban environments.415
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Suburban stations, situated between these extremes, display a more balanced distribution across mid-range values, contributing

to the strongest correlations with satellite observations. These differences highlight how emission intensity and distribution

shape the agreement between satellite-derived and ground-based NO2 measurements.

5.2.2 BMA and non-BMA zones

The second analysis focuses on data grouped by BMA and non-BMA zones (Fig. 6 and Table 4). The BMA scatter plots420

(panels (a) and (b) of Fig. 6) reveal a markedly different data dispersion compared to all other sets. Unlike the other graphs,

the BMA plots do not display points clustered around zero in either the ground-based NO2 measurements (x-axis) and the

satellite-derived NO2 columns (y-axis). Despite the low correlation values observed, these scatter plots effectively demonstrate

the ability of satellite data to capture spatial differences in metropolitan zones.

The low correlation values are consistent with findings from previous studies (Munir et al., 2021; Jamali et al., 2020), which425

suggest that higher anthropogenic activity, topographic complexity, and urban density—typical of the BMA zone—tend to

reduce the agreement between surface NO2 measurements and satellite data. One of the main challenges in air pollution data

in metropolitan areas is traffic variability: within the spatial extent of a single S5p pixel, multiple types of neighborhoods can

coexist (from traffic-calmed areas to high-density zones) resulting in significant spatial heterogeneity in NO2 concentrations.

In contrast, the absence of negative satellite values in the zone contrasts with the findings of (Douros et al., 2023; Tonion430

and Pirotti, 2022), who reported negative satellite concentrations in regions with complex environmental conditions. This

discrepancy may be attributed to regional factors unique to Catalonia.

Conversely, non-BMA zones exhibited patterns similar to suburban zones, a finding also highlighted by other authors when

comparing the effectiveness of satellite data in different geographic environments (Wang et al., 2022; Munir et al., 2021). The

regression coefficient β1 (Table 4) illustrates key differences between these zones, indicating that changes in NO2 concentra-435

tions are more effectively captured by satellites in these less complex environments. In contrast, the lower R2 values in urban

and BMA zones reflect the greater complexity of these environments, suggesting a less direct relationship with satellite data.

5.3 Typology-based

The typology-based analysis allows for the assessment of how NO2 concentrations align with satellite data depending on the

type of activity in the vicinity of the stations. (Fig. 7 and Table 5).440

The Traffic data, shown in panels (a) and (b) of Fig. 7, do not exhibit negative satellite values at the monitoring station

locations—similar to what is observed in the Urban and BMA datasets (Figs. 5 and 6, panels (a) and (b)). This result highlights

the importance of retaining negative data measured by the S5p satellite in the analyses. Although traffic stations display the

lowest correlations among typologies, they are still higher than those observed in Urban and BMA zones.

In contrast, industrial and background stations show slightly stronger correlations compared to traffic stations, which is445

consistent with the R2 results (Table 5). These findings underline the utility of separating the analysis by station typology to

better understand the factors influencing satellite-ground measurements alignment.
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5.4 Seasonal

The seasonal analysis, summarized in Table 6, reveals significant variations in the r throughout the four quarters of the year. In

general, the highest correlations are observed during the coldest quarters, winter and autumn, with the maximum values reached450

in the first quarter of both years. This similarity in the results in both years is consistent across most zones and typologies, and

also indicates the higher correlation between satellite and surface measurements of NO2 during the coldest months of the year.

During the second quarter, corresponding to spring, a slight decrease in correlation is observed across all zones and typologies,

although it is not significantly pronounced. Similar trends are observed for both zone-based and typology-based stations. In the

third quarter, which includes the summer months, correlation coefficients reach their lowest values.455

The CV provides additional insight into the stability and variability of these seasonal correlations. Urban and BMA zones

exhibit the highest CV values (16.61% and 31.03%, respectively), indicating a moderate degree of fluctuation due to environ-

mental and anthropogenic factors, such as increased photochemical reactions. In contrast, non-BMA zone show CVs of 7.46%,

highlighting more stable values across seasons.

Research shows that increased solar radiation during the summer months intensifies the NO2 photolysis process (Yang et460

al., 2004), reducing its concentration near the ground. This seasonal effect is particularly pronounced during summer due to

higher solar intensity and longer daylight hours, which enhance photochemical reactions and accelerate the conversion of NO2

into other compounds. Consequently, the lower correlations observed during this period can be attributed to this intensified

photolysis and the resultant variability in NO2 concentrations (Douros et al., 2023; Voiculescu et al., 2020; Han et al., 2011).

These seasonal dynamics help to explain the variations in correlations between satellite data and surface measurements across465

the different quarters analyzed.

As in the zone-based analyses for the entire year, suburban and non-BMA zones have higher correlations than urban and

BMA zones, indicating a greater impact of urban-specific factors. Typology-based analysis reveals that background and indus-

trial stations maintain relatively high correlations throughout the year, with CVs of 10.02% and 11.28%, respectively. Industrial

areas reached their highest correlation in the first quarter of 2023, while traffic stations exhibited slightly greater seasonal vari-470

ability (CV 11.75%), with the lowest correlation occurring in the summer months, particularly in 2022, when it dropped to

0.47 (Table 6).

The R2 results also vary seasonally (Tables 7 and 8), similar to the r coefficient, with the highest percentages of explained

variance recorded in the first and fourth quarters. This trend highlights the stronger relationship between satellite and ground-

based NO2 measurements during the winter and autumn months. The summer months exhibited lower values for β1 and R2,475

suggesting greater unexplained variance and reduced comparability between datasets. The higher β0 observed in urban zones

and during summer and autumn indicates a systematic overestimation of NO2 concentrations by the satellite.

The consistently positive β0 values across all areas and seasons indicate that satellite measurements capture a broader

regional signal, integrating contributions from atmospheric layers above ground level. Meanwhile, variability in CV, β1 and R2

values highlights the influence of local environmental conditions, seasonal changes, and the spatial distribution of NO2 sources480

on satellite-ground comparability.
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5.5 Overall discussion

The strongest correlations are observed at 13:00 UTC—coincident with the S5p overpass—highlighting the need for temporal

alignment in any satellite-based estimation model. Correlation strength varies with geographic location and station typology:

urban and BMA zones display lower r values and larger seasonal variability than suburban and non-BMA zones, reflecting485

their greater emission density and environmental complexity.

The diversity of conditions within a satellite pixel can influence the observed correlations. A single TROPOMI pixel may

cover diverse land uses, such as urban, suburban, and rural zones, or encompass areas with both point and diffuse emissions.

This heterogeneity can reduce the correlation between satellite-derived NO2 values and ground measurements, particularly in

complex zones such as urban and BMA zones. In contrast, more homogeneous regions, such as suburban and non-BMA zones,490

tend to have higher correlations also related to less variability within the pixel. In terms of typological stations, background and

industrial stations record higher correlations compared to traffic stations, where local emissions and geographic heterogeneity

reduce the representativeness of satellite data.

During winter and autumn, stable atmospheric conditions prevail, with colder air trapped in the lower boundary layers,

limiting vertical mixing. This atmospheric stability reduces photochemical reactions, allowing NO2 to accumulate near the495

surface and contributing more significantly to the observed tropospheric column. As a result, correlations between surface and

satellite data are stronger, particularly in background stations and in suburban and non-BMA zones, where lower CVs indicate

more consistent seasonal alignment. In contrast, during summer months, atmospheric instability, characterized by anticyclones

and higher temperatures, enhances NO2 vertical mixing. This process dilutes NO2 throughout the boundary layer, increases

photolysis rates, and reduces the representativeness of ground-level measurements in satellite observations. This seasonal500

instability introduces greater variability, as reflected in higher CVs for urban and traffic stations.

The results obtained allow us to address the research questions posed at the beginning of this study. Regarding how closely

do S5p satellite NO2 data correlate with surface measurements from the official measurement of air pollution network in

Catalonia, the study found moderate correlations on a global scale (r ≈ 0.65) and highlighted significant geographic variability.

Suburban and non-BMA zones showed the strongest correlations, suggesting that satellite data more accurately capture NO2505

concentrations in less dense areas. Urban and BMA zones showed lower correlations due to their complexity and the influence

of localized emissions. Moreover, the analysis of the correlation between satellite data and station data depending on zone or

station type revealed that background and industrial stations align better with satellite data (r ≈ 0.66–0.68) compared to traffic

stations (r ≈ 0.61–0.63). This highlights the impact of local emissions and environmental complexity in reducing correlation

at traffic monitoring sites.510

Regarding the seasonal variation, the analysis showed that winter and autumn reach the highest correlations (up to r = 0.70),

while summer and spring present lower values. The reduced correlation during summer is attributed to stronger photolysis

processes and atmospheric variability, which decrease the representativeness of satellite observations. These findings emphasize

the seasonal dependence of satellite-ground agreement and suggest a specific focus on winter data for modeling.
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Finally, regarding the benefits and limitations of using S5p data to complement surface-measured NO2 information, and how515

could they be integrated into monitoring strategies and public policies in Catalonia, the results highlight that S5p data provide

valuable spatial coverage, especially in suburban zones and outside the BMA zone. These data allow for the identification of

pollution trends, regions for prioritizing interventions, and the better allocation of resources for installing new ground-based

monitoring stations.

6 Conclusions520

This study has explored the correlation between S5p satellite data and ground-based NO2 measurements in Catalonia, address-

ing geographical diversity, station typologies and seasonal variability. The findings confirm that satellite measurements align

moderately with ground-based observations, and provide insights for areas with limited ground-based station coverage.

The degree of alignment depends on factors such as geographical context, station typology and seasonal variability. Suburban

and less built-up zones show better correlations and lower variability, while denser urban zones and those with concentrated525

emissions present lower correlations. Station typology also influences the relationship, with background and industrial stations

showing stronger alignment and more stable seasonal performance.

The impact of seasonality on correlations, both for global data and for data segmented by zone and type, is very significant

and demonstrates the viability of generating a model for estimating surface NO2 in Catalonia. The CV values show that urban

and traffic stations, as well as the summer months, experience greater seasonal variability, which can introduce additional530

variance into estimation models. On the one hand, it must be taken into account that including data from months with lower

correlation can introduce variance that does not represent the behavior of the pollutant. On the other hand, it reinforces the idea

that it is preferable to optimize computational processing by keeping only the data from the winter months, which have the

highest correlations and the lowest seasonal variability, as indicated by lower CVs. It is preferable to use data from different

years rather than data from the whole year.535

The results align with studies that claim that it is possible to estimate surface pollution levels from satellite data. However,

this study has shown that in the region of Catalonia, a direct relationship between satellite and surface data is not fully achiev-

able due to geographic and temporal variability. This underscores the significance of this study and the results obtained for

further developing an effective surface estimation methodology for a geographically diverse area such as Catalonia.

Despite its limitations, S5p data provide significant opportunities to complement traditional monitoring networks, partic-540

ularly in remote regions or areas with limited ground station coverage. The coefficient of variation offers a useful tool for

assessing the stability of seasonal correlations and identifying areas where satellite data may be more reliable. Integrating

satellite and surface data requires careful consideration of geographic and temporal factors to enhance reliability and utility.

These findings reinforce the importance of combining multiple data sources to improve the accuracy of air quality assessments

and support the development of effective public policies for pollution mitigation.545

For future research, if the aim is to develop a model to estimate surface NO2 from satellite data, it is advisable to consider

separating the data by season or focusing on data from the winter months, which have the most stable correlations. In addition,
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it is necessary to integrate atmospheric variables such as temperature and solar radiation. Although the influence of these

variables is lower in winter, it is still necessary to take into account the variance of approximately 50% of the surface data that

are not directly influenced by satellite data. Although high accuracy in estimating surface NO2 from satellite data may not be550

fully achievable, this approach opens the way to a useful tool for visualizing pollution levels and raising public awareness of

air quality in Catalonia.

Data availability. The Sentinel-5 Precursor (S5p) NO2 data used in this study are publicly available from the Copernicus Open Access

Hub (https://scihub.copernicus.eu/). The ground-based air quality monitoring data for Catalonia were obtained from the Portal de Dades

Obertes Catalunya and are available at https://mediambient.gencat.cat/ca/05_ambits_dactuacio/atmosfera/qualitat_de_laire/vols-saber-que-555

respires/descarrega-de-dades/descarrega-dades-automatiques/.

Appendix A: Glossary of terms

A1 Zone of stations

Classification of measurement points based on their geographical location:

- Urban: measurement points located in urban areas characterized by continuous construction and urban infrastructure,560

including public services.

- Suburban: measurement points located on the outskirts of a city, adjacent to or very close to a highly urbanized and

populated area.

- Rural: measurement points located in areas that are neither urban nor suburban.

A2 Typology of stations565

Classification of measurement points based on the type of emission sources they monitor:

- Traffic: measurement points located in areas directly impacted by traffic emissions.

- Industrial: measurement points located in areas directly impacted by industrial emissions.

- Background: measurement points located in areas not directly impacted by traffic or industrial emissions. The air at these

points has mixed and comes from various sources.570

A3 Measured pollutants

The primary atmospheric pollutants measured by the Xarxa de Vigilància i Previsió de la Contaminació Atmosfèrica (XVPCA)

network:

- Nitrogen dioxide (NO2): primarily emitted by vehicular traffic and some industrial activities.

- Suspended particles (PM10 and PM2.5): originating from various sources such as traffic, industry, and agricultural activities.575

26

https://scihub.copernicus.eu/
https://mediambient.gencat.cat/ca/05_ambits_dactuacio/atmosfera/qualitat_de_laire/vols-saber-que-respires/descarrega-de-dades/descarrega-dades-automatiques/
https://mediambient.gencat.cat/ca/05_ambits_dactuacio/atmosfera/qualitat_de_laire/vols-saber-que-respires/descarrega-de-dades/descarrega-dades-automatiques/
https://mediambient.gencat.cat/ca/05_ambits_dactuacio/atmosfera/qualitat_de_laire/vols-saber-que-respires/descarrega-de-dades/descarrega-dades-automatiques/


- Ozone (O3): a secondary pollutant formed from photochemical reactions between precursors like nitrogen oxides and

volatile organic compounds (VOCs).

- Carbon monoxide (CO): emissions from incomplete combustion in vehicles and some industries.

- Sulfur dioxide (SO2): mainly from burning fossil fuels in power plants and some industries.

A4 Technology and equipment580

Technological and operational aspects of the XVPCA network:

- Automatic sensors: use advanced technologies for continuous pollutant measurement. Data are collected in real-time and

sent to a control center for analysis.

- Manual sensors: samples are collected on-site, analyzed in a laboratory, validated, and then included in the atmospheric

pollution database.585

- Calibration and maintenance: XVPCA stations undergo rigorous calibration and maintenance processes to ensure data

accuracy and reliability.

- Near-real-time (NRTI) data: measurement results are published a few hours later on the Generalitat de Catalunya’s website,

allowing citizens and authorities to access up-to-date air quality information.
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