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Abstract. Surface precipitation measurements are essential for Earth system model (ESM) evaluation and understanding cloud 10 

processes. An ever-growing need for robust, temporally evolving, and easy-to-use statistical datasets provides motivation for 

a baseline ground-based precipitation properties data product. The U.S. Department of Energy Atmospheric Radiation 

Measurement (ARM) user facility operates an extensive suite of precipitation instruments with various sensitivities and 

operating mechanisms, which render the decision of which instrument to use based on one or more fixed thresholds challenging 

and prone to errors and bias. Using a long-term instrument inter-comparison from a unique per-precipitation event perspective, 15 

rather than instantaneous sample comparison, we demonstrate that ARM precipitation instruments are generally consistent 

with each other at the statistical level. Inter-instrument deviations at the single event level can be large, especially at specific 

precipitation event properties such as maximum precipitation rates. A machine-learning (ML) analysis indicates that in some 

cases (e.g., certain instruments or deployments), atmospheric state variables influence the measured quantities and therefore 

the observed deviations between instruments. These results motivate the design of the ARM precipitation best-estimate 20 

(PrecipBE) value-added product, which incorporates all valid precipitation data while considering data quality and other 

instrument limitations. 

PrecipBE consists of time series and tabular statistics datasets in an easy-to-use and insightful per-precipitation event format. 

It provides a large set of precipitation event properties supplemented with ancillary data from various ARM datasets that 

correspond to the detected precipitation events. We describe the PrecipBE algorithm and demonstrate its use via the 25 

examination of a single-day output as well as a long-term trend analysis of precipitation events at the ARM Southern Great 

Plains (SGP) site, covering more than 30 years of data. The trend analysis tentatively suggests a long-term tendency for mainly 

shorter and less intense precipitation events at the SGP site, but a long-term increase in annual rainfall by more than 36 mm 

(5%) per decade. This rainfall trend is catalyzed primarily by more extreme event properties of relatively rare, intense 

precipitation events, with event total and 1-minute maximum precipitation rate at a 1-year timeframe increasing up to 5 mm 30 

and 9 mm/hr (several percent) per decade, respectively. While the currently available PrecipBE datasets (at 

https://adc.arm.gov/discovery/) cover multiple ARM deployments up until March 2025, PrecipBE will soon become an 
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operational product with a several-day lag from real-time, and we invite the ARM user community to leverage this new product 

and welcome user feedback to enhance it further.  
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1 Introduction 35 

Surface precipitation measurements serve as a crucial benchmark in Earth system model (ESM) evaluation (e.g., Emmenegger 

et al., 2022; Mikkelsen et al., 2024; Zhang et al., 2017) and aerosol-cloud interactions (ACI) studies (e.g., Christensen et al., 

2024; Martin et al., 2017), among other process understanding efforts. Detailed case studies using surface precipitation data 

often require temporally evolving precipitation rate and accumulation data to account for the dynamic nature and short time 

scales of cloud evolution relative to the typically slower-evolving atmospheric state (e.g., Bretherton et al., 2010). These time 40 

series data serve as target quantities (benchmarks) for model simulations or analytical models. Certain precipitation-

characterizing disdrometers, such as laser and video disdrometers, provide additional observational constraints on the 

precipitation properties, such as hydrometeor particle size distributions (PSDs). ESM evaluation studies, on the other hand, 

often rely on bulk statistics or data subsets and, therefore, utilize isolated precipitation event statistics after conditioning on 

quantities such as surface temperature, for example. 45 

The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) user facility (Mather, 2024; Mather et al., 2016) 

operates multiple types of precipitation-measuring instruments, including impact (Bartholomew, 2016a), video (Bartholomew, 

2020b), and laser disdrometers (Bartholomew, 2020a), as well as tipping and weighing bucket rain gauges (Bartholomew, 

2019; Kyrouac and Tuftedal, 2024). Each instrument tends to have higher sensitivity and/or better accuracy at certain 

precipitation conditions (e.g., Ciach, 2003; Fehlmann et al., 2020; Ro et al., 2024; Wang et al., 2021). For example, the Pluvio2 50 

weighing bucket operated by ARM tends to be robust at high precipitation rates (Ro et al., 2024; Saha et al., 2021). The OTT 

Parsivel2 (LDIS; Bartholomew, 2020a), distributed in many ARM sites, is generally considered robust, but has been shown to 

suffer from biases at a specific drop size range (e.g., Raupach and Berne, 2015) and to underestimate the vertical velocity of 

drops larger than 1 mm, which translates to precipitation rate underestimation (Tokay et al., 2014). Similarly, the two-

dimensional video disdrometer (VDIS; Bartholomew, 2020b) is often treated as a reference precipitation instrument, 55 

specifically when the drop PSDs are of interest (e.g., Tokay et al., 2020). However, this instrument is more likely to 

underestimate precipitation amounts in cases with drops smaller than roughly 0.3 mm (corresponding to its first size bin) or 

when large drops (> ~2.4 mm; often commensurate with heavy precipitation) are observed, due to terminal velocity 

underestimation (e.g., Tokay et al., 2013). 

The availability of independent studies evaluating the performance of precipitation instruments under strict laboratory 60 

conditions (e.g., Colli et al., 2013; Saha et al., 2021) is still scarce. Moreover, comprehensive analyses of precipitation errors 

as a function of various background conditions (high wind, etc.) and deployment configurations (e.g., Montero-Martínez et al., 

2016; Montero-Martínez and García-García, 2016; Wang et al., 2021), let alone snowy conditions (e.g., Battaglia et al., 2010; 

Milewska et al., 2019; Yuter et al., 2006), is still limited and requires additional research. In the interim, however, determining 

the “true” precipitation properties or weighting different ARM instrument samples based on the current literature is prone to 65 

unpredictable errors and biases. Therefore, as comprehensively discussed below, straightforward statistics combining data 
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from measurements collected (per deployment) would ostensibly provide the best estimates of precipitation event properties 

(onset and ending, accumulation, precipitation rates, etc.). 

Here, we first present a long-term multi-instrument inter-comparison of precipitation event data collected at the ARM Southern 

Great Plains (SGP; Sisterson et al., 2016) observatory (Section 2). Supported by the application of a machine learning (ML) 70 

algorithm, this analysis underscores the challenge in such cases of multi-instrument data without a clear and consistent “true” 

benchmark. The results from this comparison serve as a strong motivation for a best-estimate data product implementing 

straightforward statistics. These comparison results are also used to guide the design of the ARM precipitation best-estimate 

(PrecipBE) value-added product (VAP), the processing algorithm of which is elaborated on in Section 3. Section 4 describes 

PrecipBE’s data structure, and Section 5 presents a brief trend analysis using more than 30 years of ARM precipitation data 75 

from the ARM SGP site, available on the ARM Data Discovery (https://adc.arm.gov/discovery/).  Conclusions and a short 

outlook are given in Section 5.  

2 Instrument Inter-Comparison as Motivation for a Best-Estimate Data Product 

2.1 Data Processing 

Which precipitation instrument has the most reliable precipitation readings and should be used by default in given conditions? 80 

An answer to this question is not trivial. First, precipitation instruments have different sensitivities, which are influenced by 

ambient conditions and are often impacted by the same variables they aim to measure, namely, precipitation amount, rate, or 

particle properties, as noted above. In addition, those instruments have minimum quantization sizes, which could result in 

inconsistencies concerning precipitation event onset and ending times, leading to differences in event totals. As such, data 

mining efforts aimed at determining those instrument strengths and weaknesses require a baseline definition of precipitation 85 

events instead of typical instantaneous sample comparisons. In this section, we perform an inter-comparison on a per-event 

basis by examining inter-instrument differences in precipitation event properties. 

The analysis focuses on precipitation data collected at the ARM SGP site’s co-located central (C1) and extended facility 13 

(E13) over a 14-year period, from January 10, 2011, to January 10, 2025.  A list of the instruments and data products analyzed 

is provided in Table 1. For a given instrument, we define a precipitation event as a set of positive accumulated precipitation 90 

samples with gaps between neighboring precipitation readings (samples) shorter than 30 min. (larger gaps in event definition 

such as 60 min were tested and exhibited minor changes; not shown). Instrument events continuing to the next day are 

concatenated as long as they follow the same 30-min maximum gap logic. If the total accumulation in a given instrument event 

is smaller than 0.1 mm, it is omitted from this analysis. Instrument events that failed quality control (QC) checks (for calibration 

issues, bad samples, etc.) in some or all event samples are also omitted from this analysis. Finally, a given event is also omitted 95 

if it indicates highly unlikely statistics; specifically, event total > 300 mm, event period > 5 days, mean precipitation rate > 

120 mm/hr, and/or 1-min average maximum precipitation rate > 300 mm/hr. Some of these thresholds have been met and 

confirmed in recorded history (e.g., Koralegedara et al., 2019; Lagouvardos et al., 2013), but to our knowledge, have not 
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previously occurred during ARM deployments. However, these thresholds are rarely exceeded in instrument samples, for 

various reasons, and account for up to a few percent of precipitation events detected using all ARM SGP instruments (counting 100 

from 2011), except for the optical rain gauge (ORG; Bartholomew, 2016b), with nearly 9% of detected events having one or 

more variables exceeding these thresholds. We note that ARM is in the process of retiring the ORG, which will not serve as a 

data source going forward. 

datasets of the PWD (Kyrouac et al., 2021), AOSMET (Kyrouac and Tuftedal, 2010), DISDROMETER (Wang, 2006), 

VDISQUANTS (Hardin et al., 2021), LDQUANTS (Hardin et al., 2019), TBRG (Kyrouac et al., 2006, 2021), RAINWB (Shi 105 

et al., 2010), and ORG (Kyrouac et al., 2021) from the ARM SGP site are available on the ARM Data Discovery 

(https://adc.arm.gov/discovery/; last access: 10 March 2025). 

Table 1: Precipitation instruments and data products included in the analysis presented in Section 2 and incorporated in the 

PrecipBE value-added product. 

Abbreviated name Description Reference 

PWD1,2 Vaisala RAINCAP acoustic sensor as part of the Present Weather 

Detector, a component of the surface meteorological system 

(MET) at the main observatory 

(Kyrouac et al., 2021; 

Kyrouac and Tuftedal, 2024) 

AOSMET1,2 Vaisala RAINCAP acoustic sensor as part of the meteorological 

station associated with the Aerosol Observing System (~10-meters 

above ground) 

(Kyrouac, 2019a; Kyrouac 

and Tuftedal, 2010) 

DISDROMETER1,2,3 Joss-Waldvogel impact disdrometer (Bartholomew, 2016a; Wang, 

2006) 

VDISQUANTS1,2 Joanneum Research two-dimensional video disdrometer quantities 

value-added product 

(Bartholomew, 2020b; 

Hardin et al., 2020, 2021) 

LDQUANTS1,2 OTT Parsivel2 laser disdrometer quantities value-added product (Bartholomew, 2020a; Hardin 

et al., 2020, 2021) 

WBPLUVIO21,2 OTT Pluvio2 weighing bucket rain gauge (Bartholomew, 2019; Zhu et 

al., 2016) 

TBRG1,2 Novalynx Tipping bucket rain gauge; commonly part of the MET 

system 

(Kyrouac et al., 2021; 

Kyrouac and Tuftedal, 2024) 

METWXT, 

PRECIPMET, 

MARINEMET, and 

ABMMET2 

Vaisala RAINCAP acoustic sensor as part of the Vaisala WXT520 

or WXT530 meteorological instrument systems installed at various 

ARM and ARM-related facilities 

(Holdridge and Kyrouac, 

2012; Howie et al., 2016; 

Kyrouac, 2019b; Kyrouac et 

al., 2017; Kyrouac and Shi, 

2018; Reynolds et al., 2017) 
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PWS2,4 Vaisala FD12P Present Weather Sensor meteorological system (Kyrouac and Tuftedal, 2001; 

Ritsche, 2008) 

RAINWB1,4 Belfort weighing bucket rain gauge (Bartholomew, 2016c; Shi et 

al., 2010) 

ORG1,4 Optical Scientific, inc optical rain gauge; commonly part of the 

MET system  

(Bartholomew, 2016b; 

Kyrouac et al., 2021) 

1Included in the analysis presented in Section 2. 110 
2Incorporated in PrecipBE (where available) 
3ARM changed the DISDROMETER code name to IDIS starting 2025-04-08, outside the date span examined in this study 
4Retired instrument 

 

To streamline the interpretation of analysis results, we select a “reference” instrument to examine deviations of events from 115 

one instrument to another. Thus, we inter-compare pairs of instruments, with one of them being the “reference” instrument. 

This “reference” instrument is not a “true” benchmark, and its related biases can still be characterized. For example, in cases 

where most or all other precipitation instruments show a consistent deviation from the reference, we can tentatively conclude 

that the observed bias originates in the reference instrument.  

Ideally, the best reference instrument would be the tipping bucket rain gauge (TBRG; see Kyrouac and Tuftedal, 2024), because 120 

it was the first deployed precipitation instrument at the ARM SGP site (since 1993), and is still operational, covering the whole 

operation period of all other precipitation instruments. However, the TBRG has a very coarse precipitation amount least count 

(minimum detection of 0.254 mm; 0.1 inch), rendering its sensitivity and general accuracy (in weak events) inadequate for 

serving as a reference instrument (as demonstrated below), especially compared to other instruments such as disdrometers. 

Therefore, we chose to use the Present Weather Detector (PWD), which is integrated in the ARM Surface Meteorological 125 

System (MET; Kyrouac and Tuftedal, 2024), as the reference instrument. The PWD has a very long record at the ARM SGP 

site, starting on January 10, 2011, enabling inter-comparison with a wide range of instruments. 

One of the main challenges in a per precipitation event multi-instrument inter-comparison is associating individual instrument 

precipitation events with the reference instrument event, primarily due to the different onset and event duration times. This 

challenge is exemplified in the simplified diagram shown in Figure 1. In this case, three precipitation events are identified in 130 

the PWD data (reference instrument). One or more events detected with other instrument data can be aggregated and become 

associated with a given reference instrument event (as a single event). For example, events 1 and 2 detected using the LDIS 

are associated with the PWD’s event number 1, while events 3, 4, and 5 detected using the TBRG data are associated with the 

PWD’s event number 2. However, to prevent event conflicts in the inter-comparison, multiple reference instrument events 

cannot be associated with a single event detected using a different instrument. In such cases, the instrument events are omitted 135 

from the inter-comparison. For example, event 1 detected using the VDIS or the LDIS event 4. In the latter case, we have 

interlacing conditions, resulting in the exclusion of LDIS event 3 as well since including it would likely result in a negative 

bias when comparing it to the PWD’s event number 2. 
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 140 

Figure 1: Simplified diagram exemplifying the challenge of associating precipitation events detected using different instruments 

when a reference instrument is used. Here, the present weather detector (PWD) serves as the reference instrument, and its events 

are designated using different font colors. Precipitation events detected using the laser disdrometer (LDIS), the video disdrometer 

(VDIS), or the tipping bucket rain gauge (TBRG) become associated with PWD events only if they are not conflicting with it (event 

font colors match the associated PWD events). Conflicting events are designated using the red font color.  145 

 

This event association and aggregation exercise results in the removal of some instrument pair events. Removal percentages 

range from 0.7% of TBRG events to 53% of the PWD event pairs with the Belfort weighing bucket rain gauge (RAINWB; 

Bartholomew, 2016c). Smaller conflicting percentages, such as in the case of the TBRG or the Pluvio2 weighing bucket 

(WBPLUVIO2; Bartholomew, 2019) with 4.5% of events being conflicted with the reference instrument, are often the result 150 

of the compared instrument tending to record shorter events than the reference (see the TBRG versus PWD example in Figure 

1). Larger conflicting percentages, such as in the case of the RAINWB or the Joss-Waldvogel impact disdrometer 

(DISDROMETER; Bartholomew, 2016a) data, with 47%, often occur when the compared instrument tends to longer events 

than the reference instrument (see the VDIS events versus PWD example in Figure 1). We note that the filtering of QC-flagged 

or anomalous reading events prior to the aggregation exercise had minor influence on analysis results (not shown), but it could 155 

theoretically be more impactful in other cases. 

2.2 Inter-Comparison Results 

Figure 2 shows probability density functions (PDFs) of precipitation event total amount deviations of different ARM 

instruments from the reference (PWD). As suggested by the shape of the PDFs, the vast majority of ARM precipitation 

instruments tend to be consistent with each other, with mean deviations (μ) smaller than 3 mm in magnitude and variability 160 

(represented here by the standard deviation; σ) being smaller than 10 mm. The PWD appears to be consistent to the greatest 

extent with the TBRG and the WBPLUVIO2 (means of 0.5 mm or less; σ on the order of 5 mm; in  Figure 2a and Figure 2h, 

respectively). Some instruments and data products tend to record larger event totals relative to the PWD (e.g., LDQUANTS 
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in  Figure 2e, AOSMET in  Figure 2f) whereas others exhibit a tendency for smaller totals (e.g., VDISQUANTS in  Figure 2c, 

DISDROMETER in  Figure 2g). These patterns are robust with the same qualitative results and minor quantitative variations 165 

if only events with totals greater than 1 mm are analyzed, for example, and deviations appear directly susceptible only to the 

magnitude of the evaluated variable (i.e., event total) in the reference instrument (examined via linear regression; not shown).  

While the RAINWB is statistically consistent on average with the PWD (Figure 2d), its variability is somewhat greater than 

the other instruments. However, it is the ORG’s deviations that stand out with a much larger variability (~15 mm) and an 

average overestimation by more than 5 mm (Figure 2b) (see also Kyrouac and Tuftedal, 2024). This overestimation becomes 170 

stark when conditioning on event totals greater than 1 mm with an average deviation from the reference of +36 mm. 
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Figure 2: Probability density functions (PDFs) of ARM SGP instrument precipitation event total amount deviations from the PWD, 

serving in this inter-comparison as the reference instrument (bin size of 0.5 mm). The blue histogram is calculated using all 

precipitation event samples, while the orange and green curves designate histograms calculated while conditioning on event-mean 175 
relative humidity (omitting likely foggy conditions) and wind speed (omitting strong winds), respectively, both of which are derived 

from MET observations. In each panel, see the legends for the total number of event samples (N), mean deviation (μ), and standard 

deviation (σ). x-axis and legend quantity units are mm. 

 

The differences between instrument precipitation event measurements are relatively more variable when examining event 180 

periods (Figure 3). The ORG measurements suggest precipitation events are positively skewed and longer by more than 50 

min, on average, with a considerable variability exceeding 140 min (Figure 3b). (Note that some of the positive PDF skewness 

is influenced by the aggregation and filtering methodology discussed above). The DISDROMETER shows a stronger tendency, 

with precipitation events being 145 min longer on average (Figure 3g), whereas the RAINWB exhibits an even more substantial 

positive bias, exceeding 7 hours (Figure 3d). These long-event tendencies reflect the challenge in aggregating precipitation 185 

events, which resulted in the exclusion of a large subset of samples taken by those instruments from this analysis. In fact, the 

RAINWB event period bias and errors are so large, to an extent that is highly challenging to reconcile in an integrated dataset 

without introducing significant biases. In this regard, the PWD role as a reference instrument can be justified in the current 

analysis by the instrument’s precipitation measurement properties being “somewhere in the middle” across the ARM 

precipitation instrument suite. The PWD’s event period statistics and general instrument behavior is in good agreement with 190 

the VDISQUANTS and LDQUANTS VAPs (Figure 3c and Figure 3e, respectively), with average deviations of up to several 

minutes, as well as with the AOSMET with average deviations of 14 min (Figure 3f). The TBRG (Figure 3a) and WBPLUVIO2 

(Figure 3h) display negatively skewed deviation relative to the reference instrument, with mirror-like patterns compared to the 

ORG and DISDROMETER. 
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 195 

Figure 3: As in Figure 2, but for the event period (bin size of 10 min; x-axis and legend quantities are given in units of min). 

 

The event 1-min-average maximum and event-mean precipitation rate comparisons (Figure 4 and Figure 5, respectively) 

suggest that most instruments are generally consistent with each other, especially in the case of mean rates, with the 

VIDSQUANTS (Figure 5c), LDQUANTS (Figure 5e), WBPLUVIO2 (Figure 5h), and AOSMET (Figure 5f) having average 200 

differences from the reference of 1 mm/h or less, and standard deviations of 3 mm/h or less. In both the mean and 1-min 

maximum precipitation rates, the TBRG (Figure 4a and Figure 5a) exhibits a distinct bi-modal PDF shape, which originates 
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in its coarse minimum least count of 0.254 mm. Accounting for this instrument limitation by omitting precipitation events with 

total amounts smaller than 1 mm results in a behavior consistent with the above-mentioned instruments and the disappearance 

of the bi-modal PDF artifact, suggesting that higher event total thresholds should be used for the TBRG in an integrated data 205 

product. The negative (positive) event period tendency of the TBRG in Figure 3a (DISDROMETER in Figure 3g) are 

compensated by the positive (negative) event-mean precipitation rates observed in Figure 5a (Figure 5g), resulting in a net 

event amount that is in agreement with other instruments, as indicated in Figure 2. In this regard, the DISDROMETER 

compensates for its relatively large event-mean rate variability with a restrained event 1-min maximum precipitation (Figure 

4g). While this event characteristic is generally the most variable across the various instruments (Figure 4) due to the irregular, 210 

potentially tempestuous nature of precipitation over the commonly-used 1-min precipitation instrument averaging period, 

combined with sensitivity limitations of different instruments, the ORG and RAINWB exhibit a much more erratic behavior. 

Specifically, The RAINWB significantly underestimates both the event 1-min maximum precipitation rate (Figure 4d) and 

event-mean precipitation rate (Figure 5d) by several tens of mm/h, which provides an extreme case of error compensation 

resulting in a moderate bias, as seen in the event total amount PDF (Figure 2d). The ORG displays less variable, yet inconsistent 215 

response, overestimating event precipitation rate peaks (Figure 4b) but underestimating average precipitation rates (Figure 5b), 

a behavior that becomes even more pronounced when focusing on events with precipitation totals exceeding 1 mm (not shown). 
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Figure 4: As in Figure 2, but for event 1-min-averaged maximum precipitation rate (bin size of 1 mm/h; x-axis and legend quantities 

are given in mm/h units). 220 
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Figure 5: as in Figure 2 but for event-mean precipitation rate (in mm/h; bin size of 1 mm/h). The inset panels show feature 

importance analysis of various PWD event properties and event-mean atmospheric state variables derived from MET observations. 

The feature importance results are derived from a random forest regression model fit (see text) with the coefficient of determination 225 
specified at the top of the inset. 

 

Ambient conditions can influence deviations between instrument measurements, often as a function of the instrument operation 

mechanism (e.g., Bartholomew, 2016c, 2020a; Kyrouac and Tuftedal, 2024; Montero-Martínez et al., 2016; Wang et al., 2021). 

In the secondary PDFs illustrated in Figure 2, Figure 3, Figure 4, and Figure 5, we examined the impact of some of these 230 

influencing factors. Specifically, by excluding events with event-mean relative humidity exceeding 99% (likely foggy 
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conditions; accounting for the MET system’s uncertainty) or events with event-mean wind speeds higher than 10 m/s (high 

winds), some of the potential impact of these forcings on event statistics can be evaluated. The effect of wind speed appears 

somewhat limited, with mixed behavior of increasing or decreasing the deviation magnitude or standard deviations. This mixed 

and weak behavior could be the result of the wind speed threshold used, or simply that examined instruments are robust to 235 

wind effect, which is likely not the case. (We note that surface winds stronger than 10 m/s are likely more impactful on certain 

instrument samples, but such events are too rare in the SGP dataset to form a robust statistical dataset). The relative humidity 

(RH) PDFs, however, indicate that conditioning for foggy conditions reduces the instrument deviation mean and standard 

deviations in precipitation event totals across all instruments (Figure 2) and most instruments in the event period (Figure 3), 

but the results are less conclusive regarding precipitation rates (Figure 4 and Figure 5). 240 

To further demonstrate the challenge in disentangling the influence of different parameters on the difference in precipitation 

event measurements and statistics, we conduct a feature importance analysis by using the Random Forest (RF) regressor 

available in the Scikit-Learn Python package (Pedregosa et al., 2011). The feature importance analysis enables ranking the 

factors (features) that are most influential on the fitted RF model; i.e., features that have the most impact on the prediction of 

the model’s target variable (in this case, inter-instrument deviations). Using the default algorithm’s hyperparameters (100 245 

estimators/trees, unlimited tree depth, etc.), we input as features the four precipitation event properties from the reference 

instrument (total, period, mean, and 1-min maximum precipitation rates) as well as the event-mean temperature, RH, pressure, 

wind speed, and wind direction measured by the MET system. We run the algorithm separately for instrument pairs and event 

properties; that is, a single RF algorithm run examines the deviations of an instrument pair in one of the four event properties 

(the target variable). Because the purpose of this ML exercise is qualitative, for brevity, we only present the results for the run 250 

using the event-mean precipitation rate, depicted in the insets shown in Figure 5. We present but overlook RF fits in which the 

resultant coefficient of determination (R²) is negative, indicating a fit with no predictive skill. 

All instrument pairs with the PWD are most influenced by the event-mean precipitation rate, suggesting the existence of some 

proportionality between the deviations and variable itself. This proportionality was also indicated in joint distributions we 

tested, and the general dominance of the examined target variable with its deviation feature (estimated relative errors for that 255 

matter) was seen in the vast majority of cases (not shown). In those analyses, the other examined features typically showed 

very weak, if any, proportionality (not shown). The ORG (Figure 5b) and RAINWB (Figure 5d), while having the event-mean 

rate as the dominating feature, have the event 1-min maximum rate at 2nd place in importance, reflecting their inconsistent 

behavior discussed above. The TBRG (Figure 5a) is the only instrument for which the event total feature dominates the 

deviations from the reference, interpreted as the impact of its coarse least count on precipitation event properties (this event 260 

total feature dominance is no longer seen when the exercise is applied to events with total amount greater than 1 mm; not 

shown). Interestingly, the event-mean temperature (2nd place) and RH (3rd place) features appear to have some influence over 

the event-mean precipitation rate. The event-mean RH seems to influence the VDISQUANTS (Figure 5c) to a relatively greater 

extent, and to some extent, the ORG (3rd place) and WBPLUVIO2 (4th place). The influence of the RH on comparisons using 

different instruments with different operation mechanisms suggests that the PWD is susceptible to RH variability, numerous 265 
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precipitation instruments are susceptible to RH variability, or both of these options. (Note that this RH variability is likely 

related to the foggy conditions demonstrated above and potentially also to other conditions such as low RH — dry conditions). 

The WBPLUVIO2 has the wind speed in 3rd place, not far from the precipitation rate features in importance fraction (Figure 

5h). This unique importance of wind speed (overlooking instruments with negative R2) insinuates that wind effects are still 

influencing the rain gauge, even though it is deployed together with a wind shield. We note that equivalent RF analyses using 270 

data from other ARM deployments, such as the Tracking Aerosol Convection Interactions Experiment (TRACER; Jensen et 

al., 2023; not shown), indicated a stronger influence of both wind direction and wind speed on multiple instruments. While 

additional quantitative characterization of instrument susceptibilities to deployment properties and conditions is essential, a 

deployment-dependent effort of this type requires a significant amount of work. The outcomes of such extensive efforts are 

highly challenging to predict in advance and are considered less accurate. Therefore, these data characterization efforts often 275 

take place post-deployment, when the collected dataset is sufficiently large to produce substantial results (beyond the scope of 

this study). 

Suppose one wishes to develop an operational, unbiased (or at least, bias-mitigated) precipitation best-estimate data product. 

In that case, given that they do not have a true benchmark, they need to be aware of all the factors described above by 

performing robust characterization, which would ideally require a best-estimate product — this presents a conundrum. A first 280 

step towards resolving this conundrum would be to assume, given the evidence from this inter-comparison about instrument 

consistency, that the suite of ARM instruments measure some perturbations from the true value, such that their mean could 

serve as a best-estimate of the actual precipitation value, and that other statistics (e.g., minimum, maximum, and standard 

deviation) could be used to estimate confidence intervals. (Note that because the number of available instruments is typically 

limited, the traditional 10th and 90th percentiles of a quantity as confidence intervals are of little meaning in this case). This 285 

approach serves as the basis for PrecipBE, ARM’s best-estimate precipitation data product described and demonstrated in the 

section below.  

3 The PrecipBE Algorithm 

The PrecipBE VAP processing is performed on a per-precipitation-event basis, leveraging ARM measurement capabilities, 

depending on instrument data availability per deployment, while considering QC samples and ARM data quality reports 290 

(DQRs). The processing workflow is described in the flowchart shown in Figure 6. Processing begins separately for each 

instrument. However, because given precipitation events can persist for more than a day or through 23:59:59 UTC of a given 

day, data from all available instruments are loaded for up to 7 days following the currently processed day, depending on 

whether a continuing event is indicated by one or more of the available instruments. This buffer data loading prevents 

precipitation event biases driven by day-transition artifacts. Consistent with the inter-comparison discussed above, a continuing 295 

event suspect is identified if precipitation instances (precipitation amount sample greater than 0 mm) are detected by a given 

instrument less than 30 minutes from the end of the given day, i.e., after 23:30 UTC. 
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Figure 6: PrecipBE processing flowchart 

 300 

Precipitation event processing is generally similar to the methodology discussed in Section 2.1 until the event aggregation step 

of the flowchart. Following the inter-comparison results, the 0.1 mm cumulative precipitation event minimum is applied to all 

instruments, except for the TBRG, in which case a 1.5 mm threshold is used due to its coarse measurement (equivalent to a 
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minimum effective error of ~8.5%), and because it is more prone to sporadic counts (not shown). In addition, given the 

RAINWB and ORG biases demonstrated above, those two instruments are entirely omitted from the PrecipBE algorithm (see 305 

Table 1). 

During the aggregation stage, all valid instrument events are aggregated together while following the 30-min no-precipitation 

logic discussed above. As such, if during the aggregation stage, a continuing event suspect (precipitation instances after 23:30 

UTC by one or more instruments) is ultimately gapped by more than 30 min from the closest precipitation instance(s) during 

the following day, the event is not a continuing event, and the loaded buffer day data are discarded. 310 

The PrecipBE algorithm robustly addresses potential issues stemming from problematic data. Here, flagged events (events 

with one or more QC samples or anomalous readings) or events with associated DQRs are not omitted before aggregation, as 

in the comparison above. Instead, all events detected by a given instrument are still included in the aggregation stage to resolve 

a PrecipBE event but are excluded from the PrecipBE event statistics calculations if one or more of them have one or more 

problematic samples. For example, in the case of the diagram shown in Figure 1, the commonly occurring interlaced event 315 

configuration will end in a single resolved PrecipBE event incorporating all four instruments (PWD, LDIS, VDIS, and TBRG), 

regardless of whether one or more instrument events have problematic samples or an associated DQR. Assuming that all 

instrument events are valid, all four of them will be included in the statistics calculation. However, assuming an issue with 

TBRG event 3, for example, all TBRG events will be removed from the resolved PrecipBE event statistics, which will only 

incorporate three instruments (PWD, LDIS, and VDIS). Assuming instead that LDIS event 4 has problematic samples, 320 

PrecipBE will still resolve a single event, even if the period between the end of VDIS event 1 and the onset of PWD event 3 

is greater than 30 min. In that case, statistics will be based on the PWD, VDIS, and TBRG events. We note that other 

approaches, such as omitting those problematic events from the aggregation stage as well, were extensively tested and resulted 

in significant PrecipBE event biases driven by the sporadic nature of anomalous samples across instruments (not shown). The 

currently implemented approach, therefore, prevents event onset and ending inconsistency issues at the expense of fewer 325 

incorporated instruments. This approach also served as the main incentive for excluding the RAINWB instrument from the 

algorithm due to its substantial positive event period biases (see Figure 3d). 

As suggested by the flowchart in Figure 6, once the resolved PrecipBE event statistics are calculated, they are used to generate 

time series data, followed by the export of daily PrecipBE files, which are described below.  

4 PrecipBE Dataset Structure and SGP Output Demonstration 330 

PrecipBE includes two datastreams (data set types) streamlining both process understanding and model evaluation studies 

using ARM surface precipitation data. The first datastream provides time series (evolving) precipitation data, whereas the 

second includes per-event statistics in an easy-to-use one-dimensional (tabular) format. (PrecipBE data file structure and the 

utilization of each of these datastreams is demonstrated in a Juypter notebook available on the ARM Notebooks Github 

repository at: https://github.com/ARM-Development/ARM-Notebooks/blob/main/VAPs/precipbe/precipbe_intro.ipynb). 335 
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The time series datastream (precipbetseries) provides the temporally-evolving instrument-mean, minimum, maximum, 

and standard deviation of event-cumulative precipitation and 1-min precipitation rates. Each timestamp indicates the number 

of instruments used, and flags are provided for events detected using only a single instrument. The time series files also include 

bitwise flag arrays for instrument availability, invalid instrument samples, and instrument DQRs. Figure 7 shows an example 

of the PrecipBE time series output for two events that started at the SGP site on November 8, 2024, with the second event 340 

ending just after 04:00 UTC of the following day. Note that the cumulative precipitation (top panel) zeros out after the end of 

the first event until the beginning of the second event, enabling straightforward, low overhead, analysis. For example, in the 

first depicted event, cumulative precipitation increases at a varying rate with a short burst around 09:45 UTC, during which a 

1-min averaged precipitation rate exceeding 200 mm/h is observed by one of the instruments (lower panel), with very weak 

and intermittent precipitation in the final 4.5 hours of this event. 345 

The PrecipBE time series data suggest that none of the 7 available instruments were omitted from the statistics calculations of 

these two events due to flags, bogus samples, or existing DQRs. The time series data file provides information about which 

instruments were available via its bitwise `available_instruments` field — in this case, the SGP C1 facility’s 

VDISQUANTS and LDQUANTS VAPs, DISDROMETER, and the WBPLUVIO2, and the SGP E13 facility’s PWD, 

AOSMET, and TBRG. However, while this datastream provides all available precipitation data converted to accumulated 350 

totals in 1-min increments (in units of mm/min), examining statistics of particular events, such as the two depicted in Figure 7 

would require additional processing. Alternatively, one could use the PrecipBE statistics datastream (precipbestats) files, 

which are only generated for days with precipitation event onsets, having the number of timestamps equal to the number of 

precipitation events that started on a given day. In case of November 8, 2024, illustrated below, the corresponding statistics 

data file includes two timestamps. 355 

In each timestamp, precipbestats informs about statistics of the given event such as the instrument-mean, minimum, 

maximum, and standard deviation of onset, end time, period, total amount, mean precipitation rate, 1-min-averaged maximum 

precipitation rate, and precipitation rate standard deviation, as well as various flags and information such as which instrument 

recorded the highest precipitation rate or smallest total amount for that event. For example, the major precipitation event 

depicted in Figure 7 resulted in a cumulative amount of ~54 ± 9 mm with an instrument minimum and maximum of 43 and 75 360 

mm, respectively. The statistics data file indicates that the DISDROMETER recorded the maximum precipitation rate of 218 

mm/h during that event. In comparison, the instrument-mean maximum precipitation rate was more moderate yet still rather 

intense at 85 mm/h. Finally, the statistics dataset contains statistical information about the surface-level atmospheric state 

during precipitation events, with data harvested from (in order of preference) the MET, the automatic weather station (MAWS; 

Holdridge and Kyrouac, 2017), or one of the Vaisala WXT systems operated by ARM (see Table 1), as well as drop distribution 365 

moment data derived using the VDISQUANTS or LDQUANTS, depending on availability. For example, the surface 

temperature during the major November 8, 2024, event ranged between 9.3° and 13.6° C, with an average of 10.0° C, while 

the event-mean RH was 97.5%. The even-mean liquid water content derived by the VDISQUANTS VAP was 0.3 g/m3, and 

the average mass-weighted mean drop diameter was ~1.5 mm. 
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 370 

 

Figure 7: PrecipBE time series of two precipitation events that occurred on November 8, 2024, at the ARM SGP site, the second of 

which continued into November 9. (Top) Per-event cumulative precipitation, (bottom) precipitation rates. The plot illustrates the 

instrument-minimum, maximum, mean, and mean ± standard deviation (σ) (see legend). 

 375 

5 Long-term Trend Analysis of PrecipBE Output for the ARM SGP Site  

Using PrecipBE statistics data files generated for the SGP site, spanning September 2, 1993, to March 4, 2025 (~31.5 years), 

we can easily examine precipitation event trends at the ARM site. Figure 8 shows running-mean time series data that facilitates 

basic trend analysis. We depict both curves calculated using the full dataset and curves calculated using a data subset derived 
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only from multi-instrument events. Ideally, one should be inclined to use precipitation event properties and statistics derived 380 

from more than one instrument, as they are considered more robust than those based on a single instrument. However, ARM 

operated only the TBRG starting in September, 1993, ~14 months after the SGP site launch, until April, 2006, when the 

DISDROMETER was deployed as the first addition to the growing suite of precipitation instruments ARM operates at the site. 

The results of the instrument inter-comparison in Section 2 indicated that the TBRG is generally consistent with other advanced 

precipitation instruments in event totals. It is also consistent with other instruments in event precipitation rates, as long as it is 385 

conditioned for event total greater than its least count by some factor (e.g., effective uncertainties of 12.7% and 8.5% at event 

total of 1 and 1.5 mm, respectively). We follow these conclusions to derive the statistics depicted in Figure 8, which are also 

part of the motivation to examine 1-year-windows. 

The 1-year running sum (annual) precipitation record (Figure 8a) largely shows little difference in annual amount between the 

full dataset and multi-instrument subset, with annual means of ~800 and ~750 mm (respectively) in agreement with previous 390 

studies (cf. Sisterson et al., 2016). The SGP annual rainfall is quite variable, with some years in which the site experienced 

significant amounts (e.g., 2008 and 2019 exceeding 1100 mm), and others when the site exhibited small amounts (e.g., below 

400 mm in 2006 and 2011). Statistically significant linear fits suggest a decadal increase in annual rainfall of more than 36 

mm per decade (~5%). Those positive rainfall trends are consistent with studies that examined trends over the south-central 

US, where the SGP site is located (e.g., Harp and Horton, 2022; Sun et al., 2021). The number of significant precipitation 395 

events, referred to here as events with totals exceeding 1 mm, tentatively suggests a statistically significant increasing trend 

(Figure 8b), commensurate with ~18 min (~7%) decadal reduction in event period (not shown). Here, the higher event total 

amount threshold mitigates the positive (negative) bias in the number of events (event period) in the earlier years of the SGP 

site, when the TBRG was the only operating precipitation-measuring instrument, such that event properties are strongly 

influenced by the TBRG’s tendencies discussed in Section 2.2. Yet, between the full dataset and multi-instrument subset during 400 

overlapping periods, a limited positive bias is still observed in the case of the number of events (Figure 8b). Therefore, all else 

being equal, it is more likely that the decadal trend leans towards the multi-instrument subset, with an increasing trend in the 

number of events on the order of 10 more events per year per decade. Given the definition of precipitation events in PrecipBE 

(precipitation instances gapped by less than 30 min), these results could indicate a growing tendency to more precipitation 

from broken cloud systems, which could be related to observed trends and feedbacks (e.g., Goessling et al., 2025; Loeb et al., 405 

2024; Sherwood et al., 2020; Song et al., 2023), yet additional research using PrecipBE and other datasets is required to support 

this hypothesis. 
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Figure 8: Long-term trends in PrecipBE precipitation event properties for the ARM SGP site between September 2, 1993, and 

March 4, 2025. The solid curves were generated using all of the available precipitation event statistics, whereas the dashed curves 410 
were generated using precipitation events detected by two or more instruments (first effective sample on April 11, 2006, with the 

addition of the DISDROMETER). (a) 1-year running-sum (annual) precipitation totals, (b) 1-year running sum (annual) number of 

precipitation events with total > 1 mm, (c) 1-year running median of precipitation event total in events with total > 1 mm, (d) 1-year 

running median of event-mean precipitation rate in events with total > 1 mm, (e) 1-year running maximum of event 1-min-averaged 

maximum precipitation rate, and (f) 1-year running maximum of precipitation event total. The solid black and dashed grey lines 415 
denote linear fits to the full dataset and the multi-instrument subset, respectively. Decadal trends, correlation coefficients, and P-

values are given in the legends. All quantities were calculated using the instrument-mean data. The total number of samples 

(precipitation events) used in the illustrated curves are given the bottom left corner of each panel. 
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From a bulk perspective, all else being equal, the reduction in the precipitation event period can be translated, on average, to 

a trending decrease in event totals, which is indeed suggested from Figure 8c, consistent in both the full dataset and the multi-420 

instrument subset. Following the same logic, one might expect an increasing average precipitation rate, but the 1-year running 

median of the event-mean precipitation rates indicates a statistically significant decreasing trend, consistent between the full 

and multi-instrument datasets (Figure 8d). By examining event period in the multi-instrument subset, thereby mitigating the 

effect of the TBRG’s negative event period bias (e.g., Figure 3a), a 1-year running sum (annual) precipitation time (not shown) 

indicates a minimal and statistically insignificant reduction. Therefore, these results raise an apparent inconsistency between 425 

higher annual rainfall and shorter yet less intense events, on average. However, this inconsistency can be reconciled via 

examination of precipitation extremes in a 1-year timeframe of event maximum 1min-averaged maximum precipitation rates 

and maximum event totals (Figure 8e and Figure 8f, respectively). These curves exhibit general consistency between the full 

dataset and the multi-instrument subset and all except the maximum precipitation rate using the full dataset indicate a 

statistically significant increasing trend in both metrics: more than 9 mm/h per decade increase in maximum precipitation rate 430 

(6.5%) using the multi-instrument subset and between 2-5 mm per decade increase in extreme event totals (~3–7.5%) over a 

1-year timeframe. Taken together, this precipitation event trend analysis indicates that the observed increase in annual rainfall 

could be catalyzed by a few more extreme precipitation events taking place at the SGP site. Examination of the causal sources 

of these trends via counterfactual exercises and their attribution to potential drivers such as regional natural variability (e.g., 

Higgins et al., 2007; McKinnon and Deser, 2021) or changes to the local land use (e.g., Krishnamurthy et al., 2025) remain a 435 

topic of future studies.   

6 Conclusions and Outlook  

In this study, we presented an analysis of differences in ARM precipitation instrument measurements from a unique per-event 

perspective. Supported by a ML application to the instrument differences to examine the importance of various atmospheric 

state variables and parameters, the analysis indicates that, by and large, most ARM instruments are generally consistent with 440 

each other. Yet, deviations, occasionally of significant magnitudes, often occur, and could be driven by specific parameters 

such as relative humidity and wind properties, which could be deployment-dependent, or by differing instrument response 

functions to the same parameters those instruments are aimed at measuring (e.g., precipitation rates). Without additional prior 

knowledge, these results suggest that, on a first-order basis, the best estimate of precipitation properties is ostensibly that which 

incorporates all available valid data, which motivates the design of the PrecipBE value-added product (VAP). That said, while 445 

the analysis showed that specific instruments show some tendency for certain behaviors, such as shorter precipitation event 

periods in the case of the TBRG and WBPLUVIO2, other instruments, specifically, the RAINWB and ORG exhibit clear and 

significant biases, which cannot be ameliorated and therefore integrated into PrecipBE. Fortunately, ARM retired the 

RAINWB several years ago, and the ORG is in the process of being retired in 2025. 
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PrecipBE provides time series and tabular statistics datasets that are easy to use and comprehensive, including precipitation 450 

event properties, and are supplemented with ancillary data from various ARM datasets. Therefore, it is likely that this VAP 

would become the baseline (go-to) precipitation product for the ARM user community, augmenting the derivation of scientific 

insights and streamlining model evaluation. Those features of this VAP were demonstrated via the examination of a single-

day output as well as a long-term trend analysis of precipitation events at the ARM SGP site. The trend analysis tentatively 

suggests mainly shorter and less intense precipitation events at the SGP site, but also a long-term increase in annual rainfall 455 

driven primarily by more extreme event properties (event totals and maximum precipitation rates) of relatively rare, highly 

intense precipitation events. While we believe that numerous additional insights about surface precipitation at the SGP and 

other ARM sites can be derived via conditioning on various metrics related to drop size distribution moments, temperatures, 

diurnal cycle, time of year, etc. provided in the PrecipBE data files, we leave such analyses for the ARM user community. 

PrecipBE will soon become an operational product with a several-day lag from real-time, and hence, its datasets will be 460 

continuously updated and made available via the ARM Data Discovery (https://adc.arm.gov/discovery). Future planned VAP 

updates include the addition of solid precipitation properties at applicable sites and the potential integration of radar-based 

low-level precipitation estimates. We invite the ARM user community to leverage PrecipBE and provide feedback to further 

enhance this new and exciting data product.  

Data Availability 465 

Current and future releases of PrecipBE time series (Silber, 2025c, d) and statistics datasets (Silber, 2025a, b) are and will be 

available on the ARM Data Discovery (https://adc.arm.gov/discovery/#/results/s::precipbe). A Jupyter notebook 

demonstrating the structure and application of PrecipBE datasets is available on the ARM Notebooks Github repository at: 

https://github.com/ARM-Development/ARM-Notebooks/blob/main/VAPs/precipbe/precipbe_intro.ipynb. The precipitation 

datasets of the PWD (Kyrouac et al., 2021), AOSMET (Kyrouac and Tuftedal, 2010), DISDROMETER (Wang, 2006), 470 

VDISQUANTS (Hardin et al., 2021), LDQUANTS (Hardin et al., 2019), TBRG (Kyrouac et al., 2006, 2021), WBPLUVIO2 

(Zhu et al., 2016), RAINWB (Shi et al., 2010), and ORG (Kyrouac et al., 2021) from the ARM SGP site are available on the 

ARM Data Discovery (https://adc.arm.gov/discovery/; last access: 10 March 2025). 
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