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Abstract. Future hydrological projections exhibit significant discrepancies among models, undermining confidence in the 

predicted magnitude and timing of hydrological extremes. Here we show that observation-constrained changes in global 

mean terrestrial water storage (TWS), excluding Greenland and Antarctica, could be approximately 83 mm lower than raw 

projections from the Inter-Sectoral Impact Model Intercomparison Project phase 3b by the end of this century under both 

low- and high-end future forcing scenarios. Notably, the 95th percentile upper bounds are substantially reduced from 2 mm 10 

to -96 mm under the low-emissions scenario and from 8 mm to -105 mm under the high-emissions scenario, revealing a 

notable overestimation of global freshwater availability in the raw model projections. Global models are intricate process 

representations, making it challenging to isolate causes of their differences with observations. However, by leveraging the 

emergent constraint (EC) methodology and inter-model spread to empirically adjust biases against observations, we produce 

more robust projections of future TWS changes than conventional, unconstrained approaches. EC-corrected projections 15 

indicate a significant decrease in freshwater availability, further exacerbating existing water stress worldwide if global water 

demand remains stable or continues to rise. Our findings pinpoint the urgent need to reduce model uncertainties and enhance 

the reliability of future hydrological projections to better inform water resource management and climate adaptation 

strategies. 

1 Introduction 20 

Terrestrial water storage (TWS) encompasses all water stored on and beneath the land surface, representing the net balance 

of precipitation, evapotranspiration, and runoff (Getirana et al., 2017; Rodell & Famiglietti, 2001). As a critical element of 

the hydrological cycle, TWS plays a key role in regulating freshwater availability (Rodell & Famiglietti, 2001) and Earth's 

energy budget (Getirana et al., 2017), supporting freshwater ecosystems (Tapley et al., 2019; Wu et al., 2024), influencing 

biogeochemical cycles (Rodell et al., 2018), driving socioeconomic development (Scanlon et al., 2023; Vörösmarty et al., 25 

2000), and mitigating sea level rise by enhancing continental water storage (Tapley et al., 2019).  

 

A warming climate impacts TWS by accelerating the hydrological cycle through enhanced evapotranspiration and by 

modifying global precipitation patterns (A. Dai et al., 2018). These changes exacerbate freshwater scarcity under climate 
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change, highlighting the crucial need for accurate future projections. However, the discrepancies among models in 30 

simulating historical hydrological budgets lead to substantial differences in their projections of extreme hydrological events 

(Herrera-Estrada et al., 2017; Trenberth et al., 2003; Vogel et al., 2018), which in turn reduce confidence in the predicted 

magnitude and timing of these extremes. These discrepancies can be attributed to various factors, including uncertainties in 

climate forcing (Scanlon et al., 2018), the absence of key components such as surface water storage, groundwater storage, 

and human interventions in most land surface models (LSMs), as well as limited storage capacities within both LSMs and 35 

global hydrological models (GHMs). 

 

The uncertainty of future projections can be constrained using the emergent constraint (EC) approach (Brient, 2020; Hall et 

al., 2019), which identifies potential physical relationships between the observable historical climate and future change 

across global models. While a large number of ECs have been proposed for global mean temperature changes and other 40 

hydro-climatic variables (Bowman et al., 2018; Brient, 2020; Hall et al., 2019; Petrova et al., 2024; Shiogama et al., 2022), 

the potential constraints on global mean changes in terrestrial water storage have yet to be thoroughly explored. To fill this 

gap, here we examine EC relationships using hydrological simulations from multiple LSMs and GHMs to identify the 

physical mechanisms underlying changes in TWS. By combining the proposed EC with historical observations from Gravity 

Recovery and Climate Experiment (GRACE) satellites (Tapley et al., 2019; Velicogna et al., 2020), we successfully 45 

constrain future TWS changes and obtain EC-corrected late century projections.   

2 Data and methods 

2.1 Observations 

Global observations (excluding Greenland and Antarctica) for the period 2004–2023 were derived from GRACE satellites. 

Because research has demonstrated that GRACE data processing in terms of mass concentration (mascon) solutions results 50 

in higher correlations with in situ data compared to spherical harmonic solutions (Watkins et al., 2015), we utilized all three 

available GRACE mascon solution datasets (i.e., JPL RL06.3M v04, CSR RL0603M, and GSFC mascon RL06 v1.0), 

produced by the Jet Propulsion Laboratory (Watkins et al., 2015), the Center for Space Research (Save et al., 2016), and the 

Goddard Space Flight Center (Luthcke et al., 2013), respectively, to estimate uncertainties. To ensure our results are robust 

across processing approaches, we also incorporate four spherical‐harmonic products (i.e., JPL RL06, CSR RL06, GFZ RL06, 55 

and COST-G RL01). To address missing months in the GRACE datasets, we employed linear interpolation to estimate and 

fill these gaps. 

2.2 Global models and climate forcing 

Five LSMs and GHMs (see details in Table S1) from the Inter-Sectoral Impact Model Intercomparison Project phase 3b 

(ISIMIP3b; https://protocol.isimip.org/#/ISIMIP3a), were employed to assess historical and future relationships in TWSAs 60 
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(see details below). These projections were based on climate forcing from the Coupled Model Intercomparison Project Phase 

6 (CMIP6) (Eyring et al., 2016). Climate forcing data were sourced from five general circulation models (GCMs) under 

three scenarios: historical climate (HIST, 1850–2014), a low greenhouse gas (GHG) emissions scenario (SSP1-2.6), and a 

high GHG emissions scenario (SSP3-7.0). These scenarios were chosen to maximize the inclusion of available models. The 

historical climatology (2004–2023) was constructed by combining the end of the HIST run with the beginning of the SSP1-65 

2.6 simulation, following the approach adopted in previous TWS studies using the ISIMIP datasets (for example, ref. 

(Pokhrel et al., 2021)). SSP2-4.5, a “middle of the road” scenario, would be the most appropriate for extending the historical 

period due to its alignment with historical socioeconomic trajectories (Fricko et al., 2017). Nevertheless, only a limited 

number of models provide the SSP2 forcing in the ISIMIP datasets. To ensure a robust analysis, the proposed ECs were 

validated using an ensemble of simulations from eight ISIMIP2b models (Table S2). These simulations were based on 70 

climate forcing from four CMIP5 GCMs under three scenarios: historical climate (HIST, 1861–2005), the RCP2.6 scenario, 

and the RCP6.0 scenario. All outputs were provided at a monthly temporal resolution and on a 0.5° × 0.5° global grid. 

Monthly data were then regridded to a common 1° × 1° global grid. The ensemble members (i.e., outputs from each GHM or 

LSM driven by different climate forcings) were compared with GRACE data. To ensure consistency, we computed TWSAs 

at each grid point relative to GRACE’s baseline period of 2004–2009. This aligns all datasets to a common reference, 75 

conducting direct comparison of observed and simulated TWSAs as deviations from the same climatological mean.  

2.3 Emergent constraint approach and calibration 

To implement the EC framework, we begin by identifying statistically significant relationships between annual global mean 

changes in TWS, y, and historical annual global mean TWSA climatologies, x, across a variety of global models. To ensure 

the robustness of our EC results, we also used linear trends of historical TWSAs as alternative predictors. Specifically, the 80 

long-term trend in historical annual TWSAs at each grid point was estimated using ordinary least squares regression. A 

linear regression model was employed to depict the EC relationship between x and y. The variable x was replaced with the 

mean of historical observations, and the mean of EC-corrected changes was derived using the regression model. We also 

calibrated the projected future changes by applying the EC relationship to each grid cell, resulting in the spatial distribution 

of EC-corrected projections along with the corresponding biases. 85 

 

To estimate the uncertainty of the calibrated future changes, a stationary bootstrap method (Brient, 2020; Politis & White, 

2004) was applied. Bootstrapping was performed 500 times, generating 500 regression line samples. This approach robustly 

quantifies the sampling uncertainty without requiring assumptions about the underlying probability distributions. Following 

the method of Brient and Schneider (Brient & Schneider, 2016), confidence intervals for the calibrated future changes were 90 

estimated by projecting the observed value xo from each GRACE dataset (using all three mascon solutions) onto the 

generated 500 regression line samples.  
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Spearman’s rank correlation coefficients were calculated for TWS-related variables to investigate the physical mechanisms 

underlying the EC relationship. These variables were derived from simulations under the historical and SSP3-7.0 scenarios. 95 

To understand the spatial distribution of differences in future changes, we categorized the six driest and six wettest ensemble 

members based on their historical climatology of annual global mean TWSAs (Table S1). For simplicity, we refer to models 

with historically low and high simulated TWSAs as “dry” and “wet” models, respectively. The observed discrepancies are 

likely due to differences in how models represent storage compartments and account for human influences. The driest 

models produced resent-day global mean TWSAs that closely align with values derived from mascon solutions, while the 100 

wettest models appeared to overestimate the historical climatology (Fig. 1). 

3 Results 

3.1 Proposed emergent constraint derived from historical climatology 

Our approach follows established EC protocols by relating an observable historical metric (that is, area-weighted global 

mean of annual terrestrial water storage anomaly (TWSA) climatology) to a targeted future change (global mean of end-of-105 

century annual TWS change) across an ensemble of models. This strategy is consistent with prevailing EC studies (for 

example, (Cai et al., 2025; P. Dai et al., 2024; Kim et al., 2023; Petrova et al., 2024)), which often relate present‐day 

climatological states (or trends when they offer stronger physical connections) to future changes rather than link historical  

and future trends directly. To align GRACE observations with model outputs, we first compute TWSAs at each grid point 

relative to GRACE’s default baseline period of 2004–2009. Anchoring all datasets to this common reference ensures that 110 

both historical and future TWSAs (whether from observations or models) are directly comparable as deviations from the 

same climatological mean. Consequently, because both historical and future TWSAs share this baseline, their difference 

naturally represents changes in TWS (hereafter referred to as “TWS change”) rather than changes in anomalies. In fact, our 

approach to calculating TWS change has shown results comparable to the conventional method (cf. Fig. 2c,d in this article 

with Fig. 1b,d in (Pokhrel et al., 2021)). Finally, we derive a TWSA climatology by averaging monthly anomalies for each 115 

calendar year and then computing the multi-year mean over the period of interest.  

 

We analyze historical and future relationships in TWSAs using multi-model hydrological simulations of 25 ensemble 

members from the Inter-Sectoral Impact Model Intercomparison Project (Warszawski et al., 2014) phase 3b (ISIMIP3b), and 

31 ensemble members from the ISIMIP2b (Frieler et al., 2016) (Methods and Supplementary Tables 1 and 2). Future 120 

projections are based on climate forcing from the Coupled Model Intercomparison Project phase 6 (CMIP6) (Eyring et al., 

2016) and CMIP5 (Taylor et al., 2012), respectively. To maximize the inclusion of available models and compare with 

previous studies (for example, (Pokhrel et al., 2021)), we select a low-emissions scenario (Shared Socio-economic Pathway 

https://doi.org/10.5194/egusphere-2025-4720
Preprint. Discussion started: 6 October 2025
c© Author(s) 2025. CC BY 4.0 License.



5 

 

(SSP)1-2.6/Representative Concentration Pathway (RCP)2.6) and a high-emissions scenario (SSP3-7.0/RCP6.0). Significant 

positive correlations (R > 0.99 for both ISIMIP2b and ISIMIP3b models) are found between historical and late century 125 

annual area-weighted global mean TWSAs, irrespective of the emissions scenario (Fig. S1). These findings indicate that 

models simulating higher TWSAs in the historical climate tend to predict higher TWSAs in the future, in agreement with the 

“wet gets wetter” atmospheric response to warming identified globally (Held & Soden, 2006) and over land (Petrova et al., 

2024) in the CMIP models. Various hydrological datasets also corroborate this “wet gets wetter” signal over water-sufficient 

lands (Greve et al., 2014; Kumar et al., 2015; Markonis et al., 2019). GHMs and LSMs are developed based on distinct 130 

numerical frameworks and parameterizations, leading to structural diversity in how they represent key storage components. 

This structural diversity such as lack of surface water and groundwater storage compartments and human intervention in 

most LSMs; see Supplementary Tables 1 and 2) is responsible for inter-model differences (Scanlon et al., 2018), which may 

lead to the “wet gets wetter” pattern. For instance, under the SSP1-2.6 scenario, MIROC-INTEG-LAND simulates relatively 

low TWSA climatologies in both historical and future periods, whereas JULES-W2 produces much higher values under the 135 

same conditions (Fig. S1). Our methodology does not assume uniform storage physics; instead, it leverages the multi‐model 

spread to empirically constrain biases against GRACE observations. 

 

As shown in Fig. 1, the magnitude of future TWS increases is positively correlated with the historical TWSA climatology. 

The Spearman’s rank correlation coefficients between the historical TWSA climatology and mid-century TWS changes are 140 

0.79 and 0.70 (p < 0.01) for the ISIMIP2b and ISIMIP3b ensembles, respectively, under the low-emissions scenario. Under 

the high-emissions scenario, statistically significant correlations of 0.61 and 0.71 (p < 0.01) are observed for the ISIMIP2b 

and ISIMIP3b ensembles, respectively. For late century TWS changes, significant correlations with historical TWSA 

climatology persist across both ISIMIP2b and ISIMIP3b ensembles. This robust relationship provides a basis for 

constraining future TWS changes (Methods). It is worth noting that several modeling factors including initial conditions, 145 

structural differences (especially the diversity of storage compartments), human intervention, and calibration can contribute 

to the large inter-model spread and thus the resulting discrepancies with GRACE observations. 
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Figure 1: Inter-model relationships between historical (2004–2023) climatologies and future changes at mid-century (2040–2059; 150 
upper panels) and late century (2080–2099; lower panels) from ISIMIP2b (blue) and ISIMIP3b (red) models under the 

RCP2.6/SSP1-2.6 (a,c) and RCP6.0/SSP3-7.0 (b,d) scenarios. Dots and crosses represent global (excluding Greenland and 

Antarctica) averages of TWSAs from ensemble members. Blue and red lines represent linear regression fits, with 90% confidence 

intervals estimated through bootstrapping. Blue and red vertical lines mark the ensemble mean. Black vertical lines indicate the 

average of GRACE observations (black cross), and grey shading represents the standard deviation. Box plots indicate the mean 155 
(black line), 66% (box), and 90% (whisker) confidence intervals of future TWS changes before (empty box) and after (filled box) 

applying observational constraints. 

 

After applying the EC calibration (Methods), mid-century global mean TWS changes are reduced by 44 mm and 40 mm 

compared to the raw projections from the ISIMIP3b ensembles under the low- and high-end forcing scenarios, respectively 160 

(Fig. 1, upper panels). For late century projections, EC-corrected changes could be ~83 mm lower than the raw estimates 

from the ISIMIP3b ensembles irrespective of the forcing scenario (Fig. 1, lower panels), highlighting potentially lower 

global freshwater availability than initially indicated by the ISIMIP3b models. Furthermore, the EC correction constrains the 

discrepancies of late century TWS changes by 63% for the SSP1-2.6 scenario and 69% for the SSP3-7.0 scenario. 

Specifically, the upper bound (95th percentile) is reduced from 2 mm to −96 mm under the low-end forcing scenario and 165 

from 8 mm to −105 mm under the high-end forcing scenario, indicating an initial overestimation of global freshwater 

availability in the raw ISIMIP3b ensemble projections. Global models are sophisticated process representations, making it 

challenging to isolate causes of their differences with GRACE (Haddeland et al., 2011). However, by leveraging the EC 

methodology and inter-model spread in water storage partitioning against GRACE data, we produce more robust projections 

of future TWS changes than conventional, unconstrained approaches. Note that the reduction in ensemble uncertainty shown 170 
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in our study is unexpectedly greater than that reported in previous EC-related research (e.g., refs. (Brient, 2020; Brient & 

Schneider, 2016; Petrova et al., 2024)). This discrepancy arises because GRACE products used for EC correction are all 

derived from a single source—the GRACE satellites—resulting in an underestimated uncertainty for global mean TWSA 

observations compared to other multi-source observational variables, such as air temperature and precipitation. EC-corrected 

changes based on the ISIMIP2b models show similar results to those from the ISIMIP3b models, albeit with higher ensemble 175 

averages, which can be attributed to the shallower slopes observed in their linear regression relationships. Although here we 

illustrate results using three mascon‐based GRACE datasets, extending the analysis to include four spherical‑harmonic 

solutions yields EC-corrected projections that remain robust but produces slightly higher mean TWS changes at the end of 

this century (Supplementary Fig. 7). We also analyze the past-future EC relationship using linear trends of historical TWSAs 

as potential predictors (Fig. S2, lower panels). The corresponding results closely align with those obtained using historical 180 

TWSA climatology as predictors, showing identical ensemble averages and consistent 5–95% ranges. Subsequent analyses 

are based on the past-future EC relationship with historical TWSA climatology as predictors, due to the current models’ 

inability to accurately simulate the large regional TWSA trends observed by GRACE (Scanlon et al., 2018). This limitation 

may reduce the reliability of the spatial patterns in future TWSA change projections presented below. 

3.2 Spatial patterns in future TWSA change projections 185 

By the end of the 21st century, TWSAs are projected to decrease considerably across several regions under the SSP1-2.6 

scenario, including the southern United States, Mexico, northwestern South America, both coasts of the strait of Gibraltar, 

the majority of Central, West, and South Asia, as well as North China (Fig. 2a). Under the SSP3-7.0 scenario, although the 

spatial pattern of TWS changes is similar, the signal becomes much stronger, especially in the low latitudes (Fig. 2b). The 

future changes projected by the ISIMIP2b ensembles are consistent with those from the ISIMIP3b ensembles across most 190 

land areas, with pattern correlations of 0.44 and 0.55 under the low- and high-end forcing scenarios, respectively. However, 

the smaller magnitude of the latitudinal mean in the ISIMIP2b projections indicates a weaker signal of TWSA change 

compared to the ISIMIP3b projections. Although this study uses an unweighted ensemble mean and a slightly different 

period to represent the late century, the spatial distributions closely align with those reported by ref. (Pokhrel et al., 2021) 

The primary distinction lies in the latitudinal mean, which reveals a much steeper decline in TWSAs over the northern 195 

midlatitudes irrespective of the emissions scenario in our analysis (Fig. 2c,d). 
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Figure 2: Late century (2080–2099) multi-model ensemble averages of TWS changes under the SSP1-2.6/RCP2.6 (a,c) and SSP3-

7.0/RCP6.0 (b,d) scenarios, shown relative to historical (2004–2023) climatologies. The accompanying histograms on the right 200 
indicate zonally averaged TWSAs for each scenario. 

 

To provide accurate regional-scale projections of future TWS changes, we obtained EC-corrected maps (Fig. 3a,c) by 

calibrating the ISIMIP3b outputs against observed TWSA climatologies at each grid cell (Methods). The proposed EC 

correlations are robust (R > 0 and p < 0.05) across ~26% of global land areas (excluding Greenland and Antarctica) under 205 

both scenarios, based on the ISIMIP3b ensembles. In contrast to the raw ISIMIP3b outputs (Fig. 2a,b), the EC-corrected 

maps show similar patterns, such as pronounced TWSA declines in the northern midlatitudes, though with greater 

magnitudes under both the low- and high-emissions scenarios, as highlighted in the histograms of the latitudinal mean (Fig. 

3a,c). The similarity in spatial patterns between the raw model outputs and the EC-corrected projections, along with the bias 

maps (Fig. 3b,d), corroborates our global analysis: observation-constrained TWS changes (ensemble mean) shift away from 210 

zero after the EC correction (Fig. 1). Under both emissions scenarios, the ISIMIP3b outputs show a notable overestimation 

of TWSAs across mid- and high latitudes in the Northern Hemisphere, including regions such as the Northwest Territories in 

Canada, the Southwestern United States, much of the Middle East, the Danube River Basin, Siberia, and North China. This 

overestimation is consistent with previously reported underestimations of decreasing TWSA trends in models over Northern 

Hemisphere river basins compared to satellite observations (Scanlon et al., 2018), which may consequently lead to 215 

overestimated projections of future freshwater availability in these regions. Conversely, considerable underestimations of 

TWSAs occur in the Amazon and the Murray Basin in southeastern Australia, aligning with models’ tendency to 

underestimate increasing TWSA trends in humid regions or nonirrigated basins (Scanlon et al., 2018).  
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 220 

Figuire 3: a,c, Late century (2080–2099) EC-corrected TWS changes under the SSP1-2.6 and SSP3-7.0 scenarios, shown relative to 

historical (2004–2023) climatologies. b,d, Biases in projected late century TWS changes (raw model outputs minus EC-corrected 

values). Only regions with statistically significant positive EC correlations (R > 0 and p < 0.05) are shown. The histograms on the 

right represent zonally averaged values, with data shown only for latitudes between 70°N and 35°S due to sparse coverage outside 

this range. 225 

 

3.3 Underlying physical processes of the emergent relationship 

It is crucial to elucidate the physical mechanisms linking historical and future variability in the EC relationship (Caldwell et 

al., 2014; Hall et al., 2019; Schlund et al., 2020). Under the SSP3-7.0 scenario, significant positive inter-model correlations 

(p < 0.05) are found between local precipitation and TWS changes over most regions globally (Fig. 4a). Similarly, positive 230 

correlations are evident between local precipitation and other TWS-related variables, such as evapotranspiration and total 

runoff (Fig. 4b,c). These results are consistent with established physical understandings, affirming that local precipitation 

changes strongly correlate with TWS changes. More importantly, they suggest that models projecting higher precipitation 

changes tend to predict larger TWSA increases. This finding highlights the transfer of the “wet gets wetter” atmospheric 

response to warming into future hydrological projections through precipitation forcing. Actually, climate models predicting 235 

higher warming trends often anticipate greater precipitation increases as a result of thermodynamics (Emori & Brown, 2005; 

Shiogama et al., 2022). At local scales, atmospheric warming-induced increases in water vapor enhance precipitation in wet 

regions and reduce it in dry regions (Chou et al., 2013; Held & Soden, 2006).  
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 240 

Figure 4: Inter-model Spearman’s rank correlations between late century (2080–2099) precipitation changes and changes in TWS 

(a), evapotranspiration (b), and total runoff (c) under the SSP3-7.0 scenario. Black stippling marks regions of statistical 

significance (p < 0.05). d, Differences in late century changes for TWSAs (the wettest minus the driest models). Black hatches 

indicate statistically significant differences at the 5% level, as determined by Welch’s t-test. A permutation test with 100 random 

permutations was conducted to estimate the p-values. 245 

 

To further explore inter-model variations, we examine differences in TWS-related variables between the wettest and driest 

ensemble members based on their historical TWSA climatologies (Fig. 1, horizontal axis values; Methods). Significant 

differences in future TWS changes emerge, particularly in northern midlatitudes such as North America and Europe, where 

the driest ensemble members predict substantially more severe TWSA reductions compared to the wettest ones (Fig. 4d). 250 

Similar patterns of inter-model correlations and subdued precipitation changes are also found under the SSP1-2.6 scenario 

(Fig. S5). 

4 Discussion  

The EC relationship between historical TWSA estimates and future changes is statistically significant on both global and 

regional scales, especially across approximately 26% of global land areas. However, the reliability of proposed ECs could be 255 
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compromised due to the lack of independence among climate models (Brient, 2020; Caldwell et al., 2014). Climate models 

are frequently derived from one another (Knutti et al., 2013). This challenge becomes more pronounced in future 

hydrological projections. LSMs and GHMs often share structural similarities in simulating water storage compartments and 

human water use sectors (Telteu et al., 2021). Moreover, their climate forcings could also derive from climate models with 

insufficient diversity. This is reflected in the skewed distribution of global averages of historical TWSA climatologies in the 260 

ISIMIP models before the EC correction (Fig. 1, empty box plots). These findings underscore the critical need to ensure 

diversity in global models as well as in their climate forcings, particularly in water-resources-focused projects like the 

ISIMIP. 

 

In conclusion, our observation-constrained results highlight that warming-induced reductions in TWS translate into 265 

diminished freshwater availability on both global and regional scales. This is especially evident in mid- and high-latitude 

regions of the Northern Hemisphere, where low historical TWSA climatologies are prevalent. Compared to the raw 

ISIMIP3b projections, our constrained estimates indicate an average TWS decrease of roughly 83 mm, revealing a 

significant overestimation of future water availability in both GHMs and LSMs. This overestimation elevates the risk of 

basins being underprepared for actual supply conditions, as uneven water gaps are projected to widen under warming 270 

scenarios (Rosa & Sangiorgio, 2025). Accordingly, there is an urgent need to reduce model uncertainties through robust 

observational constraints and enhance diversity among GHMs and LSMs, thereby improving the reliability of future 

hydrological projections for informed water resource management and climate adaptation. 
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