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Abstract14

We present an update to ECMWF’s machine-learned weather forecasting model AIFS Single15

with several key improvements. The model now incorporates physical consistency constraints16

through bounding layers, an updated training schedule, and an expanded set of variables. The17

physical constraints substantially improve precipitation forecasts and the new variables show18

a high level of skill. Upper-air headline scores also show improvement over the previous AIFS19

version. The AIFS has been fully operational at ECMWF since the 25th of February 2025.20

1 Introduction21

Machine-learned weather forecast models have started to rival or outperform physics-based22

numerical weather prediction (NWP) models in recent years (Pathak et al., 2022; Keisler,23

2022; Lam et al., 2023; Chen et al., 2023; Bi et al., 2023; Lang et al., 2024a). For both training24

and forecasting, these machine-learned forecast models mostly depend on the Copernicus ERA525

reanalysis dataset produced by ECMWF (Hersbach et al., 2020) and operational analysis by26

ECMWF’s physics-based integrated forecasting system (IFS).27

ECMWF has developed the artificial intelligence forecasting system (AIFS) (Lang et al.,28

2024a), its own machine-learned forecast model. After a successful pre-operational test phase29

running four times daily since October 2023, with forecasts publicly available under ECMWF’s30

∗equal contribution
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open data policy, AIFS has now transitioned to operational status. The first operational ver-31

sion, AIFS 1.0.0 replacing AIFS 0.2.1, was implemented on 25 February 2025. The current32

operational version, AIFS 1.1.0 described here, was released on 27 August 2025 to correct a33

precipitation forecast issue in the initial version. The model is trained with a mean-squared34

error (MSE) loss function and is referred to as AIFS Single, to distinguish it from the proba-35

bilistically trained version, the AIFS ENS (Lang et al., 2024b).36

Although such MSE-trained forecast models have been shown to smooth forecast fields at37

longer lead times to avoid the double-penalty of incorrectly positioned weather phenomena38

(Lam et al., 2023; Ben Bouallègue et al., 2024; Lang et al., 2024a; Bonavita, 2024), they still39

display physically robust characteristics (Hakim and Masanam, 2024) and are able to make40

useful predictions of extreme events (Ben Bouallègue et al., 2024). The cheaper training costs41

associated with MSE-trained models (compared to probabilistically trained models) make them42

attractive for prototyping new features and model components.43

To date, most machine-learned weather forecast models only include a limited subset of44

forecast variables available from current NWP systems. Here, we include for the first time in45

the AIFS soil moisture, soil temperature and runoff together with energy sector variables such46

as cloud cover, 100 metre winds and solar radiation. The choice of additional variables has been47

guided by utility to users and with considerations of future applications of the model, alongside48

pragmatic considerations on data availability and readiness. Surface solar radiation and 100-49

metre wind speeds have been included, important for renewable energy sectors. We added an50

initial characterization of the land surface with prognostic soil moisture and soil temperature,51

important for drought forecasting. We also include snowfall, improving the representation of52

distinct precipitation types in the model. Finally, we have added run-off as a diagnostic model53

output, pushing towards a hydrological component for the AIFS.54

Despite their ability to produce skilful forecasts, machine-learned forecast models are prone55

to producing outputs that violate known physical relationships and limits (e.g., negative pre-56

cipitation or mass imbalances). In current applications, including the pre-operational version57

of AIFS, post-processing of forecasts is commonly applied to remove such physical inconsisten-58

cies. Instead, we propose an additional final layer of activation functions that bound certain59

variables within physically meaningful limits and enforce physical constraints between related60

quantities. This simplifies the learning task by constraining the model output space to physi-61

cally plausible regimes. This bounding strategy also proves particularly beneficial for variables62

with non-Gaussian distributions, such as precipitation, where the model must effectively dis-63

tinguish between rain and no-rain states. The bounding layer effectively maps negative outputs64

to no-rain, eliminating the need for the model to explicitly learn to predict zero-precipitation65

values.66

In this paper we begin by outlining the training setup of the model and how this differs from67

the previous AIFS version. Then we motivate and describe the new bounding strategy to make68

the model forecast more physically consistent. We demonstrate the improved performance of69

the revised AIFS version via evaluation results and selected case studies. We conclude by70

summarizing main results and future work in the discussion and conclusions.71

2 Training72

The architecture of AIFS follows an encoder-processor-decoder design. Here, encoder and73

decoder are attention-based graph neural networks, and the processor is a transformer with a74

sliding window attention (see Lang et al. (2024a) for details).75

The model operates on a reduced Gaussian grid, (N320, approximately 0.25° resolution).76

The processor (or hidden) grid is an O96 octahedral reduced Gaussian grid (Wedi (2014)) with77

40,320 grid points, approximately 1° resolution, and consists of 16 processor layers.78
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AIFS is trained to produce 6-hour forecasts t+6h using past and present atmospheric states79

at t−6h and t0 (from ERA5 or ECMWF’s operational analyses at initialization, or from the80

model forecast itself). Longer lead times are produced auto-regressively by feeding the model’s81

predictions back as inputs, a process commonly referred to as rollout.82

2.1 Training Schedule83

The training is divided into two phases. The first is a pre-training phase, where the model84

learns to predict the atmospheric state 6 hours ahead (t+6h) using ERA5 analysis at t−6h and85

t0. The second phase, rollout fine-tuning, continues from the pre-trained weights and trains86

the model to forecast auto-regressively up to 72 hours. Here, the model learns to forecast87

from its own predictions. Unlike the previous AIFS version, where rollout fine-tuning was first88

performed using ERA5 and then followed by final fine-tuning on ECMWF operational analysis,89

we directly use operational analysis for the entire fine-tuning stage. This simplifies the training90

pipeline, reduces computational costs and results in better forecast performance.91

Pre-training is performed on ERA5 data covering the years 1979–2022 (compared to 1979–202092

in the previous AIFS version), using a cosine learning rate (LR) schedule, a batch size of 16,93

and a total of 260,000 training steps. The LR is linearly increased from 0 to 5 × 10−4 during94

the first 1,000 steps, then annealed to a minimum of 3× 10−7. This is followed by rollout fine-95

tuning on ECMWF operational analysis from 2016 to 2022, also using a cosine LR schedule96

and batch size of 16, for approximately 7,900 steps (equivalent to one epoch per rollout step).97

The LR started at 1.28× 10−5 and is annealed to the same minimum value of 3× 10−7. The98

rollout length is initially set to 6 hours (1 step) and progressively increased by one step per99

epoch up to 72 hours (12 steps), following the approach of Lam et al. (2023) and Lang et al.100

(2024a). We used the AdamW optimizer (Loshchilov and Hutter, 2019) with β coefficients of101

0.9 and 0.95. Here, the rollout dataset is extended to eight years of operational IFS analysis102

(2016–2022), compared with only two years (2019–2020) in the previous AIFS version.103

2.2 Variables used in training104

The variables used in the new AIFS version are listed in Table 1. As in AIFS 0.2.1, the upper105

atmosphere is represented by geopotential, horizontal wind components, specific humidity,106

and temperature at 13 pressure levels: 50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 850,107

925, and 1000 hPa. Newly introduced variables are marked with *. We have increased the108

characterization of the land surface in the model by including new prognostic variables of soil109

moisture at levels 1 and 2 (swvl1 and swvl2), and soil temperature at levels 1 and 2 (stl1110

and stl2), important for drought monitoring and forecasting. A notion of hydrology has been111

included with runoff (ro), forecast as a diagnostic variable. A second set of variables, related112

to energy forecasting and clouds, adds real value to the model’s utility. These are forecast113

diagnostically and include the 100-metre wind components (100u and 100v), surface solar and114

thermal radiation (ssrd and strd), and cloud cover at various levels (tcc, hcc, mcc, lcc). Finally,115

snowfall (sf) has been added to complement the set of total precipitation–related variables. An116

illustration of a selection of these variables can be seen in the forecast presented in Figure 1,117

where the consistency between these new variables is clear, with areas of higher cloud cover118

corresponding to lower solar radiation at the surface and consistent weather patterns for 100-119

metre winds. These new variables are sourced from the ERA5 reanalysis and IFS operational120

data archive, in line with those used in the previous AIFS version (0.2.1).121

The per variable normalization strategy used in AIFS is summarized in Table 1. Unless122

stated otherwise, data is normalized to zero mean and unit variance (z-score normalization). For123

some bounded output variables (see Section 3), only standard deviation normalization is applied124
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Figure 1: A selection of new variables available from the revised AIFS Single forecasts: cloud cover
(left), surface solar radiation (centre), and 100 m wind speed/direction (right). The consistency
between these new variables is clear, with areas of higher cloud cover corresponding to lower solar
radiation at the surface and consistent weather patterns for 100-metre winds.

to avoid shifting of the absolute zero in the normalized space. The loss function is unchanged125

from the previous AIFS version. Table 1 shows the loss scaling factors we use in the revised126

AIFS version. Scaling factors were chosen empirically to ensure that all prognostic variables127

contribute approximately equally to the loss function, with the exception of vertical velocities128

and soil moisture, deliberately down-weighted. Furthermore, the loss weights decrease linearly129

with height, so that upper atmospheric levels contribute less to the total loss. The pressure130

level weights are calculated following w = max(pressure level/1000, 0.2), like in the AIFS-ENS131

(Lang et al., 2024b). A minimum weight of 0.2 is imposed in the revised version to avoid132

assigning excessively low values in the stratosphere.133

AIFS is trained using data parallelism with a batch size of 16, while each model instance is134

distributed across four GPUs within a single node (Lang et al., 2024a). Training was conducted135

on the European supercomputer Leonardo (EuroHPC), hosted and managed by Cineca, on136

64GB A100 GPUs. Mixed-precision training is used (Micikevicius et al. (2018)), and the full137

process takes approximately three days. A 10-day forecast can be produced in about 2 minutes138

and 30 seconds on a single A100 GPU, including data input and output.139

3 Enforcing Model Constraints140

Machine-learned forecast models for numerical weather prediction show very good forecast141

skill, yet they are prone to producing outputs that violate known physical laws or expected142

statistical consistency. Unlike traditional numerical models, which are governed by equations143

ensuring mass conservation, positivity, or energy bounds, machine-learned forecast models lack144

such guarantees by default. As a result, physically implausible outputs, such as negative145

precipitation, can emerge. We show that incorporating constraints into the model design to146

enforce physical realism improves forecast skill. In this section, we first identify specific issues147

in the output of the previous AIFS version related to total precipitation, and then introduce148

a simple yet effective method to bound the model outputs using activation functions. The149

proposed method is not restricted to total precipitation but can be equally applied to other150

variables.151

3.1 Lack of Physical Realism in Precipitation Forecasts152

The previous AIFS version suffers from significant drawbacks in forecasting precipitation. Most153

notably, the model’s output is not constrained, leading to a frequent occurrence of negative val-154
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Variable name Short
name

Level type
Pressure
level (50-
1000 hPa)
or Surface

Variable
type:
Prognostic,
Diagnostic,
Forcing

Normalization Scaling

Geopotential z Pl P Z-score 12

Horizontal wind components u, v Pl P Z-score 0.8, 0.5

Specific humidity q Pl P Std 0.6

Temperature t Pl P Z-score 6

Surface pressure sp S P Z-score 10

Mean sea-level pressure msl S P Z-score 1

Skin temperature skt S P Z-score 1

2 m temperature 2t S P Z-score 1

2 m dewpoint temperature 2d S P Z-score 0.5

10 m horizontal wind compo-
nents

10u, 10v S P Z-score 0.5, 0.5

Total column water tcw S P Std 1

Volumetric soil water level 1
and 2*

swvl1,
swvl2

S P None 1, 2

Soil temperature level 1 and
2*

stl1, stl2 S P None 1, 10

Total precipitation tp S D Std 0.025

Convective precipitation cp S D Std (tp) 0.0025

Snowfall* sf S D Std (tp) 0.025

Total cloud cover* tcc S D None 0.1

High cloud cover* hcc S D None 0.1

Medium cloud cover* mcc S D None 0.1

Low cloud cover* lcc S D None 0.1

Runoff* ro S D Std 0.005

Surface solar radiation down-
wards*

ssrd S D Std 0.05

Surface thermal radiation
downwards*

strd S D Z-score 0.1

100 m horizontal wind compo-
nents*

100u, 100v S D Z-score 0.1, 0.1

Land-sea mask lsm S F None

Orography z S F Max

Standard deviation of sub-
grid orography

sdor S F Max

Slope of sub-scale orography slor S F Max

Insolation insolation S F None

Latitude/longitude (cos/sin) lat/lon S F None

Time of day/day of year local time,
julian day

S F None

Table 1: Variables used in the training of AIFS, with their short names, level type, variable type,
normalization method, and scaling factors. Variables marked with * were newly introduced com-
pared to AIFS v0.2.1.
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ues. This is illustrated in Figure 2, which compares the 24-hour accumulated total precipitation155

forecasts from the previous AIFS version, the revised version, and an estimate derived from the156

short-range IFS (47r3) 6-hour forecasts, for the run initialized on 01/06/2023 at 00:00 UTC157

and valid at 02/06/2023 00:00 UTC. The previous AIFS shows spurious negative precipitation158

values and an excess of light rainfall, which are largely corrected in the revised AIFS. While159

negative values can be clipped to zero at inference time, their presence highlights a lack of160

physical consistency in the model. This issue is also present in other machine-learned weather161

forecast models, such as GraphCast (Lam et al., 2023), which is similarly unconstrained.162

(a) AIFS previous (b) AIFS revised (c) IFS

Figure 2: Comparison of 24-hour total precipitation accumulation from the previous AIFS, the
revised AIFS and an estimate derived from the short-range IFS (47r3) 6-hour forecasts, for the
forecast issued at 01/06/2023 00:00 UTC and valid at 02/06/2023 00:00 UTC. The previous AIFS
shows spurious negative precipitation values and an excess of light rainfall, which are largely cor-
rected in the revised AIFS. The revised version therefore provides a precipitation distribution closer
to the IFS reference.

In addition to the negative values, a second noticeable issue, also visible in Figure 2, is the163

excess of light precipitation in the forecast. The model produces excessive light rain leading to164

a bias in the forecast.165

This is further supported by verification metrics computed against in situ observations166

(SYNOP stations). The Frequency Bias Index (FBI) scores for 2023 over Europe (Figure 3)167

confirm that the pre-operational AIFS systematically over-forecasts light precipitation events168

(< 1 mm). While a similar tendency is present in the IFS, it is considerably more pronounced169

in the machine-learned forecast model. At the other end of the distribution, the model tends170

to under-forecast more intense precipitation, as indicated by FBI values well below unity for171

thresholds exceeding 10 mm. This may be attributed to a well-known characteristic of machine172

learning-based forecasts: a tendency to produce overly smooth spatial fields, which can suppress173

extremes. Additionally, the coarser native resolution of AIFS (N320 0.25° grid) compared to174

IFS (0.1° grid) reduces its spatial representativeness.175

Convective precipitation forecasts also exhibit similar shortcomings. In addition, there176

is a further lack of physical consistency. Convective precipitation represents the part of the177

total precipitation that originates from convection, and therefore should always be less than or178

equal to the total. Figure 4 shows the previous AIFS 24-hour accumulated forecasts of total179

and convective precipitation for 02/06/2023. The map displaying the difference between the180

two reveals frequent cases in which convective precipitation exceeds total precipitation, which181

should not occur.182
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(a) 24h (b) 72h (c) 144h

Figure 3: Comparison of IFS (red), revised AIFS (blue), and previous AIFS (orange) for Europe at
forecast steps 24, 72, and 144 hours for 2023. Top row: Frequency Bias Index (FBI); Bottom row:
Peirce Skill Score (PSS). The previous version of the AIFS predicts light precipitation in excess.

3.2 Bounding the Outputs with Activation Functions183

Precipitation has been used as an example to demonstrate the biases present in the forecasts184

of some variables. These issues are not only limited to precipitation, but are also observed in185

all sparsely distributed variables. This behaviour can be avoided by constraining the output of186

the model.187

There are different strategies one could adopt to enforce physical constraints into the ML188

model. More specifically, here we tackled unphysical outputs, and we did not consider other189

constraints such as energy or mass conservation. Introducing loss penalties for outputs that190

fall outside the known physical bounds can be an effective strategy, and it has the advantage191

of not requiring any specific model change. Alternatively, the model could be modified in such192

a way as to prevent output from exceeding variable-specific physical bounds. This is usually193

referred to as hard-constraining. There are some examples in the literature of hard-constrained194

machine-learned models for climate and weather, such as Harder et al. (2024). The authors195

apply a softmax function, a generalization of the logistic function, as a hard-constraint for196

predicting quantities like atmospheric water content, to enforce the output to be non-negative197

in climate downscaling. Other examples can be found in Kent et al. (2025) or Bonev et al.198

(2025). Similarly, we argue that hard constraints on the output can be enforced using an199

activation function.200

Activation functions can be used in a straightforward way to enforce bounds in the output201

of machine-learned forecast models. Arguably, the most famous activation function and one202

we used in this work is the Rectified Linear Unit (ReLU), a nonlinear function defined as:203

ReLU(x) = max(0, x) (1)

ReLU maps all negative values to zero, effectively enforcing a hard lower bound on the output.204
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(a) Convective precipitation (b) Total precipitation (c) Difference (cp-tp)

Figure 4: Comparison of 24-hour total and convective precipitation forecast from the previous
AIFS version, together with a map showing the difference between the two of them for the forecast
issued at 01/06/2023 00:00 UTC and valid at 02/06/2023 00:00 UTC. Positive values (coloured
regions) in the difference plot indicate areas where convective precipitation is greater than the total
precipitation.

For variables requiring both upper and lower bounds, such as concentrations or fractions, the205

Hard Hyperbolic Tangent (HardTanh) function is an effective choice. It is a piecewise linear206

approximation of the hyperbolic tangent, defined as:207

HardTanh(x) =


0 if x < 0

x if 0 ≤ x ≤ 1

1 if x > 1.

HardTanh can also be used to enforce consistency between related output variables. For208

instance, consider the case of convective precipitation (Figure 4), which is predicted indepen-209

dently of total precipitation in the previous AIFS version. There is a clear relation between210

the two quantities: convective precipitation is a fraction of total precipitation and should never211

exceed it. A more physically consistent approach is to map the original convective output212

to the [0,1] range using a HardTanh layer and to multiply this output by the predicted total213

precipitation:214

cp = HardTanh(cp
′
)× tp, (2)

where cp
′
is the convective precipitation output before the activation layer. This guarantees215

consistency. This type of constraint, referred to as FractionBounding, is applied to variables216

related to total precipitation and total cloud cover.217

Clipping the precipitation output in inference is a possibility and a common practice. This218

was the case in the pre-operational AIFS model and also reported in other studies, such as219

Balogh et al. (2024). However, we show that the introduction of bounding in the output during220

training has benefits beyond simply avoiding slightly negative or unphysical values: it can221

facilitate the learning of forecasting for sparse and intermittent variables. Bounding effectively222

decomposes the prediction space into two distinct regions. In the case of total precipitation,223

the negative space becomes a proxy for forecasting the non-event, while the positive space224

corresponds to the occurrence of precipitation. This decomposition may, in principle, help the225

model more easily perform a classification between event and non-event outcomes, a distinction226

the previous AIFS version struggles with.227
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Table 2 summarises the bounding strategy used in the new version of the AIFS. Since228

bounding is performed on the normalized space, the choice of the normalization strategy is229

essential. In particular, variables bounded using a ReLU function were normalized using the230

standard deviation only, as indicated in Table 1, to avoid offsetting the zero value. Since231

snowfall and convective precipitation are predicted as fractions of total precipitation, it is232

necessary to ensure consistent magnitudes in the normalized space. Therefore, cp and sf were233

scaled using the standard deviation of total precipitation rather than their own. Total cloud234

cover and soil moisture variables (swvl1 & swvl2) were not normalized, since their range falls235

within the constraints imposed by the HardTanh bounding ([0,1]).236

Bounding Type Range Variables
ReluBounding [0, ∞) tp, ro, tcw, ssrd, q(50-1000 hPa)
HardtanhBounding [0, 1] tcc, swvl1, swvl2
FractionBounding (w.r.t. tp) [0, 1] cp, sf
FractionBounding (w.r.t. tcc) [0, 1] lcc, mcc, hcc

Table 2: Summary of bounding strategies used in the new version of AIFS.

4 Evaluation237

The revised AIFS version delivers highly skilled forecasts, as shown by anomaly correlation238

scores for 2023 in the Northern Hemisphere (Figure 6). In the medium range, AIFS outper-239

forms the IFS by 12 to 24 hours in skill. Forecast skill is also clearly improved compared to240

the previous AIFS version. This can be attributed to more training data and improvements241

in rollout fine-tuning. Here, we verify against the operational IFS analysis, which is also used242

to initialise the forecasts. Additionally, imposing a minimum on the loss weights in the strato-243

sphere leads to significant improvements in the data-driven forecasts at 100 and 50 hPa (Figure244

7). For temperature at 100hPa, the new version of the AIFS outperforms the IFS, while for245

50hPa wind speed, the gap in skill between the previous version of AIFS and the IFS in the246

stratosphere is significantly reduced.247

Forecast skill for key surface variables, such as 2-metre temperature and 10-metre wind248

speed, verified against SYNOP observations, is similarly improved (Figure 8). Overall, the249

new AIFS version exhibits improvements of around 4–6 % across all variables, lead times, and250

pressure levels relative to the previous AIFS version, as shown in the scorecard presented in251

Figure 5. The performance of the model for tropical cyclone prediction is similar to that of the252

previous version (see Lang et al. (2024a)), with some small improvements to track position.253

As a design choice, rollout fine-tuning was configured to ensure that the field smoothness254

characteristics remain consistent with those of the previous AIFS version. This was confirmed255

by spectral analysis (not shown here).256

Figure 9 presents verification metrics for several variables introduced in the new version. In257

line with those already present in earlier versions, AIFS shows a gain in forecast skill of around258

one day in the medium range for surface short-wave downwards radiation verified against geo-259

stationary satellite observation via CMSAF (Pfeifroth et al., 2023) and 100-metre wind speed260

verified against ECMWF operational analysis, relative to the IFS. The population distribution261

for total cloud cover verified against SYNOP observations, however, highlights the inherent262

limitations of MSE-trained AI models. While the observed distribution follows a U-shape,263

with high frequency at the tails of the distribution (clear skies and overcast conditions), AIFS264

produces a much flatter distribution, under-predicting these extremes and over-estimating in-265
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Figure 5: Scorecard comparing forecast scores of AIFS revised versus the previous AIFS version for
the whole year of 2023. Forecasts are initialised on 00 and 12 UTC. Relative score changes are shown
as function of lead time (day 1 to 10) for northern extra-tropics (n.hem), southern extra-tropics
(s.hem) and tropics. Blue colours mark score improvements and red colours score degradations.
Purple colours indicate an increased in standard deviation of forecast anomaly, while green colours
indicate a reduction. Framed rectangles indicate 95% significance level. Numbers behind variable
abbreviations indicate variables on pressure levels (e.g., 500 hPa), and suffix indicates verification
against IFS NWP analyses (an) or radiosonde and SYNOP observations (ob). Scores shown are
anomaly correlation (ccaf), SEEPS (seeps, for 24h precipitation accumulation), RMSE (rmsef) and
standard deviation of forecast anomaly (sdaf).

termediate values. This behaviour is closely linked to the smoothing effect introduced by the266

MSE loss function, which tends to penalize large deviations and thereby suppress extremes (see267

Section 5).268

The forecasting skill of the model with respect to 24-hour accumulated total precipitation269

is significantly improved. The new AIFS version is compared against both the previous AIFS270

version and the operational IFS (cycles 47r3 and 48r1) in Figure 10. The Stable Equitable271

Error in Probability Space (SEEPS) skill score (Rodwell et al. (2010)) is used as the primary272

verification metric, with 24-hour accumulated precipitation SYNOP observations serving as the273

reference. Results show a consistent and statistically significant improvement across all lead274

times and in the three main global regions: the Northern Hemisphere, the Southern Hemisphere,275

and the tropics. The revised AIFS demonstrates approximately a one-day gain in forecast skill276

relative to both IFS and the previous AIFS version. The forecast fields also exhibit noticeable277

improvements, as illustrated in Figure 2. The new version of the AIFS produces no negative278
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(a) Geopotential at 500hPa (b) Temperature at 850hPa

Figure 6: Anomaly correlation skill scores for geopotential and temperature at 500hPa and 850hpa,
respectively. Skill scores computed for the Northern Hemisphere for the whole of 2023 against
IFS analysis. In the medium range, AIFS revised outperforms the IFS by 12 to 24 hours in skill.
Forecast skill is also clearly improved compared to the previous AIFS version.

(a) Temperature at 100hPa (b) Wind Speed at 50hPa

Figure 7: Anomaly correlation skill scores for temperature at 100hPa and wind speed at 50hPa.
Skill scores computed for the Northern Hemisphere for the whole of 2023 against IFS analysis.
Significant improvements in the revised AIFS forecasts at 100 and 50 hPa when compared against
the previous AIFS version.
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(a) 2-metre temperature (b) 10-metre wind speed

Figure 8: RMSE scores for 2-metre temperature and 10-metre wind speed computed against SYNOP
observations over the Northern Hemisphere. The revised AIFS version shows improvement when
compared to the previous verision of the AIFS.

(a) ssrd (b) 100-metre winds (c) total cloud cover, day 5

Figure 9: Forecast RMSE computed against operational IFS analysis and distribution comparison
for new variables. (a) Surface solar radiation downwards RMSE for March–May (MAM) 2023,
(b) 100-metre wind speed RMSE for the full year 2023, (c) Total cloud cover distribution for
June–August (JJA) 2023. Blue lines show the AIFS revised and red lines show IFS; observations
are shown in grey in panel (c). AIFS shows significant gains in forecast skill in the medium range for
surface short-wave downwards radiation and 100-metre winds when compared against the IFS. The
mismatch in population distribution for total cloud cover forecast highlights the inherent limitations
of MSE-trained AI models.
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values in the output and substantially reduces light precipitation, aligning more closely with the279

24-hour total precipitation accumulation fields derived from the IFS operational short-range280

forecasts.281

Figure 3 reveals where the improvement originates. The Frequency Bias Index (FBI) and282

Peirce Skill Score (PSS) are shown for the Northern Hemisphere for different thresholds. The283

previous AIFS version exhibits a strong tendency to over-predict light precipitation events (< 1284

mm) across all lead times, as shown by the FBI. This bias is substantially corrected due to the285

bounding (see Section 4.1) in the revised AIFS.286

While the AI model still slightly over-predicts light precipitation compared to the IFS, it287

demonstrates competitive skill for light precipitation. The AIFS excels at medium-intensity288

events (1–10 mm), with PSS scores significantly higher than those of the IFS. At higher thresh-289

olds (> 10mm), corresponding to moderate to heavy precipitation, the AIFS diverges from the290

IFS, with a marked under-prediction (FBI < 1). This is likely caused by smoothing introduced291

by the loss function, in combination with the model’s coarser spatial resolution.292

This under-prediction plays an important role in the metrics concerning more extreme293

events, since both the previous and the revised AIFS models underperform IFS for thresholds294

exceeding 10mm in terms of PSS, but remains competitive. This suggests that although the295

AI models predict fewer high-intensity events, their predictions are more accurate when they296

do occur. Finally, the revised AIFS shows a marginal improvement in terms of PSS compared297

against the previous AIFS version, possibly due to improvements in the learning-rate scheduling298

used for fine-tuning and additional training data.299

(a) Northern Hemisphere (b) Southern Hemisphere

Figure 10: SEEPS skill scores for 2023 based on 24-hour accumulated precipitation from SYNOP
observations, comparing the revised AIFS (blue), the previous AIFS version (orange), and the IFS
(red) across different regions. Results show a consistent and statistically significant improvement
across all lead times and in the three main global regions for the revised AIFS version when compared
to the previous AIFS version and the IFS.

4.1 Evaluating the effects of bounding on total precipitation300

Overall, the revised AIFS version demonstrates significant improvements in forecasting skill301

for total precipitation over its predecessor. The bounding of total precipitation transforms302

the prediction space such that negative values correspond to “no-rain” and positive values to303
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“rain”. This separation enables the model to more effectively distinguish between the two304

scenarios. It removes the pressure to forecast exactly zero and facilitates the classification task305

inherent to precipitation forecasting.306

Other factors that might improve the precipitation forecast skill in the revised AIFS version307

are the inclusion of additional variables, the improved learning rate scheduling for rollout fine-308

tuning and the expansion of the training dataset. To isolate the effect of the bounding, we309

retrained the revised AIFS version without bounding the total precipitation output. The310

SEEPS skill score for the June-July-August 2023 season is shown in Figure 11. The results311

show that the improvement observed in total precipitation forecast skill in the revised AIFS312

version can mainly be attributed to constraining the output, since the revised AIFS version313

without bounding performs similarly to the previous AIFS version.314

(a) Northern Hemisphere (b) Southern Hemisphere

Figure 11: SEEPS skill scores for 2023 JJA comparing revised AIFS (blue), revised AIFS without
bounding (black), previous AIFS (orange), and IFS (red) across different regions. The improvement
observed in total precipitation forecast skill in the revised AIFS version can mainly be attributed
to bounding the output of the model.

To better understand the mechanisms behind total precipitation forecasting in the revised315

AIFS version, we examine the model’s behaviour in the negative forecast space, revealed by316

removing the final ReLU layer (Figure 12). Bounding an output variable via ReLU has some317

drawbacks: the negative space is unconstrained since any changes in model behaviour in the318

negative space are mapped to zero before the loss is computed, which means that these points319

do not influence the weight update. Interestingly, this hidden negative space shows a coherent320

and structured pattern. Very dry regions, such as the Sahara Desert, exhibit strongly negative321

values, while areas near precipitation events gradually approach zero in a smooth and contin-322

uous manner. This suggests that the model has implicitly learned to use the negative space as323

a proxy for “no-rain” classification.324

The physical consistency of convective precipitation forecast in respect to total precipita-325

tion can also be evaluated for a given forecast to assess the utility of the FractionBounding326

strategy used. Figure 13 presents the 24-hour total and convective precipitation accumulation327

together with a map showing the difference between the two for a forecast issued at 01/06/2023328

00:00 UTC and valid at 02/06/2023 00:00 UTC. Unlike the previous AIFS version (Figure 4),329

the convective precipitation forecast is now consistent with the predicted total precipitation330

accumulation.331
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(a) AIFS previous (b) AIFS rev. (neg. space) (c) AIFS revised

Figure 12: Comparison of 6-hour total precipitation from previous AIFS, revised AIFS without
the final ReLU layer to show the negative space, and the standard revised AIFS with the final
ReLU layer. Forecasts are initialised at 01/06/2023 00:00 UTC and valid at 01/06/2023 06:00
UTC. Removing the final bounding layer from the AIFS revised model reveals the behaviour of
the negative space for the total precipitation variable. The model has implicitly learned to use the
negative space as a proxy for “no-rain” classification.

4.2 Case Studies332

Headline verification scores for the revised AIFS show significant improvements over the conven-333

tional numerical weather prediction model. However, building trust in AI forecasting requires334

more than strong overall metrics. Forecasters place great importance on the ability of the335

model to accurately and reliably predict weather phenomena. They also value physically plau-336

sible outputs and recognizable weather patterns. To support this, we show below selected case337

studies.338

4.2.1 Storm Éowyn339

Storm Éowyn was an unusually strong winter storm and blizzard, initially impacting much of340

the Gulf Coast of the United States between January 20 and January 22, 2025. This storm broke341

snowfall records at a number of reporting stations (Thiem and Collins, 2025) and represented342

an extreme out-of-training-distribution event with no clear analogies in the ERA5 reanalysis343

or the IFS Operational analysis dataset.344

Figure 14 shows the AIFS and IFS forecasts at decreasing lead times for the affected area345

versus the corresponding IFS short-range forecast. The AIFS delivers an accurate forecast of346

snowfall for this extremely rare event. This showcases the ability of the model to accurately347

interpret meteorological patterns and forecast physically plausible events, even if they are far348

from the training data. The AIFS predicted the event with a lead time of 10 days, earlier than349

the IFS.350

4.2.2 Tropical Low and extreme precipitation totals in Queensland Aus-351

tralia352

Starting in late January 2025, a slow-moving summer storm brought exceptional rainfall along353

the northeastern coast of Queensland, Australia. Within a week, rainfall accumulation to-354

talled more than 1000 millimetres in some areas, according to the Bureau of Meteorology as355

reported in NASA Earth Observatory (2025). The city of Townsville saw the equivalent of356
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(a) Convective precipitation (b) Total precipitation (c) Difference (cp-tp)

Figure 13: Comparison of 24-hour total and convective precipitation accumulation forecast from the
revised AIFS version, together with a map showing the difference between the two of them for the
forecast issued at 01/06/2023 00:00 UTC and valid at 02/06/2023 00:00 UTC. Unlike the previous
AIFS version(Figure 4), the convective precipitation forecast is now consistent with the predicted
total precipitation accumulation and no coloured regions (cp>tp) appear in the difference plot.

six months of rain in just three days and the largest weekly rainfall total was measured at357

a gauge in the Cardwell Range, southwest of Tully, where nearly 1700mm fell (NASA Earth358

Observatory (2025), Bureau of Meteorology measurements). Figure 15 compares forecasts359

from AIFS and IFS against the IMERG Huffman et al. (2023) final product for the period360

01/02/2025–03/02/2025. Both model forecasts were initialized on 30/01/2025, two days prior361

to the event. The Cardwell Range is indicated by a black star, and the city of Townsville by a362

cyan star. Both IFS and AIFS successfully captured the event, with 24-hour rainfall accumu-363

lations exceeding 300 mm in some regions. However, the AIFS forecast exhibits a somewhat364

persistent signal in the 5-day lead time, predicting very high rainfall totals near the Cardwell365

Range. This highlights that, despite AIFS’s tendency toward excessive spatial smoothing, it366

remains capable of accurately forecasting extreme events at medium range.367

5 Discussion and conclusion368

The revised AIFS version (1.1.0) presented here improves upon the pre-operational release369

through a revised training regime with more data, new forecast variables, improved strato-370

spheric loss weights, and a bounding strategy that enforces physical constraints on the output371

variables. Overall, this leads to improvements of around 4–6 % across all variables, lead times,372

and pressure levels. The largest improvements, up to 12% gains in normalized difference in the373

short range, are observed in total precipitation forecasting, which benefits from the newly intro-374

duced bounding. We showed that this has a significant impact on the prediction of no rain and375

light precipitation. The model displays good forecast performance for out-of-training-sample376

case studies, accurately capturing extreme precipitation and snowfall events.377

Data plays a crucial role in the performance of AI models. Most of the improvements378

non-related to precipitation in the revised version of the AIFS stem from the expansion of379

the training dataset and the use of more recent operational ECMWF analyses for rollout380

fine-tuning. Since the AIFS relies on these analyses for real-time forecasting, it is important381

to fine-tune them regularly using up-to-date data. Regular fine-tuning with recent ECMWF382

analyses helps the models to adapt to shifts in the data due to new IFS model cycles.383

16

https://doi.org/10.5194/egusphere-2025-4716
Preprint. Discussion started: 17 October 2025
c© Author(s) 2025. CC BY 4.0 License.



AIFS 2025-01-21 (+240h) AIFS 2025-01-21 (+192h) AIFS 2025-01-21 (+144h) AIFS 2025-01-21 (+96h)

IFS 2025-01-21 (+240h) IFS 2025-01-21 (+192h) IFS 2025-01-21 (+144h) IFS 2025-01-21 (+96h)

IFS Short-Range Forecast
2025-01-21

0 0.1 0.25 0.5 1 2 4 6 10 15 25
24-hour Accumulated Snow Fall (mm)

Figure 14: Snowfall forecasts for AIFS (top row) and IFS (middle row) over the Gulf Coast of
America at 10, 8, 6 and 4 day lead times from left to right respectively, against IFS short-range
forecasts for the snowfall event (bottom row). The figure shows how the snowfall event was forecast
accurately four days ahead by both the IFS and AIFS. The AIFS forecasted the event even 10 days
ahead.

The bounding strategy implemented also plays a crucial role, especially for precipitation384

forecasting. Hard-constraining model outputs increases the physical realism of forecast fields385

and the light-precipitation forecast skill. This improvement is attributed to a shift in the fore-386

cast space, where bounding the output facilitates the prediction of “no-rain”. We hypothesise387

that the constraint enables the model to treat the negative space as likelihood of “no-rain”388

conditions, thereby facilitating the learning of the zero tp forecast. Other bounding functions389

may be used, and we plan to explore these in future work. In particular, we aim to investigate390

LeakyReLU-based approaches, which allow for weight updates with changes in the negative391

space, something that standard ReLU functions do not permit.392

Rollout fine-tuning also emerges as a key factor shaping the forecasting skill of the model,393

particularly through its influence on the smoothing of outputs. While smoothing is already394

present in the pre-trained model, rollout fine-tuning enhances this behaviour. This reflects the395

model’s adaptation to the inherent forecast uncertainty for longer lead times. As the model396

is exposed to lead times up to 72h, the minimization of the mean squared error inevitably397

results in an enhanced blurring of the fields. The impact of training hyperparameters on the398

smoothing characteristics of the output remains to be further explored. Limited testing has399
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shown that factors such as learning rate scheduling, number of steps and the rollout strategy400

all have an influence on the intensity of blurring in the fields. These findings highlight an401

important design trade-off in training deterministic AI forecasting models: between forecast402

realism and optimization of MSE-based verification scores. Forecast realism refers to how403

physically plausible and meteorologically coherent AI-generated forecasts are, here specifically404

in terms of their spectral characteristics (e.g. power spectra across spatial scales). One way405

to evaluate the physical realism of the resulting forecasts is to assess whether their spectral406

signature resembles that observed in the analysis. While aggressive rollout fine-tuning strategies407

(such as the one used in Bodnar et al. (2025)) can significantly boost headline scores, here we408

have chosen an approach that maintains a subjective compromise between forecast realism and409

forecast skill measured by RMSE.410

Alongside making updates to the training schedule, we have also added new variables to the411

AIFS while achieving improvements in forecast skill for headline atmospheric metrics. However,412

it remains to be seen if adding more variables and earth-system components will eventually413

require an increase to the latent space of the model. The additional earth-system and energy-414

sector variables in AIFS establish a foundation for future extensions, including ocean and wave415

components, expanding the number of cryospheric processes with enhanced snow modelling,416

and increasing the hydrological capabilities of the model. These new variables are currently417

taken from a consistent data source with the rest of the model variables. In the future, there is418

the potential to look at datasets tailored to specific earth-system components, such as ERA5-419

Land (Muñoz Sabater et al., 2021) and the ocean and sea-ice reanalysis system (ORAS6) (Zuo420

et al., 2024). AIFS currently operates at approximately 0.25° spatial resolution with a 6 hour421

timestep, and future work will focus on increasing both spatial and temporal resolution.422

The AIFS development has now transitioned to the new Anemoi framework (Lang et al.,423

2024a; Nipen et al., 2024; Wijnands et al., 2025). Anemoi provides tools for the whole data-424

driven modelling workflow, from the generation of training datasets, to scalable probabilistic425

training (Lang et al., 2024b) and running real-time inference with such models. Anemoi also426

allows for the cataloguing and archiving of model and data checkpoints to ensure reproducibility427

and traceability of training and inference runs and ensure that any models developed within428

this framework have a clear lineage. The Anemoi framework is now being used by an increasing429

number of Member States of ECMWF and collaborating organisations supported by ECMWF.430

After a successful experimental phase, AIFS has transitioned to operational status at431

ECMWF on the 25th of February 2025. It is supported 24/7 alongside ECMWF’s physics-432

based system, the IFS. The MSE trained model is labeled AIFS Single, and its forecasts are433

available earlier than the ones from the physics-based model chain, due to the fast runtime434

of AIFS. Results presented in this paper show that AIFS forecasts are highly skilful and they435

outperform the IFS forecasts across the vast majority of lead times and variables. They high-436

light the relevance of AIFS for weather prediction. Future developments will focus on including437

more surface variables and exploring a wider range of applications such as climate reanalysis.438

The operational release of the AIFS demonstrates the commitment of ECMWF to pursue the439

best possible weather forecasts with both physics-based and machine learning methods.440

6 Code and Model Availability441

AIFS version 1.1.0 was fully trained using the Anemoi framework https://github.com/ecmwf/442

anemoi. The frozen versions of the Anemoi modules used for training, together with the config-443

uration files and the trained model checkpoint, are available in the permanent archive European444

Centre for Medium-Range Weather Forecasts (2025) under DOI https://doi.org/10.5281/445

zenodo.17349820. The model weights for version 1.1.0 are also available on the project page on446

Hugging Face https://huggingface.co/ecmwf/aifs-single-1.1 under a Creative Commons447
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Attribution 4.0 International (CC BY 4.0) licence and DOI https://doi.org/10.57967/hf/448

6415 (ECMWF, 2025a).449

The AIFS Single model operational forecasts are freely available under ECMWF’s Open450

Data Creative Commons licence (https://www.ecmwf.int/en/forecasts/datasets/open-data)451

and DOI https://doi.org/10.21957/open-data (ECMWF, 2025b) and forecast charts can452

be seen at https://charts.ecmwf.int/?query=aifs-single. Further details on the model’s453

operationalization and data dissemination can be found at https://confluence.ecmwf.int/454

display/USS/Implementation+of+AIFS+Single+v1.0.455
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Zied Ben Bouallègue, Mariana C A Clare, Linus Magnusson, Estibaliz Gascón, Michael Maier-476
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Figure 15: 24-hour accumulated precipitation forecasts from the AIFS (top row) and IFS (middle
row) models, compared with IMERG observational data (bottom row) over northeastern Queens-
land for 01/02/2025 to 03/02/2025. Forecasts are initialised on 30/01/2025. The black star marks
the Cardwell Range, where rainfall totals exceeded 1600 mm over the week, and the cyan star
marks the city of Townsville. Both models captured the core of the extreme rainfall event, with
accumulations exceeding 300 mm in 24 hours in some areas.
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