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Abstract. Carbonyl sulphide (COS) is an atmospheric trace gas that has been suggested as a proxy to estimate carbon uptake

by plants. To this end, the concept of leaf relative uptake (LRU), the ratio of deposition velocities of COS and CO2, has been

introduced to obtain plant CO2 uptake fluxes from COS flux measurements. In our study we use a coupled soil – canopy –

atmospheric mixed layer model to simulate CO2 and COS uptake by vegetation explicitly, and derive LRU. In this modelling

framework, the exchange of COS is coupled to the exchange of H2O and CO2 via stomatal conductance. The latter is calculated5

using an A-gs (Assimilation–stomatal conductance) photosynthesis model, accounting for separate exchange at sunlit and

shaded leaves. Despite limited complexity, our coupled model include most key processes involved in daytime land atmosphere

exchange. The models are embedded in an inverse modelling framework, allowing for a structured model parameter estimation.

We performed a parameter optimisation for a boreal forest in Finland (Hyytiälä), using observation data from July 2015. We

took a holistic approach and aimed to obtain model parameters consistent with a large set of observations, including COS and10

CO2 molar fractions (measured in and above the canopy) and fluxes. By optimising parameters, we obtained a good fit to many

observation types simultaneously. Analysing the corresponding modelled LRU, we found strong within-canopy variations at

the leaf scale, with highest LRU values for shaded leaves near the bottom of the canopy. These variations can be explained

to a large extent by differences in photosynthetically active radiation (PAR), vapour pressure and leaf temperature. Based on

these findings, we propose a new parameterisation of canopy-scale LRU based on absorbed PAR and vapour-pressure deficit15

of sunlit leaves near the canopy top. We performed several additional optimisations, without re-optimising leaf exchange

parameters: two for the same location, but for the months August and September, and two for a needleleaf forest in Austria

(Mieming). We obtained a generally good fit with observations in all of these optimations, suggesting transferability of model

parameters to different months and locations. When testing the LRU parameterisation using Hyytiälä model data from August

and September (data not used for deriving the parameterisation), the results of the physical model were well-approximated,20

although observations suggest somewhat lower LRU values for a large part of the day. For Mieming, the parameterisation also

provided a satisfactory fit to the physical model. For both locations we found that the LRU of sunlit leaves near the top of

the canopy provides a good approximation of the canopy-scale LRU. Our results provide insight in the behaviour of LRU in

the canopy, and the new parameterisation, based on both absorbed PAR and VPD, can contribute to improving COS-based

ecosystem plant carbon uptake estimates in needleleaf ecosystems, but further validation is needed.25
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1 Introduction

The uptake of carbon dioxide by forests and other land vegetation plays a key role in regulating the climate on earth. It is there-

fore beneficial to have a good knowledge of these large fluxes. Ecosystem-scale photosynthetic CO2-fluxes are traditionally

estimated from eddy covariance (EC) measurements, e.g. mounted on a measurement tower at some height above the forest

canopy. However, this is not a direct measurement of canopy photosynthesis. The EC-system measures the net CO2-flux, which30

includes not only vegetation uptake but also respiration coming from the underlying soil surface, as well as from above-ground

plant organs. Further processing of EC-measurements is needed to separate the net CO2 flux into gross primary productivity

(GPP) and ecosystem respiration with this approach (Reichstein et al., 2005), introducing uncertainty. An alternative approach

is the use of measurements of carbonyl sulphide (COS) fluxes, an atmospheric trace gas that is taken up by plants through their

stomata. The advantage is that there is usually no large concurrent emission flux of COS near the location of the uptake flux35

(Whelan et al., 2018). The main uptake of COS in higher plants is due to hydrolysis after entering the leaves, catalysed by

the enzyme carbonic anhydrase (Protoschill-Krebs et al., 1996). This leads to the production of H2S and CO2 (Ferm, 1957).

The canopy net photosynthesis flux (FCO2,veg, mol CO2m−2 s−1) can be derived from a known ecosystem-scale vegetation net

COS uptake flux (FCOS,veg, mol COSm−2 s−1) using the following formula:

FCO2,veg =
FCOS,veg

LRUcan

[CO2]
[COS]

(1)40

Herein, [CO2] and [COS] are measured (molar) concentrations [mol m−3] of CO2 and COS respectively (or mole fractions in

[mol mol−1]) and LRUcan (leaf relative uptake at canopy scale) is the ratio of COS and CO2 deposition velocities. Note that

FCO2,veg is the net canopy photosynthesis, which is not identical to GPP (see discussion in Wohlfahrt et al. (2012)).

An important source of uncertainty in this approach arises from uncertainty in the value of LRUcan and its spatial and tem-

poral variability. For instance, it is known that light and humidity have an effect on the leaf relative uptake on the leaf scale45

(Kooijmans et al., 2019). This can be expected to lead to significant in-canopy variability of the relative uptake (Sun et al.,

2022). As LRUcan integrates the uptake of the whole canopy, variability in LRUcan due to differences in environmental vari-

ables can be expected as well. This has also been reported in a field study at an agricultural field (Maseyk et al., 2014). Plant

experiments in a glasshouse indicated species-specific effects of drought on the relative uptake of COS and CO2 (Spielmann

et al., 2025). A further difficulty is the presence of soil COS fluxes (Sun et al., 2015). In case these fluxes are significant, mea-50

sured ecosystem-scale COS fluxes (FCOS) require a correction to obtain FCOS,veg. Despite these difficulties, the LRU concept

has been used to provide ecosystem estimates of photosynthesis fluxes (Asaf et al., 2013), including a recent estimate of global

terrestrial GPP (Lai et al., 2024). Blonquist et al. (2011) also used LRUcan to derive GPP, but without using direct COS flux

measurements. They instead used LRUcan with mole fractions and mole fraction gradients of COS and CO2 to scale the net

CO2-flux to GPP. Another application of COS is the estimation of stomatal conductance on the canopy scale. Wehr et al. (2017)55

found a good agreement between conductances estimated using COS and conductances estimated using another independent

method.
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We focus in this integrative study on (Scots pine-dominated) needleleaf forests, as we have two extensive datasets at our

disposal, and given the large area covered by needleleaf forests on a global scale. We employ a coupled model, consisting of an

atmospheric boundary layer model, a plant canopy model and a soil model. The resulting coupled model describes the exchange60

of H2O, CO2 and COS between the lower atmosphere and the underlying ecosystem. The coupled model is overall relatively

simple, but still includes most key processes involved in land atmosphere exchange over forest areas during daytime. The

model is embedded in an inverse modelling framework, allowing for a structured parameter optimisation using observations.

We use diverse observations (temperature, fluxes, humidity, mole fractions at multiple heights) to optimise parameters related

to the (coupled) atmosphere–biosphere exchange of H2O, CO2, and COS. Thereby we aim to obtain a model parameter set that65

is consistent with a diverse set of observation streams, and is applicable to needleleaf forests in general.

Using our optimised parameter set, we model the relative uptake of COS and CO2 within a boreal forest canopy, thereby

accounting for influences of environmental variables on leaf fluxes. Making use of the model (output), we analyse the envi-

ronmental drivers of within-canopy relative uptake variability. Based on this we propose a parameterisation for LRUcan, that

uses variables that are relatively easy to estimate. Our aim is to have a parameterisation that is applicable for needleleaf forests70

in general. Lai et al. (2024) (referred to as Lai24) used a parameterisation for LRUcan, derived in Kooijmans et al. (2019),

that is based on measurements of the leaf-scale relative uptake of COS and CO2 at a boreal forest location, to estimate global

terrestrial GPP. Their estimate, 157 (±8.5) PgC yr−1, is significantly higher than most remote sensing estimates (e.g. Beer

et al., 2010; Jung et al., 2020; Lai et al., 2024). The Lai24 parameterisation is based solely on photosynthetically active radi-

ation (PAR), while more environmental variables seem to influence LRU (Kooijmans et al., 2019; Sun et al., 2022). We will75

investigate how well the Lai24 parameterisation performs on the canopy scale, and to what extent the Lai24 parameterisation is

transferable to another needleleaf forest. We also provide a different parameterisation specifically for the canopy-scale relative

uptake. Thereby we aim to contribute to improving COS-based GPP estimates for needleleaf forest regions.

We try to answer the following main research questions in this paper:

1. Can we obtain a set of model parameters that is applicable to Scots pine-dominated forests, or perhaps even needleleaf80

forests in general?

2. How does the relative uptake of COS and CO2 vary within the canopy, and what drives the variability?

3. Can, using our framework, a parameterisation for LRUcan be constructed that performs better than the Lai24 leaf-scale-

based parameterisation?

In Sect. 2 we present our methods and the data we use, including the (inverse) modelling framework (Sect. 2.1) and specifi-85

cally the canopy model (Sect. 2.2). In Sect. 3 we present the results of the optimisation of model parameters using observations

from a boreal forest (Hyytiälä, Finland). We analyse how the relative uptake of COS and CO2 varies throughout the Hyytiälä

canopy in the model (Sect. 3.1.4). Later we describe a new parameterisation for the leaf relative uptake at the canopy scale,

obtained from our model with optimised parameters (Sect. 3.2). In Sect. 3.3 we apply the framework to a needleleaf forest

in Austria, to test the generality of the (photosynthesis and leaf COS uptake) model parameters and LRUcan parameterisation90

obtained with Hyytiälä data. In Sect. 4 we provide a discussion on the results.

3

https://doi.org/10.5194/egusphere-2025-4714
Preprint. Discussion started: 28 October 2025
c© Author(s) 2025. CC BY 4.0 License.



2 Methods and data

2.1 Inverse modelling framework

The framework we use in this paper is called ICLASS-can, which is an extension of the ICLASS framework (extensively

described in Bosman and Krol, 2023). The ICLASS framework can be used to study the exchange of gases, moisture, heat, and95

momentum between the land surface and the lower atmosphere. The general aim of the framework is to allow the assimilation

of various streams of observations (fluxes, mole fractions at multiple heights, etc.) to estimate model parameters, thereby

obtaining a model that is consistent with a diverse set of observations (Bosman and Krol, 2023). In an optimisation, a cost

function is minimised. This cost function usually contains two parts. One part contains the difference between model output

and observations, the second (optional) part contains the difference between the parameter values and the prior estimates of100

these parameters. ICLASS is a variational Inverse modelling framework for the (slightly adapted) Chemistry Land-surface

Atmosphere Soil Slab model (CLASS, Vilà-Guerau De Arellano et al., 2015). We have added a relatively simple canopy

model to the ICLASS framework, in order to simulate gases and atmospheric conditions in forest canopies in more detail.

The resulting coupled forward model consists of an atmospheric mixed layer model, coupled to a new canopy model, which

is in turn coupled with a simple soil model. For temperature and moisture, the soil model distinguishes between upper soil105

and deeper soil. It has a dynamic upper soil temperature and moisture content, used for calculating soil respiration. For COS,

the soil is treated in more detail, using a soil diffusion-reaction model for COS (Sun et al., 2015). The atmospheric mixed

layer model assumes that turbulence is vigorous enough to result in a well-mixed layer. Therefore, there is just one value for

scalars such as mixed-layer potential temperature and CO2 mole fraction. Because of this assumption, we do not model night-

time conditions in this study. The mixed-layer height is dynamic. There is exchange taking place between the mixed layer110

and both the underlying canopy and the free troposphere above. In our configuration, above-canopy surface layer scalars are

calculated employing Monin–Obukhov similarity theory (Monin and Obukhov, 1954; Stull, 1988). The coupled model has no

horizontal dimension, but a constant mixed-layer advection can be prescribed. The mixed-layer model provides the best results

on days with prototypical mixed layer behaviour, i.e. days on which advection is either absent or uniform in time and space,

deep convection and precipitation are absent, and sufficient incoming shortwave radiation heats the surface (Bosman and Krol,115

2023). We provide a brief description of the new canopy model in the next section, and a more detailed description can be

found in the Supplement.

2.2 Canopy model SiLCan

SiLCan stands for Simplified Layered Canopy. The model simulates four different tracers in the canopy, namely CO2, COS,

moisture and temperature. The canopy is layered, and the user defines the number of layers. Exchange between the layers is120

parameterised in a simple way, with eddy-diffusivity exchange coefficients. For photosynthesis, the A-gs-approach (Jacobs,

1994; Ronda et al., 2001) at leaf scale is followed, thereby explicitly simulating leaf scale CO2 fluxes, separately for sunlit

and shaded leaves. Leaf or plant area densities are used to scale up fluxes from the leaf scale to the canopy layer scale,

depending on the considered flux. The stomatal conductances for CO2 are calculated by A-gs, and are linearly related to
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Figure 1. Sketch of the canopy model used in this manuscript.

those for COS and H2O (different diffusivities). Stomatal conductances thus link the leaf fluxes of CO2, COS and H2O.125

Leaf boundary layer conductances are calculated for the three before-mentioned gases, taking differences in diffusivity into

account. For COS, an internal resistance is calculated (following Cho et al., 2023). Incoming shortwave radiation at the top of

the canopy is calculated by CLASS, SiLCan uses this to calculate (absorbed) PAR in each layer, separately for sunlit and shaded

leaves. Outgoing longwave radiation from a leaf surface is calculated based on the Stefan–Boltzmann law. In our configuration,

absorbed incoming longwave radiation is calculated as the incoming longwave radiation at the top of the canopy (calculated130

by CLASS), multiplied with a constant leaf emissivity and a factor sLWin (constant in space and time) that we optimise. The

energy balance is calculated at leaf level, leading to a leaf (skin) temperature which is used in the calculation of the sensible

heat fluxes and H2O fluxes of leaves (sunlit and shaded separately). In our configuration we set heat storage in the leaves to

zero, the energy balance is calculated using only modelled radiation and sensible and latent heat flux terms. A sketch of the

canopy model is shown in Fig. 1, and elaborate details can be found in the Supplement.135

2.3 Optimisations using Hyytiälä data

Hyytiälä (Fluxnet ID FI-Hyy) is a forest location in Finland, at 61.85 °N, 24.28 °E, and 181 m above sea level. The forest is a

Scots pine stand (Pinus sylvestris) sown in 1962 (Launiainen et al., 2011), with some other tree species present as well (Vesala

et al., 2022), (supplementary material of Kooijmans et al., 2019). A measurement tower is present at the location. More details

on the location can be found in Launiainen et al. (2007, 2011). In all simulations, we use a time step of 60 seconds, and divide140

the canopy in 17 layers. The vertical canopy structure is represented by layers with a depth of ≈1 m except for the top and

bottom canopy layers that have a depth of ≈1.5 m to properly resolve the exchange with the soil and atmospheric mixed layer

(avoiding potential numerical problems with large fluxes in small layers). The soil COS model (Sun et al., 2015) was run on a

smaller time step of 10 seconds, to prevent numerical instability. Advection of all scalars was set to zero in all simulations.

We aimed to minimise the mismatch between model output and observations, albeit with the constraint of taking prior145

information about the parameters into account (minimising a cost function, containing an observation and prior information

part). In a first optimisation, we used observations from July 2015, in total 26 different observation streams (CO2 mole fractions
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at different heights, above-canopy sensible and latent heat flux, ...; full list in Table A1). We selected the daytime window within

4 and 16 UTC (7 and 19 h local time). Part of the observation streams we used are shown in Figure 2. The observations represent

averages over an hour, and we further averaged these observations over multiple days, to obtain a representative average and150

reduce the influence of processes such as time-varying advection. For this averaging, we selected the 8 days that have the

highest mean PAR between 4 and 16 UTC. Measurement errors were estimated as the standard deviation of the observations

over the 8-days we average (e.g. the measurement error of the CO2 mole fraction at 125 m at 10.30 UTC is the standard

deviation of the 8 CO2 125-m mole fraction values at 10.30 UTC). For some measurement errors we used less than 8 data

points, as there is some missing or insufficient quality data. Observational errors are constructed from these measurement155

errors and specified model errors (Bosman and Krol, 2023).

The 25 parameters we optimised (the state) are listed in Table 1, together with prior and posterior values and the prior

standard deviations. These parameters include e.g. free-tropospheric lapse rates of potential temperature and humidity, the

initial soil water content of the top soil layer, and a constant that is important for soil respiration. We also included some

parameters of the A-gs photosynthesis model and a parameter scaling the internal conductance of COS (αgiCOS). Thus, the160

state has an effect on the leaf relative uptake of COS and CO2. To limit the complexity of the optimisation problem, we did not

optimise all parameters of the A-gs model. The prior parameter values were chosen as reasonable guesses. The prior variances

for the A-gs parameters were chosen large (Table 1), allowing sufficient freedom for the optimisation algorithm, and limiting

the influence of the subjective prior guesses.

In subsequent optimisations we used data from August and September 2015, averaged in a similar way as the July 2015 data.165

For those optimisations we used the posterior parameters from the July optimisation as prior parameter guesses. We optimised

the same variables as for July, apart from Am,max,ref,toc, ad, Kb, gm,ref, f0, ε0, αgiCOS, αwind scale and VSU,max (description in

Table 1). For these variables we stick to the optimised values from July, as we aim to find values for these parameters that are

transferable to other months and locations. R10 was kept in the state, as the observations suggest a stronger respiration flux in

(the averaged periods in) August and September compared to July.170

The shape of the leaf area density profile for all simulations was first estimated based on Fig. 1 of Launiainen et al. (2011).

As all-sided leaf area index (LAI) in Hyytiälä is roughly between 6.5 and 7 in the period Jul-Sep 2015 based on Fig. 1 of Vesala

et al. (2022), the leaf area densities were then scaled by a factor, identical for all layers, to make total LAI (summed over the

model layers) equal to 6.5.

For analysing posterior correlations of the parameters we optimised, we performed an ensemble of parameter optimisations,175

consisting of 127 members. For each member, the prior parameters and the model-observation differences are perturbed. The

prior information part of the cost function was disabled in the ensemble. Details of the correlation analysis procedure can be

found in Bosman and Krol (2023).

2.4 Optimisations using Mieming data

Mieming is a forest location in Austria (Fluxnet ID AT-Mmg, 47°18.9938′N, 10°58.2053′E) at 960 m above sea level. A 30-m180

measurement mast is present at the location. Close to the site a mountain range is present, the station is located on a gently
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sloped plateau (Platter et al., 2024). This potentially complicates the thermodynamics and flow. Scots pine is the dominant tree

species, with substantial Juniperus (Juniperus communis) in the understorey. More details on the site can be found in Platter

et al. (2024).

The leaf area density profile was estimated from a lidar scan of the site, and scaled such that the all-sided leaf area index185

becomes 4 (measurements indicate 3.4± 0.6). We use the same time resolution and a similar spatial resolution as for Hyytiälä,

now dividing the (somewhat lower) canopy into 12 layers. We use averaged data for August 2023 in a first optimisation, and

for July 2023 in a second optimisation. Data were again averaged over days with high mean PAR (the 8 days in the month with

highest mean PAR between 7 and 19 local time, LT), such that we get hourly observations for one daytime period, from 7.30

to 18.30 LT. Measurement errors are estimated by the same approach as for Hyytiälä. As Scots pine dominates both Hyytiälä190

and Mieming, we use the A-gs parameters (and αgiCOS) obtained from the optimisation in Hyytiälä for simulating Mieming.

Besides these parameters, the set of parameters we optimise (Table 2) is to a large extent similar to those for Hyytiälä (Table

1). The posterior parameters from the Hyytiälä optimisation for July 2015 serve as prior parameter estimates for the Mieming

optimisations.

On some of the days with high PAR that were selected for averaging observations, we also have branch bag measurements,195

containing leaf COS and CO2 fluxes and mole fractions, for sunlit leaves in the upper canopy. These measurements are not

assimilated in the optimisation, but we use these for comparing modelled leaf-scale relative uptake of COS and CO2 (Sect. 2.5)

with observations.

2.5 Relative uptake COS and CO2

The leaf relative uptake at canopy scale (LRUcan), as introduced in Eq. 1, cannot directly be derived from eddy covariance flux200

observations, as COS can also be taken up by the soil, the measured CO2 flux includes respiration and storage fluxes can be

present. The ecosystem relative uptake, defined below, can however easily be derived from eddy covariance flux observations

and observed concentrations (or mole fractions):

ERU =
FCOS,eco

FCO2,eco

[CO2]
[COS]

(2)

wherein FCOS,eco is the flux above the canopy, measured by eddy covariance. We use here eddy covariance COS and CO2205

fluxes that are not storage corrected, given that the modelled COS flux to which we compare the FCOS,eco observations, is the

instantaneous flux between the top canopy layer and the mixed layer. To calculate ERU in Hyytiälä, we use mole fractions at

125 m height, both in the observations and the model. This height is chosen since we have observations of both CO2 and COS

mole fractions at this height. The mole fractions at the levels of the leaves might however be different from those at 125 m

height. For calculating ERU in Mieming, we use mole fractions at 20 m height.210

For Hyytiälä, we can derive LRUcan from the observations. To this end, we subtract the measured soil COS flux from the

eddy covariance COS flux and the soil respiration flux from the eddy covariance CO2 flux. We assume respiration and COS

emission from above-ground sources to be small, and neglect it in the calculation. Next to that, we correct the eddy covariance

observations for storage below the sensor (in contrast to the calculation for ERU), as we are interested in plant fluxes. Note
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that for well-mixed daytime conditions the storage fluxes are thought to have a small influence (Kohonen et al., 2020). The215

formula for LRUcan is given in Eq. 1. The LRUcan error bars are estimated from the spread in LRUcan values over the days we

use data from. As an example, the error bar for LRUcan at 10.30 UTC indicates the standard deviation of the LRUcan values at

10.30 UTC for the different days we average the observations over (8 days, or less in case of missing or bad quality data). For

Mieming, we do not have all required measurements to derive LRUcan. For calculating modelled LRUcan in Mieming we use

modelled COS and CO2 mole fractions at 20 m height.220

We define the leaf-scale relative uptake as:

LRUleaf =
FCOS,leaf

FCO2,leaf

[CO2]
[COS]

(3)

wherein FCOS,leaf [mol m−2 s−1] is the leaf-scale flux of COS and [COS] is the concentration of COS [mol m−3] (or mole

fraction) outside the leaf boundary layer. Similarly, FCO2,leaf is the leaf-scale flux of CO2 and [CO2] is the concentration of CO2.

All four components are within the same canopy model layer (or for the same branch in case of observations). The calculation225

is performed in all model layers, and separately for sunlit and shaded leaves. For a theoretical analysis of the leaf-scale relative

uptake, see Wohlfahrt et al. (2012). For our analysis of in-canopy LRUleaf differences in Sect. 3.1.4, we further expand the

equation above. Using the model equations (for our configuration) given in the Supplement, Eq. 3 can be written as:

LRUleaf =
rtot,CO2

rtot,COS

[CO2]
[CO2]− [CO2]int

=

rb,CO2 + 1
1

rs,CO2
+ 1

rcut,CO2 and COS

1.56
1.37rb,CO2 + 1

1
1.21rs,CO2+rint,COS

+ 1
rcut,CO2 and COS

1

1− [CO2]int
[CO2]

≈ rb,CO2 + rs,CO2
1.56
1.37rb,CO2 + 1.21rs,CO2 + rint,COS

1

1− [CO2]int
[CO2]

(4)230

wherein rcut is the cuticular resistance, rb is the leaf boundary layer resistance, rint,COS is the internal resistance for COS, rs is

the stomatal resistance, rtot is the total resistance and [CO2]int is the internal CO2 concentration. The approximation in the last

part of the equation concerns the assumption that the cuticular pathways for CO2 and COS uptake are negligible (e.g. Berry

et al., 2013). When additionally neglecting the leaf boundary layer resistance, the equation above becomes equal to equation

(8) of Seibt et al. (2010).235

What is clear from the equation above is that any environmental variable that influences stomatal resistances, the COS

internal resistance, the boundary layer resistance, or the internal CO2 concentration can influence LRUleaf (e.g. PAR, VPD,

wind speed,...). We simulate the canopy profiles of environmental variables. We thereby take effects of canopy structure (leaf

and plant area density distribution) on environmental variables into account.

The model variables that vary between sunlit and shaded leaves are the leaf temperature and the amount of absorbed PAR. To240

find out the relative importance of both factors in determining LRU differences between sunlit and shaded leaves, we performed

the following model experiment: we took a sunlit leaf in the top layer, and prescribe for this leaf the leaf temperature of a shaded

leaf in the same layer, without changing the absorbed PAR of the leaf. We subsequently investigated how the modelled LRU of

the leaf changed. Next, we took again a sunlit leaf in the top model layer, and prescribed it the absorbed PAR of a shaded leaf,

without changing the leaf temperature. Thus, we performed a univariate sensitivity analysis.245
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The elementary model variables that vary between leaves in the top and bottom layer, and have an influence on LRU,

are the CO2 mole fraction, vapour pressure, air temperature, leaf temperature, amount of absorbed PAR, Am,max,ref (a leaf

photosynthesis parameter, see Table 1) and wind speed. Note that COS mole fraction is not included, as it cancels out in our

LRU equation, given that in the model COS uptake at the leaf scale is a linear function of the COS mole fraction. We again

performed a univariate sensitivity analysis, now replacing one-by-one the values of the 7 relevant variables from a shaded250

top-layer leaf in the model with those of a shaded leaf in the bottom layer.

3 Results

3.1 Optimisation Hyytiälä July 2015

We first take a look at the observations and the performance of the prior (i.e. before optimisation) and posterior (i.e. after

optimisation) models. We than briefly analyse posterior state changes in the optimisation. To gain some insight in the relevant255

in-canopy physics, we analyse vertical canopy profiles of the posterior model simulation, before moving on to the relative

uptake of COS and CO2.

3.1.1 Observations and model performance

Fig. 2 shows 10 of the 26 assimilated observation streams. The CO2 mole fractions, both in the canopy (Fig. 2a) and above the

canopy (Fig. 2c), generally decrease in the morning, in the observations and in the models. This is (in the models) caused partly260

by entrainment of air from above the mixed layer, and partly due to the effect of vegetation uptake. The COS mole fraction

observations (Fig. 2b, d) show a less clear trend. The above-canopy flux of CO2 (Fig. 2e) peaks around midday, both in the

observations and the posterior model. The observed COS flux (Fig. 2f) is more noisy, but seems to peak earlier than the CO2

flux. Both in the observations and the posterior model, the temperature just below the canopy top (Fig. 2h) increases during the

day, and slightly drops at the end of the simulation period. The specific humidity just below the canopy top (Fig. 2g) is higher265

in the morning as in the afternoon, both in the posterior model and the observations. Temperature and humidity just below

the canopy top are predicted well within the 1-σ error bars. The posterior fit with observations is generally greatly improved

compared to the prior (Fig. 2). The total cost function reduces from a value of about 1317 to about 77. The reduced chi-square

goodness-of-fit statistic (χ2
r , Bosman and Krol, 2023), accounting for the number of observations and parameters, equals 0.39.

This indicates the model fits the observations well. Besides quantifying the fit of the total optimisation, we can also consider a270

specific observation stream using the partial reduced chi-square value (χ2
r,j for the jth observation stream, Bosman and Krol,

2023). The results for each observation stream individually are shown in Table A1. The values are generally low, indicating the

posterior model fits most observation streams well. The observation stream that has the best posterior fit in terms of the above

quantity is the temperature at 67 m height. The observation stream that has the worst posterior fit in terms of the above quantity

is the specific humidity at the bottom of the canopy (Table A1). Both the modelled latent (Fig. 2j) and sensible heat flux (Fig.275

2i) are somewhat on the low side. Overall, the coupled model reproduces the averaged July 2015 data well.
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3.1.2 Adjustments to the state

The full state that we optimised is shown in Table 1. The soil COS uptake capacity (VSU,max) is strongly increased, as the

prior model underestimated the soil COS flux (not shown). The scaling factor for the internal conductance of COS (αgiCOS) is

increased by about 25%. As shown in Fig. 2e and j, the prior model has too strong above-canopy CO2 and latent heat fluxes,280

compared to observations. These fluxes are reduced in the posterior model, and are sensitive to stomatal conductance. Therefore

it is no surprise that the calculated stomatal conductances are generally reduced compared to the prior simulation (e.g. for sunlit

top leaves the decrease in stomatal conductance is 76% on average). Several parameters from the state influence the calculated

stomatal conductances, and the parameter adjustments are not always trivial to interpret. For instance, in the posterior state, ε0

(maximum initial quantum use efficiency) is strongly reduced, while Am,max,ref,toc (related to photosynthetic capacity, Table 1)285

is increased by more than 50%. These changes have contrasting effects on the stomatal conductances, although the strength

of their effects in time might differ. As we expect some of the (photosynthesis) parameters to be correlated, we computed the

posterior correlations of the parameters we optimised (based on an ensemble of optimisations, Fig. A1, Sect. 2.3). We indeed

see a negative correlation between Am,max,ref,toc and ε0, though not very strong (–0.37).

We find the strongest correlations (–0.92) to be between γCOS (free-tropospheric COS lapse rate) and ∆COS (initial COS290

jump between mixed layer and free troposphere), and between hinit (initial mixed-layer height) and ∆CO2. Thus, optimisations

with a large posterior value of γCOS tend to have a low posterior value of ∆COS and vice-versa. This likely indicates that similar

results can be obtained by increasing γCOS as by increasing ∆COS. From a physical point of view this makes sense, as an

increase in any of both parameters tends to entrain more COS from the free troposphere into the mixed layer, although their

effects in time might differ. Similarly, these parameters can potentially compensate for advection, which is set to zero in all our295

simulations.

As a result of the correlations present, it will be difficult to confidently determine (some of) the individual parameters, and a

combined subset of parameters is likely more robust. In the optimisations for August and September (Sect. 2.3) we will keep

the optimised photosynthesis parameters and αgiCOS (Table 1), as we aim to find values of these parameters (parameter subset)

that can be transferred to other months and locations.300

3.1.3 Vertical model profiles canopy

In this section we analyse vertical canopy profiles of the posterior model simulation. The fraction of sunlit leaves strongly

decreases towards the bottom of the canopy (Fig. 3c), as a result of interception of light by the plants. When inspecting the

modelled vertical profiles of net leaf-level photosynthesis (Fig. 3b) around noon, we observe that the strongest CO2 uptake takes

place at the top of the canopy, and sunlit leaves have a much stronger uptake than shaded leaves. This can to a large extent305

be explained by the profiles of absorbed PAR (Fig. 3b). The stomatal conductance for sunlit leaves shows a local minimum

near the middle of the canopy (Fig. 3a). Clearly, this does not follow the profile of absorbed PAR for sunlit leaves, with lowest

absorbed PAR values at the bottom of the canopy, and highest values in the top canopy. However, the minimum in stomatal

conductance near the middle canopy practically coincides with a maximum in vapour pressure deficit (VPD, Fig. 3a) for sunlit
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leaves near the middle canopy. Modelled stomatal conductance is sensitive to VPD. The minimum in stomatal conductance310

near 7 m height can be interpreted as a (modelled) response of plants to the high VPD, to prevent too much water loss.

Why does VPD for sunlit leaves maximise in the middle canopy? The mole fraction of water vapour (Fig. 4b) is highest

at the bottom of the canopy, providing a reason why VPD decreases in the bottom compared to the middle of the canopy.

This does however not explain why VPD is higher in the middle compared to the top canopy. The higher VPD in the middle

canopy is explained by the vertical profile of leaf temperature (Fig. 4b): The modelled leaf temperature for sunlit leaves is315

highest in the bottom canopy. At the same time, modelled air temperature shows only small variability compared to sunlit leaf

temperature. Somewhat counter-intuitively, the high leaf temperatures in the middle to bottom of the canopy coincide with the

lowest values of available leaf net radiation and leaf sensible heat flux (for sunlit leaves, Fig. 4c). The reason for this apparent

contradiction can be found in the leaf boundary layer resistance (Fig. 4d). The way-higher boundary layer resistance in the

middle of the canopy compared to the top means that a larger leaf-to-air temperature gradient is needed for the same leaf320

sensible heat flux. The leaf boundary layer resistance profile only depends on wind speed (decreasing resistance with higher

wind speed, see canopy model description in Supplement), which decreases sharply from the top to the middle model canopy

(Fig. 4d). Thus, even though boundary layer resistances are much smaller than stomatal resistances, the vertical profile of wind

speed still has a strong influence on the modelled vertical stomatal conductance profiles for sunlit leaves, via VPD. It can be

noted that modelled leaf temperature for sunlit leaves exceeds air temperature by multiple degrees in Fig. 4 (b and c), up to325

almost 5 °C. Similar temperature differences have been measured between needles and air (Martin et al., 1999, and references

therein). This suggests that the modelled leaf boundary layer resistances in Fig. 4d are in a plausible order of magnitude.

The shape of the stomatal conductance profiles resembles the shape of the (absolute value of the) COS leaf flux profiles,

with strongest uptake at the top and a local minimum in uptake in the middle canopy. Note that the shape of the profiles differs

from that of CO2. A major reason is that for CO2 the gradient between internal and air concentration plays an important role.330

The difference between internal and ambient CO2 peaks (for sunlit leaves) in the middle canopy (not shown), close to the

location of the local minimum in stomatal conductance, partially compensating the effect of the low stomatal conductance. For

COS, the internal concentration is assumed zero. The internal resistance for COS follows the profiles of leaf temperature, with

consequently more or less opposite shapes for sunlit and shaded leaves (Fig. 4d). However, the internal resistance for COS is,

both for shaded and sunlit leaves, smaller than the stomatal resistance, limiting the influence of internal resistance differences335

on the COS flux profiles.

The leaf-scale water vapour fluxes are highest at the top of the canopy (Fig. 4a). The main drivers for this flux are VPD

and stomatal conductance. When scaling up vegetation fluxes from leaf to layer or canopy scale, the leaf area density (Fig. 3c)

becomes important. As an example, the location of the peak in the layer-total vegetation H2O flux does not correspond to the

location of the peaks in the leaf-scale H2O fluxes (Fig. 4a). Similarly, the location of the peaks in the leaf-scale sensible heat340

fluxes does not correspond to the location of the peak in the layer-total vegetation sensible heat flux (Fig. 4c). For calculating

the latter flux, plant area density (including branches etc.) is used instead of only leaf area density.

Clearly, the plant fluxes of COS, CO2 and H2O inside the canopy are relatively complex and are driven by the interplay of

many variables. It is important to realise that in our model the exchange of these gases is fully coupled. As we gained insight in
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what happens inside the (model) canopy in terms of photosynthesis and COS uptake, we now shift our attention to the relative345

uptake of COS and CO2.

3.1.4 LRUleaf inside the Hyytiälä canopy

To better understand what drives variability in LRUcan, the variable that is commonly used to estimate canopy net photosyn-

thesis (Eq. 1), we will first analyse the relative uptake within the canopy at the leaf scale, using results (at 11 h LT) of the

simulation of the optimised model for Hyytiälä for July 2015. From the model output containing fluxes and mole fractions at350

all layers within the canopy, we calculate the leaf-scale relative uptake. Inspecting the derived LRUleaf (Eq. 3) at different times

of day (Fig. 5), we observe a strong variation within the canopy and between sunlit and shaded leaves. The shaded leaves have

a notably higher LRUleaf, and LRUleaf is higher at the bottom of the canopy compared to the top. To increase our understanding

of the LRUleaf, we now analyse the reasons for these differences in the model.

We first focus on the difference between sunlit and shaded leaves in the top model layer of the canopy. The results of the first355

sensitivity analysis (model experiment described in Sect. 2.5) indicate that the amount of absorbed PAR is by far dominant in

determining LRU differences between sunlit and shaded leaves (Fig. 6a). The direct effect (in the model) of the low absorbed

PAR of the shaded leaves is a reduction in stomatal conductance, i.e. an increase in stomatal resistance. The effect of the

increased stomatal resistance differs between COS and CO2. The impact for COS is smaller as for COS there is also an internal

resistance. Consequently, in Eq. 4, the numerator is almost directly proportional with stomatal resistance, while the relative360

increase of the denominator is less, due to the significant internal resistance of COS (although smaller than stomatal resistance,

see also Fig. 4d and Fig. 3a). This leads to an increase of LRUleaf for shaded leaves.

A second difference visible in Fig. 5 is the higher LRUleaf for leaves near the bottom of the canopy, in particular for shaded

leaves. To find out the relative importance of the various environmental factors in shaping this difference, we performed a

similar model experiment as before (Sect. 2.5, second sensitivity analysis), but now involving top and bottom layer differences.365

The results of this experiment (Fig. 6b) indicate that changes in vapour pressure are the most important, followed by the amount

of absorbed PAR. Leaf temperature differences are relevant as well. In contrast to absorbed PAR, differences in vapour pressure

and leaf temperature directly affect multiple variables in Eq. 4, namely internal CO2 concentration, internal conductance for

COS and stomatal conductance.

The above analysis indicates that amount of absorbed PAR, leaf temperature and vapour pressure are important for governing370

LRU at the leaf scale. In Sect. 3.2, we propose a parameterisation for LRUcan linked to these variables.

3.1.5 Canopy relative uptake for Hyytiälä

When analysing canopy relative uptake (LRUcan, Eq. 1, the quantity most relevant for estimating canopy net photosynthesis),

the posterior model fit to observations is substantially better than the prior fit (Fig. 7a red full line vs yellow dashed line,

posterior bias 0.27, RMSE 0.58). Most data points are fitted by the posterior model within one standard deviation. This is also375

the case for ERU (Eq. 2, not shown). In general, there is a small positive bias in LRUcan, although the observational spread is

large. Note here that LRU is a derived quantity that is not used as observation stream in the optimisation.
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For comparison, we have also plotted LRUleaf in Fig. 7a, for a (posterior) modelled sunlit top layer leaf and for a shaded

bottom leaf. These represent the lowest and highest LRUleaf values in the canopy respectively (Fig. 5). The modelled LRUcan

corresponds more to the sunlit top layer leaf than to the shaded bottom leaf. LRUcan is approximated well when weighting380

LRUleaf throughout the canopy with the CO2 uptake flux, while a weighting with sunlit and shaded leaf area index in all

canopy layers (differing LAI values per layer) gives too high values. This can be explained by the fact that a much larger

proportion of modelled CO2 and COS uptake takes place in the sunlit upper vs the shaded lower canopy (Fig. 8).

3.2 Predicting LRUcan for needleleaf forests

Our aim is to obtain a parameterisation for LRUcan that is applicable to needleleaf forests in general, and is based on independent385

variables that are relatively easy to estimate. Using also the information from Sect. 3.1.4, we select canopy-integrated amount of

absorbed PAR (PARabs) and vapour pressure deficit of sunlit top (upper canopy model layer) leaves (VPDsun,top) as independent

variables for our regression model. These variables can be estimated or approximated based on remote sensing products (e.g.

Myneni et al., 2002; Olofsson and Eklundh, 2007; Nolan et al., 2016) or global re-analysis products (e.g. Fang et al., 2022).

Note that in the within-canopy analysis above, leaf temperature was also identified as an important variable. However, leaf390

temperature is used in the calculation of VPD, and we can expect leaf temperature to correlate in time with absorbed PAR. For

simplicity, we chose a linear regression model. As training data we use the model output from the optimised model for July

2015 in Hyytiälä. We obtain the following linear regression equation:

LRUcan = 2.52− 1.07× 10−3 PARabs− 0.399 VPDsun,top (5)

wherein PARabs has the units Wm−2
ground and VPDsun,top is in kPa. The equation above has an R2 of 0.98 on the training data.395

The two mentioned variables thus capture most of the variability in LRUcan. Note that we use PARabs and VPDsun,top from the

model output as input variables for our regression model.

To test to what extent the regression equation holds outside the training data set, we re-optimised our model using obser-

vations from August 2015. We re-optimised variables relating to the time-specific meteorological situation of the month, but

did not re-optimise photosynthesis or leaf COS uptake parameters (we keep those parameters as the July-optimised values, see400

Sect. 2.3).

In this new optimisation, we obtain again a satisfactory fit to many observation streams, with a cost function that reduces

from about 565 to 125 (χ2 = 0.66). The performance of our regression model trained on the July data applied to the August

data, is shown in Fig. 7b. Note that we use PARabs and VPDsun,top from the posterior model output as input variables for

our regression model, as we do throughout this manuscript. Comparing the linear regression LRUcan model with the physical405

model, the R2 is 0.96 and the root mean squared error is 0.04. The regression model thus provides a very good approximation

to the results of the physical model. Comparing with the (LRUcan derived from) observations, the R2 is 0.23 and the root mean

squared error is 0.85. There is generally a positive bias, although limited when taking the spread in observations (error bars)

into account. In Fig 7, we also show the results of the leaf-scale-based parameterisation from Kooijmans et al. (2019), used in

Lai et al. (2024) (referred to as Lai24). This parameterisation, to which we provide observed PAR at 18 m height as only input410

13

https://doi.org/10.5194/egusphere-2025-4714
Preprint. Discussion started: 28 October 2025
c© Author(s) 2025. CC BY 4.0 License.



variable, clearly performs well also on the canopy scale for this data. Comparing with the observational LRUcan, the R2 is 0.48

and the root mean squared error is 0.70.

To test how well the regression equation performs in somewhat more different conditions, we performed a new optimisation

for September 2015. Climatologically, September has a lower temperature and less incoming shortwave radiation compared

to July. We optimised the same variables as for the August optimisation. In this optimisation, we obtain an acceptable fit to415

many observation streams, with a cost function that reduces from about 594 to 148 (χ2 = 0.78). The CO2 and COS fluxes are

generally slightly underestimated by the model, although the fit is for most data points within the 1-σ error bars.

The performance of the regression model for September is shown in Fig. 7c. Comparing the linear regression model with the

physical model, the R2 is 0.76 and the root mean squared error is 0.15, indicating a good fit. Comparing with the observations,

the R2 is -0.20 and the root mean squared error is 0.57. The regression model from Lai et al. (2024) performs very well in420

September as well. Comparing with the observational LRUcan, the R2 is -6.52 and the root mean squared error is 1.42 (strongly

influenced by the first data point in the morning).

The regression model for LRUcan thus approximates the physical model well, also for months outside the training data.

Comparing with (LRUcan derived from) observations, differences are larger, although still limited when taking the spread in

observations into account. In the next section we will analyse the results of applying the framework and parameterisation to a425

different location.

3.3 Optimisations Mieming

We now apply our inverse modelling framework to a needleleaf forest at a more southerly location (Mieming, Austria) to check

how universal the optimised photosynthesis parameters and LRUcan parameterisation are. We therefore use the leaf exchange

parameters we obtained for July 2015 in Hyytiälä, and do not include these parameters in the state we optimise (Table 2). We430

first discuss the optimisation using data from August 2023.

In general, we can fit the Mieming observations well (Fig. 9, showing the 10 assimilated observation streams for the July

optimisation). As for Hyytiälä, the posterior fit with observations is improved compared to the prior. The cost function reduces

from a value of about 45 to about 25 (χ2 = 0.20). The relative reduction in cost function is a lot smaller as for the July 2015

Hyytiälä optimisation (prior 1377, posterior 77). The prior model already predicts the above-canopy CO2, COS and H2O fluxes435

relatively well (Fig. 9e, f, j), suggesting reasonable transferability of the Hyytiälä leaf exchange parameters. This optimisation

is less constrained as those for Hyytiälä, given the lack of e.g. soil flux observations. The optimised parameters are shown in

Table 2. Since we do not have soil fluxes, we also do not have observations of LRUcan, albeit we can derive the ERU from the

observations (Fig. A2). The fit between our modelled ERU (based on optimised parameters) and observed ERU is acceptable,

given the huge spread in observations. We also applied the parameterisation for LRUcan, obtained from the July Hyytiälä440

optimisation, to Mieming. We find a satisfactory agreement between the linear regression model (Fig. 10) and the physical

model. Except for the early morning, the difference between the physical and linear regression models is always smaller than

0.3. For the optimisation using data from July, this is also the case (Fig. 10b). For both months, the parameterisation from

Lai24 (to which we now provide observed PAR at 30 m height as only input variable) underestimates the physical model
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LRUcan, and performs less well than our regression model. As for Hyytiälä, the difference between modelled LRUcan and the445

modelled LRUleaf of a sunlit top leaf is rather small. In Fig. 10 we also compare the modelled LRUleaf for a sunlit top leaf with

observations of LRUleaf for (mostly) sunlit leaves in the middle to top crown layer of the canopy. For July, there is generally an

underestimation by the model, although not as strong as the underestimation by the Lai24 parameterisation. For August, the fit

is relatively good for 10 to 13 h, in the afternoon the underestimation is relatively large. There was however only one day of

measurements available for August, which might not be fully representative for the modelled period.450

We performed an additional optimisation for Mieming to test the generality of the leaf exchange parameters obtained with

Hyytiälä data. In this optimisation we included the set of leaf exchange parameters that was included in the July 2015 Hyytiälä

optimisation (see Table 1) in the state that we optimise. We find relatively strong adjustments in some of those parameters,

the strongest relative changes occur for ε0 (maximum initial quantum use efficiency, + 42%) and ad (description in Table 1,

+ 33%). However, the optimisation results in a χ2 value that is only slightly lower than the one for the posterior model with455

Hyytiälä parameters (0.17 vs 0.20), described earlier. Re-optimising therefore seems to provide limited benefit for simulating

the observations well. The prediction of LRUcan only slightly changes in this optimisation (Fig. A3), with largest changes in

the early morning.

4 Discussion

4.1 Model performance460

For Hyytiälä, we have optimised a set of parameters making use of not less than 26 different observation streams. Because

of this, we obtain model parameters that are consistent with a large number of observations, instead of over-focusing on one

observation stream. This more holistic approach of modelling achieves a good fit with observations, despite the simplifications

present in the model. Major simplifications are the exchange between canopy layers and the exchange between the canopy and

the overlying mixed layer. The model uses exchange coefficients, thereby assuming that the local gradients drive the turbulent465

exchange. This neglects the influence of larger scale turbulent eddies (see e.g. Brunet, 2020; LeMone et al., 2019). Sweep and

ejection events are important for canopy flow and exchange (see e.g. Zhu et al., 2007), e.g. CO2 and H2O can be ejected from

the understory into the atmosphere above by such events (Moonen et al., 2025). We tried to smooth out the influence of these

processes (acting on short timescales), by using averaged observations.

The above-mentioned simplifications are a likely reason why the specific humidity was not fitted well (Table A1) near470

the bottom of the canopy. The change in LRUleaf due to vertical within-canopy vapour pressure differences (Fig. 6) might

consequently be overestimated. However, the exact values of the changes in LRUleaf are not relevant for our analysis that

served to identify variables relevant for inclusion in the LRUcan parameterisation.

A close inspection of the A-gs model equations (Supplement Sect. S1.8.1) reveals that the internal CO2 concentration

([CO2]int) does not directly respond to photosynthesis and thus PAR. From a physiological point of view, [CO2]int is linked to475

PAR, as PAR supplies the energy and reduction equivalents for the carboxylation process, and thus influences the ’photosyn-

thetic demand’ for CO2, which reflects in the internal CO2 concentration. Under sufficient amounts of radiation, this should
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be of limited importance (Ronda et al., 2001, and references therein). Under low radiation conditions, this might be more

important, and thus it would be interesting for future studies to investigate how the modelled LRU would change when using a

different photosynthesis model that represents the joint effects of diffusional supply of and photosynthetic demand for CO2 on480

[CO2]int.

The measurement tower in Mieming is located on a gently sloping plateau with mountains nearby, complicating the ther-

modynamics and flow situation. We left out the observations of the CO2 mole fraction at 2 m height, as they showed a very

different time evolution to those at 20 m height. Such contrasting evolutions are very difficult to reproduce with our 1d model,

when using realistic parameter values. Despite the simplification of the in-canopy physical processes in our model, the COS485

and CO2 mixing ratios at 20 m and above-canopy fluxes (important for LRUcan) are reproduced relatively well (Fig. 9). We

therefore believe that our relatively simple model adequately represents most key processes relevant for the combined daytime

exchange of COS, CO2, and H2O between the canopy and the atmosphere.

4.2 LRUcan and its parameterisation

The linear regression model for LRUcan approximates the physical model very well, both for Hyytiälä and Mieming. The fit490

with Hyytiälä observations is acceptable, although there is a positive bias and the variation is somewhat underestimated. Note

that we do not directly optimise LRUcan, but we assimilate the ecosystem CO2 and COS fluxes and molar fractions above

canopy, which directly or indirectly link to LRUcan (Eq. 1). Given the complexity of this variable (Eq. 1), some extent of

mismatch between model and observations seems logical. As is clear from the error bars (Fig. 7), the differences in LRUcan

between the 8 days over which we average are substantial, complicating the comparison with physical and regression models.495

Analysing the error bars of the 4 LRUcan related components in Fig. 2c-f for Hyytiäla, makes clear that the COS flux causes an

important part of the variation.

Our new regression model is based on canopy absorbed PAR and VPD of top sunlit leaves. A theoretical analysis by Sun

et al. (2022) also indicated a dependence of LRU on PAR and humidity. The shapes of our canopy profiles correspond well to

the shape of the LRU profiles for a hypothetical canopy in their Fig. 8.500

LRUcan is a canopy integrated quantity, and we have seen (Sect. 3.1.4) that strong within-canopy variations occur. Theoreti-

cally, LRUcan should be larger than the LRUleaf of sunlit top leaves, as also shaded leaves, which have a higher LRUleaf (Fig. 5),

contribute to LRUcan. The difference between LRUcan and LRUleaf of sunlit top leaves should increase when the contribution of

shaded leaves to the total COS and CO2 exchange of the canopy increases. However, as is clear from our model results in Fig.

7 and Fig. 10, the LRU of sunlit leaves is not very different from the total LRU of the canopy, especially when omitting the505

(early) morning and evening. This is related to the limited contribution of shaded leaves to the COS and CO2 exchange (Fig. 8

for Hyytiälä). The similarity between LRUcan and LRUleaf of sunlit top leaves is encouraging for the use of canopy COS fluxes

to estimate canopy CO2 uptake, as it suggests that leaf-scale measurements of LRU could be used to estimate LRUcan. This also

likely explains why the parameterisation used in Lai et al. (2024) (derived in Kooijmans et al. (2019)) performs remarkably

well for Hyytiälä, given that it was derived using (sunlit) leaf-scale observations from this site. For locations like Hyytiälä,510

leaf-scale measurements can be used for upscaling, provided these mirror what sunlit leaves are doing. It however remains to
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be seen whether this also works for tall canopies with large LAI (and consequently likely a larger shaded leaf area fraction),

e.g. tropical rain forests.

However, for Mieming the Lai24 parameterisation clearly underestimates the leaf-scale observations, and our parameterisa-

tion outperforms Lai24 at this location. One could hypothesise that the difference in performance between our and the Lai24515

parameterisation could be (partly) related to the inclusion of VPD in our parameterisation. In Mieming the VPD can be ex-

pected to be higher, due to climate differences, including more intense solar radiation. In our posterior July optimisations,

the modelled VPD of sunlit top leaves is about 40% higher in Mieming as in Hyytiälä at 14 LT. Compared to Hyytiälä, the

modelled larger VPD in Mieming reduces LRUcan as predicted by our linear regression model by about 0.29. Consequently,

the higher VPD in Mieming cannot be the explanation for the lower LRUcan for Mieming in Lai24 compared to our regression520

model, as the inclusion of VPD in our regression model reduces the difference between both parameterisations. Within the

modelled period, the difference in magnitude of LRUcan between Lai24 and our physical model is small in the early morning

and evening, the difference is much larger later in the morning and during midday, when incoming PAR is higher. This suggests

that the response to PAR in Lai24 is too strong for Mieming. It also has to be noted that for the July observations in Mieming,

PAR reaches values above 2000 µmol m−2s−1 around noon. This is outside the range of values used in Kooijmans et al. (2019)525

to derive the Lai24 parameterisation at the Hyytiälä site (see their supplementary Fig S6).

Lai et al. (2024) applied the Lai24 parameterisation globally, obtaining a GPP of 157 (±8.5) PgC yr−1. However, for

July and August in Mieming, the (derived) leaf-scale LRUleaf observations are on average about 75% higher than the Lai24

parameterisation results (Fig. 10). Applying a 75% higher LRUcan to COS fluxes (Eq. 1) translates in a 75% smaller canopy

net photosynthesis flux (≈ GPP) around midday in this location. Given that our model results (and theory, see Wohlfahrt530

et al., 2025) indicate that LRUcan is still somewhat higher than the LRUleaf of sunlit top leaves (Fig. 7 and Fig. 10), the

underestimation by Lai24 will be even larger. We therefore conjecture that the global GPP estimate provided by Lai et al.

(2024) is very uncertain, as similar biases could be present in other ecosystems as well. This can be especially the case when

vegetation structure, vegetation properties and environmental conditions are very different compared to Hyytiälä.

Our developed parameterisation, although not performing equally well as Lai24 in Hyytiälä, shows better transferability to535

Mieming. For the same reasons as mentioned above, one should be careful in applying our parameterisation to other locations,

especially to other ecosystems than needleleaf forests. Our inverse modelling framework is well-suited to improve knowledge

on the relative uptake of COS and CO2 for different ecosystems. However, extensive measurement data need to be available,

and currently these datasets are sparse.

4.3 Universality photosynthesis parameters540

Using the optimised leaf exchange (A-gs and αgiCOS) parameters we obtained for July, we fitted the observations for August and

September in Hyytiälä, and the observations in Mieming, to a satisfactory level. This suggests a level of general applicability

of these parameters.

As described in Sect. 3.3, we performed an additional optimisation for Mieming in which we included (as state parameters)

the set of leaf exchange parameters that was included in the July 2015 Hyytiälä optimisation. We found strong changes in the545
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parameters. However, given the correlations present between the A-gs parameters (derived from an ensemble of optimisations,

Fig. A1, Sect. 2.3), it is however difficult to precisely determine the values of these parameters, it is likely that parameter

equifinality causes multiple sets of parameters to perform comparably. Re-optimising seemed to provide limited benefit for

simulating the observations well, as indicated by the small difference in χ2 between the optimisations with and without the

leaf exchange parameters in the state. This supports the applicability of the A-gs parameters obtained for Hyytiälä to Mieming,550

and the applicability is likely to hold for more needleleaf forest locations.

The problem of parameter equifinality could be tackled by reducing the complexity of the A-gs model, thereby reducing the

parameter count. This would ideally lead to a more uniquely defined A-gs parameter set that is still transferable to multiple

locations. Wohlfahrt et al. (2023) used an optimality model that requires fewer parameters than our A-gs model, which can be

expected to lead to a more robust parameter set.555

5 Conclusions

We have simulated daytime exchange of COS and CO2 over and within the canopy of needleleaf forest at two locations:

Hyytiälä, Finland and Mieming, Austria. We used a coupled soil–atmospheric mixed layer–canopy inverse modelling frame-

work, with the aim of optimising model parameters that govern biosphere–atmosphere exchange at the leaf scale. The results

suggest a high level of transferability of leaf exchange model parameters between the two needleleaf forests. From the model560

results (7-19 LT) we found that the relative uptake of CO2 and COS (LRU) at the leaf scale is highly variable within the canopy,

with highest LRU values associated with shaded leaves at the bottom of the canopy. Our analysis indicates that the amount of

absorbed photosynthetically active radiation (PAR), vapour pressure and leaf temperature are key variables determining this

variability. As a next step, we developed a linear regression equation linking the model LRU at the canopy scale (LRUcan)

with canopy absorbed PAR and vapour pressure deficit at the top of the canopy. We found a good agreement between the565

regression and the physical model. For Hyytiälä, both the physical and regression model generally somewhat overestimated

LRUcan with respect to the (noisy) observations. We found that the LRU of sunlit top leaves provides a relatively good estimate

of LRUcan, which is encouraging for the use of canopy COS fluxes to estimate canopy CO2 uptake. At the same time, we find

that the simple leaf-scale parameterisation obtained in Hyytiälä by Kooijmans et al. (2019), rolled out globally by Lai et al.

(2024), does not perform well in a more southerly needleaf forest (Mieming, Austria). This suggests that climatic and canopy570

variability between different sites is relevant for LRU. We need more in-situ data across a wider range of species and climates

to judge transferability of our developed LRUcan parameterisation to different ecosystems and seasons. Our inverse modelling

framework is well-suited to further improve knowledge on the relative uptake of COS and CO2 for different ecosystems (e.g.

scaling leaf to canopy or guiding data collection strategies). The results so far provide insights in the behaviour of LRU within

the canopy, and are promising to improve canopy net photosynthesis estimates based on COS, especially for needleleaf forests.575
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Code and data availability. Much of the Hyytiälä data we used were obtained from the SmartSMEAR database that contains continuous

data records from all SMEAR sites (https://smear.avaa.csc.fi/). The COS eddy covariance fluxes and mole fractions were provided by Linda

Kooijmans and Kukka-Maaria Kohonen. Leaf-scale Hyytiälä data were obtained from https://zenodo.org/records/1211481#.XB4Lb9IzbIU.

The (inverse) model code (the code of ICLASS-can) and the data and Python scripts we used for making figures and tables can be found at

https://doi.org/10.5281/zenodo.17166145.580
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Table 1. The prior and posterior parameter values in the Hyytiälä July 2015 optimisation, together with square root of prior variances.

Parameter Description Prior Posterior
√

Prior variance

hinit [m] Initial mixed-layer height 200.00 517.31 300.00

γCO2 [ppmm−1] Free-tropospheric CO2 lapse rate 1.00× 10−2 8.42× 10−3 60.00× 10−3

γCOS [ppbm−1] Free-tropospheric COS lapse rate 3.00× 10−5 6.14× 10−6 1.00× 10−4

γq [kg kg−1 m−1] Free-tropospheric specific humidity lapse

rate

−5.00× 10−6 −2.21× 10−6 3.00× 10−6

γθ [Km−1] Free-tropospheric potential temperature

lapse rate

6.00× 10−3 5.32× 10−3 5.00× 10−3

γu [s−1] Free-tropospheric zonal wind lapse rate 4.00× 10−3 −8.77× 10−4 4.00× 10−3

∆CO2 [ppm] Initial CO2 jump at mixed-layer top -10.00 -10.98 50.00

∆COS [ppb] Initial COS jump at mixed-layer top 3.00× 10−2 3.22× 10−2 60.00× 10−3

∆q [kg kg−1] Initial specific humidity jump at mixed-

layer top

−1.50× 10−3 −2.37× 10−3 3.00× 10−3

∆θ [K] Initial pot. temp. jump at mixed-layer top 2.50 1.18 2.50

∆u [m s−1] Initial zonal wind jump at mixed-layer top 1.00 1.84 4.00

αwind scale [−] Scaling factor wind extinction canopy 1.00 5.91× 10−1 0.40

R10 [mgCO2 m−2s−1] Respiration at 10 °C and without water

stress

8.00× 10−2 8.71× 10−2 2.00× 10−1

wg [m3 m−3] Volumetric water content top soil layer 0.35 0.33 0.10

u [m s−1] Initial mixed-layer zonal wind speed 4.50 2.47 3.50

VSU,max [molm−3 s−1] Soil COS uptake capacity 2.00 1.90× 101 1.00× 102

Kscale [−] Scaling factor for exchange coefficients 1.00 1.93 0.30

sLWin [−] Multiplication factor incoming longwave

radiation vegetation vs top of canopy

1.30 1.21 0.20

Am,max,ref,toc [mgCO2 m−2 s−1] Top-of-canopy triose-phosphate-utilisation-

limited net rate of (leaf scale) photosynthe-

sis at 298 K (Van Diepen et al., 2022)

2.20 3.76 4.40

Kb [m2 m−2] Extinction coefficient for Am,max,ref 0.29 0.36 0.25

ad [kPa−1] Regression coefficient used to calculate the

value of vapour pressure deficit at which the

stomata close

0.07 0.16 0.14

f0 [−] See Supplement 0.89 0.78 1.78

ε0 [mgCO2 J−1] Maximum initial quantum use efficiency 1.70× 10−2 5.57× 10−3 3.40× 10−2

αgiCOS [−] Parameter scaling internal conductance

COS

1400.00 1763.31 2800.00

gm,ref [mm s−1] Mesophyll conductance at 298 K 7.00 10.20 14.00
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Figure 2. July 2015 Hyytiälä optimisation: prior (yellow dashed line) and posterior (full red line) model fit to the observations used in the

cost function. σO and σI are the observational and measurement errors of the observations. CO24.2 is the CO2 mole fraction at 4.2 m height

above the surface, COS125 is the COS mole fraction at 125 m above the surface. FCO2 and FCOS are the CO2 and COS fluxes respectively

above the top of the canopy, measured by an eddy covariance system. q16.8 and T16.8 are the specific humidity and temperature at 16.8 m

above the surface. H and LE are the above-canopy sensible and latent heat flux respectively.
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Figure 3. Vertical profiles of variables related to photosynthesis. The profiles come from the optimised July 2015 model simulation. In

(a) vapour pressure deficit (VPD) and stomatal conductance (gs) for CO2 are shown. The stomatal conductances for COS or H2O can be

obtained by multiplication with 1
1.21

or 1.6 respectively. In (b), we show leaf level net photosynthesis (An) and absorbed PAR (PARabs).

Note that absorbed PAR is shown per square meter of all-sided (sunlit or shaded) leaf area. In (c) we show leaf area density (lad), plant area

density (pad) and the fraction of sunlit leaf area. In contrast to plant area density, leaf area density includes only green leaf area, i.e. branches,

dead leaves and stems are not included. ’sun’ indicates sunlit leaf area and ’sha’ indicates shaded leaf area. The model canopy height is 17

m, values are plotted at the location of the model node in each layer. Thus, the total LAI is not equal to the area to the left of the lad curve.
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Figure 4. Vertical in-canopy (model and observation) profiles of various variables. In (a) we show the sunlit and shaded leaf fluxes of COS

(FCOS) and H2O (FH2O), i.e. the leaf-air exchange per square meter all-sided leaf area, of COS and H2O respectively. The total vegetation

H2O flux (tot FH2O [W m−2
ground]) for each canopy layer is also plotted. In (b) the molar ratio of H2O in the canopy is shown, together with

sunlit and shaded leaf (skin) temperatures (Ts, we assume no difference between leaf and leaf skin temperature, as we do not account for

heat storage in the leaves). (c) shows air temperature in the canopy, as well as the sensible heat flux for sunlit (H sun) and shaded leaves (H

sha), and the vertical profile of net radiation at a sunlit leaf surface (Rn sun). The total vegetation sensible heat flux (H tot) for each canopy

layer is also plotted, note that this flux has the units [W m−2
ground] in contrast to [W m−2

all-sided leaf area] for the other two heat fluxes. In (d) the

boundary layer resistance for CO2 is shown (rb CO2), as well as the horizontal wind speed inside the canopy (U ) and the internal resistance

for COS (ri COS). The observations (black stars) are averages between 12–14 h LT. The modelled boundary layer resistances for heat can be

obtained from those of CO2 by multiplication with 1
1.37×0.93
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Figure 5. Leaf relative uptake inside the canopy for the Hyytiälä July 2015 optimised model simulation. ’sun’ and ’sha’ indicated sunlit and

shaded leaves respectively.
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Figure 6. Results of two model experiments at 11 h LT: (a) shows the results of an experiment to determine contributions to differences in

LRU between sunlit and shaded leaves inside the canopy (see text). We consider a sunlit leaf in the top layer. The differences (∆) in the

variables on the x-axis between sunlit and shaded top layer leaves (shaded − sunlit) are annotated in the figure. (b) shows the results of an

experiment to determine contributions to differences in LRU between shaded top and bottom layer leaves inside the canopy (see text). We

consider a shaded leaf in the top layer. The values of the differences in the variables on the x-axis between top and bottom layer shaded

leaves (bottom − top) are annotated in the figure. The variables from left to right are: CO2 mole fraction, vapour pressure, air temperature,

leaf temperature, absorbed PAR, wind speed, Am,max,ref (relating to leaf photosynthesis, see Table 1) and a combination of all.
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Figure 7. Modelling LRUcan and predicting it by linear regression: (a) displays the results of the prior and posterior (physical) model for July

2015. LRUleaf for a sunlit top layer leaf and a shaded bottom layer leaf are also shown. The results of weighting LRUleaf with shaded and

sunlit leaf area index in each canopy layer is also shown, as well as the result of weighting LRUleaf with the shaded and sunlit vegetation CO2

uptake fluxes in each layer. In (b), the physical and linear regression model results for August 2015 are shown, together with the prediction

from the leaf-scale regression equation used in Lai et al. (2024). The observations are shown by black stars. In (c) the results for September

2015 are shown. The first 10 timesteps (minutes) of the physical and new linear regression model are not shown, to reduce potential numerical

noise. Note that the observation at 14.30h in (a) has no error bar, as there was only one valid data value at this time of day over the 8 days we

averaged.
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Figure 8. Relative cumulative vegetation COS and CO2 fluxes throughout the canopy, starting at 0 at the top of the canopy. The relative

cumulative flux is defined as the fraction of the total (COS or CO2) vegetation flux over the whole canopy (sunlit + shaded). The cumulative

shaded and sunlit fluxes sum to 1 at the bottom of the canopy, for COS and for CO2.
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Table 2. The prior and posterior parameter values in the August 2023 optimisation for Mieming, together with square root of prior variances.

Parameter Description Prior Posterior
√

Prior variance

hinit [m] Initial mixed-layer height 517.31 527.54 300.00

γCO2 [ppmm−1] Free-tropospheric CO2 lapse rate 8.42× 10−3 −1.50× 10−2 60.00× 10−3

γCOS [ppbm−1] Free-tropospheric COS lapse rate 6.14× 10−6 3.93× 10−5 1.00× 10−4

γq [kg kg−1 m−1] Free-tropospheric specific humidity lapse

rate

−2.21× 10−6 −3.53× 10−6 3.00× 10−6

γθ [Km−1] Free-tropospheric potential temperature

lapse rate

5.32× 10−3 6.36× 10−3 5.00× 10−3

∆CO2 [ppm] Initial CO2 jump at mixed-layer top -10.98 -15.59 50.00

∆COS [ppb] Initial COS jump at mixed-layer top 3.22× 10−2 5.88× 10−2 60.00× 10−3

∆q [kg kg−1] Initial specific humidity jump at mixed-

layer top

−2.37× 10−3 −1.87× 10−3 3.00× 10−3

∆θ [K] Initial pot. temp. jump at mixed-layer top 1.18 4.69 2.50

R10 [mgCO2 m−2s−1] Respiration at 10 °C and without water

stress

8.71× 10−2 7.85× 10−2 2.00× 10−1

u [m s−1] Initial mixed-layer zonal wind speed 2.47 0.49 3.90

VSU,max [molm−3 s−1] Soil COS uptake capacity 1.90× 101 1.90× 101 1.00× 102

Kscale [−] Scaling factor for exchange coefficients 1.93 1.94 0.30

sLWin [−] Multiplication factor incoming longwave

radiation vegetation vs top of canopy

1.21 1.20 0.20

[COS][ppb] Initial mixed-layer COS mole fraction 0.45 0.47 0.10
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Figure 9. Model fit to the measurements from the Mieming location for August 2023. The yellow line is the prior model, the red line is

the posterior model. σO and σI are the observational and measurement errors of the observations. CO220 is the CO2 mole fraction at 20 m

height above the surface, COS20 is the COS mole fraction at 20 m above the surface. FCO2 and FCOS are the CO2 and COS fluxes respectively

above the top of the canopy (eddy covariance measurements 20 m above ground). q20 is the specific humidity at 20 m above the surface. T10,

T20 and T30 are temperatures at 10, 20 and 30 m above the surface respectively. H and LE are the above-canopy sensible and latent heat flux

respectively (measurements 15 and 20 m above ground respectively). The first 10 timesteps (minutes) of the model output are not shown, to

reduce numerical noise.
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Figure 10. Predicting LRUcan by linear regression for the Mieming location. (a) illustrates the results for August 2023, (b) for July 2023. The

results of the physical model and our linear regression model are shown, together with the prediction from the leaf-scale regression equation

used in Lai et al. (2024). LRUleaf for a sunlit top layer leaf and a shaded bottom layer leaf are also included. The results of weighting LRUleaf

with the shaded and sunlit leaf area index in each canopy layer is also shown, as well as the result of weighting LRUleaf with the shaded and

sunlit vegetation CO2 uptake fluxes in each layer. Observations of sunlit leaves from branch bag measurements are indicated by the black

stars. The error bars are calculated as +/- one standard deviation of the observed LRUleaf values over the periods we average. No error bar is

shown when only one measurement was available. The first 10 timesteps (minutes) of the physical and new linear regression model are not

shown, to reduce potential numerical noise.
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Figure A1. Posterior correlations of the parameters optimised for Hyytiälä, July 2015. Information on the procedure to estimate the correla-

tions can be found in Bosman and Krol (2023). The shown correlations are marginal correlations and not partial correlations.
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Figure A2. Modelled and observed ecosystem scale relative uptake (ERU) for the August 2023 Mieming optimisation. Note that the modelled

ERU shows a strong change in the early morning, ranging from strongly negative numbers to large positive numbers. This can be explained

by the behaviour of the CO2 flux. As the CO2 flux occurs in the denominator of Eq. 2, a change from a small positive number to a small

negative number leads to a large change in ERU. The error bars for ERU are obtained in the same way as for LRUcan.
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Figure A3. As Fig. 10, but now for the Aug 2023 Mieming optimisation that re-optimises photosynthesis parameters and αgiCOS.
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Table A1. Used observation streams in the July 2015 Hyytiälä optimisation, together with the posterior partial reduced chi-square statistic

of each observation stream (Bosman and Krol, 2023). Note that e.g. the sensible heat flux is measured at approximately 24 m height. In the

model the flux at this height is not calculated, the model output we compare with these measurements with is the flux between the top canopy

layer and the overlying mixed layer.

Name Description Units in model Partial reduced chi-square statistic

CO216.8 CO2 mole fraction at 16.8 m height ppm 0.481

CO28.4 CO2 mole fraction at 8.4 m height ppm 0.538

CO24.2 CO2 mole fraction at 4.2 m height ppm 0.429

COS14 COS mole fraction at 14 m height ppb 0.175

COS4 COS mole fraction at 4 m height ppb 0.278

COS0.5 COS mole fraction at 0.5 m height ppb 0.901

q16.8 Specific humidity measured at 16.8 m height kg kg−1 0.061

q8.4 Specific humidity measured at 8.4 m height kg kg−1 0.061

q4.2 Specific humidity measured at 4.2 m height kg kg−1 2.697

q125 Specific humidity measured at 125 m height kg kg−1 0.277

q50.4 Specific humidity measured at 50.4 m height kg kg−1 0.284

CO2125 CO2 mole fraction at 125 m height ppm 0.132

CO250.4 CO2 mole fraction at 50.4 m height ppm 0.152

COS125 COS mole fraction at 125 m height ppb 0.138

COS23 COS mole fraction at 23 m height ppb 0.282

T67 Temperature at 67.2 m height K 0.004

T16.8 Temperature at 16.8 m height K 0.130

T4.2 Temperature at 4.2 m height K 0.233

H Sensible heat flux at ≈ 24 m W m−2 1.126

LE Latent heat flux at ≈ 24 m W m−2 0.637

FCO2 CO2 flux at ≈ 24 m height mg CO2 m−2 s−1 0.129

FCOS COS flux at ≈ 23 m height ppbm s−1 0.194

FCOS,soil Soil COS flux molCOS m−2 s−1 0.049

FCO2,soil Soil respiration molCO2 m−2 s−1 0.086

U16.8 Horizontal wind speed at 16.8 m height ms−1 0.588

U8.4 Horizontal wind speed at 8.4 m height ms−1 0.017
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