
Bottom mixed layer derivation and spatial variability over the
central and eastern abyssal Pacific Ocean
Jessica Kolbusz1,2, Devin Harrison3, Nicole Jones2,6, Joanne O’Callaghan4,5, Taimoor Sohail7,
Todd Bond1,2, Heather Stewart3, and Alan Jamieson1,2

1School of Biological Sciences, Crawley, Australia
2Oceans Institute, University of Western Australia, Crawley, Australia
3Kelpie Geoscience Ltd., Edinburgh, United Kingdom
4Department of Physics, University of Auckland, Auckland, New Zealand
5Oceanly Science Limited, Wellington, New Zealand
6School of Earth and Environment, University of Western Australia, Crawley, Australia
7School of Geography, Earth and Atmospheric Science, University of Melbourne, Melbourne, Australia

Correspondence: Jessica Kolbusz (jess.kolbusz@uwa.edu.au)

Abstract. The bottom mixed layer (BML) of the abyssal ocean regulates heat exchange between the deep interior and seafloor,

driving water-mass transformation and influencing global circulation. Spatial variability of the BML was examined in the

under-sampled abyssal Pacific Ocean using surface-to-seafloor temperature and pressure observations over 4 months in 2023-

24. Given the typical decadal repeat rate of global hydrographic sections, subdecadal variability in the abyssal ocean has

remained poorly resolved. Our observations contribute towards filling this gap for the central and eastern abyssal Pacific Ocean.5

Four methods were used to determine the BML thickness, with the threshold method providing the most reliable estimates.

The mean BML thickness was (226± 172 m) with added repeat hydrographic sections providing context and additional data

points. At each BML data point we determined the slope, the terrain roughness and the extracted predicted internal tide energy

dissipation (over five different low-mode processes and high-mode local processes) at 50 km scales from publicly available

datasets. These factors were input into a Random Forest Regressor (RF) model, the first time machine learning techniques have10

been applied to investigate BML thickness. The RF feature importance scores identified bottom depth, total internal tide energy

dissipation, followed by slope, as the strongest predictors of BML thickness, revealing the importance of low-mode internal

wave energy losses in this abyssal setting. Targeted and sustained observations near the seafloor at gateway regions of abyssal

pathways are vital for understanding energy exchange that influences meridional overturning circulation. Our results highlight

a regime where sustained low-mode internal tide energy loss, modulated by topographic slope and depth, governs the BML15

thickness in the abyssal Pacific. However, the rate at which BML thickness changes over time and the processes that cause

these changes remain key unresolved factors.

1 Introduction

Nearly half the Pacific Ocean comprises abyssal zones that have experienced persistent warming in the past 30 years (Johnson

and Purkey (2024)). The bottom mixed layer (BML), a well-mixed region directly above the seafloor in the abyssal ocean20
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(Armi and Millard Jr (1976); Lentz and Trowbridge (1991)) is a critical interface where turbulent mixing facilitates exchange

between the deep ocean interior and the seafloor, influencing water-mass transformation and global circulation. Dynamics

within the BML are affected by internal wave activity (Zulberti et al. (2022); Holmes et al. (2016)), and near-boundary turbu-

lence (Lentz and Trowbridge (1991); van Haren et al. (2024)), impacting diapycnal mixing, deep-sea food web connectivity,

and heat transport (Jayne et al. (2004)). Additionally, the BML region may contribute to abyssal mixing, as the interplay of tur-25

bulent processes through internal tides and stratification here facilitates diapycnal mixing (Kunze et al. (2012)), thereby helping

to drive the meridional overturning circulation (MOC) (Wunsch and Ferrari (2004); de Lavergne et al. (2017); Ferrari et al.

(2016)). MOC is sustained by the abyssal flow of North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW),

which transport dense water masses equatorward and poleward from their formation regions through the deep ocean. The path-

ways involved in the MOC have been broadly identified, with general consensus on their origins, particularly in the ventilation30

regions adjacent to Antarctica (AABW) and the Labrador Sea (NADW) (Ferrari et al. (2016); Talley (2013)). While the broad

pathways of these abyssal waters are accepted, the detailed mechanisms by which they return to the surface through diapycnal

mixing and upwelling remain active areas of research (Marshall and Speer (2012); van Haren et al. (2024); Wynne-Cattanach

et al. (2024); de Lavergne et al. (2017); Drake et al. (2022)). Regions of intense abyssal mixing over mid-ocean ridges and

narrow inter-basin channels are key sites where stratification governs regional variability in the BML, current pathways and35

internal tide generation, connecting closely to abyssal pathways, while seafloor topography remains the primary control on

BML thickness at the global scale (Gula et al. (2016)). However, the relative importance between topography, its spatial scales,

and the dynamic processes within ocean basins dictating the BML thickness remains unclear (Weatherly and Martin (1978);

de Lavergne et al. (2017)).

The strength of deep MOC in the Pacific Ocean has been historically underestimated due to a lack of data and its complex40

topographies making simulations more challenging (Kawabe and Fujio (2010); Oka and Niwa (2013)). Broadly, AABW enters

the Pacific Ocean along the eastern side of the Tonga-Kermadec Ridge (Chandler et al. (2024)), then narrows through the

Samoan Passage (Alford et al. (2013)) before bifurcating to the west and north towards the Japan Trench (Kawabe and Fujio

(2010)) (Figure 1). North of the Samoan Passage, there is also bottom water transport to the east and south of the Hawaiian

Ridge. Around the Hawaiian Ridge, energetic baroclinic tides are generated over the rough seafloor, contributing to distinct45

differences in the eastern and western regions of the Pacific Ocean, with larger dissipation in the western Pacific (Hautala

(2018); Alford et al. (2007)). AABW transforms into North Pacific Deep Water (NPDW) while reaching the North Pacific. It is

then further transformed through deep ocean mixing while travelling south and reinforcing subsurface stratification and linking

to deep convection in the Southern Ocean (Tatebe et al. (2018)).

While rough and variable topography can modulate the BML thickness (e.g. fracture zones (Thurnherr et al. (2020)) and50

seamounts (Mashayek et al. (2024)), regions of the seafloor with broadly similar depths or geomorphology can nevertheless

exhibit vastly different BML thicknesses due to differences in ocean dynamics such as boundary currents or abyssal trans-

formations (Drake et al. (2022); Holmes et al. (2018)). Along continental shelf regions, it is on the order of 40-70 m in the

South China Sea (Liu et al. (2023)) and 5-15 m along the Northern California Shelf (Lentz and Trowbridge (1991)). The mean

BML thickness over different latitudes in the North Atlantic Basin has been reported as 30-60 m (Lozovatsky and Shapovalov55
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(2012)). Across the Drake Passage, it was found to be over 100 m, similar to Gulf Stream regions (Todd (2017)). These dif-

ferences may also be due to methodology. For example, the region immediately north of the Puerto Rico Trench in the North

Atlantic ( 21◦N, 66◦ W) has a BML thickness reportedly ranging from 80-800 m (Figure 9 in Banyte et al. (2018)), 60-100 m

(Figure 2b in Lozovatsky and Shapovalov (2012)) and 80 m (Figure 1 in Huang et al. (2019)) with the variation likely attributed

to different methodology and spatial interpolation.60

The transfer of mass and momentum between the ocean interior and the seafloor occurs via the BML. Yet in most large-

scale ocean circulation models, it is generally unrepresented. As a result, robust parameterizations of bottom boundary pro-

cesses are essential (Legg et al. (2006); Fox-Kemper et al. (2019)). Munk (1966) initially proposed a vertically integrated,

one-dimensional framework to estimate diapycnal mixing rates averaged across the ocean interior. However, it has been subse-

quently found that mixing in the bottom boundary is inherently three-dimensional, shaped by turbulent processes influenced by65

topography and internal wave dynamics (Kunze et al. (2012); Polzin et al. (2014); Wunsch (2023)). Simple bottom boundary

layer parameterizations assume local, steady-state velocity shear and stratification relationships to simulate turbulent mixing

and momentum transfer vertically, potentially neglecting variability in the BML thickness (Large et al. (1994)). Recent im-

provements have incorporated wave-driven turbulence and terrain-following schemes (Arbic et al. (2009)), some of which

include profiles of diffusivity and viscosity in their parameterization (Fox-Kemper et al. (2019)). Nevertheless, additional ob-70

servations along the ocean’s bottom boundary remain crucial, not only for validating models, but for resolving the spatial and

temporal variability in the BML structure that underpins interior-seafloor exchange (de Lavergne et al. (2017); Ferrari et al.

(2016); van Haren et al. (2024); Wynne-Cattanach et al. (2024)).

The BML thickness is most commonly defined as the thickness above the seabed at which a variable (typically conservative

temperature or density) deviates from the seafloor value by a specified threshold (also known as the ’threshold method’).75

While we refer to this as the bottom mixed layer, its thickness may reflect varied bottom boundary processes, not exclusively

active mixing. It is inhomogeneous throughout the world’s oceans, not only because of the varying depth and roughness

of the seafloor but also because of the influence of differing oceanographic processes in each region. Different oceanographic

conditions require varying thresholds to calculate the BML thickness. For instance, weakly stratified abyssal regions necessitate

small density thresholds (1 x 10−3 kg m−3), while highly turbulent areas are better suited to larger threshold values (Figure 180

in Banyte et al. (2018)), or sensitivity in the threshold value may be directly related to instrument noise (Lentz and Trowbridge

(1991)). To overcome sensitivity and subjectivity in threshold (or gradient) selections, approaches like the relative variance

(Huang et al. (2018b)) and integrated methods (Huang et al. (2018a)) have been developed to provide more robust, non-arbitrary

BML thickness estimates. The BML thickness serves as a useful proxy for characterising diapycnal upwelling (de Lavergne

et al. (2017); Thurnherr et al. (2020)), nutrient transfer (Hull et al. (2020)), sediment transport (Edge et al. (2021)) and the85

development of bottom boundary conditions and parameterizations in ocean models; therefore, the methods and outputs require

diligent evaluation of their physical validity across spatial and temporal scales.

Our first objective is to evaluate BML thickness methodological approaches suitable for data-poor regions of the ocean. We

focus on four methods: the threshold method, the threshold-gradient method, a relative variance method, and a split-and-merge

algorithm to derive the BML thickness and critique their use and relevance in an abyssal basin setting. The second objective is90
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to understand the BML variability across the central and eastern Pacific abyssal ocean, including assessment of the connection

to internal tidal energy dissipation and bottom water pathways. To achieve these objectives, we collected surface-to-seafloor

temperature-pressure profiles across the central and eastern Pacific Ocean and complemented them with publicly available

repeat hydrographic datasets. As we show in the sections that follow, these data reveal new insights into the dynamics of the

BML and its connection to broader abyssal processes.95

2 METHODS

The Trans-Pacific Transit (TPT) Expedition occurred over six individual legs, with the duration of each leg approximately 21

days, between June 2023 and January 2024 on Research Vessel (RV) Dagon (Jamieson et al. (2024)). The vessel covered 20◦

longitude and 30◦ latitude over the central and eastern abyssal Pacific Ocean, including the Molokai and Clarion Clipperton

fracture zones (Figure 1). Bathymetry and backscatter intensity data were acquired throughout the expedition using a hull-100

mounted Kongsberg EM124 multibeam echosounder. At each site, three autonomous landers were deployed in a roughly 2

km equilateral triangle, acquiring a total of 73 surface-to-seafloor profiles of temperature and pressure (at a frequency of 2Hz

secured to the landers). These data are referred to here as "TPT profiles". Conductivity, temperature and depth (CTD) sensor

profiles from repeat Global Ocean Ship-Based Hydrographic Investigations Program (GO-SHIP) hydrographic sections, P16

and P02, provided observations within the study regions along meridional and zonal transects, respectively (see locations105

in Figure 1). The GO-SHIP sections were used in two ways: first, they were used to complete Gaussian mixture modelling

(GMM), which was applied to the TPT profiles to generate modelled practical salinity (SP) profiles (see Methods section on

GMM); second, they provided additional locations to derive the bottom mixed layer (BML) thickness. The BML derivation,

followed by a random forest regressor, was applied to the GMM-derived TPT profiles and GO-SHIP profiles as one dataset and

is detailed in the following sections.110

2.1 Data collection

Three autonomous landers, Magna, Omma and Cranch included a baited camera system, niskin bottles and a CTD (conductiv-

ity, temperature, and depth) sensor measuring at 1 or 0.1Hz (SBE49 FastCAT, SeaBird Electronics, Bellevue, WA). The landers

descended at an average speed of 0.8 ms−1, spent up to 8 hours on the seafloor and then returned to the surface by releasing

their ballast weights via an acoustic modem. On legs two to six, there was the addition of a temperature (t) and pressure (p)115

logger (RBRduet|deep) mounted to the lander frame measuring at 2Hz with an accuracy of ±0.002◦ C and 0.05% full-scale

respectively (RBR (2024)). Due to the consistent high-frequency measurements of the t-p sensor, we have used this data for

consistency and employed GMM to the profiles (see the following section). Therefore, Leg one data was omitted from this

study and a total of 69 profiles were suitable for this study. The exact locations of deployments are in Appendix A1.

GO-SHIP profiles were obtained through the CLIVAR and Carbon Hydrographic Data Office (CCHDO, https://cchdo.ucsd.edu/)120

for repeat hydrographic sections P02 and P16 which form part of the GO-SHIP program. These were voyage numbers: 31WT-

TUNES_3, 325020060213 and 33R0150410 for P16 and 49K6K9401_1, 318M200406 and 318M20130321 for P02. Only
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profiles that exceeded 2,000 m and reached within 40 m of the metadata bottom depth were used to calculate the BML

thickness. Only one occupation along line P16 went north of 23◦ N, therefore north of this latitude was excluded for line

P16. A gridded version of GO-SHIP dataset, GO-SHIP Easy Ocean provided by Katsumata et al. (2022), and available from125

https://zenodo.org/records/13315689 was used to produce the background neutral density, γn, and conservative temperature, θ,

for Figures 5 and 6.

2.2 Gaussian mixture modelling in Θ-p-SA space

Gaussian mixture modelling applications (GMM) can achieve unsupervised classification of the water column, identifying

coherent patterns in the associated domains (Maze (2017)). Considering this throughout a water column and our region, using130

depths only over 3,000 m, classification of the water column can be done using Θ-p-SA space within a relatively small volume

(Hjelmervik and Hjelmervik (2014)). For hydrographic profiles close in proximity, this space is even tighter (McDougall and

Jackett (2007)). Therefore, the most recent GO-SHIP profiles in the study region were used to predict salinity, in this case,

practical salinity (SP) from 2,500 m to the seafloor using GMM (Pedregosa et al. (2011a); Maze (2017)). GO-SHIP profiles,

available on CCHDO and collected within the last 5 years and within 10◦ latitude and 10◦ longitude that exceeded 2,000135

dbar were used to predict SP for each TPT temperature and pressure profile. Model selection used information-theory criteria,

focusing on the covariance type and number of components in the model using the Gaussian Mixture scikit-learn Python

package (Pedregosa et al. (2011a)). The maximum number of components was limited to 21. The covariance types were

limited to each component having its own general covariance matrix or all components sharing the same general covariance

matrix. The elbow method was used to determine the number of components in the model with a brief examination of the BIC140

value. If the modelled SP output was physically unstable, the next best option was chosen. A further detailed explanation and

model details for each TPT profile are provided in Appendix A1.

2.3 BML thickness derivation

Several methods exist for determining the BML thickness, as with the surface mixed layer thickness. The threshold method

(TH) uses the depth at which the difference in either Θ or σ is less than a defined threshold value. These values range from145

0.02◦C (Lentz and Trowbridge (1991)), 0.001◦C (Hogg et al. (19821)), 0.005◦C (Lozovatsky and Shapovalov (2012)) to 6 x

10−4 kg m−3 (Perlin et al. (2005)). We used a threshold value of 0.003◦C for the region. This value was chosen as it provided

the highest mean quality index (QI) for the BML thickness (1) for all the TPT profiles when comparing threshold values of

0.001, 0.002, 0.003, 0.004, and 0.005 (Appendix A2). A quality index was initially defined by Lorbacher et al. (2006) as a value

between 0 and 1 capturing the conservative temperature variability in 1.5 times the BML thickness compared to the variability150

over the BML thickness. In equation form:

QIBML = 1− A1
A2

= 1−
σ(Θn−⟨Θ⟩)

∣∣
(h1,hBML)

σ(Θn−⟨Θ⟩)
∣∣
(h1,1.5×hBML)

(1)

where σ() is the standard deviation from the vertical mean ⟨⟩ conservative temperature from hBML.
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The threshold-gradient method (GR) is also used (Banyte et al. (2018); Weatherly and Martin (1978)). We defined this

method as the thickness at which δσ4/δz over 20 m intervals is less than a criterion of 1 x 10−3 kg m−3 (Banyte et al. (2018)),155

making the minimum BML thickness 10 m.

Several techniques have been put forward over the last decade, including a relative variance (RV) method (Huang et al.

(2018b)), split-and-merge algorithms (Thomson and Fine (2003)) and an integrated method (Huang et al. (2018a)) that com-

bines several methods together. We included the RV method and the Douglas-Peuchker (DP) algorithm method. The RV method

relies on calculating the ratio between the standard deviation and the greatest variation of Θ or σ above the seabed. The location160

where the least relative variance occurs is identified as the upper boundary of the BML. The RV method is available through

the original research (Huang et al. (2018b)). The DP method is a split-and-merge technique that has been previously adopted

to calculate the surface mixed layer (Thomson and Fine (2003)). The DP algorithm estimates a given profile by using a series

of simplified line segments that represent large changes in slope or any abrupt changes in the profile. Therefore, the lowest part

of the segment belongs to the BML. The DP algorithm is available within MATLAB and requires a ϵ value between 0 and 1 to165

determine the number of line segments (Ahmadzadeh (2024)). We included 0.002 and 0.008 as two possible DP methods (DP2

and DP8, respectively) (Appendix A2).

The integrated method put forward by Huang et al. (2018a) focuses on the use of multiple methods (TH, the curvature method

(Lorbacher et al. (2006)), the maximum angle method (Chu and Fan (2011)) and RV (Huang et al. (2018b))), calculating the

QI for each method, and then choosing the BML thickness with the highest QI (Huang et al. (2019)). Relying on QI-based170

selection of BML thickness from multiple methods produced highly variable results, even across nearby locations (within 3

km). That is not to say this variation may not be real, but visual inspection was still needed to assess accuracy, and the variation

was not consistent with global maps from either Banyte et al. (2018) or Huang et al. (2019). Therefore, unlike Huang’s global

integrated approach, the single threshold method that produced consistent results was more appropriate for our regional study,

avoiding unnecessary and possibly unreal variability that ultimately required manual validation.175

The suitability of the threshold value, despite sometimes having a lower QI, is shown in Figure 2 at different locations with

additional annotation in Figure 2(c). At times, the QI did capture the BML thickness values that were unusable (e.g. small

RV QI values in Figure 2f). However, on the upper scale, the highest QI value could provide an unlikely, significantly larger

BML thickness than where the density gradient approached zero and appeared visually correct. For example, in Figure 2c for

the profile on the left side, the highest QI was 0.78 and far from the visual BML thickness height. Considering all TPT and180

GO-SHIP profiles, consistency in the average values of each method (Figure 4) and their performance when assessed visually

(Figure 2), using the threshold method consistently over the whole dataset, provided the most reasonable result.

2.4 Random Forest Regression

We considered bathymetric parameters (terrain roughness index (TRI) and slope) and dynamic parameters (internal tide energy

dissipation and depth) within a Random Forest Regressor (RF) to disentangle patterns in the BML thickness. Machine learning185

techniques have been used to estimate the surface mixed layer depth, however this the first time it has been applied to the

BML (Imchen et al. (2025); Foster et al. (2021)). The RF machine learning technique, included as the RandomForestRegressor
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scikit package in Python (Pedregosa et al. (2011b)) is a ensemble machine learning estimator that combines the outputs of

multiple decision trees to increase predictive accuracy and control overfitting. Each decision tree is trained on the dataset using

a bootstrap aggregation technique, and the final prediction is obtained by averaging the outputs for regression (Carvalho et al.190

(2019); Imchen et al. (2025)). We randomly selected 80% of the dataset to build each tree and the remaining 20% of the dataset

to test the model using train_test_split within scikit (Pedregosa et al. (2011b)). We modified the number of trees from 100

(default value) to 500 and 1,000 for sensitivity testing (1) with the random state of the train_test_split at 42, 0 or 1. The number

of trees did not add significant computing time or signficantly alter the results, therefore we maximised the number of trees

remained at n = 1,000 to further test different random subsets of the data with train_test_split then changed between 42, and 0195

to 7. The random state was kept at 42 for the RF for all itterations.

As discussed in the Data Collection section, internal tide energy dissipation (Wm−2) for all (M2, S2 and K1) tidal con-

stituents broken down into dissipation processes; low-mode wave-wave interactions, low-mode scattering by small-scale to-

pography, low-mode interaction with critical slopes, low-mode shoaling and local dissipation of high modes was accessed

through the paper by Lavergne et al. (2019). These variables, alongside slope and TRI were chosen based on their accessibility200

and relevance to BML thickness Ruan et al. (2017); Gula et al. (2016); Liu et al. (2023). Depth is a known contributor to the

BML thickness (Huang et al. (2019); Lozovatsky and Shapovalov (2012)) as are bathymetric variables of slope and TRI (Armi

and Millard Jr (1976); Wunsch (1970); Polzin and McDougall (2022)). The relative contribution of tidal dissipation mech-

anisms near the seafloor, therefore influencing the BML thickness has been discussed in literature (Lavergne et al. (2019)).

When internal waves hit the seafloor, they lose energy through either scattering off small rough spots and losing energy, or205

reflecting or shoaling off topographic features, depending on their shape and height (St Laurent et al. (2001); Müller and Xu

(1992). These processes, along with others that are not as well understood, like wave capture and scattering by mesoscale

eddies Bühler and McIntyre (2005); Polzin (2008); Mathur et al. (2014), can speed up the dissipation of tides and change the

thickness of the bottom mixed layer. A grid point from each of the dissipation parameters was assigned to each GO-SHIP and

TPT point using cKDTree in scipy for nearest-neighbor lookup (Virtanen et al. (2020). This method constructs a binary space-210

partitioning tree applying axis-aligned hyperrectangles via the sliding midpoint rule (Maneewongvatana and Mount (1999)).

This provides efficient nearest-neighbor queries by recursively improving the search space across coordinate axes to determine

the nearest latitude and longitude grid point to the GO-SHIP and TPT observations.

Bathymetric variables (TRI, and slope) were compiled from the latest GEBCO 2024 Grid, including the standard deviation

(GEBCO Compilation Group (2024)). TRI and slope were calculated using the ArcGIS Geomorphometry & Gradient Metrics215

toolbox with a neighbourhood of 9 x 9 cells (Evans and A (2014)). TRI is a useful derivative of bathymetric and topographic

datasets in order to enable quantification of the spatial heterogeneity of the surface under investigation (Riley et al. (1999)).

The TRI metric can be a valuable analytical tool for understanding the effect of landscape on processes, geomorphological

evolution, and for habitat mapping and modeling regimes. For the extent of the study region (Figure 1) the slope and TRI

were calculated at buffer zones of 25, 50, 100 and 200 km (Figure A4). At each GO-SHIP and TPT data point, the TRI was220

extracted to assess the variation for different buffer zones. The RF was completed with the 50 km buffer, as the resolution
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for the dissipation values was 50 km. The depth for the GO-SHIP sites was obtained from the datasets as the ’bottom depth’

variable available in the datasets.

The GO-SHIP observations included multiple occupations as detailed in the Data collection section above. In some loca-

tions the exact latitude and longitude was covered in multiple years, although this is not spatially consistent throughout the225

observations. The profiles over the different occupations provide different BML thicknesses, however it is impossible to deduce

the reasoning behind the differences at these yearly timescales as we know the BML thickness may change within a matter

of hours (Weatherly and Martin (1978); Chen et al. (2023)). For this reason, we clustered the GO-SHIP observations within

the RF using dbscan in scikit (Pedregosa et al. (2011b)). Geographic clustering was performed by converting the GO-SHIP

latitude and longitude coordinates to radians and applying dbscan with a haversine metric and a 3 km neighborhood radius to230

group nearby data points. For consistency between the TPT and GO-SHIP sites, TPT sites within a 3 km radius of one another

(each leg and site) were averaged and GO-SHIP sites were averaged based on the 3 km neighborhood radius from dbscan.

3 RESULTS

3.1 BML thickness

The average and median thickness of the BML using the TH method for all data points in the abyssal study region was 240 m235

and 176 m respectively, and the standard deviation was 200 m (Figure 3). The BML was inhomogeneous over the region, its

thickness decreasing around continental slope regions approaching Mexico and the southern part of Hawaii. Between 15◦S and

2◦N the BML was below 200 m. There was a distinct change between 2◦N and 15◦N where the BML approximately doubled

and reached a maximum of 799 m crossing the Clarion Fracture Zone before decreasing to below 90 m south of Hawaii.

Along the zonal section of P02, the BML exhibited an approximately 50% increase between 135 to 130◦W and decreased to240

approximately 100 m on approaching the continental slope. The TPT expedition data indicated generally similar patterns as the

repeat hydrographic sections. These patterns excluded Leg 4 Site 7, where the BML was the largest of the TPT sites (Figure

3).

To provide insight into the efficacy of the derivation methods, we calculated a QI (Lorbacher et al. (2006)) for each profile

and its five possible BML thickness values (Figure 4). Visual inspection of the BML thickness estimates and their associated245

QI indicated that a higher QI and lower standard deviation do not always provide confidence in the BML value. TPT profiles

within 3 km of each other in Figure 2e had a higher QI for the GR and DP8 methods; however, the methods estimated very

different BML thicknesses for very similar profiles. In contrast, the TH method, with lower QI values, was consistent among the

profiles and appeared to capture the position of profile change under contrasting abyssal conditions sufficiently. For example,

across all Figures 2e - h the TH BML thicknesses were in close proximity to one another. Additionally, the TH thickness250

corresponded with the visually identifiable thickness, despite the GR values being close in value to each other and of a high QI

(Figure 2c). We therefore chose the TH method for all BML thickness values going forward due to its dependable performance

when applied to both TPT and GO-SHIP profiles over different regions in the study area.
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3.2 Spatial variability

On meridional transect P16 between 4 and 16◦N, depths are over 5000 m, and the BML thickness was at its greatest along255

the transect (Figure 5). The transition regions at 4◦N and 16◦N appear to have the widest variation in BML over the different

occupations. The TRI was low over the majority of this region, with increases near the Hawaiian Islands, over the Boudeuse

Ridge (10 ◦S) and other prominent seafloor features visible in the bathymetric data (Figure 7b and c). Similarly, the TRI reached

a maximum across transect P02 when it crossed the Murray Fracture Zone and the Moonless Mountains before increasing

towards the North American continental slope (see Figure 1 for locations). TPT sites close to the major fracture zones and260

seamount chains had higher TRI and slope values over the 50 km buffer range and exhibited patterns connecting them to the

P16 and P02 lines spatially. The P02 transect had a higher BML thickness (298± 170 m) compared to P16 (175± 157 m)

(Figure 5 and Figure 6). Similar to P16, the sections of changes in BML thickness along P02 (> 500 m from 136 to 129 ◦W)

broadly intersected with larger differences in BML thicknesses over the different occupations (Figure 6).

3.3 Random Forest Regression265

The TPT and GO-SHIP profiles were analysed together as part of a RF. As described in the Methods section, GO-SHIP data

points within 3 km of one another were averaged together as a mean value to remove instances of temporal variability at

unknown time scales. After the averaging, the number of GO-SHIP data points reduced from 335 to 301. The number of TPT

data points was 29; therefore, a total of 330 points were used for the analysis. For each point, we extracted values of bottom

depth (m), slope, TRI, and internal tide energy dissipation values of low-mode wave-wave interactions, low-mode critical270

slope, low-mode scattering, low-mode shoaling, high-mode (≥ 6) local dissipation and total internal energy dissipation which

is a sum of all the losses from the five processes (in W m−2) (Figure 7). The dissipation parameters are defined in depth by

Lavergne et al. (2019).

The feature with the highest importance score (∼0.4) across all iterations of the RF was the bottom depth. For each variation

of train test split sample data (i.e. random_state = 42, 0 or 1) chosen to train the RF, the same features with the highest275

importance were in the top 3. In order, these were the bottom depth, total dissipation and slope. The number of iterations (n =

1000, 500 or 100) and the three most commonly used train test split values (random_state = 42, 0 or 1) were sensitivity tested

due to the relatively small number of data points. Reducing the predictor variables to include only the top 5 features, ranked by

importance, increased the correlation coefficient, r2, by∼0.02, regardless of the number of iterations or the random_state value

(Table 1). Similarly, the root mean squared error (RMSE) and mean average error (MAE) reduced an insignificant amount (∼2280

m) when including only the top 5 features (Table 1). The results from n = 1,000, 500 or 100 had comparable feature importance

scores; therefore, only the results from n = 1,000, all features and additional train test split values of random_state = 42, 0-7

were run and are shown in Figures 8 and 9. If we were to keep the random_state value as empty, which is the default, the

sensitivity in altering the number of iterations would not be effectively tested. Train test values of random_state = 42 and 0-7

were completed for n = 1000 with the r2 and RMSE displayed in Figure 9. The nine sets of the RF residual model outputs are285

9

https://doi.org/10.5194/egusphere-2025-4709
Preprint. Discussion started: 6 October 2025
c© Author(s) 2025. CC BY 4.0 License.



shown in Figure 9. The r2 was between a minimum of 0.53 and a maximum of 0.77 and the RMSE had a minimum of 87.1

and a maximum of 127.

The different random_state values changed the ranking order of the feature importance scores, however the same features

were within the top five, with the bottom depth always the highest. The slope and TRI are intrinsically linked due to their

calculation from the same bathymetric dataset, with slope quantifying the local gradient over a 50 km radius and TRI capturing290

the variability within a neighborhood, averaged over a 50 km radius aligning with the spatial resolution the dissipation values,

a 0.5◦ grid size. A surface may be steep but smooth, or flat yet jagged, drawing not always a strong correlation between the

two. For example, there are sharp changes latitudinally, however, both TRI and slope are high and more gradual along the

P02 line as part of the broad sloping region from the continental slope of Mexico to the center of the Pacific Ocean (Figure

7b and c). The western end of the P02 line has higher internal tidal dissipation compared to the more eastern half due to the295

presence of the Hawaiian Islands (Kelly et al. (2010)). The full spatial extent of the dissipation parameters, not just at our data

points, at 0.5 ◦ resolution are displayed and explained in Lavergne et al. (2019). Overall, the internal tidal dissipation for each

low-mode process (Figure 7 e-h), and the total dissipation (Figure 7d), is highest between Hawaii and just north of the equator,

intersecting with the region of higher BML along P16 aside from 15 - 20◦ N next to the Hawaiian Islands, where the BML

decreases. This decrease does overlap with a slight decrease in bottom depth and total dissipation, presumably enhancing the300

importance of total dissipation and low mode (wave-wave) dissipation in the RF.

4 DISCUSSION

Density profiles over the central and eastern Pacific Ocean provide an inhomogeneous outlook of BML thickness variations

at abyssal depths across plains and topographic features. Basin-scale expeditions such as the TPT voyages are frequently

multidisciplinary in scope, with competing demands on vessel time. Incorporation of these profiles with the repeat GO-SHIP305

profiles provides increased understanding of the BML. Using RF methods, we found that bottom depth, total internal tide

dissipation and slope are the highest-performing features to predict the BML thickness in this region.

In the central and eastern Pacific abyssal ocean, the thickness of the BML was inhomogeneous with an average value of

226± 172 m. The BML was calculated using the (Θ) profiles through the threshold method (0.003◦C) for the study region.

There is no accepted standard methodology for calculating the BML thickness. It often depends on user-defined numerical310

values within those methods and depends on the region of interest. The integrated method proposed by Huang et al. (2018a),

was used to calculate the BML depth globally, providing an average Pacific Ocean BML thickness of 64 m (Huang et al.

(2019)). We found that for our abyssal ocean context, using an integrated approach that combines multiple methods and

calculates a QI to get the highest ’quality’ BML thickness generated spurious results for profiles within three kilometres of

one another, making it difficult to compare BMLs estimated with different methods. Although the QI was calculated, visual315

interpretation was necessary to confirm the results, mirroring the approach taken within the integrated method where visual

identification was still needed (Huang et al. (2019)). The variability in BML thickness is not unexpected given the variation

in topographic features across the region, likely changes in friction velocity, and a wide longitudinal and latitudinal range
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(Weatherly and Martin (1978); Kunze et al. (2012)). Profiles from the TPT Expedition broadly followed the same spatial

patterns as those from the hydrographic sections and show similar spatial variations in BML thickness as Banyte et al. (2018).320

In all instances, the RF identified the bottom depth, slope, total internal wave energy dissipation, TRI and low-mode wave-

wave interactions as the most important predictors of the BML thickness in this Pacific Ocean abyssal setting. These results

are physically intuitive, with the bottom depth constraining the maximum possible BML thickness, background stratification

and the vertical extent available for turbulent mixing, which is consistent with past research (Laurent and Garrett (2002); Liu

et al. (2023); Lozovatsky and Shapovalov (2012)). The total internal wave energy dissipation value aggregates all internal tide325

dissipation mechanisms that drive turbulence (Lavergne et al. (2019)). On abyssal plains, where local topographic features are

sparse, a substantial amount of this energy would likely originate remotely and dissipate gradually through sustained mixing

events (Nikurashin and Legg (2011)). Therefore, the inclusion of low-mode wave-wave interactions as a predictor is especially

significant. This variable refers to nonlinear energy transfers among long-wavelength internal tides. In regions with high low-

mode wave-wave dissipation, this could lead to persistent near-bottom mixing that expands the BML thickness. This suggests330

that the BML thickness on the abyssal plain is of remote and sustained forcing origin, rather than high-mode breaking events

(Lavergne et al. (2019); Melet et al. (2013)). Although the study region lies predominantly within the abyssal plain, the terrain

is not uniform. As shown by Harris et al. (2014) and Figures 7b and c, the region is interspersed with multiple features of

abyssal plains, abyssal hills, and seamounts, creating heterogeneity in the TRI and slope. The observations north of Hawaii

highlight where higher TRI and slope intersect with the smallest values of total internal tide dissipation and low-mode wave-335

wave interactions.

The TRI captures local bathymetric complexity at 50 km scales, which enhances bottom drag and internal tide scattering,

even where mean slopes may be weak, supporting thicker BMLs by maintaining sustained and patchy mixing close to the

boundary layer (Nikurashin and Ferrari (2011); Nash et al. (2007)). The slope of the topography within our study region is

primarily of a subcritical regime; therefore, internal tides will refract and reflect weakly, allowing for persistent low-mode340

energy to mix over broader regions, rather than localized mixing. Between 4 and 15◦ N there is a small region where the

low-mode critical slope dissipation increases (Figure 7g), and the BML thickness is large, suggesting the critical slope may be

more important here. Nested within the same region is the highest total dissipation of the study region (4 - 7◦ N) where there

is high local high-mode dissipation, low-mode wave-wave interactions and low-mode critical slope dissipation. The TRI and

slope are small over this region, culminating in the BML thickness being slightly above the average. Similar connections to345

the slope and the TRI have been identified in the North Atlantic Ocean and the South China Sea (Lozovatsky and Shapovalov

(2012); Liu et al. (2023)).

Our results have highlighted differences in what factors drive the BML. Despite limited and sparsely located data points, it

is clear that the BML thickness is a culmination of processes, both local and remote. The limited and spatially inconsistent data

points meant we were unable to further the model to predict the BML without the RMSE at times equating to the predicted350

BML thickness. Despite the three highest importance features remaining consistent, the nine iterations of random_state values

do not visually provide a clear picture of regions that are consistently lower or higher performing than others. In addition, the

reasonably high variation in r2 and RMSE values suggests that more observations are required for there to be less sensitivity
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in the results to which random selection of the data is chosen to train the model. The RF herein should be used to understand

drivers but cannot be used predictively, which would require additional data points. However, in regions where there is a more355

dense and equal spread of CTD profiles, the publicly available datasets from Lavergne et al. (2019) and GMRT bathymetry

(Ryan et al. (2009)) should be considered for usable predictive relationships. Prediction of the BML thickness was not in the

scope of this study; however, we have shown the usefulness of publicly available datasets. Predictive relationships of the BML

thickness would be useful for identifying regions of interest for internal wave-driven mixing at the ocean’s bottom boundary,

hydrodynamic model parameterisations and disentangling spatiotemporal variability in BML thickness within a given region.360

At around 18◦N, bottom water passes through the Horizon Passage (170◦ W) and flows around Hawaii (Lukas et al. (2001);

Fuhr et al. (2021); Kato and Kawabe (2009)), intersecting where the BML was small and there was increased stratification in the

water column above. This can be demonstrated by Θ-SA profiles with increased fractions of North Pacific Intermediate Water

(NPIW) from 16-19◦ N (Figure 10a) and more saline and cooler water at the seafloor within the BML, aligning with Antarctic

Bottom Water (AABW) properties (Figure 10b). While the complete profiles between 0-2 and 10-15◦ N displayed visually365

similar water mass characteristics, the properties of the BML were distinct (X marks in Figure 10) with the equatorial seafloor

BML fresher and warmer, indicating NPDW, compared to 10-15◦ N closer to the properties of AABW, and 16-19◦ N the most

saline and coolest (Fuhr et al. (2021)). This region of water mass and inter-basin exchange highlights the difference between

stratified regions of bottom water pathways (Figure 1) compared to low ocean interior stratification south of this region (curved

Θ-SA in Figure 10b, red and blue) and less variation in Θ-SA space (Figure 10a) (McDougall and Jackett (2007); Hautala370

(2018); Kawabe and Fujio (2010)). In essence, a more strongly stratified ocean interior likely suppresses mixing by reducing

the turbulent diffusivity, even in regions where the turbulent kinetic energy dissipation may be high. Therefore, the buoyancy

gradient remains difficult to overcome, resulting in a thinner BML (Weatherly and Martin (1978)).

Consistent with previous analyses (Liu et al. (2023); Lozovatsky and Shapovalov (2012); Chen et al. (2023)), there are

multiple processes influencing the BML thickness at abyssal basin scales. While the RF provides a quantitative approach to375

dissect the variations in BML thickness based on the features, the profiles are a single snapshot of the water column at that point

in time. As exemplified by Chen et al. (2023) in the Clarion-Clipperton Fracture Zone, they were unable to define the diffusion

processes of the suspended sediment within the BML, as additional short-term processes such as internal gravity waves were

highlighted as likely influencing the results. In our case, the TRI and slope are single values over a 50 km buffer region, not

including proximity and direction from features such as the Hawaiian Ridge, which may influence the formation of the BML380

and the water column in different ways; hence the inclusion of internal tidal dissipation from de Lavergne (Zaron (2019);

Finnigan et al. (2002)). Considering the broader consequences of BML dynamics for deep ocean mixing and overturning

circulation, temporal variability in the BML over abyssal depths should be considered in future studies. For example, a mooring

configuration both within the BML thickness and above, in a region of increased internal tide energy dissipation south of

Hawaii and then at a similar depth to the north-east of Hawaii where the BML thickness is higher and dissipation is lower,385

while intersecting with a region of water mass transport. These locations transition from flat abyssal plains to the Hawaiian

Islands, each with distinct BML patterns and drivers across ∼six degrees of latitude. Increased observations of both direct
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mixing and far-field or wave-wave energy dynamics are required in this relatively dynamic, yet undersampled region of the

abyssal Pacific Ocean.

5 Conclusions390

The BML is crucial for understanding diapycnal transport, which causes significant upward movement of deep-sea waters (Mc-

Dougall and Ferrari (2017); Ferrari et al. (2016)) in the undersampled abyssal ocean. This research highlights the importance

of abyssal seafloor regions, which are not typically categorized as dynamic, shifting in space and time. Through the appli-

cation of four BML detection methods, we find that the commonly used threshold method provides the most consistent and

interpretable estimates of BML thickness across large spatial scales. However, we have highlighted the necessity to test each395

method-specific parameter. We also show that GMM offers a useful approach for predicting essential ocean variables, such

as salinity here, using publicly available data. The RF revealed BML thickness variation related primarily to bottom depth,

followed by total internal tide energy dissipation and topographic slope.

Global studies of the BML using multiple methods seldom focus on the potential of variability over time (Huang et al.

(2019)), while others aim to use a small range in time to comprehend processes such as sediment dispersal within the BML400

(Liu et al. (2023)) reaching the conclusion of significant temporal variability long noted in literature (Greenewalt and Gor-

don (1978)). The relative contributions of the mechanisms that control the BML thickness across the abyssal ocean and basin

boundaries requires further investigation through increased continuous observations and modelling efforts with reduced inter-

polation. The role of abyssal circulation pathways and internal tide driven mixing is at the forefront of current research (e.g.

Wynne-Cattanach et al. (2024); van Haren et al. (2024)), within which the formation of the BML forms a key component of the405

processes. Therefore, the present study highlights and encourages sustained observations of abyssal regions over the bottom

boundary and ocean interior above. Such observations are particularly important around rough topography, specifically in the

central and eastern Pacific, where the abyssal ocean is frequently overlooked. At present, the temporal scales of BML variabil-

ity remain poorly understood. Determining these scales is essential for characterising how the BML is mediated by abyssal

water-mass transformation and circulation.410

Data availability. GO-SHIP profiles were obtained through the CLIVAR and Carbon Hydrographic Data Office (CCHDO, https://cchdo.ucsd.edu/)

for cruise numbers: 31WTTUNES_3, 325020060213, 33R0150410, 49K6K9401_1, 318M200406 and 318M20130321. The gridded GO-

SHIP product from Katsumata et al. (2022) was also accessed, used within figures and available on Zenodo at zenodo.org/records/13315689.

The temperature-pressure sensor observations collected over the Trans-Pacific Transit Expedition on board RV Dagon are currently available

on Zenodo at zenodo.org/records/15536316. The global maps of internal tide generation and dissipation as outputs from Lavergne et al.415

(2019) are available from SEANOE at seanoe.org/data/00469/58105/
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Appendix A: Gaussian mixture modelling of TPT salinity profiles

We applied Gaussian mixture modelling to achieve a modelled representation of the practical salinity (SP) from 2,500m to

the seafloor at each voyage deployment location (Table A1). Such unsupervised classifications have been completed for CTD

profiles and Argo floats (Ye and Zhou (2025); Zhang et al. (2023)). All GO-SHIP profiles deeper than 5000 m and within420

10◦ latitude and 10◦ longitude from the voyage site were used in scikit-learn package GaussianMixture (GMM) (Pedregosa

et al. (2011a)). If there were 2 or less GO-SHIP profiles within the bounding box, it was expanded to 15◦ latitude and 15◦

longitude, otherwise the site was excluded. Mixture models can be viewed as an extension of k-means clustering that integrates

information regarding the covariance structure of the data alongside the centres of the latent Gaussian distributions. They are

a probabilistic framework that assumes all data points are derived from a combination of a finite set of Gaussian distributions425

with unspecified parameters. Options within the package that were altered to get the optimal GMM model of SP were:

– covariance_type: tied or full, default is full.

– N_components: 1 – 21, number of mixture components.

– random_state: 42, controls the generation of random samples.

The rest of the parameters were kept as default values. Each set of GO-SHIP data for the associated TPT voyage site was430

iterated through each covariance type for each number of components. The elbow method was then used to choose the number

of components, whereby the increase in the number of components does not equate to an increase in the model performance

(AIC/BIC).

Appendix B: Sensitivity analysis for threshold value (TH method) and ε value (DP method)

We used the collected profiles of temperature and pressure to test the optimal threshold value to use for the BML thickness435

derivation. We used the Quality Index methodology (Equation 1 in the main text) to choose the appropriate threshold value

based on Lorbacher et al. (2006) as it was being applied to the same method. The conservative temperature of 0.003◦ C provided

the highest mean QI for both the TPT voyage dataset (Figure A1) and the GO-SHIP repeat hydrographic sections of P02 and

P16 (Figure A2).

The Douglas-Peucker split-and-merge algorithm (Ahmadzadeh (2024)) reduces the number of points in a curve, approxi-440

mating it by a series of points. An ε value between 0 and 1 is required to specify the similarity between the curve and the

points, i.e. the smaller the epsilon, the more similar the curve. We tested three TPT Expedition profiles with ε values between

0.001 and 0.01 (Figure S3 for site TP2_OM3_5400). We chose ε = 0.002 and ε = 0.008 as the two options with the most

variability in results to calculate the BML height. This gave us methods DP02 and DP08 respectively.
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Figure 1. (a) Bottom water circulation pathways through the Pacific Ocean based on existing research (Kawabe and Fujio (2010); Oka and

Niwa (2013); Hautala (2018)) with (b) insert as the extent of the study region. AABW = Antarctic Bottom Water, NPDW = North Pacfic

Deep Water (b) Study region boundary, locations, and features, including a regional bathymetric grid. Orange triangles are the Trans-Pacific

Transit Expedition deployment locations with numbers as the site number within the associated leg. The R/V Dagon multibeam echosounder

coverage is displayed in green. Note that Leg 1 is not used in this analysis. The GO-SHIP repeat hydrographic lines and deployment locations

are marked with red circles (P16 and P02). Blue arrows are bottom water circulation pathways adapted from previous studies. Background

regional bathymetry is from the Global Multi-Resolution Topography (GMRT) Synthesis (Ryan et al. (2009)) Released CC BY 4.0 Deep |

Attribution 4.0 International | Creative Commons.
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Figure 2. Example profiles of σ4 and BML thickness outputs from (a) to (h). Color and size of the marker correspond to the method and

the quality index (QI) of the BML (a). The map and inserts in (i) to (l) detail the locations of the profiles shown in the respective subplot.

Grey map shows the study region with GEBCO bathymetry and sites (key in (i); see Figure 1 for more detail), the red region the extent of

the figure and black points indicating all profiles used. Blue circles are GO-SHIP with light blue indicating profiles used but not displayed,

black triangles are TPT locations. (a) P16 GO-SHIP profiles in 2002 between 0◦ and 0.5◦N and (b) in 2015 between 12◦ and 13◦ N, (c) P02

GO-SHIP profiles in 2022 between 135◦ and 136◦ W and (d) in 2022 between 124◦ and 123◦ W. (e) TPT voyage Leg 3 Site 4, (f) Leg 2 Site

3, (g) Leg 4 Site 5, and (h) Leg 5 Site 1. Figure (c) includes a line of visual interpretation and the exact values of the quality index, as also

indicated by the marker size at the BML thickness for each method.
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Figure 3. Bottom mixed layer (BML) thickness (m) derived from the threshold method (TH). It is calculated using the TPT Expedition

profiles (triangles) and GO-SHIP profiles (circles). The TPT profiles are within 3 km of each other and therefore a standard deviation is

included.
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Figure 4. Average bottom mixed layer (BML) thickness (m) for the threshold method (TH), gradient method (GR), Douglas-Peuker method

using an ϵ of 0.002 (DP2), Douglas-Peuker method using an ϵ of 0.080 (DP8) and the relative variance method (RV). The BML thickness

is calculated using the TPT Expedition profiles (orange) and GO-SHIP profiles (blue) with the length of the line indicating the range of the

thickness. Bold values above the bars are the mean quality index (QI) and the italicised values are the standard deviation of the QI.
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Figure 5. The P16 repeat hydrographic line nominally along 150◦ W with (a) conservative temperature (Θ) with neutral density (γn) as the

white contours and the BML thickness for 2015 (green), 2006 (red), and 2002 (orange). Note the seafloor, Θ and γn are from the gridded data

product available from Katsumata et al. (2022) and therefore may not be an exact representation of the seafloor depth, (b) BML thickness

above the seafloor with color representation as in (a).
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Figure 6. The P02 repeat hydrographic line nominally along 30◦N with (a) conservative temperature (Θ) with neutral density (γn) as the

white contours and the BML thickness for 2002 (green), 2013 (red), and 2004 (orange). Note the seafloor, Θ and γn are from the gridded data

product available from Katsumata et al. (2022) and therefore may not be an exact representation of the seafloor depth, (b) BML thickness

above the seafloor with color representation as in (a).
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Figure 7. All GO-SHIP (circle) and TPT (triangle) site variables used for the Random Forest Regressor (RF). The top BML thickness figure

is the same as 3 for reference. (a) Bottom depth, m (b) slope over a 50 km radius, ◦ (c) terrain roughness index (TRI) over a 50 km buffer

(d) total internal tide energy dissipation, W m−2 (e) low-mode dissipation from shoaling, W m−2 (f) low-mode dissipation from wave-wave

interaction, W m−2 (g) low-mode dissipation from critical slopes, W m−2 (h) low-mode dissipation from scattering, W m−2 and (i) high-

mode dissipation from local processes, W m−2. (d) to (i) are from Lavergne et al. (2019). The background regional bathymetry is from the

Global Multi-Resolution Topography (GMRT) Synthesis (Ryan et al. (2009)) Released CC BY 4.0 Deep | Attribution 4.0 International |

Creative Commons. Note the colour scale is different in (d) compared with (e)-(i)
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Figure 8. Feature importance scores for each feature output from the number of iterations (n) = 1000 for the train test split random_state

values of the 80-20 data split for (a) 42 and (b) - (i) for 0 to 7 for the Random Forest Regressor. Bd = bottom depth, S = slope, TRI = terrain

roughness index, Td = total internal tide energy dissipation, Sh = low-mode dissipation from shoaling, Ww = low-mode dissipation from

wave-wave interaction, Cs = low-mode dissipation from critical slopes, Sc = low-mode dissipation from scattering and Hm = high-mode

dissipation from local processes.
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Figure 9. Spatial plots of the BML residual (m) (BML true - BML predicted) for the train test random_state values used to train the Random

Forest Regressor with the number of iterations = 1000, generating a spread of the data for random_state equal to (a) 42 and (b) - (i) for 0 to

7. The correlation coefficient and the Root Mean Squared Error (RMSE) is displayed on each figure.
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Figure 10. Conservative temperature (Θ, ◦) - Absolute Salinity (SA, g kg-1) plots for latitudinal sections of the P16 line for the 2015

occupation between 0 - 2◦N (blue), 10 - 15◦N (red) and 16 - 19◦N (green). (a) Wider portion of the water column with the (b) limits outlined.

In (a) the dashed contour lines show the potential density referenced to the 0 dbar (σ0) and in (b) the dashed lines show the potential density

referenced to 4000 dbar (σ4). Θ-SA North Pacific water mass properties are shown in magenta Fuhr et al. (2021) and the BML for the profile

is displayed with a black X. NPIW = North Pacific Intermediate Water, AAIW = Antarctic Intermediate Water, NPDW = North Pacific

Deep Water, AABW = Antarctic Bottom Water, used here interchangeably with Lower Circumpolar Deep Water (LCDW). Displayed and

calculated with the TEOS-10 toolbox McDougall and Barker (2011)

Table 1. Random Forest performance for different numbers of estimators (n), comparing models trained on all features vs. the top five

features.

All Top 5

Number of estimators (n) 1000 500 100 1000 500 100

(b) Train_test random state = 42

r2 0.65 0.65 0.65 0.67 0.67 0.67

RMSE 97.1 97.4 95.7 93.9 93.7 93.5

MAE 71.4 72.0 71.4 70.0 69.7 69.7

(b) Train_test random state = 0

r2 0.62 0.62 0.60 0.63 0.63 0.64

RMSE 127.0 127.9 129.7 125.3 125.4 124.5

MAE 86.3 87.0 86.7 85.2 85.4 85.1

(c) Train_test random state = 1

r2 0.54 0.54 0.54 0.56 0.56 0.54

RMSE 108.1 108.2 109.0 106.4 106.4 108.0

MAE 72.3 73.6 73.4 71.3 70.9 72.8
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Figure A1. Histogram plots of the quality index values from the threshold BML height based on different threshold values of conservative

temperature (Θ) as (a) 0.001◦C, (b) 0.002◦C, (c) 0.003◦C, (d) 0.004◦C and (e) 0.005◦C
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Figure A2. Histogram plots of the quality index values from the threshold BML height based on different threshold values of conservative

temperature (Θ) as (a) 0.001◦C, (b) 0.002◦C, (c) 0.003◦C, (d) 0.004◦C and (e) 0.005◦C
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Figure A3. Douglas-Peuker Algorithm output (approximated, in blue) for different values of ε and original profile of TP2OM35400 in red

as an example
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Figure A4. GO-SHIP (circle) and TPT (triangle) site variables of the (a) – (d) mean slope over 25, 50, 100 and 200 km buffer zones

respectively (deg) and the (e) - (h) standard deviation of slope over the 25, 50, 100 and 200 km buffer zones respectively, (i) – (l) the

mean normalised terrain roughness index (TRI) over the 25, 50, 100 and 200 km buffer zones respectively and (m) – (p) displaying the

normalised standard deviation of the TRI. For the multiple TPT sites within close proximity ( 3km), TRI and slope are on the centre point.

The background regional bathymetry is from the Global Multi-Resolution Topography (GMRT) Synthesis Released CC BY 4.0 Deep |

Attribution 4.0 International | Creative Commons Ryan et al. (2009)
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Table A1: Station metadata and gaussian mixture model details for each location

Station Depth (m) Lat (°) Lon (°) GO-SHIP files Components Covariance

TP2_CR1_5200 5202 17.424 -151.997 73 11 full

TP2_CR2_5400 5384 14.808 -148.371 83 14 full

TP2_CR3_5400 5310 10.635 -144.672 84 15 full

TP2_CR4_5000 4988 5.181 -144.780 62 15 full

TP2_CR5_4950 4944 4.470 -145.870 62 15 full

TP2_CR7_4500 4588 -3.926 -144.014 36 11 tied

TP2_MA3_5400 5140 10.630 -144.689 84 15 full

TP2_MA4_5000 4992 5.194 -144.793 62 15 full

TP2_MA5_4950 4992 4.482 -145.883 62 16 tied

TP2_MA7_4500 4563 -3.913 -144.028 36 13 tied

TP2_OM1_5200 5219 17.437 -151.994 73 13 full

TP2_OM2_5400 5385 14.791 -148.376 83 13 full

TP2_OM3_5400 5197 10.648 -144.685 84 15 full

TP2_OM5_4950 4944 4.487 -145.866 62 16 tied

TP2_OM7_4500 4573 -3.931 -144.032 36 11 tied

TP3_CR1_4800 4875 -10.832 -146.345 18 11 tied

TP3_CR2_5100 5209 -6.487 -147.826 22 18 tied

TP3_CR3_4800 4760 -1.630 -150.330 46 13 tied

TP3_CR4_4800 4881 3.178 -153.505 60 9 full

TP3_CR5_4700 4816 6.649 -156.946 68 6 full

TP3_CR7_5200 5208 16.602 -158.528 75 18 tied

TP3_MA1_5100 5083 -10.831 -146.325 18 11 tied

TP3_MA2_5200 5226 -6.502 -147.818 22 18 tied

TP3_MA3_4800 4835 -1.647 -150.336 46 14 tied

TP3_MA4_4800 4916 3.189 -153.521 60 9 full

TP3_MA5_4600 4814 6.632 -156.950 68 6 full

TP3_OM1_5100 5101 -10.817 -146.337 18 11 tied

TP3_OM4_4800 4873 3.169 -153.521 60 9 full

TP3_OM5_4600 4816 6.644 -156.932 68 6 full

TP4_CR2_5400 5437 20.688 -146.253 103 17 tied

(Continued on next page)
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(Continued from previous page)

Station Depth (m) Lat (°) Lon (°) GO-SHIP files Components Covariance

TP4_CR3_5400 5445 21.163 -141.568 24 11 full

TP4_CR4_5300 5319 21.563 -136.898 14 10 full

TP4_CR6_4700 4792 24.123 -128.540 4 17 tied

TP4_CR7_4800 4873 26.825 -124.635 4 17 tied

TP4_MA1_5200 5229 20.315 -151.210 120 11 full

TP4_MA2_5400 5476 20.688 -146.264 103 11 full

TP4_MA3_5400 5491 21.173 -141.551 24 11 full

TP4_MA4_5300 5335 21.560 -136.917 14 10 full

TP4_MA5_5000 5105 23.647 -133.339 5 18 tied

TP4_MA6_4700 4786 24.138 -128.551 4 17 tied

TP4_MA7_4800 4906 26.841 -124.623 4 17 tied

TP4_OM1_5200 5232 20.297 -151.208 120 11 full

TP4_OM2_5400 5445 20.704 -146.272 103 17 tied

TP4_OM3_5400 5438 21.181 -141.568 24 11 full

TP4_OM4_5300 5367 21.577 -136.909 14 10 full

TP4_OM5_5000 5148 23.647 -133.358 5 11 tied

TP4_OM6_4700 4793 24.071 -128.560 4 17 tied

TP4_OM7_4800 4934 26.824 -124.615 4 17 tied

TP5_CR1_4300 4306 31.843 -124.368 4 18 tied

TP5_CR2_4600 4645 28.687 -129.032 4 11 tied

TP5_CR5_5200 5257 25.795 -145.973 77 10 full

TP5_MA1_4300 4310 31.837 -124.347 4 18 tied

TP5_MA2_4600 4647 28.690 -129.013 4 11 tied

TP5_MA3_4800 4846 26.577 -139.637 24 11 full

TP5_MA5_5200 5262 25.810 -145.982 77 10 full

TP5_OM1_4300 4289 31.824 -124.364 4 18 tied

TP5_OM2_4600 4636 28.704 -129.026 4 11 tied

TP5_OM5_5200 5232 25.795 -145.994 77 10 full

TP6_CR4_4700 4662 -3.335 -146.653 38 13 tied

TP6_CR5_4500 4465 -4.616 -146.773 31 12 full

TP6_CR6_5200 5140 -7.822 -146.141 18 11 full

(Continued on next page)
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(Continued from previous page)

Station Depth (m) Lat (°) Lon (°) GO-SHIP files Components Covariance

TP6_CR7_4900 4937 -10.953 -143.991 18 11 tied

TP6_MA4_4700 4713 -3.335 -146.671 38 13 tied

TP6_MA5_4500 4579 -4.632 -146.782 31 12 full

TP6_MA6_5200 5172 -7.822 -146.159 18 11 full

TP6_OM4_4700 4651 -3.319 -146.662 38 13 tied

TP6_OM5_4500 4465 -4.632 -146.814 31 12 full

TP6_OM6_5200 5182 -7.807 -146.150 18 11 full

TP6_OM7_4900 4921 -10.969 -143.982 18 11 tied
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