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Abstract. As aviation’s contribution to anthropogenic climate change is increasing, the sector aims at reducing its climate effect
in accordance with international agreements. The strong and variable non-COs effects are complex, making reliable climate
effect quantification a necessary first step. To support this, we develop the easy-to-use first-order climate effect estimator for
single flights FlightClim v1.0. The tool estimates the flight-specific climate effect with a simplified calculation model, without
requiring detailed information on exact routing, amount of fuel burn, or weather conditions.

For this purpose, we first analyze a global flight dataset containing detailed trajectories, associated flight emissions, and
climate responses. Similar flights are grouped into clusters, and regression formulas are derived to estimate the Average Tem-
perature Response over 100 years (ATR100) for CO4 and non-CO, effects. To prevent abrupt changes at cluster boundaries,
we apply linear smoothing as postprocessing. Second, we compare a Multiple and Symbolic Regression approach, which dif-
fer in effort and complexity but offer similar estimation quality. The choice of method depends on the specific application.
Both methods are designed for climate footprint assessments due to their simplicity though not suitable for policy measures.
Emission trading or monitoring and reporting systems instead require detailed weather and route data to incentivize operational
non-CO- mitigation. Compared to previous studies, our approach covers more aircraft types, including most commercial air-
liners, and improves precision through smoothed clustering and a dedicated parameterization of aircraft size influence on the
contrail effects.

The resulting climate effect functions are embedded into the Excel-based tool FlightClim v1.0, which implements the formu-
las of the Multiple Regression approach due to slight qualitative advantages. Requiring only aircraft size and origin-destination
airports as input, FlightClim estimates climate effect for CO5, HoO, NOy emissions and contrail-induced cloudiness. It in-

cludes per seat allocation and supports different climate metrics.

1 Introduction

Global aviation more than doubled from 2006 to 2019 in terms of revenue passenger kilometers (ICAO, 2015, 2021). The
associated CO5 emissions grew by 40% to 1036 Tg(COz)yr~! during this time span (IEA, 2022). After the considerable

reduction of air transportation through COVID-19, it reached pre-pandemic levels again by 2023 and now continues to grow
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(Economics, 2024). Projections show that aviation’s share in global CO4 emissions could rise from currently about 2% to 22%
in 2050 (Cames et al., 2015). This amplifies the pressure on the sector for finding solutions to reach the Paris agreement climate
goals.

A number of measures are suited to reduce the climate effect of aviation ranging from technological (i.a. Dahlmann et al.,
2016b; Silberhorn et al., 2022; Delbecq et al., 2023) and fuel-related solutions (e.g. Teoh et al., 2022; Markl et al., 2024; Quante
et al., 2025) to operational (i.a. Grewe et al., 2014, 2017b; Liihrs et al., 2016, 2021; Teoh et al., 2020; Matthes et al., 2021;
Yin et al., 2023; Martin Frias et al., 2024; Sausen et al., 2024) and regulatory options (i.a. Scheelhaase et al., 2016; Larsson
et al., 2019; Niklal et al., 2021, 2025). To be overall effective, these measures do not only need to target the reduction of CO4
emissions, but also the so called non-CO, effects. Non-CO- effects were responsible for about two thirds of the total effective
radiative forcing (ERF) in 2018 when considering all aviation emissions from 1940 to 2018 (Lee et al., 2021). Especially the
effects of persistent contrail cirrus formation and of NO, emissions on the ozone concentration increase the total impact of air
traffic on the climate.

Therefore the basis for the development of effective mitigation measures, as well as the first step for climate effect compen-
sation programs is a reliable estimate of the total climate effect of a flight, including the non-CO- effects. However, while the
COs, climate effect can be estimated easily, as it is independent of emission source, location and time, the effects of non-CO5
emissions are much more complex to determine (Dahlmann et al., 2023). For simplicity, often the global ratio of non-CO; to
CO4, climate effects is used as a factor for total climate effect estimation, based solely on CO5 emissions. An example of this
simple estimation option for aviation is the Radiative Forcing Index (RFI, IPCC, 1999), which is the ratio of the total radiative
forcing to the radiative forcing of CO4 emissions.

However, Forster et al. (2006) highlighted the limiting shortcomings of the RFI concept, such as a large variation with time
for constant emissions, and concluded that RFI is inappropriate for comparing emissions. In addition, the altitude dependency of
non-CQOs, effects has to be considered in the estimation method to avoid misguiding incentives (Faber et al., 2008; Scheelhaase
et al., 2016; NiklaB et al., 2019). However, this requires detailed information of the flown trajectory, the aircraft and atmospheric
conditions to estimate the various climate effects. To query this data is an elaborate process, public accessibility is limited and
the data is not available before the flight. Hence, a simplified estimation method that is easy to use for the climate footprint
assessment of single flights yet realistically representing non-COs climate effects is needed.

There are a few methods for simplified climate footprint assessment of single flights publicly available. Popular ones are the
"ICAO Carbon Emissions Calculator" (ICAO, 2025), the "Flight Emissions Label" of the European Union (EASA, 2025), the
"Aviation 1 Master emissions calculator 2023" of the European Environment Agency (EEA, 2023), Google s "Travel Impact
Module" (Google, 2025) and the "myclimate flight emission calculator” (Foundation myclimate, 2025). All of them have
particular areas of application and strengths, but all of them only take into account COz-emissions, use constant factors to
quantify non-COs-effects or are lacking CiC climate effects. A method that overcomes these shortcomings and only relies on
mission parameters as distance and geographic flight region has been introduced by Dahlmann et al. (2023). Dahlmann et al.
(2023) analyzed the climate effect of the typical long-haul aircraft type Airbus A330-200 for more than 1000 international city
pairs using the climate response model AirClim (Grewe and Stenke, 2008; Dahlmann et al., 2016a) and then fitted altitude and
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latitude dependent regression formulas to the AirClim results. The regression formulas enable an easy to use estimation of the
climate effect of single flights and show a much better estimation quality than a constant factor. While the root mean square
error for a constant factor of 3.4 was about 1.18, the one obtained with the regression formulas was about 0.24, with 95% of
the estimates lying within a 20% range. However, there is no easy-to-use method available that provides a thorough estimate
of the non-CO4 climate effects for individual passengers or organizations, allowing them to assess their footprint pre-flight for
travel decisions and post-flight to track their personal climate impact, without requiring detailed information about the actual
flown trajectory, the amount of emissions produced and the prevailing weather situation. Such a method would also enables a
quick climate effect estimation for large flightplans, supporting scientific research and organizational carbon accounting.

In the present study, we expand the work by Dahlmann et al. (2023) and develop an easy-to-use estimation method for
aircraft climate effects, using climate effect regression functions that are valid for all jet passenger aircraft with a seat capacity
of over 20. While Dahlmann et al. (2023) only analyzed one aircraft type, we here analyze the climate effect for various
commercial aircraft. Instead of using constant emissions over a typical aircraft lifetime of 32 years, we here use the more
realistic assumption of increasing emissions over the next 100 years, which influences the weighting of the individual non-
CO;, effects according to Megill et al. (2024). We consider the climate effects of aircraft emissions of CO5, NOy, and H5O as
well as contrail-induced cloudiness (CiC), but exclude the effects of aerosol emissions through aerosol-radiation interactions
and aerosol—cloud interactions as the understanding and assessment is not yet mature enough to be included here. This easy-
to-use method is only based on the aircraft size as well as the distance and latitude of the flight, and the two latter quantities
can be easily computed from the airport pair.

The paper is structured as follows. In the first step, we describe the preparation of the regression flight dataset including a
distance and latitude dependent clustering (Section 2). Then we apply both Multiple Regression (MR) and Symbolic Regression
(SR) to generate specific climate effect regression functions for each cluster (Section 3). Finally, we compare and discuss the
resulting formulas for the climate effect of individual flights (Section 3.4). The resulting equations have been implemented into
an easy-to-use estimation tool, for which the user manual is available in Section S5 of the Supplementary Material.

We want to stress here that the method presented in this paper, is not intended to assess the effects of neither individual

trajectories, weather situations, specific aircraft or different aircraft generations/technologies.

2 Preparation of the regression dataset

The regression formulas for the estimation of the climate effect of single flights are based on a dataset consisting of about 57
thousand flight trajectory simulations. These simulations represent global jet-powered civil aviation, covering approximately
30 million flights on 21 thousand routes between 11 thousand city pairs, which accounts for 98% of globally available seat
kilometers (ASK). The dataset is derived from a global flightplan of the year 2012, which serves as the base for the creation of
flight emission inventories (Section 2.1). The inventories are then used to derive the climate effect per flight, that represents the
dependent variable of the regression (Section 2.2). In the final step of the dataset preparation a clustering is derived to group

similar flights for the regression analysis (Section 2.3).
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2.1 Global emission inventory

As the basis for the derivation of regression formulas for climate effect estimation, data from the project WeCare (Utilizing
WEather information for ClimAte efficient and ecoefficient futuRE aviation, Grewe et al., 2017a) was used, which was an inter-
nal project of the German Aerospace Center (Deutsches Zentrum fiir Luft- und Raumfahrt; DLR). The project addressed both
an improvement of the understanding of aviation-influenced atmospheric processes and an assessment of different mitigation
options. An essential output of the project was a new set of emission inventories for global aviation (Grewe et al., 2017a). The
network of flight trajectories was developed following a four-layer approach implemented in the AIRCAST method (Ghosh
et al., 2016). It is starting from an origin—destination passenger demand network that was built up from exogenous socio-
economic scenarios, via the passenger routes network (sequence of flight segments, a passenger actually travelled from origin
to destination) to an aircraft movements network, which assigns aircraft seat categories to the resulting flight routes and pro-
vides flight frequency information. The final step is a simulation of trajectories based on the aircraft movements obtained from
the aircraft movements network layer using DLR’s Global Air Traffic Emissions Distribution Laboratory (GRIDLAB; Linke,
2016). Each mission, defined by departure and arrival cities, aircraft type, and load factor, was simulated under typical opera-
tional conditions, resulting in a network of flight trajectories. For this purpose, DLR’s Trajectory Calculation Module (TCM,;
Liihrs et al., 2014) was used that applies simplified equations of motion known as the Total Energy Model.

Based on the aircraft’s engine state determined by parameters such as thrust and fuel flow, the engine emission distribution
of NOy, CO, and HC species along the trajectory was determined by applying the Boeing Fuel Flow Method 2 (DuBois
and Paynter, 2006). The amount of CO5 and HyO emissions was calculated assuming a linear relationship to the fuel burn.
The mapping of emission distributions of all flights onto a geographical grid resulted in 3D inventories. In WeCare, using
the approach mentioned above, emission inventories and the corresponding climate effect were estimated for the years 2015 to
2050 in 5-year steps. The forecast was based on the dataset from the reference year 2012. Seven different aircraft seat categories
(based on the number of seats) were considered in the inventories (20-50 seats; 51-100 seats; 101-151 seats; 152-201 seats;
202-251 seats; 252-301 seats; 302-600 seats). Each seat category was modeled using one representative jet powered aircraft
type (plus one backup aircraft type). The representative aircraft type was selected such that it contributes to a significant share
of the respective seat category. Respective engine emission characteristics were taken from the Aircraft Engine Emissions

Databank of the International Civil Aviation Organization (ICAO, 2023).
2.2 Climate effect estimation

In order to obtain the climate effect for each flight corresponding to the flight plan, the climate effect for each single trajectory is
estimated with the non-linear climate response model AirClim (Grewe and Stenke, 2008; Dahlmann et al., 2016a) using gridded
emission data for each species. Therefore, AirClim combines 3D aircraft emission data with a set of pre-calculated non-linear
emission—response relations for a set of atmospheric locations to estimate the temporal development of the global near-surface
temperature change. AirClim includes the effects of the climate agents CO4, H,O, CHy4, O3 and primary mode ozone (PMO)

(the latter three result from NOy emissions), as well as CiC. For deriving the atmospheric responses for HoO and NOy-induced
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changes, 85 steady-state simulations for the year 2000 were performed with the chemistry climate model E39/CA (Stenke et al.,
2009), prescribing normalized emissions of NOy and HyO at various atmospheric regions (Fichter, 2009). For the effect of
CiC, we use atmospheric and climate responses considering the local probability of fulfilling the Schmidt-Appleman criterion
as well as ice-supersaturated regions, which were obtained from simulations with ECHAM4-CCMod (Burkhardt and Kircher,
2011). We follow a climatological approach in the estimation of the climate effect, meaning that the calculated values represent
a mean over all weather situations averaging over individual spatially and temporally resolved responses.

For analyzing the climate effect, we assume emissions starting in 2012 and a future increase in emissions according to the
scenario Fal of the Intergovernmental Panel on Climate Change (IPCC, 1992), which is a reference scenario developed by the
International Civil Aviation Organization Forecasting and Economic Support Group (ICAO FESG) with mid-range economic
growth and technology for both improved fuel efficiency and NOy reduction (IPCC, 1999). Historical emissions are neglected.
For background concentrations of CO5 and CHy4, which influence the climate effect of CO5 and CH,4 emissions, we assume
IPCC scenario RCP4.5 (Meinshausen et al., 2011). A number of different climate metrics can be applied to account for the
different components of the aviation climate effect. However, selecting a suitable metric is challenging due to the uncertainties
and varying lifetimes of non-CO- effects. Megill et al. (2024) recommend using the average temperature response (ATR) or
the efficacy-weighted global warming potential (EGWP) with a time horizon over 70 years. For that reason, we quantify the
climate effect using ATR100, which is the mean near-surface temperature change over 100 years. For any climate metric,
non-CO,, effects can be expressed as an equivalent amount of CO4 emissions, so called COs-equivalents (COs ), that would
produce the same effect over a defined time horizon and a given emission scenario.

AirClim does not account for the influence of different aircraft sizes on contrail climate effect. To account for that we
use a parametrization derived from Unterstrasser and Gorsch (2014) (see Sec. S1 in Supplementary Material). While this
parametrization is already included in the ATR100-values used for the Symbolic Regression (see Sec. 3.2), the MR-formulas
for CiC have to be scaled afterwards (see Sec. 3.1).

In the data structure for each of the about 57 thousand simulated flight trajectories, characterized by origin and destination
airport as well as aircraft size, the resulting amounts of engine emissions were stored together with the ATR100 climate effect
per species. This database was then used to derive the climate effect regression functions as well as regression formulas for

fuel use and NOy emissions necessary for the MR-approach.
2.3 Clustering of flights by relative climate effects

Due to the large variety of importance of the different climate effect components among different flights, it is challenging to
find a single set of equations that would reasonably estimate the climate effect under most circumstances. Therefore, in the first
step, we apply a K-Means clustering algorithm to separate the flights into several clusters. This clustering is based solely on
the share of the six aforementioned components of the climate effect in the total climate effect:

ATR100co, ATR100g,0 ATR100cic ATR1000, ATR100pMmo an ATR100¢cH,
ATR100t0; = ATR10040; ~ ATR10040; * ATR10040;" ATR10040; ATR10040;
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(a) Original clusters from K-Means. (b) Clusters using simple thresholds.

Figure 1. Clustering of flights, as obtained by the K-Means clustering algorithm (a) and as delineated by simple thresholds (b), shown in
the mean latitude—distance space. Each color corresponds to one cluster. We name them the short-flight cluster (green), the tropical cluster

(orange), and the mid-latitude cluster (blue).

This ensures that flights in a given cluster have similar climate effect characteristics. The clustering is not directly dependent
on proxy quantities to the climate effect, such as the amount and location of the emissions. We use an implementation by the
free software machine learning library for the Python programming language scikit-learn (Pedregosa et al., 2011) and scale
the input quantities to the standard normal distribution before clustering. We find a partition into three clusters to be most
useful, as larger numbers of clusters lead to some cluster distinctions lacking a clear physical interpretation. The resulting three
clusters occupy distinct areas in the latitude-distance space (Fig. 1a). We therefore name them the short-flight cluster (green),
the tropical cluster (orange), and the mid-latitude cluster (blue).

In the second step, simple thresholds are derived which separate the flights into three categories that approximate the found
clusters. This is necessary to enable easy categorization of additional flights not contained in this data set. One threshold is a
maximum distance for the short-flight cluster, and another threshold is the absolute mean latitude of great circle trajectories
confining the tropical cluster. We choose the values for these thresholds in such a way that the amount of wrongly categorized
flights is minimized. This leads to a threshold distance of 462.5 km below which flights are categorized as belonging to the
short-flight cluster, and a threshold mean latitude of +29.7° within which flights are categorized as belonging to the tropical
cluster. All other flights are categorized into the mid-latitude cluster. This approximation wrongly categorizes 16.8% of all
flights used for clustering. The resulting simplified clustering is shown in Figure 1b.

The three clusters have distinct characteristics (Fig. 2). The short-flight cluster has a negligible contribution of contrails
to the climate effect at an average of 3.5%, and a strong contribution of CO5 at an average of 57.4% of the total climate
effect. Flights in this cluster are often too short to reach the required altitude of at least about 8km (e.g.; Kércher, 2018) for

contrail formation. The climate effect of the tropical cluster is dominated by contrails (average contribution of 56.6%) because
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Figure 2. Number of flights as function of ratio of the individual climate effect components (CO2, CiC, H2O, and NOy) to the total climate
effect for the 3 flight clusters.

strong contrail formation occurs at tropical latitudes. The mid-latitude cluster contains the remaining flights and has large
climate effect contributions from NO, and H>O (average contributions of 49.1% and 6.8%, respectively; see below for further
discussion).

For the cluster analyses only flights with seat category 3 to 7 are used. The remaining seat categories 1 and 2 (less than 100
seats) were only added to the dataset later in development. They contribute only 4.2% to global ASK and therefore a minor
share of total aviation emissions. Nevertheless the number of flights with seat category 1 and 2 is high. Therefore, an additional

cluster for regional jets was used for MR. For SR all flights were clustered in one of the three clusters.

3 Derivation of climate effect regression functions

Based on the dataset described in Sec. 2, we derive climate effect regression functions for each emitted species (CO2, NOy,
H5O0, as well as CiC) separately. These formulas use the size of the aircraft and the locations of departure and arrival airports
as input to quickly estimate of the climate effect of individual flights. We explore the use of both MR and SR models for
easy-to-use climate effect estimation of individual flights. In the two regression analyses the following quantities are used:
flight distance along a great circle d [km], mean latitude along the great circle ¢ [°], fuel use f [kg], NO, emissions e [kg],
maximum takeoff mass (MTOW) m [kg], wing span b [m] and ATR100 [mK].

MR is a widely used statistical approach that models the relationship between a dependent variable (e.g., climate effect
of NO, emissions) and multiple predefined independent variables, called predictors. The functional relationship between the

dependent variable and the predictors has to be predefined. Therefore this approach is especially useful when the factors
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influencing the climate effect of the single species are well-understood. However, the predefined functional form may fail
to capture more complex, non-linear interactions between variables. On the other hand, SR is an advanced technique that
searches for the best mathematical expression to describe the data, offering greater flexibility and the potential to uncover
hidden relationships. While SR can model highly complex, non-linear interactions, it requires more computational resources
and bears the peril of overfitting. By applying both methods, we aim to identify the approach that most effectively models
especially non-CO effects, while prioritizing solutions that offer better accuracy and easy interpretability.

For both methods, we derived regression functions that approximate the climate effect for a particular flight as estimated by
using the AirClim model. Following Dahlmann et al. (2023), the total climate effect as expressed by ATR100 can be obtained
by the sum of the effects from the individual climate agents, where ATR100n0, = ATR1000, +ATR100pymo +ATR100cH,

is the combined climate effect of NO, emissions:

ATR10040; = ATR100c0, + ATR1001,0 + ATR100¢i¢ + ATR100Nn0, (1)

3.1 Multiple Regression formulas

Multiple Regression is a common method in environmental science, with primary advantages being its simple application
and interpretability. The structure of MR functions is predefined as a sum of predictor dependent terms each multiplied by a
coefficient. Each coefficient indicates the impact of a specific predictor, allowing to understand the effects of each variable on
the climate. It also enables the inclusion of numerous variables and can incorporate interaction terms of multiple predictors.
However, MR assumes a predefined mathematical form making knowledge about the interactions necessary, which can be a
limitation when relationships are non-linear. The necessary assumption may lead to misspecification of the model if the actual
relationships are not well-captured by these forms. Additionally, MR can be vulnerable to multicollinearity (when predictors
are highly correlated), which can distort coefficient estimates.

The MR-approach extends the idea of Dahlmann et al. (2023) and leads to the following structure for the derived formulas

for all clusters:

ATRI100¢0t = cco, - f +cno, (d, @) - e+ cr,0(d, @) - f+ ccic(d, @) - d- facsize(D), 2

where f4csize 1S the adaptation factor for the contrail climate effect due to the wing span b (see Eq. S2 in Supplementary Mate-
rial), and cco,, cNoO, > CH,0, Ccic are the cluster-dependent climate effect regression functions. Therefore, the climate effect of
a species is estimated as a product of the respective climate effect regression function and the relevant reference quantity (f, e,
d- facsize) - These MR-formulas are composed of polynomial and arctan functions and are designed to fit the respective partial
climate effects cco,=ATR100co,/f, cno,=ATR100N0, /€, ca,0=ATR100n,0/f, and ccic=ATR100¢;c/d. The climate
effect function for CO is fixed at cco, = 8.145 x 10~ mK /kg(fuel), because the climate effect of CO, is independent of the
emission location in AirClim, so that no fit is required. Details on the derivation of the MR-formulas are given in Section S2.2
in the Supplementary Material.

Note that for the derivation of the climate effect regression functions apart from the predictors d and ¢ we use the WeCare

estimates for the burnt fuel f and emitted NOy e, implying that those are also required for the application of these formulas. If
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those are not available we provide additional Fuel and NO, MR functions, that only use the flight distance d and seat category
( S2.1 in Supplementary Material). For the comparison with the SR-approach in Section 3.4 the derived Fuel, NO, and climate

effect regression functions are considered, combined determining the quality of the climate effect estimation.
3.2 Symbolic Regression formulas

The Symbolic Regression method used here, avoids a pre-defined structure of the formula. Instead an evolutionary algorithm
provides a best fit and thereby defines the structure of the formulas. This structure can be represented by an expression tree,
called gene. Each node in the gene represents a variable, a mathematical operation or a constant. The nodes are merged to
a formula by the tree structure (Koza, 1992). The tool we apply, GPTIPS 2 (Searson, 2015), specifically uses Multi-Gene
Symbolic Regression, which combines multiple genes with an additional scaling factor per gene (b1, b2) and a bias term (bg)

to assemble the whole formula (Fig. 3).

()
y = by + by x (<) +b2><
OEOREO

Figure 3. Structure of a Multi-Gene Symbolic Regression formula consisting of two genes with factors (b1, b2) and a bias term (bo).

The optimization process to find an optimal formula uses an evolutionary algorithm based on a fitness function, in this case
the root mean square error for the given dataset. Beneficiary solutions based on a random start population of multiple formulas
are evolved over several generations. The evolution-inspired mechanisms forming the final formulas are fitness-based selection,
as well as mutation and crossover (Koza, 1992).

For the derivation of regression functions the flight database is split into 80% training and 20% test data. Four different
formulas are computed for the climate effect of the climate agents CO2, HoO, NOy, and CiC (see Eq. 1). The two main pre-
dictors, d and ¢ from the first approach are used in the second one as well complemented by m, that replaces the segmentation
into seat categories. The flight distance d is meant to cover effects based on the flight length like fuel use, ¢ geographically
differing climate effects of emissions and m different aircraft sizes. The dependent variable of the SR-formulas is the ATR100
for CO,, H>O, CiC and NO,,.

To check the effectiveness of the clustering derived in Sect. 2.3, regression formulas with and without use of the three
clusters are computed. In the clustered version, separate formulas are derived for each cluster. This leads to in total twelve
formulas for the clustered version and four for the unclustered one. For each resulting formula of the clustered and unclustered
version a multiple runs of GPTIPS 2 (1296 for unclustered and 648 for clustered) are executed as part of a gridsearch for
the regression hyperparameters. The main settings of the GPTIPS-software are used as hyperparameters. The reason for the

selected gridsearch-approach with many runs is the high variability in the resulting estimation quality of regression formulas.
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Pareto combinations of climate effect formulas for COZ, HZO, CiC and NOx
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Figure 4. Pareto-optimal solutions for a Symbolic Regression of the climate effects with respect to R? and number of nodes by using the
unclustered data (blue) and a combined pareto-front of the clustered data (purple). The pareto-optimal solutions, that are chosen, are indicated

in red and green.

From all derived formulas the Pareto-optimal individuals according to the coefficient of determination R* (Eq. 3) and the
number of nodes are considered as candidates for the final formula of the species and cluster (see Sec. S3.1 in Supplementary
Material). To obtain one formula for the total climate effect the formulas for CO5, H,O, CiC and NOy have to be combined
according to Equation 1. In this step the numbers of nodes for the AT R100;,; add, but the quality of estimation measured as
R? has to be newly computed. It is not apparent, which Pareto-formula to choose for each species to achieve an optimum in
estimation quality and number of nodes for AT'R100,,¢. However, by trying all combinations it is possible to identify Pareto-
optimal combinations that represent a optimal trade-off between a high value of R? and a low number of nodes. Figure 4 shows
these AT R100;,;-Pareto-fronts for the unclustered (blue) and the aggregated clustered version (purple; for the individual
clusters please see the Supplementary Material, Figure S9). The final choices made are indicated by red and green dots. The
selected formulas are given in the Supplementary Material in Section S3.1.

S (ATRIOOZS — ATRIOUED)?

R?=1-=5 t AR InOAct 3)
SN (ATR1002 — ATR100%!)2

For AT R100;,; in the short-flight cluster the clustered approach shows a significantly better estimation quality than the
unclustered one (see Supplementary Material, Fig. S10). For the two other clusters the quality is comparable. Therefore as a
combination of low complexity and a high quality of estimation the clustered formulas are applied for flights in the short-flight

cluster in the further analysis and the unclustered formulas are used for mid-latitude and tropical cluster flights.
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Figure 5. ATR100 estimates for flights with an Airbus A320 over the cluster boundary distance of 462.5km depending on the mean latitude.
The plot shows the estimation with the unclustered SR-formulas, the formulas for the short-flight cluster as well as the smoothed version,

taking the mean of the partially largely differing estimates.

3.3 Smoothing of regression formulas at the cluster boundaries

The use of different regression formulas for the derived clusters leads to discontinuities at the cluster boundaries that do not
reflect real behavior and might result in disincentives. The significant difference in estimated climate effect over the cluster
boundaries (e.g. see Fig. 5) makes it necessary to smooth this effect. The smoothing is implemented by using a weighted
sum of the cluster-specifically computed climate effects. The weighting factor evolves linearly from a starting point inside the
particular cluster until the cluster boundary. At the cluster boundary the weighting of both cluster formulas is equal. Figure 6
sketches this general scheme of the smoothing. The climate effect of a flight within the smoothing area is accordingly estimated
by

ATR100c1 - (0.5+ 199120) + ATR100¢2 - (0.5 — 195221) if dey o € [~ben, O]
ATR100 = 4

ATR100¢ - (0.5 — ‘d“ X 2l) + ATR100c - (0.5 + 19952y if dey o € (0,00,
with ATR100c1/ATR100¢2 as the cluster 1 / 2 estimates, dcq 2 the distance from the cluster boundary and bcq/beo the
smoothing boundary 1 /2 values. The smoothing boundaries mark the starting points of the smoothing area and are derived as
the R?-optimal values within preset boundaries.

For both approaches smoothing is applied to the existing cluster boundaries of the recommended versions. The details on

the individual smoothing are outlined in the Supplementary Material in the Sections S2.3 and S3.2.
3.4 Comparison of climate effect regression approaches

The climate effect functions were developed to represent a fitting of more detailed results from the non-linear response-model
AirClim with algebraic relationships. Hence, the reliability of representing the estimated total climate effect is influenced by

the applied fitting procedure. To evaluate the quality and reliability of the estimates, the derived, smoothed formulas from MR
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Figure 6. Concept for smoothing of regression results at cluster boundaries. The smoothing takes place linearly in a predefined range

(smoothing boundary) on both sides of the cluster boundary.

and SR are compared in this section. For SR, the formulas estimate the ATR100 directly leading to one formula per cluster
and species. For MR the climate effect functions have to be computed for each cluster, which are four formulas per species
apart from COs, on the one hand, as well as the regression formulas for the used reference quantity on the other. Those are
seven formulas for the fuel regressions, one per seat category, and 14 formulas for the NOy regressions, two per seat category.
The last formula of the MR-approach is the subsequent contrail wing span adaption. In total, this leads to 35 formulas for MR
compared to 8 formulas for SR without smoothing (see Tab. 1).

One advantage of the MR-approach are the separate fuel and NO, functions, which the SR-approach does not include
directly, hence fuel can still be derived from the CO4 climate effect. Furthermore all MR-formulas have the same predefined
structure, while each SR-formula is different in shape and operators. Also, even though the SR-approach is optimized towards
minimum formula complexity, it generally tends to include irrelevant, over-fitting terms and does not include certain input
parameters into formulas for species, where correlations are present (e.g. ¢ into ATR100x0, ). As advantages the SR-approach
evolves according the optimum predictive accuracy and yields a better ratio of complexity in terms of the number of formulas
to quality. In addition it enables a continuous estimation over the aircraft size by using the MTOW instead of categorical seat
categories.

The estimation quality of both approaches is similar ( Tab. 1). Overall, the SR-formulas show a slightly higher coefficient of
determination R? (Eq. 3). This might result from the optimization towards R? in the SR-approach, even though for CO5 and
CiC the MR-formulas show a slightly greater R2. In terms of the mean absolute relative error (MARE; Eq. 5) the MR-formulas
surpass the SR ones. This mainly results from the better relative estimation for short and medium range flights compared to the
long range flights (see Fig. 7). The better estimation of longer flights of the SR-formulas is a result of the absolute error-based

evolutionary optimization process, which gives a greater weight to longer flights with higher climate effect. The MARE for
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Table 1. Comparison of Multiple Regression and Symbolic Regression formulas for the estimation of the climate effect of individual flights.
Quality of fit is quantified by R*> and MARE. Due to zero or almost zero values in the dataset MARE is not defined for ATR100s,0 and
ATR100¢ic. The number of formulas is counted before smoothing. The first value is the number of formulas for the climate effect estimation

and the second for supporting equations like the fuel and NO-regressions.

Regression formulas R? MARE  number of formulas

MR: 0.9972 5.03% 1+7
ATR100c0,:

SR: 0.9940 5.86 % 2

MR: 0.8613 - 4+7
ATR100m,0:

SR: 0.9233 - 2

MR: 0.9529 13.38 % 4 +21
ATR100x0,:

SR: 0.9807 20.23 % 2

MR: 0.8960 - 4+1
ATR100¢;c:

SR: 0.8868 - 2

MR: 0.9619  20.71% 35
ATRlOOtotZ

SR: 0.9684 25.82 % 8

B
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Figure 7. Trend comparison of the MARE for the ATR100¢o¢ estimation with the Multiple and Symbolic Regression approach over the
flight distance.

H50O and CiC cannot be calculated due to flights with almost or exactly zero ATR100 in the dataset distorting the relative

metric.
1 L ATR100% — ATR100P™4

MARE = — Z tot tot (5)
N & ATR1002S
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Figure 8. For Multiple Regression, correlation of estimated ATR100 of CO2- (a), H2O- (b), NOx-emissions (e) and produced contrails (d)

with the AirClim estimates (referred here as to "actual"), as well as the ATR100¢.¢-estimation for the dataset (c) and a validation dataset (f).
The color code indicates the flown distance.
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Figure 9. Same as Figure 8 for Symbolic Regression.

The MARE of the climate effect estimation is generally higher for short flights, as for these the variety in flight trajectories

and non-COs-effects generation increases (Fig. 7). The correlation of both approaches with the AirClim estimated values is
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shown in Figure 8 (for MR) and 9 (for SR). For the estimation of ATR100¢0, the MR-formulas show a better performance
than those of the SR-approach, especially for long distance flights, because the points in plot 8a are located closer to or almost
on the diagonal compared to plot 9a. The SR-formulas generally tend to underestimate those flights with two noticeable groups
of flights being overestimated. These two groups are also distinguishable in the MR-plot 8a. One of them is estimated better
and the smaller one is instead underestimated.

ATR1004,0-estimation (see plots 8b and 9b) shows relevant differences between both approaches with the MR-formulas
generally overestimating the climate effect especially for long flights. The SR-formulas show a better accuracy for those flights
and do in general neither tend to over- nor underestimate.

The quality of estimation for the climate effect of contrails is similar for both approaches (see plots 8d and 9d). As the
occurrence of contrails is hard to predict and model, the accuracy of the CiC formula is low. The calculation of a meaningful
MARE for contrails is not possible for short flights due to some flights with zero or close to zero ATR100 values, but for longer
flight distances the MARE is by 2 to 4 times higher than that of ATR100¢ct.

For ATR100n0, the SR-approach leads to a better quality of estimation, with fewer points far away from the diagonal in
plot 9e than for MR in plot 8e, indicating fewer large estimation errors. In contrast to the SR-formulas the MR-formulas have
a tendency to under- or overestimate some distinguishable groups of flights.

The ATR10040¢ correlations in plots 8c and 9c show only minor differences between the two approaches. Hence we can
conclude that the total quality of both approaches is similar, only with certain advantages for single species.

Apart from the results for the used dataset, the performance of the estimated ATR100;,. for a validation dataset is analyzed.
The validation dataset includes 439 flights of the German cargo airline EAT. The mainly short and medium haul flights took
place with Airbus A300, A330 and Boeing 757 aircraft in 2021 and 2022. The AirClim climate effect estimates based on the
real trajectories of these flights serve as the validation reference. The formulas of both approaches show reasonable correlations
for the validation dataset, indicating a valid estimation. Longer flights are rather under- than overestimated (see plots 8f and
9f). This trend is stronger for the MR-formulas, which do also have a lower R? value for the validation dataset.

Assessing the sum of all ATR100 estimates for the regression dataset shows the SR-approach to be closer to the actual
AirClim values than the MR-estimates. The MR-approach estimates are, apart from AT R100x,0, in average smaller than the
actual values. This results in a lower sum of AT R100;,; and indicates a general trend for underestimation for the MR-approach.

The sum of the SR-approach shows neither a tendency to over- nor underestimate.

4 FlightClim v1.0 implementation

The derived regression models from MR are implemented in an Excel application called FlightClim v1.0, which is available
in the Supplementary Material. FlightClim offers an easy-to-use estimation of CO5 and non-CO; climate effects solely based
on the aircraft size, as well as origin and destination airports without further knowledge about the actual flight conditions.

FlightClim ’s core is a simple, tabular input mask supporting the estimation of single flights as well as whole flight plans.
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Thereby, the tool is suited for individuals estimating the climate effect of a holiday trip, organizations assessing their one year
carbon footprint, but also airlines approximating the climate effect of their flight plan.

After a selection of input values in the input mask (climate metric; aircraft size; origin and destination airports; optional:
flight frequency and flight class), the interactive tool returns the climate effect of a flight for CO2, HoO, NO emissions and
CiC in the selected metric and as COz-equivalents. If a flight class is entered, FlightClim also calculates a statistically backed
allocation per passenger (see Sec. S4 in Supplementary Material). In addition to the climate effect, the fuel burn estimate as
well as the estimated CO- and NOy-emissions are returned as intermediate results of the MR-formulas. The interpretation of
the inputs is based on two tool-integrated databases for airport coordinates and aircraft characteristics. In the Supplementary
Material in Section S5 the user guide of the tool is included.

In FlightClim the MR-formulas are implemented. Compared to the SR-formulas they show a slightly better quality of esti-
mation for short- and medium-haul flights, which are dominating long-haul flights in number. In addition the tool “s main area
of application is seen in Europe, where inner-European short- and medium-haul flights are dominant. The one-time implemen-
tation of the MR-formulas makes their greater complexity in terms of number of formulas less relevant. An extended version
of FlightClim contains the models of both regression approaches and is available upon request, but less suited for ordinary use,

due to the necessary choice of model.

5 Discussion

The goal of this study is to develop an easy-to-use calculation method for estimating the total climate effect of individual flights,
including CO4 and non-CO, effects. Two approaches with smoothed formulas from MR and from SR have been compared.
Due to the similar estimation quality of both approaches their greatest differences are the number of formulas and the input
parameters, which can hence serve as crucial points for making a choice. Therefore, the SR-formulas can be recommended for
application, if the complexity of the calculation in terms of the number of formulas is an important factor or if the aircraft size
should be modeled continuously. If the estimation quality of short- and medium-haul flights is of greater importance, like for
the FlightClim implementation, the MR-formulas are the better choice. In general, the specific requirements of an application
towards the complexity, interpretability or the quality of estimation should serve as decisive points, which approach to use.
For both approaches applied in this study the ratio between non-CO4 and CO4, effects is approximately 4 for the used global
aviation emission dataset. This number is higher than in other alternative publicly available methods for simplified climate
footprint assessment of single flights. They use a constant factor of 2 to 3, which is based on assessments of total historical
aviation emissions (e.g., from 1940 to 2018 for Lee et al., 2021). It has to be noted that the relation between non-CO- and
COq strongly depends on the level of the COq reference and the climate metric. Since the regression functions are designed to
estimate the climate effect of present and future flights, we do not consider any emissions of historic aviation. Given the long
lifetime of CQO», historical assessments such as Lee et al. (2021), who analyzed aviation emissions from 1940 to 2018 in terms
of EREF, report a stronger dominance of CO3 (31%) than in the present study (19%). A direct comparison is, however, limited

because different metrics (ATR vs. ERF) and emission patterns (historical vs. present and future) are considered. Nevertheless,
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the relative importance of non-COx species is broadly similar, with shares of 4 % for Hy0, 33 % for NOy and 44 % for CiC
in our dataset versus 2 % for HyO, 16 % for NO, and 52 % for CiC in Lee et al. (2021), when excluding the studied aerosol
effects.

The derived MR-formulas are integrated into the easy-to-use Excel-tool FlightClim v1.0. When applying the estimator it is
of key importance to consider its limitations. FlightClim is based on regression formulas, that themselves fit the results of the
climate response model AirClim. This means that the estimation quality and precision is not comparable to complex climate-
chemistry models. For example, the developed tool is not suited to compare the climate effect of flights with similar aircraft
of different generations or different travel times in the year, meaning that for an individual flight the real climate effect can
strongly deviate from the estimated average. It is also not suited to study certain atmospheric characteristics and their impact
on the climate effect. To answer those questions more complex models are needed. The main advantage of FlightClim is that it
produces reasonable estimates including CO2 and non-COq-effects while being easy to use and requiring very few input data

per flight, in fact only origin and destination airport as well as aircraft size.

6 Conclusions

This study presents two methods for an easy-to-use estimate of the climate effect per flight considering CO2 and non-COx
effects, of which one is included into the flight climate effect estimator FlightClim v1.0. The tool is made available as an
Excel application, which is available in the Supplementary Material. The estimation only depends on the origin and destination
airports and the aircraft size (seat category for MR or MTOW for SR). It is independent from information about the actual
flights like the flown trajectory, real fuel burn or current weather. Thereby the estimation describes an average in terms of
time of the year and day as well as aircraft and assumes great circle trajectories. The estimation methods are based on a global
dataset of ATR100 climate effects per flight for CO2, HoO, NO, and CiC estimated with AirClim representative for jet aircraft
with a capacity of 20 to 600 seats.

Potential use cases for FlightClim are advanced analyses on the climate effect of a full year airline, as its effect averages over
the year, plausibility checks, or a backup when airlines are unable to provide more detailed data on aircraft and engine used,
trajectory and deviations flown, and meteorological conditions on the day of flight. FlightClim allows an airline to achieve
an initial estimate of the total climate effects of their whole flight network. Additionally it can be used for the extension of
online climate effect estimator tools by non-COx, effects or to include a comparison of the climate effect of flights into booking
platforms considering non-CQOs-effects. However, when applying the estimator its limitations always have to be considered
and the methods must only be used for questions they are able to answer.

Compared to the predecessor study by Dahlmann et al. (2023), we here expand the area of application building on a global
dataset representative for a worldwide flightplan and a wide range of jet aircraft instead of only the Airbus A330-200. Moreover,
we add a wing span-wise adaption of contrail climate effect to the tool-chain of the regression dataset. To account for the larger
scope a clustering is introduced, requiring a smoothing of the estimates at the cluster boundaries. In addition this study does

consider two different regression methods and contrasts them. The introduced FlightClim tool goes beyond alternative methods
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for simplified climate footprint assessment of single flights, because regressions of the climate response include the regional
dependency of climate effects, instead of using constant factors for approximating non-CQO»-effects.

The two utilized methods, MR and SR, differ in effort and capabilities of the methods themselves as well as in quality and
quantity of the resulting regression formulas. Even though SR is a more advanced and adaptable method, the estimation quality
of the resulting formulas of both approaches is similar. The main advantages of the SR-approach are that it uses the continuous
MTOW as aircraft size parameter and is more straightforward and thus less complex. However, the MR-formulas are easier to
interpret and yield higher quality results for short and medium range flights. Overall both approaches lead to robust models
that enable an easy-to-use climate effect estimation for single flights.

The similar quality of both regression methods indicates, that the resulting estimation quality is not primarily limited by
the used method, but rather by the complexity of the database and the regression parameters as well as the settings for the
regression analyses. To utilize the whole potential of advanced methods like the symbolic regression those aspects have to be
improved first. For example overcoming the limitation of a small number of reference aircraft types included in the dataset
could improve the applicability and the overall estimation quality. As another major potential improvement for further studies,
the error metric of the regression was identified, as it quantifies the estimation error and serves as the optimization factor during
the regression analysis. In this study, error metrics based on the absolute estimation error were used. As the range of values for
the climate impact of flights in the dataset is huge due to large differences in aircraft sizes and flight distances, for flights with
small climate impacts the relative quality of estimation can drop significantly compared to flights with higher impacts, because
of the absolute optimization incentive. Therefore an adjustment in the error metric might be necessary to achieve regressions
of a better and more equally distributed estimation quality in further studies and to exploit the whole potential of advanced

regression methods.

Code availability. The python code used for the clustering and generation of the MR climate effect functions as well as the Matlab code for
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