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Abstract. As aviation’s contribution to anthropogenic climate change is increasing, the sector aims at reducing its climate effect

in accordance with international agreements. The strong and variable non-CO2 effects are complex, making reliable climate

effect quantification a necessary first step. To support this, we develop the easy-to-use first-order climate effect estimator for

single flights FlightClim v1.0. The tool estimates the flight-specific climate effect with a simplified calculation model, without

requiring detailed information on exact routing, amount of fuel burn, or weather conditions.5

For this purpose, we first analyze a global flight dataset containing detailed trajectories, associated flight emissions, and

climate responses. Similar flights are grouped into clusters, and regression formulas are derived to estimate the Average Tem-

perature Response over 100 years (ATR100) for CO2 and non-CO2 effects. To prevent abrupt changes at cluster boundaries,

we apply linear smoothing as postprocessing. Second, we compare a Multiple and Symbolic Regression approach, which dif-

fer in effort and complexity but offer similar estimation quality. The choice of method depends on the specific application.10

Both methods are designed for climate footprint assessments due to their simplicity though not suitable for policy measures.

Emission trading or monitoring and reporting systems instead require detailed weather and route data to incentivize operational

non-CO2 mitigation. Compared to previous studies, our approach covers more aircraft types, including most commercial air-

liners, and improves precision through smoothed clustering and a dedicated parameterization of aircraft size influence on the

contrail effects.15

The resulting climate effect functions are embedded into the Excel-based tool FlightClim v1.0, which implements the formu-

las of the Multiple Regression approach due to slight qualitative advantages. Requiring only aircraft size and origin-destination

airports as input, FlightClim estimates climate effect for CO2, H2O, NOx emissions and contrail-induced cloudiness. It in-

cludes per seat allocation and supports different climate metrics.

1 Introduction20

Global aviation more than doubled from 2006 to 2019 in terms of revenue passenger kilometers (ICAO, 2015, 2021). The

associated CO2 emissions grew by 40% to 1036 Tg(CO2)yr−1 during this time span (IEA, 2022). After the considerable

reduction of air transportation through COVID-19, it reached pre-pandemic levels again by 2023 and now continues to grow
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(Economics, 2024). Projections show that aviation’s share in global CO2 emissions could rise from currently about 2% to 22%

in 2050 (Cames et al., 2015). This amplifies the pressure on the sector for finding solutions to reach the Paris agreement climate25

goals.

A number of measures are suited to reduce the climate effect of aviation ranging from technological (i.a. Dahlmann et al.,

2016b; Silberhorn et al., 2022; Delbecq et al., 2023) and fuel-related solutions (e.g. Teoh et al., 2022; Märkl et al., 2024; Quante

et al., 2025) to operational (i.a. Grewe et al., 2014, 2017b; Lührs et al., 2016, 2021; Teoh et al., 2020; Matthes et al., 2021;

Yin et al., 2023; Martin Frias et al., 2024; Sausen et al., 2024) and regulatory options (i.a. Scheelhaase et al., 2016; Larsson30

et al., 2019; Niklaß et al., 2021, 2025). To be overall effective, these measures do not only need to target the reduction of CO2

emissions, but also the so called non-CO2 effects. Non-CO2 effects were responsible for about two thirds of the total effective

radiative forcing (ERF) in 2018 when considering all aviation emissions from 1940 to 2018 (Lee et al., 2021). Especially the

effects of persistent contrail cirrus formation and of NOx emissions on the ozone concentration increase the total impact of air

traffic on the climate.35

Therefore the basis for the development of effective mitigation measures, as well as the first step for climate effect compen-

sation programs is a reliable estimate of the total climate effect of a flight, including the non-CO2 effects. However, while the

CO2 climate effect can be estimated easily, as it is independent of emission source, location and time, the effects of non-CO2

emissions are much more complex to determine (Dahlmann et al., 2023). For simplicity, often the global ratio of non-CO2 to

CO2 climate effects is used as a factor for total climate effect estimation, based solely on CO2 emissions. An example of this40

simple estimation option for aviation is the Radiative Forcing Index (RFI, IPCC, 1999), which is the ratio of the total radiative

forcing to the radiative forcing of CO2 emissions.

However, Forster et al. (2006) highlighted the limiting shortcomings of the RFI concept, such as a large variation with time

for constant emissions, and concluded that RFI is inappropriate for comparing emissions. In addition, the altitude dependency of

non-CO2 effects has to be considered in the estimation method to avoid misguiding incentives (Faber et al., 2008; Scheelhaase45

et al., 2016; Niklaß et al., 2019). However, this requires detailed information of the flown trajectory, the aircraft and atmospheric

conditions to estimate the various climate effects. To query this data is an elaborate process, public accessibility is limited and

the data is not available before the flight. Hence, a simplified estimation method that is easy to use for the climate footprint

assessment of single flights yet realistically representing non-CO2 climate effects is needed.

There are a few methods for simplified climate footprint assessment of single flights publicly available. Popular ones are the50

"ICAO Carbon Emissions Calculator" (ICAO, 2025), the "Flight Emissions Label" of the European Union (EASA, 2025), the

"Aviation 1 Master emissions calculator 2023" of the European Environment Agency (EEA, 2023), Google´s "Travel Impact

Module" (Google, 2025) and the "myclimate flight emission calculator" (Foundation myclimate, 2025). All of them have

particular areas of application and strengths, but all of them only take into account CO2-emissions, use constant factors to

quantify non-CO2-effects or are lacking CiC climate effects. A method that overcomes these shortcomings and only relies on55

mission parameters as distance and geographic flight region has been introduced by Dahlmann et al. (2023). Dahlmann et al.

(2023) analyzed the climate effect of the typical long-haul aircraft type Airbus A330-200 for more than 1000 international city

pairs using the climate response model AirClim (Grewe and Stenke, 2008; Dahlmann et al., 2016a) and then fitted altitude and
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latitude dependent regression formulas to the AirClim results. The regression formulas enable an easy to use estimation of the

climate effect of single flights and show a much better estimation quality than a constant factor. While the root mean square60

error for a constant factor of 3.4 was about 1.18, the one obtained with the regression formulas was about 0.24, with 95% of

the estimates lying within a ±20% range. However, there is no easy-to-use method available that provides a thorough estimate

of the non-CO2 climate effects for individual passengers or organizations, allowing them to assess their footprint pre-flight for

travel decisions and post-flight to track their personal climate impact, without requiring detailed information about the actual

flown trajectory, the amount of emissions produced and the prevailing weather situation. Such a method would also enables a65

quick climate effect estimation for large flightplans, supporting scientific research and organizational carbon accounting.

In the present study, we expand the work by Dahlmann et al. (2023) and develop an easy-to-use estimation method for

aircraft climate effects, using climate effect regression functions that are valid for all jet passenger aircraft with a seat capacity

of over 20. While Dahlmann et al. (2023) only analyzed one aircraft type, we here analyze the climate effect for various

commercial aircraft. Instead of using constant emissions over a typical aircraft lifetime of 32 years, we here use the more70

realistic assumption of increasing emissions over the next 100 years, which influences the weighting of the individual non-

CO2 effects according to Megill et al. (2024). We consider the climate effects of aircraft emissions of CO2, NOx, and H2O as

well as contrail-induced cloudiness (CiC), but exclude the effects of aerosol emissions through aerosol–radiation interactions

and aerosol–cloud interactions as the understanding and assessment is not yet mature enough to be included here. This easy-

to-use method is only based on the aircraft size as well as the distance and latitude of the flight, and the two latter quantities75

can be easily computed from the airport pair.

The paper is structured as follows. In the first step, we describe the preparation of the regression flight dataset including a

distance and latitude dependent clustering (Section 2). Then we apply both Multiple Regression (MR) and Symbolic Regression

(SR) to generate specific climate effect regression functions for each cluster (Section 3). Finally, we compare and discuss the

resulting formulas for the climate effect of individual flights (Section 3.4). The resulting equations have been implemented into80

an easy-to-use estimation tool, for which the user manual is available in Section S5 of the Supplementary Material.

We want to stress here that the method presented in this paper, is not intended to assess the effects of neither individual

trajectories, weather situations, specific aircraft or different aircraft generations/technologies.

2 Preparation of the regression dataset

The regression formulas for the estimation of the climate effect of single flights are based on a dataset consisting of about 5785

thousand flight trajectory simulations. These simulations represent global jet-powered civil aviation, covering approximately

30 million flights on 21 thousand routes between 11 thousand city pairs, which accounts for 98% of globally available seat

kilometers (ASK). The dataset is derived from a global flightplan of the year 2012, which serves as the base for the creation of

flight emission inventories (Section 2.1). The inventories are then used to derive the climate effect per flight, that represents the

dependent variable of the regression (Section 2.2). In the final step of the dataset preparation a clustering is derived to group90

similar flights for the regression analysis (Section 2.3).

3

https://doi.org/10.5194/egusphere-2025-4700
Preprint. Discussion started: 21 October 2025
c© Author(s) 2025. CC BY 4.0 License.



2.1 Global emission inventory

As the basis for the derivation of regression formulas for climate effect estimation, data from the project WeCare (Utilizing

WEather information for ClimAte efficient and ecoefficient futuRE aviation, Grewe et al., 2017a) was used, which was an inter-

nal project of the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR). The project addressed both95

an improvement of the understanding of aviation-influenced atmospheric processes and an assessment of different mitigation

options. An essential output of the project was a new set of emission inventories for global aviation (Grewe et al., 2017a). The

network of flight trajectories was developed following a four-layer approach implemented in the AIRCAST method (Ghosh

et al., 2016). It is starting from an origin–destination passenger demand network that was built up from exogenous socio-

economic scenarios, via the passenger routes network (sequence of flight segments, a passenger actually travelled from origin100

to destination) to an aircraft movements network, which assigns aircraft seat categories to the resulting flight routes and pro-

vides flight frequency information. The final step is a simulation of trajectories based on the aircraft movements obtained from

the aircraft movements network layer using DLR’s Global Air Traffic Emissions Distribution Laboratory (GRIDLAB; Linke,

2016). Each mission, defined by departure and arrival cities, aircraft type, and load factor, was simulated under typical opera-

tional conditions, resulting in a network of flight trajectories. For this purpose, DLR’s Trajectory Calculation Module (TCM;105

Lührs et al., 2014) was used that applies simplified equations of motion known as the Total Energy Model.

Based on the aircraft’s engine state determined by parameters such as thrust and fuel flow, the engine emission distribution

of NOx, CO, and HC species along the trajectory was determined by applying the Boeing Fuel Flow Method 2 (DuBois

and Paynter, 2006). The amount of CO2 and H2O emissions was calculated assuming a linear relationship to the fuel burn.

The mapping of emission distributions of all flights onto a geographical grid resulted in 3D inventories. In WeCare, using110

the approach mentioned above, emission inventories and the corresponding climate effect were estimated for the years 2015 to

2050 in 5-year steps. The forecast was based on the dataset from the reference year 2012. Seven different aircraft seat categories

(based on the number of seats) were considered in the inventories (20-50 seats; 51-100 seats; 101-151 seats; 152-201 seats;

202-251 seats; 252-301 seats; 302-600 seats). Each seat category was modeled using one representative jet powered aircraft

type (plus one backup aircraft type). The representative aircraft type was selected such that it contributes to a significant share115

of the respective seat category. Respective engine emission characteristics were taken from the Aircraft Engine Emissions

Databank of the International Civil Aviation Organization (ICAO, 2023).

2.2 Climate effect estimation

In order to obtain the climate effect for each flight corresponding to the flight plan, the climate effect for each single trajectory is

estimated with the non-linear climate response model AirClim (Grewe and Stenke, 2008; Dahlmann et al., 2016a) using gridded120

emission data for each species. Therefore, AirClim combines 3D aircraft emission data with a set of pre-calculated non-linear

emission–response relations for a set of atmospheric locations to estimate the temporal development of the global near-surface

temperature change. AirClim includes the effects of the climate agents CO2, H2O, CH4, O3 and primary mode ozone (PMO)

(the latter three result from NOx emissions), as well as CiC. For deriving the atmospheric responses for H2O and NOx-induced
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changes, 85 steady-state simulations for the year 2000 were performed with the chemistry climate model E39/CA (Stenke et al.,125

2009), prescribing normalized emissions of NOx and H2O at various atmospheric regions (Fichter, 2009). For the effect of

CiC, we use atmospheric and climate responses considering the local probability of fulfilling the Schmidt-Appleman criterion

as well as ice-supersaturated regions, which were obtained from simulations with ECHAM4-CCMod (Burkhardt and Kärcher,

2011). We follow a climatological approach in the estimation of the climate effect, meaning that the calculated values represent

a mean over all weather situations averaging over individual spatially and temporally resolved responses.130

For analyzing the climate effect, we assume emissions starting in 2012 and a future increase in emissions according to the

scenario Fa1 of the Intergovernmental Panel on Climate Change (IPCC, 1992), which is a reference scenario developed by the

International Civil Aviation Organization Forecasting and Economic Support Group (ICAO FESG) with mid-range economic

growth and technology for both improved fuel efficiency and NOx reduction (IPCC, 1999). Historical emissions are neglected.

For background concentrations of CO2 and CH4, which influence the climate effect of CO2 and CH4 emissions, we assume135

IPCC scenario RCP4.5 (Meinshausen et al., 2011). A number of different climate metrics can be applied to account for the

different components of the aviation climate effect. However, selecting a suitable metric is challenging due to the uncertainties

and varying lifetimes of non-CO2 effects. Megill et al. (2024) recommend using the average temperature response (ATR) or

the efficacy-weighted global warming potential (EGWP) with a time horizon over 70 years. For that reason, we quantify the

climate effect using ATR100, which is the mean near-surface temperature change over 100 years. For any climate metric,140

non-CO2 effects can be expressed as an equivalent amount of CO2 emissions, so called CO2-equivalents (CO2,e), that would

produce the same effect over a defined time horizon and a given emission scenario.

AirClim does not account for the influence of different aircraft sizes on contrail climate effect. To account for that we

use a parametrization derived from Unterstrasser and Görsch (2014) (see Sec. S1 in Supplementary Material). While this

parametrization is already included in the ATR100-values used for the Symbolic Regression (see Sec. 3.2), the MR-formulas145

for CiC have to be scaled afterwards (see Sec. 3.1).

In the data structure for each of the about 57 thousand simulated flight trajectories, characterized by origin and destination

airport as well as aircraft size, the resulting amounts of engine emissions were stored together with the ATR100 climate effect

per species. This database was then used to derive the climate effect regression functions as well as regression formulas for

fuel use and NOx emissions necessary for the MR-approach.150

2.3 Clustering of flights by relative climate effects

Due to the large variety of importance of the different climate effect components among different flights, it is challenging to

find a single set of equations that would reasonably estimate the climate effect under most circumstances. Therefore, in the first

step, we apply a K-Means clustering algorithm to separate the flights into several clusters. This clustering is based solely on

the share of the six aforementioned components of the climate effect in the total climate effect:155

ATR100CO2

ATR100tot
,
ATR100H2O

ATR100tot
,
ATR100CiC

ATR100tot
,
ATR100O3

ATR100tot
,
ATR100PMO

ATR100tot
,and

ATR100CH4

ATR100tot
.
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(a) Original clusters from K-Means. (b) Clusters using simple thresholds.

Figure 1. Clustering of flights, as obtained by the K-Means clustering algorithm (a) and as delineated by simple thresholds (b), shown in

the mean latitude–distance space. Each color corresponds to one cluster. We name them the short-flight cluster (green), the tropical cluster

(orange), and the mid-latitude cluster (blue).

This ensures that flights in a given cluster have similar climate effect characteristics. The clustering is not directly dependent

on proxy quantities to the climate effect, such as the amount and location of the emissions. We use an implementation by the

free software machine learning library for the Python programming language scikit-learn (Pedregosa et al., 2011) and scale

the input quantities to the standard normal distribution before clustering. We find a partition into three clusters to be most160

useful, as larger numbers of clusters lead to some cluster distinctions lacking a clear physical interpretation. The resulting three

clusters occupy distinct areas in the latitude-distance space (Fig. 1a). We therefore name them the short-flight cluster (green),

the tropical cluster (orange), and the mid-latitude cluster (blue).

In the second step, simple thresholds are derived which separate the flights into three categories that approximate the found

clusters. This is necessary to enable easy categorization of additional flights not contained in this data set. One threshold is a165

maximum distance for the short-flight cluster, and another threshold is the absolute mean latitude of great circle trajectories

confining the tropical cluster. We choose the values for these thresholds in such a way that the amount of wrongly categorized

flights is minimized. This leads to a threshold distance of 462.5 km below which flights are categorized as belonging to the

short-flight cluster, and a threshold mean latitude of ±29.7◦ within which flights are categorized as belonging to the tropical

cluster. All other flights are categorized into the mid-latitude cluster. This approximation wrongly categorizes 16.8% of all170

flights used for clustering. The resulting simplified clustering is shown in Figure 1b.

The three clusters have distinct characteristics (Fig. 2). The short-flight cluster has a negligible contribution of contrails

to the climate effect at an average of 3.5%, and a strong contribution of CO2 at an average of 57.4% of the total climate

effect. Flights in this cluster are often too short to reach the required altitude of at least about 8km (e.g.; Kärcher, 2018) for

contrail formation. The climate effect of the tropical cluster is dominated by contrails (average contribution of 56.6%) because175
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Figure 2. Number of flights as function of ratio of the individual climate effect components (CO2, CiC, H2O, and NOx) to the total climate

effect for the 3 flight clusters.

strong contrail formation occurs at tropical latitudes. The mid-latitude cluster contains the remaining flights and has large

climate effect contributions from NOx and H2O (average contributions of 49.1% and 6.8%, respectively; see below for further

discussion).

For the cluster analyses only flights with seat category 3 to 7 are used. The remaining seat categories 1 and 2 (less than 100

seats) were only added to the dataset later in development. They contribute only 4.2% to global ASK and therefore a minor180

share of total aviation emissions. Nevertheless the number of flights with seat category 1 and 2 is high. Therefore, an additional

cluster for regional jets was used for MR. For SR all flights were clustered in one of the three clusters.

3 Derivation of climate effect regression functions

Based on the dataset described in Sec. 2, we derive climate effect regression functions for each emitted species (CO2, NOx,

H2O, as well as CiC) separately. These formulas use the size of the aircraft and the locations of departure and arrival airports185

as input to quickly estimate of the climate effect of individual flights. We explore the use of both MR and SR models for

easy-to-use climate effect estimation of individual flights. In the two regression analyses the following quantities are used:

flight distance along a great circle d [km], mean latitude along the great circle ϕ̄ [°], fuel use f [kg], NOx emissions e [kg],

maximum takeoff mass (MTOW) m [kg], wing span b [m] and ATR100 [mK].

MR is a widely used statistical approach that models the relationship between a dependent variable (e.g., climate effect190

of NOx emissions) and multiple predefined independent variables, called predictors. The functional relationship between the

dependent variable and the predictors has to be predefined. Therefore this approach is especially useful when the factors
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influencing the climate effect of the single species are well-understood. However, the predefined functional form may fail

to capture more complex, non-linear interactions between variables. On the other hand, SR is an advanced technique that

searches for the best mathematical expression to describe the data, offering greater flexibility and the potential to uncover195

hidden relationships. While SR can model highly complex, non-linear interactions, it requires more computational resources

and bears the peril of overfitting. By applying both methods, we aim to identify the approach that most effectively models

especially non-CO2 effects, while prioritizing solutions that offer better accuracy and easy interpretability.

For both methods, we derived regression functions that approximate the climate effect for a particular flight as estimated by

using the AirClim model. Following Dahlmann et al. (2023), the total climate effect as expressed by ATR100 can be obtained200

by the sum of the effects from the individual climate agents, where ATR100NOx = ATR100O3 +ATR100PMO+ATR100CH4

is the combined climate effect of NOx emissions:

ATR100tot = ATR100CO2 + ATR100H2O + ATR100CiC + ATR100NOx
(1)

3.1 Multiple Regression formulas

Multiple Regression is a common method in environmental science, with primary advantages being its simple application205

and interpretability. The structure of MR functions is predefined as a sum of predictor dependent terms each multiplied by a

coefficient. Each coefficient indicates the impact of a specific predictor, allowing to understand the effects of each variable on

the climate. It also enables the inclusion of numerous variables and can incorporate interaction terms of multiple predictors.

However, MR assumes a predefined mathematical form making knowledge about the interactions necessary, which can be a

limitation when relationships are non-linear. The necessary assumption may lead to misspecification of the model if the actual210

relationships are not well-captured by these forms. Additionally, MR can be vulnerable to multicollinearity (when predictors

are highly correlated), which can distort coefficient estimates.

The MR-approach extends the idea of Dahlmann et al. (2023) and leads to the following structure for the derived formulas

for all clusters:

ATR100tot = cCO2 · f + cNOx(d, ϕ̄) · e + cH2O(d, ϕ̄) · f + cCiC(d, ϕ̄) · d · fACsize(b) , (2)215

where fACsize is the adaptation factor for the contrail climate effect due to the wing span b (see Eq. S2 in Supplementary Mate-

rial), and cCO2 , cNOx , cH2O, cCiC are the cluster-dependent climate effect regression functions. Therefore, the climate effect of

a species is estimated as a product of the respective climate effect regression function and the relevant reference quantity (f , e,

d·fACsize) . These MR-formulas are composed of polynomial and arctan functions and are designed to fit the respective partial

climate effects cCO2=ATR100CO2/f , cNOx=ATR100NOx/e, cH2O=ATR100H2O/f , and cCiC=ATR100CiC/d. The climate220

effect function for CO2 is fixed at cCO2 = 8.145×10−11mK/kg(fuel), because the climate effect of CO2 is independent of the

emission location in AirClim, so that no fit is required. Details on the derivation of the MR-formulas are given in Section S2.2

in the Supplementary Material.

Note that for the derivation of the climate effect regression functions apart from the predictors d and ϕ̄ we use the WeCare

estimates for the burnt fuel f and emitted NOx e, implying that those are also required for the application of these formulas. If225
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those are not available we provide additional Fuel and NOx MR functions, that only use the flight distance d and seat category

( S2.1 in Supplementary Material). For the comparison with the SR-approach in Section 3.4 the derived Fuel, NOx and climate

effect regression functions are considered, combined determining the quality of the climate effect estimation.

3.2 Symbolic Regression formulas

The Symbolic Regression method used here, avoids a pre-defined structure of the formula. Instead an evolutionary algorithm230

provides a best fit and thereby defines the structure of the formulas. This structure can be represented by an expression tree,

called gene. Each node in the gene represents a variable, a mathematical operation or a constant. The nodes are merged to

a formula by the tree structure (Koza, 1992). The tool we apply, GPTIPS 2 (Searson, 2015), specifically uses Multi-Gene

Symbolic Regression, which combines multiple genes with an additional scaling factor per gene (b1, b2) and a bias term (b0)

to assemble the whole formula (Fig. 3).235

Figure 3. Structure of a Multi-Gene Symbolic Regression formula consisting of two genes with factors (b1, b2) and a bias term (b0).

The optimization process to find an optimal formula uses an evolutionary algorithm based on a fitness function, in this case

the root mean square error for the given dataset. Beneficiary solutions based on a random start population of multiple formulas

are evolved over several generations. The evolution-inspired mechanisms forming the final formulas are fitness-based selection,

as well as mutation and crossover (Koza, 1992).

For the derivation of regression functions the flight database is split into 80% training and 20% test data. Four different240

formulas are computed for the climate effect of the climate agents CO2, H2O, NOx, and CiC (see Eq. 1). The two main pre-

dictors, d and ϕ̄ from the first approach are used in the second one as well complemented by m, that replaces the segmentation

into seat categories. The flight distance d is meant to cover effects based on the flight length like fuel use, ϕ̄ geographically

differing climate effects of emissions and m different aircraft sizes. The dependent variable of the SR-formulas is the ATR100

for CO2, H2O, CiC and NOx.245

To check the effectiveness of the clustering derived in Sect. 2.3, regression formulas with and without use of the three

clusters are computed. In the clustered version, separate formulas are derived for each cluster. This leads to in total twelve

formulas for the clustered version and four for the unclustered one. For each resulting formula of the clustered and unclustered

version a multiple runs of GPTIPS 2 (1296 for unclustered and 648 for clustered) are executed as part of a gridsearch for

the regression hyperparameters. The main settings of the GPTIPS-software are used as hyperparameters. The reason for the250

selected gridsearch-approach with many runs is the high variability in the resulting estimation quality of regression formulas.
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Figure 4. Pareto-optimal solutions for a Symbolic Regression of the climate effects with respect to R2 and number of nodes by using the

unclustered data (blue) and a combined pareto-front of the clustered data (purple). The pareto-optimal solutions, that are chosen, are indicated

in red and green.

From all derived formulas the Pareto-optimal individuals according to the coefficient of determination R2 (Eq. 3) and the

number of nodes are considered as candidates for the final formula of the species and cluster (see Sec. S3.1 in Supplementary

Material). To obtain one formula for the total climate effect the formulas for CO2, H2O, CiC and NOx have to be combined

according to Equation 1. In this step the numbers of nodes for the ATR100tot add, but the quality of estimation measured as255

R2 has to be newly computed. It is not apparent, which Pareto-formula to choose for each species to achieve an optimum in

estimation quality and number of nodes for ATR100tot. However, by trying all combinations it is possible to identify Pareto-

optimal combinations that represent a optimal trade-off between a high value of R2 and a low number of nodes. Figure 4 shows

these ATR100tot-Pareto-fronts for the unclustered (blue) and the aggregated clustered version (purple; for the individual

clusters please see the Supplementary Material, Figure S9). The final choices made are indicated by red and green dots. The260

selected formulas are given in the Supplementary Material in Section S3.1.

R2 = 1−
∑N

i=1(ATR100pred
tot −ATR100act

tot)
2

∑N
i=1(ATR100act

tot −ATR100act
tot)2

(3)

For ATR100tot in the short-flight cluster the clustered approach shows a significantly better estimation quality than the

unclustered one (see Supplementary Material, Fig. S10). For the two other clusters the quality is comparable. Therefore as a

combination of low complexity and a high quality of estimation the clustered formulas are applied for flights in the short-flight265

cluster in the further analysis and the unclustered formulas are used for mid-latitude and tropical cluster flights.
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Figure 5. ATR100 estimates for flights with an Airbus A320 over the cluster boundary distance of 462.5km depending on the mean latitude.

The plot shows the estimation with the unclustered SR-formulas, the formulas for the short-flight cluster as well as the smoothed version,

taking the mean of the partially largely differing estimates.

3.3 Smoothing of regression formulas at the cluster boundaries

The use of different regression formulas for the derived clusters leads to discontinuities at the cluster boundaries that do not

reflect real behavior and might result in disincentives. The significant difference in estimated climate effect over the cluster

boundaries (e.g. see Fig. 5) makes it necessary to smooth this effect. The smoothing is implemented by using a weighted270

sum of the cluster-specifically computed climate effects. The weighting factor evolves linearly from a starting point inside the

particular cluster until the cluster boundary. At the cluster boundary the weighting of both cluster formulas is equal. Figure 6

sketches this general scheme of the smoothing. The climate effect of a flight within the smoothing area is accordingly estimated

by

ATR100 =





ATR100C1 · (0.5 + |dC1,2|
2·bC1

) +ATR100C2 · (0.5− |dC1,2|
2·bC1

), if dC1,2 ∈ [−bC1,0[

ATR100C1 · (0.5− |dC1,2|
2·bC2

) +ATR100C2 · (0.5 + |dC1,2|
2·bC2

), if dC1,2 ∈ [0, bC2] ,
(4)275

with ATR100C1/ATR100C2 as the cluster 1 / 2 estimates, dC1,2 the distance from the cluster boundary and bC1/bC2 the

smoothing boundary 1 / 2 values. The smoothing boundaries mark the starting points of the smoothing area and are derived as

the R2-optimal values within preset boundaries.

For both approaches smoothing is applied to the existing cluster boundaries of the recommended versions. The details on

the individual smoothing are outlined in the Supplementary Material in the Sections S2.3 and S3.2.280

3.4 Comparison of climate effect regression approaches

The climate effect functions were developed to represent a fitting of more detailed results from the non-linear response-model

AirClim with algebraic relationships. Hence, the reliability of representing the estimated total climate effect is influenced by

the applied fitting procedure. To evaluate the quality and reliability of the estimates, the derived, smoothed formulas from MR
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Figure 6. Concept for smoothing of regression results at cluster boundaries. The smoothing takes place linearly in a predefined range

(smoothing boundary) on both sides of the cluster boundary.

and SR are compared in this section. For SR, the formulas estimate the ATR100 directly leading to one formula per cluster285

and species. For MR the climate effect functions have to be computed for each cluster, which are four formulas per species

apart from CO2, on the one hand, as well as the regression formulas for the used reference quantity on the other. Those are

seven formulas for the fuel regressions, one per seat category, and 14 formulas for the NOx regressions, two per seat category.

The last formula of the MR-approach is the subsequent contrail wing span adaption. In total, this leads to 35 formulas for MR

compared to 8 formulas for SR without smoothing (see Tab. 1).290

One advantage of the MR-approach are the separate fuel and NOx functions, which the SR-approach does not include

directly, hence fuel can still be derived from the CO2 climate effect. Furthermore all MR-formulas have the same predefined

structure, while each SR-formula is different in shape and operators. Also, even though the SR-approach is optimized towards

minimum formula complexity, it generally tends to include irrelevant, over-fitting terms and does not include certain input

parameters into formulas for species, where correlations are present (e.g. ϕ̄ into ATR100NOx ). As advantages the SR-approach295

evolves according the optimum predictive accuracy and yields a better ratio of complexity in terms of the number of formulas

to quality. In addition it enables a continuous estimation over the aircraft size by using the MTOW instead of categorical seat

categories.

The estimation quality of both approaches is similar ( Tab. 1). Overall, the SR-formulas show a slightly higher coefficient of

determination R2 (Eq. 3). This might result from the optimization towards R2 in the SR-approach, even though for CO2 and300

CiC the MR-formulas show a slightly greater R2. In terms of the mean absolute relative error (MARE; Eq. 5) the MR-formulas

surpass the SR ones. This mainly results from the better relative estimation for short and medium range flights compared to the

long range flights (see Fig. 7). The better estimation of longer flights of the SR-formulas is a result of the absolute error-based

evolutionary optimization process, which gives a greater weight to longer flights with higher climate effect. The MARE for
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Table 1. Comparison of Multiple Regression and Symbolic Regression formulas for the estimation of the climate effect of individual flights.

Quality of fit is quantified by R2 and MARE. Due to zero or almost zero values in the dataset MARE is not defined for ATR100H2O and

ATR100CiC. The number of formulas is counted before smoothing. The first value is the number of formulas for the climate effect estimation

and the second for supporting equations like the fuel and NOx-regressions.

Regression formulas R2 MARE number of formulas

ATR100CO2 :
MR: 0.9972 5.03% 1 + 7

SR: 0.9940 5.86 % 2

ATR100H2O:
MR: 0.8613 - 4 + 7

SR: 0.9233 - 2

ATR100NOx :
MR: 0.9529 13.38 % 4 + 21

SR: 0.9807 20.23 % 2

ATR100CiC:
MR: 0.8960 - 4 + 1

SR: 0.8868 - 2

ATR100tot:
MR: 0.9619 20.71% 35

SR: 0.9684 25.82 % 8

Figure 7. Trend comparison of the MARE for the ATR100tot estimation with the Multiple and Symbolic Regression approach over the

flight distance.

H2O and CiC cannot be calculated due to flights with almost or exactly zero ATR100 in the dataset distorting the relative305

metric.

MARE =
1
N

N∑

i=1

∣∣∣∣∣
ATR100act

tot −ATR100pred
tot

ATR100act
tot

∣∣∣∣∣ (5)
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(a) (b) (c)

(d) (e) (f)

Figure 8. For Multiple Regression, correlation of estimated ATR100 of CO2- (a), H2O- (b), NOx-emissions (e) and produced contrails (d)

with the AirClim estimates (referred here as to "actual"), as well as the ATR100tot-estimation for the dataset (c) and a validation dataset (f).

The color code indicates the flown distance.

(a) (b) (c)

(d) (e) (f)

Figure 9. Same as Figure 8 for Symbolic Regression.

The MARE of the climate effect estimation is generally higher for short flights, as for these the variety in flight trajectories

and non-CO2-effects generation increases (Fig. 7). The correlation of both approaches with the AirClim estimated values is
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shown in Figure 8 (for MR) and 9 (for SR). For the estimation of ATR100CO2 the MR-formulas show a better performance310

than those of the SR-approach, especially for long distance flights, because the points in plot 8a are located closer to or almost

on the diagonal compared to plot 9a. The SR-formulas generally tend to underestimate those flights with two noticeable groups

of flights being overestimated. These two groups are also distinguishable in the MR-plot 8a. One of them is estimated better

and the smaller one is instead underestimated.

ATR100H2O-estimation (see plots 8b and 9b) shows relevant differences between both approaches with the MR-formulas315

generally overestimating the climate effect especially for long flights. The SR-formulas show a better accuracy for those flights

and do in general neither tend to over- nor underestimate.

The quality of estimation for the climate effect of contrails is similar for both approaches (see plots 8d and 9d). As the

occurrence of contrails is hard to predict and model, the accuracy of the CiC formula is low. The calculation of a meaningful

MARE for contrails is not possible for short flights due to some flights with zero or close to zero ATR100 values, but for longer320

flight distances the MARE is by 2 to 4 times higher than that of ATR100tot.

For ATR100NOx the SR-approach leads to a better quality of estimation, with fewer points far away from the diagonal in

plot 9e than for MR in plot 8e, indicating fewer large estimation errors. In contrast to the SR-formulas the MR-formulas have

a tendency to under- or overestimate some distinguishable groups of flights.

The ATR100tot correlations in plots 8c and 9c show only minor differences between the two approaches. Hence we can325

conclude that the total quality of both approaches is similar, only with certain advantages for single species.

Apart from the results for the used dataset, the performance of the estimated ATR100tot for a validation dataset is analyzed.

The validation dataset includes 439 flights of the German cargo airline EAT. The mainly short and medium haul flights took

place with Airbus A300, A330 and Boeing 757 aircraft in 2021 and 2022. The AirClim climate effect estimates based on the

real trajectories of these flights serve as the validation reference. The formulas of both approaches show reasonable correlations330

for the validation dataset, indicating a valid estimation. Longer flights are rather under- than overestimated (see plots 8f and

9f). This trend is stronger for the MR-formulas, which do also have a lower R2 value for the validation dataset.

Assessing the sum of all ATR100 estimates for the regression dataset shows the SR-approach to be closer to the actual

AirClim values than the MR-estimates. The MR-approach estimates are, apart from ATR100H2O, in average smaller than the

actual values. This results in a lower sum of ATR100tot and indicates a general trend for underestimation for the MR-approach.335

The sum of the SR-approach shows neither a tendency to over- nor underestimate.

4 FlightClim v1.0 implementation

The derived regression models from MR are implemented in an Excel application called FlightClim v1.0, which is available

in the Supplementary Material. FlightClim offers an easy-to-use estimation of CO2 and non-CO2 climate effects solely based

on the aircraft size, as well as origin and destination airports without further knowledge about the actual flight conditions.340

FlightClim´s core is a simple, tabular input mask supporting the estimation of single flights as well as whole flight plans.
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Thereby, the tool is suited for individuals estimating the climate effect of a holiday trip, organizations assessing their one year

carbon footprint, but also airlines approximating the climate effect of their flight plan.

After a selection of input values in the input mask (climate metric; aircraft size; origin and destination airports; optional:

flight frequency and flight class), the interactive tool returns the climate effect of a flight for CO2, H2O, NOx emissions and345

CiC in the selected metric and as CO2-equivalents. If a flight class is entered, FlightClim also calculates a statistically backed

allocation per passenger (see Sec. S4 in Supplementary Material). In addition to the climate effect, the fuel burn estimate as

well as the estimated CO2 and NOx-emissions are returned as intermediate results of the MR-formulas. The interpretation of

the inputs is based on two tool-integrated databases for airport coordinates and aircraft characteristics. In the Supplementary

Material in Section S5 the user guide of the tool is included.350

In FlightClim the MR-formulas are implemented. Compared to the SR-formulas they show a slightly better quality of esti-

mation for short- and medium-haul flights, which are dominating long-haul flights in number. In addition the tool´s main area

of application is seen in Europe, where inner-European short- and medium-haul flights are dominant. The one-time implemen-

tation of the MR-formulas makes their greater complexity in terms of number of formulas less relevant. An extended version

of FlightClim contains the models of both regression approaches and is available upon request, but less suited for ordinary use,355

due to the necessary choice of model.

5 Discussion

The goal of this study is to develop an easy-to-use calculation method for estimating the total climate effect of individual flights,

including CO2 and non-CO2 effects. Two approaches with smoothed formulas from MR and from SR have been compared.

Due to the similar estimation quality of both approaches their greatest differences are the number of formulas and the input360

parameters, which can hence serve as crucial points for making a choice. Therefore, the SR-formulas can be recommended for

application, if the complexity of the calculation in terms of the number of formulas is an important factor or if the aircraft size

should be modeled continuously. If the estimation quality of short- and medium-haul flights is of greater importance, like for

the FlightClim implementation, the MR-formulas are the better choice. In general, the specific requirements of an application

towards the complexity, interpretability or the quality of estimation should serve as decisive points, which approach to use.365

For both approaches applied in this study the ratio between non-CO2 and CO2 effects is approximately 4 for the used global

aviation emission dataset. This number is higher than in other alternative publicly available methods for simplified climate

footprint assessment of single flights. They use a constant factor of 2 to 3, which is based on assessments of total historical

aviation emissions (e.g., from 1940 to 2018 for Lee et al., 2021). It has to be noted that the relation between non-CO2 and

CO2 strongly depends on the level of the CO2 reference and the climate metric. Since the regression functions are designed to370

estimate the climate effect of present and future flights, we do not consider any emissions of historic aviation. Given the long

lifetime of CO2, historical assessments such as Lee et al. (2021), who analyzed aviation emissions from 1940 to 2018 in terms

of ERF, report a stronger dominance of CO2 (31%) than in the present study (19%). A direct comparison is, however, limited

because different metrics (ATR vs. ERF) and emission patterns (historical vs. present and future) are considered. Nevertheless,
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the relative importance of non-CO2 species is broadly similar, with shares of 4 % for H2O, 33 % for NOx and 44 % for CiC375

in our dataset versus 2 % for H2O, 16 % for NOx and 52 % for CiC in Lee et al. (2021), when excluding the studied aerosol

effects.

The derived MR-formulas are integrated into the easy-to-use Excel-tool FlightClim v1.0. When applying the estimator it is

of key importance to consider its limitations. FlightClim is based on regression formulas, that themselves fit the results of the

climate response model AirClim. This means that the estimation quality and precision is not comparable to complex climate-380

chemistry models. For example, the developed tool is not suited to compare the climate effect of flights with similar aircraft

of different generations or different travel times in the year, meaning that for an individual flight the real climate effect can

strongly deviate from the estimated average. It is also not suited to study certain atmospheric characteristics and their impact

on the climate effect. To answer those questions more complex models are needed. The main advantage of FlightClim is that it

produces reasonable estimates including CO2 and non-CO2-effects while being easy to use and requiring very few input data385

per flight, in fact only origin and destination airport as well as aircraft size.

6 Conclusions

This study presents two methods for an easy-to-use estimate of the climate effect per flight considering CO2 and non-CO2

effects, of which one is included into the flight climate effect estimator FlightClim v1.0. The tool is made available as an

Excel application, which is available in the Supplementary Material. The estimation only depends on the origin and destination390

airports and the aircraft size (seat category for MR or MTOW for SR). It is independent from information about the actual

flights like the flown trajectory, real fuel burn or current weather. Thereby the estimation describes an average in terms of

time of the year and day as well as aircraft and assumes great circle trajectories. The estimation methods are based on a global

dataset of ATR100 climate effects per flight for CO2, H2O, NOx and CiC estimated with AirClim representative for jet aircraft

with a capacity of 20 to 600 seats.395

Potential use cases for FlightClim are advanced analyses on the climate effect of a full year airline, as its effect averages over

the year, plausibility checks, or a backup when airlines are unable to provide more detailed data on aircraft and engine used,

trajectory and deviations flown, and meteorological conditions on the day of flight. FlightClim allows an airline to achieve

an initial estimate of the total climate effects of their whole flight network. Additionally it can be used for the extension of

online climate effect estimator tools by non-CO2 effects or to include a comparison of the climate effect of flights into booking400

platforms considering non-CO2-effects. However, when applying the estimator its limitations always have to be considered

and the methods must only be used for questions they are able to answer.

Compared to the predecessor study by Dahlmann et al. (2023), we here expand the area of application building on a global

dataset representative for a worldwide flightplan and a wide range of jet aircraft instead of only the Airbus A330-200. Moreover,

we add a wing span-wise adaption of contrail climate effect to the tool-chain of the regression dataset. To account for the larger405

scope a clustering is introduced, requiring a smoothing of the estimates at the cluster boundaries. In addition this study does

consider two different regression methods and contrasts them. The introduced FlightClim tool goes beyond alternative methods
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for simplified climate footprint assessment of single flights, because regressions of the climate response include the regional

dependency of climate effects, instead of using constant factors for approximating non-CO2-effects.

The two utilized methods, MR and SR, differ in effort and capabilities of the methods themselves as well as in quality and410

quantity of the resulting regression formulas. Even though SR is a more advanced and adaptable method, the estimation quality

of the resulting formulas of both approaches is similar. The main advantages of the SR-approach are that it uses the continuous

MTOW as aircraft size parameter and is more straightforward and thus less complex. However, the MR-formulas are easier to

interpret and yield higher quality results for short and medium range flights. Overall both approaches lead to robust models

that enable an easy-to-use climate effect estimation for single flights.415

The similar quality of both regression methods indicates, that the resulting estimation quality is not primarily limited by

the used method, but rather by the complexity of the database and the regression parameters as well as the settings for the

regression analyses. To utilize the whole potential of advanced methods like the symbolic regression those aspects have to be

improved first. For example overcoming the limitation of a small number of reference aircraft types included in the dataset

could improve the applicability and the overall estimation quality. As another major potential improvement for further studies,420

the error metric of the regression was identified, as it quantifies the estimation error and serves as the optimization factor during

the regression analysis. In this study, error metrics based on the absolute estimation error were used. As the range of values for

the climate impact of flights in the dataset is huge due to large differences in aircraft sizes and flight distances, for flights with

small climate impacts the relative quality of estimation can drop significantly compared to flights with higher impacts, because

of the absolute optimization incentive. Therefore an adjustment in the error metric might be necessary to achieve regressions425

of a better and more equally distributed estimation quality in further studies and to exploit the whole potential of advanced

regression methods.
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