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Abstract. It is well known that the joint inversion of magnetotelluric and seismological data sets improves the solution 

quality of the crustal structure, even if the electrical resistivity and seismic velocity parameters are not physically well 10 

correlated. The structurally coupled joint inversion approach has received much attention in the last two decades to estimate 

such parameters with penalizing their cross-gradient vectors at similar spatial positions. Despite this interest, various 

structural couplings and different physical directions (incremental or decremental) have been partially overlooked. We 

propose an approach for the joint inversion of magnetotelluric (MT) and Rayleigh wave dispersion (RWD) data to estimate 

uncorrelated parameters by integrating particle swarm optimization (PSO) and the Pareto optimality approach. We used 15 

these methods optimality to overcome difficulties encountered in traditional joint inversion algorithms and to obtain 

optimum solutions having same and/or different physical directions. The good correlation between the inverted and synthetic 

models produced noise-free and noisy data further strengthened our confidence in the modelling of the field data from the 

southeastern Biga Peninsula in western Anatolia. The models inverted from the field data, which are in consistent with 

previous studies, confirm the usefulness of the presented method. A remarkable feature of the presented method is the 20 

estimation of uncorrelated physical parameters such as electrical resistivity and seismic velocity without penalizing. 

Therefore, the presented method not only offers advantages in joint inversion but also allows modelers to observe and 

analyze model parameters having different sensitivities that may indicate different physical directions. 

1 Introduction  

Joint inversion studies are becoming increasingly popular to reduce the non-uniqueness by constraining the solution, to 25 

improve the solution quality, and to determine models having structures that are difficult to solve. A growing body of 

literature investigated the joint inversion of different geophysical data sensitive to different physical phenomena to improve 

subsurface images so far (e.g., Dell’Aversana et al. 2016; Gallardo 2004; Lelièvre et al. 2012; Meju and Gallardo 2016; 

Stefano et al. 2011). The joint inversion of MT and RWD data has also been attempted by  researchers to estimate more 

accurate physical parameters, to provide valuable information in modelling of the crustal structure (Aquino et al. 2022; 30 
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Manassero et al. 2020; Moorkamp, Jones, and Fishwick 2010; Roux et al. 2011; Wu et al. 2018, 2020, 2022), to show their 

complementary relationships for the solution (Afonso et al., 2013), and to provide a direct link to geology by imaging the 

rock properties (Takougang et al., 2015). Furthermore, in recent studies such as Ogaya et al. (2016); Wu et al. (2018); Hu et 

al. (2024) demonstrated that joint inversion of such datasets is advantageous over single inversion methods, as it improves 

the accuracy, resolution and interpretability of subsurface models. These studies show that the joint inversion of MT and 35 

RWD data significantly improved inversion results, even if inconsistencies existed between electrical and seismic boundaries 

in the spatial domain. This highlights how integration of multiple seismological and magnetotelluric datasets can provide a 

more coherent picture of the subsurface, as each method contributes unique information that can help to resolve uncertainties 

that exist in single-method inversions. 

In the joint inversion of such datasets, electrical resistivity and seismic velocity parameters, which are not physically well 40 

correlated (Carcione et al., 2007), are generally estimated in two ways: 1) structurally coupled, and 2) petrophysical joint 

inversion. Structurally coupled joint inversion approaches are based on the assumption that the directions of changing 

physical parameters are penalized by a structural term (Gallardo and Meju 2003; Moorkamp et al. 2013). As an effective 

method, Gallardo and Meju (2003) and Gallardo (2004)  applied a cross-gradient approach, which aims to penalize model 

gradient vectors in different directions. This method promotes the models that exhibit spatial changes at similar spatial 45 

positions. However, since one cannot be sure that seismic velocity and electrical resistivity parameters respond to the same 

or similar degree at similar spatial locations, different structural couplings may need to be considered as indicated by 

Wagner and Uhlemann (2021). For example, small fractions of conductive material can significantly affect bulk resistivity, 

while seismic velocities are strongly affected by large volumes of rocks  (Moorkamp et al., 2010; Simpson and Bahr, 2005). 

Therefore, such incompatible models should also be considered, according to which the seismic velocity pattern remains 50 

almost unchanged despite the conductive layers. On the other hand, the cross-gradient approach also requires model gradient 

vectors, it may not be useful in the one-dimensional case where the resistivity and velocity parameters only change in the z-

direction that exhibit zero cross-gradients (Li et al. 2019; Wu et al. 2018). The petrophysical joint inversion is based on the 

direct estimation of petrophysical parameters from geophysical parameters obtained from inversion algorithms (Mollaret et 

al., 2020; Steiner et al., 2021). The major problem with linking the geophysical parameters to petrophysical relationship is 55 

that their physical meaning cannot be guaranteed (Wagner and Uhlemann, 2021). This is because seismic velocities and 

electrical resistivities may respond differently to petrophysical properties such as porosity, permeability and temperature in 

the crustal zone (Afonso et al., 2013; Chen et al., 2012; Gao et al., 2012). The nonlinear and unpredictable relationship 

between these parameters prevents a full correlation as they are strongly influenced by the rock properties in a specific study 

area  (Linde and Sacks, 1998; Mavko et al., 1998). Therefore, it is generally a challenge to achieve a mutual coupling 60 

between such physical parameters with different sensitivities (Aquino et al., 2022). 

Joint inversion techniques used in both structural and petrophysical approaches also require simultaneously minimization of 

objective functions given by the misfits of different data sets. These techniques generally based on a derivative-based 
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approach, which leads to a dependence on an initial model and local minima entrapment (Moorkamp et al., 2007) for both 

MT (Constable et al., 1987; Smith and Booker, 1988) and RWD (Dorman and Ewing, 1962) modeling. However, Particle 65 

Swarm Optimization (PSO), one of the modern global optimization methods, is increasingly becoming a useful method for 

modeling geophysical data to overcome these disadvantages. A striking feature of the PSO, as well as other global 

optimization methods such as the Genetic Algorithm (GA) (Goldberg and Holland, 1988), Neighbourhood Algorithm (NA) 

(Sambridge, 1999) and Simulated Annealing (SA) (Kirkpatrick et al., 1983), is the elimination of the trapping of local 

minima and/or initial model dependence that generally occurs in traditional inversion techniques (Pace et al., 2021). In these 70 

global optimization methods, it is necessary to use improved constraints to broadly explore the space of possible models and 

verify that the set of acceptable models has been reduced (Gupta et al., 2023b). However, additional geophysical datasets can 

effectively reduce the set of acceptable models for such a global optimization that searches too large a model space, and thus 

increase the reliability of subsurface interpretations (Moorkamp et al., 2010). This allows a further advantage in reducing the 

model space, which provides meaningful models when global optimization algorithms are used. However, one of the other 75 

drawbacks of the joint inversion techniques used is the combination of objective functions that requires appropriate weights 

(Bijani et al., 2017). In this case, subjective and unpredictable weightings of the objective functions can lead to a misleading 

result (Büyük et al., 2020; Kozlovskaya et al., 2007; Lines et al., 1988). As an effective method, Moore (1897) identified a 

definition of Pareto optimality approach presenting Pareto-optimum solution set to summarize all solutions given by each 

objective function without combining with different weights  (Baumgartner et al., 2004).  80 

In this paper, an approach for the joint inversion of MT and RWD data is proposed that takes advantage of the integration of 

multiobjective PSO with the Pareto optimality approach (hereafter referred to as Pareto-MOPSO). Apart from Moorkamp et 

al. (2010); Roux et al. (2011) and Wu et al. (2022), who used GA in combination with Pareto optimality, we utilized PSO 

with a fast convergence rate compared to GA (Büyük et al. 2017; Gill et al. 2006; James Kennedy and Spears 1998; Yuan et 

al. 2009). In structurally coupled joint inversion, the physical parameters in the model space are estimated with or without 85 

prescribing the spatial locations on the common layer, grid or volume depending on the dimensional analysis (Haber and 

Oldenburg, 1997; Wagner and Uhlemann, 2021). In this study, common layer thicknesses of the one-dimensional models 

estimated by PSO provided a structurally constraint on the seismic velocity and electrical resistivity parameters, as described 

by Wu et al. (2018). However, no coupling or penalizing was applied to physical parameters that are also estimated by PSO 

in the common layers. In this way, we aimed to obtain solutions with same and/or different physical directions from the 90 

distribution of the Pareto-optimal solution set. On the other hand, we used a many-layered resistivity-depth and velocity-

depth functions, unlike to Wu et al. (2018), who present modeling with few layers that may suppress important structures 

(Vozoff, 1990; Weaver and Agarwal, 1993).  

As a first step, some synthetic analyses with noise-free and noisy data were performed with compatible and incompatible 

resistivity and seismic velocity models to confirm the applicability of the approach. We obtained many models by the means 95 

of the Pareto-optimal solution set. However, a notable feature of the statistical distributions of the solution set was that the 
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mean values of the estimated physical parameters were closer to the synthetic model and had the same physical direction as 

the synthetic model. These tests highlighted that the inverted models reproduced the synthetic models in a good agreement. 

In the second step, RWD data obtained from paths between specific pairs of seismic stations and MT data over the paths in 

the southeastern part of the Biga Peninsula in Anatolia were jointly modelled by following the approaches used in the 100 

synthetic analysis. The results from field data in conjunction with previous field studies confirmed that the presented 

approach can be used for joint inversion of datasets having different sensitivities. Therefore, different physical directions can 

be observed and obtained without penalizing Sof the parameters, which are estimated by PSO. Moreover, reliable results can 

be obtained by Pareto-MOPSO regardless of the above-mentioned drawbacks that are the traditional derivative-based 

algorithms and the combination of objective function terms. 105 

2 Optimization Methods 

2.1 Particle Swarm Optimization 

PSO is a modern global optimization method introduced by Kennedy and Eberhart (1995) and is inspired by the movements 

of flocks of birds or fish to reach the goal by the shortest route. In the PSO method, the particles, denoted by a vector of 

model parameters in the 𝑚-dimensional model space  𝒙 = [𝑥1, 𝑥2, 𝑥3, … … … 𝑥𝑚] within a feasible search area (Figure 1a), 110 

take a position in the one-dimensional objective space Φ(𝒙) as illustrated in Figure 1b. As an example, of a minimization 

problem, the particles that communicate and learn with each other change their positions with a velocity vector in the model 

space as follows:  

 𝑽𝑖
𝑘+1 = 𝜔𝑽𝑖

𝑘 + 𝑐1𝛾1 ⊗ (𝒙𝑝𝑏𝑒𝑠𝑡,𝑖 − 𝒙𝑖
𝑘) + 𝑐2𝛾2 ⊗ (𝒙𝑔𝑏𝑒𝑠𝑡 − 𝒙𝑖

𝑘). (1) 

therefore, new position can be obtained in the following way: 

 𝒙𝑖
𝑘+1 = 𝒙𝑖

𝑘 + 𝑽𝑖
𝑘+1, (2) 

where, subscript 𝑖 is the number of particles and 𝑘 is the number of iterations. The position and velocity vector of a particle 𝑖 115 

at iteration 𝑘 are represented as 𝒙𝑖
𝑘 and 𝑽𝑖

𝑘, respectively. 𝜔 is the inertia weight term forced on the velocity vector. 𝑐1 and 𝑐2 

are the acceleration factors of the local and global learning constants, 𝛾1 and 𝛾2 are uniformly random numbers in the range 

[0,1]. The particle that has the best fit of all evaluated particles is set as the global leader. If a particle position changed with 

a new velocity vector is a more optimal solution than the previous best solution determined by an objective function, the 

particle replaces its previous position with the new one assigned as 𝒙𝑝𝑏𝑒𝑠𝑡 .  If a particle represents a more optimal solution 120 

than the global best solution, the particle is assigned as 𝒙𝑔𝑏𝑒𝑠𝑡  (Büyük and Karaman, 2024). These processes are reiterated 

until the maximum number of iterations or the minimum error criterion specified by the user is satisfied (Engelbrecht, 2007). 
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Towards the end of the optimization process, all particles close to the global minimum in the objective space as illustrated in 

Figure 1c.  

 125 

Figure 1: Schematic illustration of randomly distributed particles in model space within a feasible parameter search space (a), 

projection of the particles onto the objective function space (b), convergence of the particles to the global minimum (c), modified 

from Büyük (2021). 

To overcome drawbacks of traditional methods of inversion, PSO has seen a tremendous upsurge in the last decade to invert 

geophysical data, such as DC-resistivity data (e.g., Juan L. Fernández Martínez et al. 2010; Peksen et al. 2014; Shaw and 130 

Srivastava 2007), self-potential data (e.g., Fern and Garc 2010; Monteiro Santos 2010; Peksen et al. 2011), gravity data (e.g., 

Essa et al. 2021; Pallero et al. 2015), time-domain electromagnetic data (e.g., Amato et al. 2021; Pace et al. 2022), 

magnetotelluric data (e.g., Grandis and Maulana, 2017; Karcıoğlu and Gürer, 2019; Pace et al., 2019a; Godio and Santilano, 

2018)  and magnetic data (e.g., Essa and Elhussein 2018; Liu et al. 2018) and seismological data (e.g., Song et al. 2012). A 

detailed review on this topic can be found in Pace et al. (2021).  135 

2.2 Pareto-optimal multi-objective particle swarm optimization 

Multi-objective optimization, where more than one objective function is optimized, leads to trade-off solutions between 

competing objectives and not to a single best solution as in single-objective PSO. Multi-objective optimization is defined to 

obtain the model vector 𝒙 = [𝑥1, 𝑥2, 𝑥3, … 𝑥𝑚] in a 𝑚-dimensional model space, while the objectives in the N-dimensional 

objective space Φ(𝒙) = [𝛷1(𝑥), 𝛷2(𝑥), 𝛷3(𝑥) … 𝛷𝑁(𝑥)] are optimized, simultaneously. The Pareto optimality approach is 140 

one of the most successful methods for finding a set of optimal solutions in the feasible search space, as shown schematically 

in Figure 2. According to Pareto optimality approach, we say that 𝑥𝑎 dominates 𝑥𝑏 if and only if Φ𝑘(𝒙𝑎) ≤ Φ𝑘(𝒙𝑏), 𝑘 =

1, … . , 𝑁 , where 𝑁  is the dimension of the objective function. We say that 𝑥𝑎  is non-dominated and Φ(𝒙𝑎)  is a non-

dominated solution set if there does not exist the condition that Φ(𝒙𝑐)  <  Φ(𝒙𝑎), where 𝒙𝑐  denotes all possible model 

vectors. We also say that 𝒙𝑎 is Pareto-optimal (Figure 2a), and Φ(𝒙𝑎) is Pareto front or Pareto-optimal set (henceforth will 145 

be referred as 𝑃∗) illustrated in Figure 2b. This indicates the trade-off solutions that conflict with each other in the objective 

function space, when 𝒙𝑎  ∈  ℱ (feasible region as ilustrated in Figure 2a) is non-dominated. The solution closest to the origin 

(0,0) can be considered as the Pareto-optimum solution (POS), within the 𝑃∗(Baumgartner et al., 2004; Büyük, 2021, 2024; 
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Reyes-Sierra and Coello Coello, 2006; Schnaidt et al., 2018). Although Pareto optimality is widely used for multi-objective 

optimization in engineering problems, only a few researchers such as  Büyük et al. (2020); Pace et al. (2019b); Schnaidt et 150 

al. (2018); Akca et al. (2014); Tronicke et al. (2011); Dal Moro (2010); Kozlovskaya et al. (2007); Paasche and Tronicke 

(2007); Moorkamp et al. (2010); integrated global optimization algorithms with the Pareto optimality approach to jointly 

invert various geophysical data.  

 

 155 

 

Figure 2: Illustration of the two-dimensional feasible model space with realizable solutions within meaningful search space, and 

infeasible solutions (a), solutions projected onto two-dimensional objective function space with Pareto optimal solution set having 

solutions that are non-dominated by the others in the feasible solutions, modified from Kumar and Minz (2014) and Büyük (2021) 

3 Description of Synthetic Data Examples 160 

Figure 3a shows synthetic apparent resistivity data for twenty periods from 10−2 to 103 s obtained from a synthetic 1-D 

electrical resistivity model (Figure 3c) having low resistivities around 10 km depth. Figure 3b also shows the synthetic RWD 

curve for twenty periods from 5 to 20 s obtained from the 1-D velocity model (Figure 3d) that mimics the physical change of 

the 1-D electrical resistivity model. This example indicates compatible models showing low resistivities versus low 

velocities or vice versa in each layer without scaling. We therefore refer to these models as compatible models following 165 

Moorkamp et al. (2010). In the low resistivity layer (Figure 3c), the decrement of resistivity is kept wider than the seismic 

velocity, so that the presented method can determine physical variations on very large different scales. Figure 3e and Figure 

3f show the apparent resistivity and RWD data, obtained from the synthetic resistivity-depth model having low resistivity 

layers (Figure 3g) and the velocity model (Figure 3h) which is insensitive to low resistivity layers as in the compatible 

model. The difference in the incompatible models is that the decrement of resistivity in the layer is kept lower than in the 170 

compatible model by referring to the insensitivity of the seismic velocity. In contrast to the compatible models in Figure 3c 
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and Figure 3d, this example shows incompatible parameters in the corresponding layers, which we refer to as incompatible 

models. In order to exploit from common sensitivity of the data sets, we preferred to use apparent resistivity instead of phase 

data. This is because apparent resistivity data are sensitive to the absolute average resistivity of the subsurface material at the 

penetrated depth, similar to how RWD data are sensitive to shear wave velocity (Scherbaum et al., 2003; Simpson and Bahr, 175 

2005). 

 

Figure 3: Synthetic apparent resistivities (a) and RWD curve (b) generated from the resistivity-depth (c) and the velocity-depth 

model (d), respectively, indicating compatible case. Synthetic apparent resistivities (e) and RWD curve (f) generated from the 

resistivity-depth (g) and the velocity-depth model (h), respectively, indicating incompatible case. 180 

Synthetic apparent resistivities that are calculated using the effective impedance tensor proposed by Berdichevsky et al. 

(1989), were generated using Wait (1954) recursion formula based on one-dimensional magnetotelluric responses. The 

dispersion curves for the fundamental mode were generated using the open-source software package SESARRAY developed 

as part of the SESAME European Project presented by Bard (2000). These algorithms were used to generate the forward 

model response for Pareto-MOPSO.  185 

4 Description of the Field Datasets 

4.1 Rayleigh wave dispersion curves from earthquake data 

In this study, we applied the two-station method, which uses a technique described by McMechan and Yedlin (1981) to 

obtain the inter-station phase velocities using the codes provided by Hermann (2002). In this technique, the entire wavefield 
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of the data is transferred to the slowness-frequency domain (p-ω) to pick the RWD curve directly, which involves a linear 190 

transformation of the slant stack followed by a 1D Fourier transform. We used broadband data from an earthquake with a 

magnitude of Mw = 6.5 occurred in Italy on 30 October 2016. The earthquake is approximately 1200 km away from the 

study area, which is located in the south-eastern part of the Biga Peninsula between Ayvacık and Edremit bay in Çanakkale 

province, Türkiye. The data of this earthquake from these permanent stations are extracted from the waveform database of 

the Disaster and Emergency Management Presidency (AFAD). Before applying the two-station method, we first removed 195 

the mean, trend and instrument response from the earthquake recordings. This method also requires the two stations to be 

aligned on a path with the epicenter of the earthquake. We found three paths from station BOZC to stations BUHA, STEP 

and DEMI (hereafter referred to as BOZC_paths), where the azimuthal difference between the source to station-1 and the 

source to station-2 is less than 2 degrees. We also found for station ECEA to stations STEP and DEMI (hereafter referred to 

as ECEA_paths) with an azimuthal difference of less than 7 degrees.   200 

 

Figure 4: Magnetotelluric and seismic stations over a topographic map obtained from Shuttle Radar Topography Mission (SRTM) 

data. Black lines indicate the seismic station pairs used to obtain RWD curves. The blue rectangular area shows the geological base 

map of the southeastern Biga Peninsula reconstructed from Beccaletto (2003) and Yilmaz et al. (2001). 

4.2 Magnetotelluric data 205 

MT is a passive electromagnetic method that enables to determine the subsurface electrical resistivity 𝜌(Ω𝑚) by measuring 

the natural variations of the wide spectrum of electric and magnetic fields induced by natural sources (e.g., solar wind, 

lightning) (Chave and Jones, 2012; Simpson and Bahr, 2005). If we consider that the Earth as a transfer function that 

provides a predictable output in response to an input, the output is the time-varying electric field in response to the time-

varying magnetic field in the MT method. (Buttkus, 2000). The MT method operates over a wide period range, typically 210 

from 10-5 to 105 seconds and allows the investigation of different depths from the near-surface to the upper mantle (Chave 

and Jones, 2012; Romano et al., 2018). The source of the electromagnetic waves are the magnetic fields, which change 
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internally or externally. The components of the internal source are the dynamo motion of the outer core and the permanent 

magnetization of rocks, while the external sources are the atmosphere and the magnetosphere. However, since the change of 

the internal source is very slow, external sources are used as electromagnetic sources in the MT method (Naidu, 2012; 215 

Simpson and Bahr, 2005; Vozoff, 1990). Signals with a frequency of more than 1 s in external sources originate from the 

magnetosphere. In MT studies, the source of EM waves with a frequency of less than 1 s is meteorological activity such as 

lightning, which propagates around the world (Chave and Jones, 2012; Simpson and Bahr, 2005) 

We measured MT data at GURE and KULC stations shown in Figure 4 due to their positions, which are on the BOZC_paths 

and ECEA_paths, respectively. The MT field data were obtained using a Metronix ADU-07e receiver unit.  Sampling rates of 220 

65536, 16384, 4096, 1024, 512 and 128 Hz were used to record electromagnetic time series with durations of 2, 4, 8, 16, 32 

and 2880 minutes, corresponding to 48 hours at each MT station. The fundamental principle of the MT method is the 

measurement of the impedance tensor, which relates the electric and magnetic fields on the Earth surface. This tensor is 

crucial for deriving the apparent resistivity of subsurface materials, which is a key indicator of geological features. (Chave 

and Jones, 2012; Simpson and Bahr, 2005; Smirnov, 2003). Conversion of time series to spectral analysis allows for the 225 

extraction of the impedance tensor, which is essential for deriving the apparent resistivity and phase information (Buttkus, 

2000). The software package ProcMT (Friedrichs, 2007) was used to perform most of the data processing steps, namely time 

windowing, fast Fourier transform (FFT), power and cross spectra and stacking to obtain apparent resistivities and phase 

angles from the impedance tensor in the data set. To obtain the spectral ratios of the electric and magnetic fields, the FFT of 

the portion of the data set from a simultaneously advancing time window was used repeatedly to obtain a stacked power-, 230 

and cross-spectra.  

5 Site Description 

The southeastern Biga Peninsula, with its complex structural features of tectonic and magmatic origin, has received 

considerable attention in several studies (e.g., McKenzie, 1978; Dewey and Şengör, 1979; Taymaz et al., 1991; Okay et al., 

1996; Karacık and Yılmaz, 1998; Altunkaynak et al., 2012). As shown in  Figure 4, the simplified map describes the geology 235 

of the study site with outcrops of a combination of continental and oceanic crustal units corresponding to metamorphic, 

magmatic and sedimentary rocks. The magmatic process initiated with the complete closure of the Neo-Tethys Ocean 

subducted into the Sakarya Zone consisting of the Kazdağ metamorphic complex and formed by the subsequent interaction 

between crust and mantle (Okay and Satir, 2000; Şengün et al., 2011). After complete closure, a continental collision in N-S 

compression led to partial melting of the lithospheric mantle (Aldanmaz et al., 2000; Altunkaynak and Genç, 2008; Okay et 240 

al., 1996; Yilmaz, 1990). The Kazdağ metamorphic complex has a dome-shaped structure enclosed by a marble-rich 

sequence (Beccaletto, 2003). The N-S extensional regime occurred after the N-S compressional regime from the early 

Miocene to the late Pliocene triggered volcanic activities (Aslan et al., 2017; Yilmaz et al., 2001). The phases of volcanism 

are divided into two: 1) The N-S compressional regime, the result of continental collision, produced andesitic lavas with 
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calc-alkaline characteristics through partial melting (Altunkaynak and Genç, 2008; Yilmaz et al., 2001). The second group of 245 

volcanics with potassium-rich basaltic volcanics formed during the extensional regime (Altunkaynak and Genç, 2008; 

Fytikas et al., 1976; McKenzie and Yılmaz, 1991; Yilmaz, 1990). The sedimentary rocks from the Miocene to the Pliocene 

were deposited as cover units over the ignimbrites, the last product of volcanism (Seyitoğlu and Scott, 1991). Differently 

aged continental shallow sediments unconformably cover the metamorphosed units of the Kazdağ metamorphic complex 

(Altıner et al., 1991). 250 

6 Description of the Parameter Settings 

6.1 Model parameters and misfit functions 

The misfit, 𝜙𝑀𝑇(𝒅, 𝒎), between the vectors of magnetotelluric data (𝒅) and model response (𝒎), yielding normalized root 

mean square error (NRMSE) was calculated using:  

where 𝑛 is the number of observations,  𝜌𝑎,𝑖
𝑜𝑏𝑠 and 𝜌𝑎,𝑖

𝑐𝑎𝑙  are the observed and calculated apparent resistivities (log10 𝑜ℎ𝑚. 𝑚), 255 

respectively. ∆𝜌𝑎,𝑖 is the standard deviations of the observed apparent resistivities. Data misfit term of RWD data was also 

calculated using as NRMSE as:  

where 𝑛 is the number of observations,  𝑉𝑝,𝑖
𝑜𝑏𝑠 and 𝑉𝑝,𝑖

𝑐𝑎𝑙  are the observed and calculated phase velocities (km/s), respectively. 

∆𝑉𝑝,𝑖 is the standard deviations of the observed phase velocities. Equation 3 and 4 were used for both synthetic tests and field 

data to ensure consistency when comparing solutions.  260 

Although the estimation of layer thicknesses could lead to a complicated solution (Siripunvaraporn et al., 2005), the layer 

thicknesses are also estimated by PSO in the modeling stage to couple the electrical resistivity and seismic velocity 

parameters in the corresponding layers. Therefore, coupling is provided by layer thicknesses estimated from the PSO 

algorithm rather than prescribed spatial locations. In this case, with a total of thirty-one model parameters, consisting of 

sixteen-layer physical parameters and fifteen-layer thicknesses, compared to twenty produced periods of both datasets, the 265 

inverse solution problem is an underdetermined problem that requires a regularization technique as one of the ways to 

overcome the sampling problem of swarm intelligence algorithms (Juan Luis Fernández Martínez et al. 2012; Godio and 

Santilano 2018; Pace et al. 2021). Since in this case we dealt with a high-dimensional model space that may have an ill-

posed character, the solution sampling of the PSO was limited due to the curse of dimensionality (Curtis and Lomax, 2001; 

 Φ𝑀𝑇(𝒅, 𝒎) = ( [
1

𝑛
 ∑ (

𝜌𝑖
𝑜𝑏𝑠 − 𝜌𝑖

𝑐𝑎𝑙

∆𝜌,𝑖
)

2𝑛

𝑖=1

]

1
2⁄

) (3) 

 Φ𝑅𝑊𝐷(𝒅, 𝒎) = ( [
1

𝑛
 ∑ (

𝑉𝑝,𝑖
𝑜𝑏𝑠 − 𝑉𝑝,𝑖

𝑐𝑎𝑙
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Fernández Martínez et al., 2012). Although it was necessary to control the solution sampling with different types of 270 

regularization, we used a new method proposed by Büyük (2024) without the need for a subjective and iteration-dependent 

regularization parameter by adding a constraint term as a new axis to the objective function space. The constraint term Φ𝑐, 

was calculated by summing the numerical gradients of the electrical resistivity and seismic velocity parameters as follows: 

 

 275 

 

where the units of 𝜕𝒎𝑀𝑇  and 𝜕𝒎𝑅𝑊𝐷  are log10 Ω𝑚 and 𝑘𝑚/𝑠, respectively. This equation indicates an additional objective 

function term that constrains the change in physical parameters. As Equation 3 and Equation 4, this equation is the third term 

of the objective function and forms the third axis in the Pareto space. Therefore, independent minimizations are applied 

without the need for regularization parameters both in the misfit functions and in the model variation. The output of this term 280 

corresponds to the differences of the parameters in z-direction (depth). The parameter search space of these model 

parameters that should be restricted to ensure a feasible solution set, was defined in the range [1, 5] log10Ω𝑚 for resistivities, 

and [1.5, 5] km/s for S-wave velocities to cover realistic values in the crust. The P-wave velocities and densities were 

calculated using the equations given by Berteussen (1977) as typically observed in the crustal zone. 

6.2 MOPSO and Pareto optimality parameters 285 

We used velocity limiting approach proposed by Fan and Shi (2001) to constrain the velocity of particles that tend to explode 

to large values if the particle is far from the global and local best position. This approach limits the particle velocities as 

follows: 𝑉𝑚𝑎𝑥 = +𝑈 and 𝑉𝑚𝑖𝑛 = −𝑈, where 𝑈 = (𝑚𝑚𝑎𝑥 − 𝑚𝑚𝑖𝑛)/𝑁.  𝑚𝑚𝑎𝑥  and 𝑚𝑚𝑖𝑛 are the 5 and 1 log10Ω𝑚 for MT 

modeling and 5 and 1.5 km/s for RWD modeling as the defined parameter search space. 𝑁 is the interval number, which was 

set to 10. We used modified velocity equation of the Equation 1, proposed by Clerc and Kennedy (2002) to obtain solutions 290 

without trapping a local minimum due to premature convergence, as defined below: 

𝑽𝑖
𝑘+1 = 𝜒[𝑽𝑖

𝑘 + 𝑐1𝛾1 ⊗ (𝒙𝑝𝑏𝑒𝑠𝑡,𝑖 − 𝒙𝑖
𝑘) + 𝑐2𝛾2 ⊗ (𝒙𝑔𝑏𝑒𝑠𝑡 − 𝒙𝑖

𝑘)] (6) 

where, 𝜒  is the constriction factor expressed as: 𝜒 = 2 (𝑘 − 2 + √𝑘2 − 4𝑘)⁄  under the condition that 𝑘 =  𝑐1 + 𝑐2 > 4 . 

Therefore, we used 𝑐1 and 𝑐2 as 2.05, i.e.,  𝑘 = 4.1 and 𝜒 = 0.7298. The number of particles was set to 5-fold the number of 

model parameters (e.g. 155 particles for total of thirty-one model parameters when modeling one dataset). Iteration was 

terminated at 1000 iterations for both synthetic and field data sets as one way of limiting the maximum number of iterations 295 

(Reyes-Sierra and Coello Coello, 2006) and ten experimental solutions were generated repeatedly and the final Pareto-

optimum model which misfit was closest to the utopia point (0,0) was selected. 

In the Pareto optimality approach, objective function space is divided into hyper-rectangles, to each of which control 

solutions are added (Coello Coello et al., 2004; Coxeter, 1973). One-tenth of the number of particles was defined as the 

number of hyper-rectangles for each objective function. The roulette wheel selection, one of the scheme theorems proposed 300 

Φ𝐶(𝒎) = ( [
1

𝑛
 ∑ (

𝜕𝒎𝑀𝑇

𝜕𝑧
)

2𝑛
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1
2⁄

+  [
1

𝑛
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by Coello Coello et al. (2004), which is based on the rational division of the segments of the wheel according to the number 

of non-dominated solutions in each of the hyper-rectangles, was used to select a leader for MOPSO. According to this 

theorem, the ratio decides the selection probability ( 𝑃𝑠)  of an individual hyper-rectangle as follows: 𝑃𝑠(𝑘) =

𝑛𝑘 ∑ 𝑛𝑖
𝑁
𝑖=1⁄ ;    𝑖 = 1,2, … … , 𝑁, where, 𝑁 is the number of hyper-rectangles with non-dominated solutions 𝑛𝑘 is the number 

of non-dominated solutions of the 𝑘th hyper-rectangle (Rao, 2009). A leader is randomly determined from the selected 305 

hyper-rectangle.  

7 Results and Discussions 

7.1 Synthetic data examples 

7.1.1 Compatible models 

Figure 5a,b and 6a,b show the noise-free and %15 Gaussian noise added outputs of the compatible models, which agree very 310 

well with the synthetically generated observations. Figure 5c and Figure 6c show the objective function space that requires 

the minimization of the objective function terms of the POS and the 𝑃∗. Figure 5d,e and 6d,e show the resistivity-depth and 

velocity-depth models of the synthetic model, the model of the POS (PO-model) and the mean model obtained from the 

mean of the estimated parameters of the 𝑃∗ (m𝑃∗-model). These models strikingly highlight how many different models are 

structurally constrained to fit the curves produced. In this study, we analyzed the PO-model and the m𝑃∗-model to obtain the 315 

best and the most reasonable models between different models. Although the PO-model and m𝑃∗-model are compatible in 

each layer and mimic the synthetic model in the noise-free case (shown in Figure 5d,e), we found that the PO-model is 

incompatible at several layers in the noisy case and have different physical directions from the both synthetic and the m𝑃∗-

model in the 4th layer of the resistivity-depth model, and 8th layer of the velocity-depth model, as shown in rectangular shape 

in Figure 6d,e. Therefore, we decided to obtain the posteriori probability density function (PDF), a well-known procedure for 320 

examining the estimated parameters, as shown in Figure 6f, g. In these figures, significant differences between the PO-model 

and the m𝑃∗-model can be seen at the aforementioned layers. The PDFs of the estimated parameter in the m𝑃∗-model are 

clearly both closer to the real model, and have the highest number of repetitions compared to the parameter in the PO-model.  

On the other hand, the estimated parameter of the MT solution appears to be clearly resolvable compared to the RWD 

solution. In fact, seismic velocities and electrical resistivity are generally represented by the properties of large volumes of 325 

rock masses, but since even small fractions of conductive material can determine the bulk resistivity (Moorkamp et al., 2010; 

Simpson and Bahr, 2005). This reason may cause the resistivity parameter to approach a singular value, while the seismic 

velocity has a wide distribution on the PDF. Although the obtained lowest seismic velocity layer is close to the real model, it 

seems that the exact real value in the relatively sharp lowest resistivity layer cannot be determined in the resistivity model. 

The most important factor here is that the models with smooth transitions are promoted by adding the regularization term of 330 
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the objective function into the Pareto space. However, the obtained resistivity model successfully mimics the sharp variation 

of the low resistivity layer of the synthetic model. 

 

 

Figure 5: Results for noise-free data from compatible models. The fit between apparent resistivities (a), and phase velocities (b); 335 
objective function space (c) indicates POS and 𝑷∗; Resistivity-depth (d) and velocity-depth (e) synthetic model, PO-model and 

mP*-model obtained from Pareto-front models indicating different structural couplings. 
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Figure 6: Results for noisy data from compatible models. The fit between apparent resistivities (a), and phase velocities (b); 340 
objective function space (c) indicates POS and 𝑷∗. Resistivity-depth (d) and velocity-depth (e) synthetic model, PO-model, mP*-

model and P* showing different structural couplings. Posteriori PDF of the estimated resistivity (f) and seismic velocity (g) 

parameters indicating incompatibility in the layers shown in a rectangular area of the synthetic model, PO-model and the mP*-

model. 

As can be seen in Figure 5c, 𝑃∗ solutions have an almost symmetric shape which means that the MT objective function 345 

cannot be further minimized without maximizing the RWD objective function and vice versa. However, Figure 6c shows 

that the clustered solutions of the 𝑃∗ deviate slightly in the direction of the MT objective function axis. This deviation shows 

that seismic velocity parameters are very sensitive the noise condition, resulting in a high number of non-unique solutions 

that satisfy the RWD data misfit, as noted by Kozlovskaya et al. (2007) and Dal Moro (2010). 

7.1.2 Incompatible models 350 

Figure 7a,b and 8a,b show the outputs of the incompatible models (noisy and noise-free data), which fit the observed data 

well. Figure 7c and Figure 8c show the objective function space that requires the minimization of the objective function 

terms of the POS and the 𝑃∗. Apart from the Figure 7c, Figure 8c shows a deviation of 𝑃∗ towards the MT objective 

function, indicating a high sensitivity of the seismic velocity parameter to noise condition compared to the electrical 

resistivity parameter, leading to high non-unique solutions, as similar to the results of the noise-added compatible models. 355 
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Figure 7: Results for noise-free data from incompatible models. The fit between apparent resistivities (a), and phase velocities (b); 

objective function space (c) indicates POS and 𝑷∗. Resistivity-depth (d) and velocity-depth (e) synthetic model, PO-model, mP*-

model and P* showing different structural couplings. Posteriori PDF of the estimated resistivity (f) and seismic velocity (g) 

parameters indicating incompatibility in the layers shown in a rectangular area of the synthetic model, PO-model and the mP*-360 
model. 

Figure 7d,e and 8d,e show the resistivity-depth and velocity-depth models of the synthetic model, the PO-model and m𝑃∗-

model. Although the obtained models are clearly comparable to the synthetic model, we also examined the PDFs of the 

physical parameters of the synthetic model, PO-model and m𝑃∗-model having different physical directions, as shown in 

Figure 7d,e and Figure 8d,e in a rectangular shape. In both cases (noisy and noise-free), the parameters obtained from the 365 

mean model are both closer to the real value and have a higher number of repetitions than those obtained from the PO-

model, just as in the compatible model with noisy data. These results clearly identify that when a m𝑃∗-model changes in a 

different direction compared to the PO-model, the physical parameter of the m𝑃∗-model gives the same physical direction as 

the real model and is estimated to a value closer to the real model parameter. We have therefore opted for the m𝑃∗-model 

when in modelling field data, considering that the estimated parameter of the PO-model may lead to misinterpretations. On 370 

the other hand, compared to previous (noisy compatible and noiseless incompatible) resistivity parameters, the PDFs of the 

estimated parameters of the MT solution seem to have a slightly wide distribution. These results indicate that the solution of 

the resistivity-depth model appears to be more complicated and it may be difficult to obtain a singular value when the noisy 

incompatible seismic model is jointly inverted. 

 375 
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Figure 8: Results for noisy data from incompatible models. The fit between apparent resistivities (a), and phase velocities (b); 

objective function space (c) indicates POS and 𝑷∗. Resistivity-depth (d) and velocity-depth (e) synthetic model, PO-model, mP*-

model and P* showing different structural couplings. Posteriori PDF of the estimated resistivity (f) and seismic velocity (g) 

parameters indicating incompatibility in the layers shown in a rectangular area of the synthetic model, PO-model and the mP*-380 
model. 

7.2 Field data 

Figure 9 shows the phase velocity dispersion curves obtained from the pairs of BOZC_paths and ECEA_paths, as well as the 

combined curve that best represents the phase velocities of the crustal structure along the paths between the stations using 

the analysis of Özalaybey et al. (2011) . The period range was between 8 and 60 seconds, but we used 8 to 25 seconds for 385 

modeling to cover realistic values in the crust. The phase velocity curves indicate a crustal structure as the seismic velocities 

increase with increasing period, but possible low velocity structures can be identified as a result of the modelling phase. 

Figure 10 shows the apparent resistivities, phase angles and 𝜙𝑚𝑖𝑛 angles of the phase tensor from the GURE and KULC 

stations located over the BOZC_paths and ECEA_paths, respectively. The apparent resistivity curves show a high resistivity 

in the first periods and a low resistivity above 1 s. The phase tensor, which is independent of galvanic distortion compared to 390 

the impedance tensor (Hill et al., 2009), also shows a spatial variation from low to high phase angles, indicating high to low 

resistivities, as noted by Garcia and Diaz (2016) and Heise et al. (2008). However, continuous resistivity-depth models can 

be clearly verified by the joint inversion of the datasets. The lowest period of 0.1 seconds of the data seems to be distorted, 

which is probably due to the lack of processing of the remote reference or other reasons. However, these periods can be 
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ignored to avoid the effects of the shallow layers in order to investigate the crustal structure of the Earth model. Therefore, 395 

except for the lowest periods, we used apparent resistivity data with periods longer than 0.1 seconds for modeling. 

 

Figure 9: Measurements of an individual Rayleigh-wave dispersion curve obtained from BOZC_paths (a) and ECEA_paths (b) 

from an earthquake with a magnitude of Mw = 6.5 occurred in Italy on 30 October 2016. 

 400 
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Figure 10: Measurements of individual apparent resistivities, phase angles and phase tensor 𝝓𝒎𝒊𝒏 angles of GURE station over the 

BOZC_paths (left) and KULC station over the ECEA_paths (right). 

Figure 11 and Figure 12 show the results of the crustal model obtained from the joint modeling of the MT and RWD data 

from the GURE station and BOZC_paths (henceforth will be referred as GB_p), and KULC station and ECEA_paths 405 

(henceforth will be referred as KE_p), respectively. Figure 11 a and  Figure 12a show the apparent resistivity curve; Figure 

11 b and  Figure 12b show the phase velocity curve obtained from the mP*-model that are well fitted to the observed data. 

Although, MT data of GURE station have a higher noise compared to MT data of KULC station, an agreement between the 

observed data and the model responses appears to be reasonably accurate and satisfactory within the standard deviation. 

Figure 11 c and Figure 12c show the objective function space that requires the minimization of the objective function terms 410 

of the 𝑃∗. Unlike the distribution of 𝑃∗ in the objective function space of KE_p, a high noise component of the GB_p could 

be responsible for deviation of 𝑃∗ to RWD axis that indicates a high non-unique solution in MT model. 

 

Figure 11: Results for GB_p. The fit between apparent resistivities (a), and phase velocities (b); objective function space (c) 

indicates 𝑷∗. Resistivity-depth (d) and velocity-depth (e) models from mP*-model and 𝑷∗. 415 
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Figure 12: Results for KE_p. The fit between apparent resistivities (a), and phase velocities (b); objective function space (c) 

indicates 𝑷∗. Resistivity-depth (d) and velocity-depth (e) models from mP*-model and 𝑷∗. 

Figure 11d and Figure 12d show the obtained resistivity-depth; Figure 11e and Figure 12e show the obtained velocity-depth 

from mP*-models. At both the GB_p and KE_p, an increasing resistivity and seismic velocity structure is observed 420 

extending up to 5 km from the surface. However, in contrast to the KE_p, the GB_p shows the influence of the continental 

sediments as the geological surface structure in which it is located, with a relatively low resistivity and velocity structure 

extending up to 1-2 km. At the GB_p and KE_p, shown as Region A in Figure 11d and Figure 12d, a low resistivity structure 

is observed extending from 5 km to about 10 km with no remarkably change in seismic velocity in the same layers. This 

zone indicates an example of an incompatible model in which the seismic velocity almost does not change despite the 425 

conductive layers, due to different influence of the amount of volume rocks to bulk resistivity and seismic velocity, as 

indicated by Moorkamp et al. (2010). On the other hand, this observation can be attributed to MT method is more sensitive 

to the decrease in resistivity than to the decrease in seismic velocity compared to the RWD method (Wu et al. 2018), as can 

be inferred from the velocity*thickness and resistivity*thickness relationship described by Moorkamp et al. (2013). There 

are many geothermal fields in the vicinity of the GURE station, and it is a possible indication that Zone A, which has a lower 430 
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resistivity than the KULC station, is under the influence of volcanics that have undergone hydrothermal alteration. The 

volcanics present in the study area, which consist of andesitic lavas, are normally resistive. However, these volcanics may 

have a low resistivity due to the clay content as a result of alteration (Stanley et al., 1977). 

The most remarkable result of the joint modelling is region B, where both seismic velocity and resistivity decrease. 

Normally, a low velocity and low resistivity structure in the crust indicate the presence of aqueous fluids (Eberhart-Phillips 435 

et al., 1995) or a change in Vp/Vs and attenuation (Okada et al., 2014). Moreover, a number of theoretical studies have found 

that elastic wave velocities gradually decrease with the existence of fluid and/or melt in the mid-to-lower crust (e.g., 

Nakajima et al. 2001; Takei 1998; Zhao, et al. 2002). Our results are consistent with one and the recent publication of 

Turunçtur et al. (2023), which indicate a low seismic velocity which extends from 10 km to about 15-16 km in the crustal 

structure of the southeastern part of the Biga Peninsula, as determined by seismic noise tomography. The possible source of 440 

Region B is the mantle-derived melt that emplaced the crust during outcropping. This is because system processes were 

triggered in the magma chambers in the study area that enabled the production of granitic magmas. The intrusion of mantle-

derived magmatic rocks into the crust has created magma chambers and melting environments in the crust, known as MASH 

(melting, assimilation, storage, homogenization), as described by Hildreth and Moorbath (1988). While the magmatism 

process caused thermal weakening in the young orogenic crust, it accelerated the process of crustal expansion and outcrop in 445 

the crustal environment of the Biga Peninsula (Altunkaynak et al., 2012; Okay and Satir, 2000). Therefore, the low-

resistivity and low-velocity zone is considered to be granitoid magma, which is an important indicator of granitoids formed 

by the simultaneous assimilation of upper and middle crustal rocks and fractional crystallization of melts from the mantle 

during magma ascent. However, one limitation of our research is that the models were not compared with well-logs or other 

geophysical studies that investigated the crust and/or mid-crust structures in the study area. 450 

Region C with a low resistivity structure in both stations could indicate the low resistivity of the lower crustal zone 

suggested by Jones (2013). The dominant factor for the electrical resistivity in the lower crust is the presence and the 

interconnectedness of aqueous fluid, volumetric partial melt or grain boundary mineralization (Feucht et al., 2017). 

However, if aqueous fluids or partial melting could be the primary factor in the lower crust, a low seismic velocity could 

have been observed, as in region B. From this point of view, it can be assumed that mineralization is effective at the grain 455 

boundary in the lower crust. Because as Christensen and Mooney (1995) stated as a result of field and laboratory studies, the 

lower crust containing mafic granulite minerals alone does not cause a decrease in seismic velocity. According to Yang et al. 

(2012), the presence of granulites as the main structural mineral in the lower crust provides low resistivity and does not 

necessarily require the contribution of other low resistivity materials such as aqueous fluids, melts or graphite films to ensure 

this feature. However, it would not be a critical comment on the lower crust, considering that the poor performance of the 460 

lowermost layers and homogenous half-space contribute to the solution (Zhdanov 2018). Since both MT and RWD datasets 

have low sensitivity to the sharp Moho boundary that can be clearly observed in seismic velocity, it is difficult to interpret 

with the presented datasets. However, future receiver function studies on this topic are therefore recommended to obtain 

more reliable results for the lower crust. 
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Figure 13 and Figure 14 show the posteriori PDFs of the A, B and C regions for the GB_p and KE_p solutions, respectively. 465 

We used all physical parameters in each region obtained from the Pareto-optimal solution set to provide a comprehensive 

framework for assessing uncertainties associated with model parameters. We found that the peak values of the posterior 

PDFs for all model parameters converge to a singular value, indicating lower uncertainty. As expected, the distribution of the 

resistivity parameter is narrower than that of the seismic velocity, as in the synthetic analysis. This confirms the higher 

sensitivity of bulk resistivity to rock mass fraction compared to seismic velocity. We also performed a sensitivity analysis to 470 

understand how variations in the input parameters affect the responses of the resistivity depth and seismic velocity depth 

models. Our test follows the quantitative analysis given by (Garcia et al., 2015) to evaluate the quality of the data fit as 

follows: Φ(%) = 100 × (Φ𝑛 − Φ𝑜) Φ𝑜⁄ , where Φ𝑛 is the new NRMSE of the perturbed model, Φ𝑜 is the NRMSE of the 

final (preferred) model. If the Φ(%)  is positive, it means a deterioration of the data fit compared to the final model. Table 1 

shows the results of the sensitivity tests performed by substituting final model with perturbed model defined by new model 475 

parameters in each region A, B and C. Considering the model parameters of the layers above each region, we used 

incremental model parameters if the final model had decreasing properties and vice versa. As can be seen inTable 1, slightly 

increased Φ(%) is observed in each region of the models. These results highlight the deterioration in data fit after forward 

modelling of the perturbed models in each region. We would expect a higher Φ(%) in region C, which is represented by 

more layers than regions A and B. These results indicate that region C is relatively less sensitive to the fit of the data. 480 

However, our results appear to be reliable models down to a depth of 20 km, including regions A and B. 

Although one-dimensional modeling can be reliably performed in several studies by obtaining dispersion curves from 

earthquake data or long-term records (e.g., Lee et al., 2020; Gupta et al., 2023; Manakou et al., 2023), one-dimensional 

modeling of magnetotelluric data may be unsuitable if MT mode differences and /or elliptical phase tensors as partially 

observed about 10 seconds in Figure 10 (Simpson and Bahr, 2005, p.110). This points out the slightly effects of the high-485 

dimensional structures on the data. However, we needed to use the one-dimensional resistivity-depth model to achieve 

structurally constraint with the velocity-depth model, which we believed could be reliably obtained. On the other hand, we 

used the effective impedance tensor of the data for the one-dimensional MT modeling as a starting point for more complex 

analyses. This allows us to identify key resistivity contrasts that may indicate different geological materials or fluid presence 

as indicated by Chave and Jones, (2012) and Tietze and Ritter (2013). Therefore, presented results provide only a rough 490 

overview of the crustal structure of southeastern Biga Peninsula. Since this study focuses on the practicality of Pareto-

MOPSO on joint modeling MT and RWD data having different sensitivities, a detailed interpretation of crustal structure is 

outside the scope of this study utilizing with a few datasets joint modelled as one-dimensional. Nevertheless, the Pareto-

MOPSO is suggested for 2D and 3D joint modelling of MT and RWD data, in which a number of model parameters is too 

large. We believe that this methodology indirectly allows for the reduction of constant forward computation in the model 495 

space by adding additional datasets to the data space. Therefore, this study is an encouragement for high-dimensional 

modelers using high computational capacity, even though it might be computationally intensive in such dimensions. 
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Figure 13: Posteriori PDF of the resistivities (left), seismic velocities (right) and parameter obtained their mP*-model in the region 500 
A, B and C for GB_p. 

Pareto optimality approach requires less computing time, however, PSO is very computationally intensive due to the large 

search area in the model space. The average computation time for 1000 iterations in each station was approximately three 

hours on a 14-core node of a central processing unit model, 12th generation Intel Core i7, 2.30 GHz with 64 GB RAM. The 

main difficulty in calculation time was calling the gpdc.exe function of the SESARRAY software package from MATLAB, 505 

which is the main programming platform that we used. One way to avoid the time-consuming calculations may be parallelize 

the code on a high-performance cluster (Pace et al., 2019a). 
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Figure 14: Posteriori PDF of the resistivities (left), seismic velocities (right) and parameter obtained their mP*-model in the region 510 
A, B and C for GB_p. 

 

 

 

 515 
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Table 1: The sensitivity tests of regions A, B and C in the GB_p and KE_p solutions from updated 

Φ (%) by substituting with new model parameters. 

GB_p Subs 

(ohm.m) 
𝚽(%) Subs 

(m/s) 

𝚽(%) KE_p Subs 

(ohm.m) 

𝚽(%) Subs 

(m/s) 

𝚽(%) 

A 750 3.2 3200 2.21 A 4000 1.2 3100 2.76 

B 500 5.1 3500 3.39 B 5000 3.6 3500 3.26 

C 100 3.15 3250 3.94 C 2000 2.16 3600 3.12 
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