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Abstract. Calibration of low-cost air quality sensors (LCSs) for total volatile organic compound (TVOC) and benzene, toluene,

ethylbenzene, and xylenes (BTEX) quantification remains challenging due to the sensors’ cross-sensitivity to temperature and

humidity and their tendency to drift over time. In this study, we aimed to improve TVOC and BTEX metal oxide sensor calibra-

tion using a two-step colocation strategy. This strategy made it possible to develop the calibration model under environmental

conditions closely matching those of the field, which is essential for model transferability from colocation to field conditions.5

The approach also addressed intra-sensor variability and drift in the harmonization step. In addition to TVOC and BTEX,

we applied the two-step colocation process to NO2 electrochemical sensors to demonstrate the broader applicability of our

approach beyond TVOC and BTEX quantification.

Next, we compared the performance of multiple machine learning models, including ridge, lasso, random forest, gradient

boosting, extreme gradient boosting, support vector regression, and linear regression, to investigate the optimal model choice10

for calibration. We found that no single model performed best across all pollutants. For example, gradient boosting excelled

at capturing peak TVOC concentrations, while linear regression performed best for BTEX. Conversely, linear regression was

the worst-performing model for NO2. Overall, the models showed satisfactory RMSE around 40- 50 ppb for TVOC, 1.25-

1.75 ppb for BTEX, and 4-6 ppb for NO2. However, all models also overestimated baseline concentrations and underestimated

peaks. The severity of this bias depended on the reference concentration distribution, with the most severe peak underestimation15

occurring in the more heavily skewed TVOC and BTEX data. The systematic bias at baseline and peak concentrations was

not evident in the overall mean bias error, which was near zero for all pollutants. This result underscores the need to evaluate

model performance across the entire concentration distribution. Finally, we found that calibration performance was sensitive

to the choice of training and testing data split. Future research could seek to optimize the training and testing split to ensure

robust model transferability to field data.20
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1 Introduction

Low-cost sensors (LCSs) are an increasingly popular tool used by community groups, scientific researchers, and local govern-

ments to document air quality impacts at spatial and temporal scales finer than are possible with regulatory or reference-grade

monitoring (Fanti et al., 2021; Clements et al., 2017; Commodore et al., 2017; Okorn and Iraci, 2024). Despite their increas-

ing usage, LCSs face limitations due to their reduced accuracy compared to reference-grade monitoring methods (Karagulian25

et al., 2019; Castell et al., 2017; Clements et al., 2017). To improve accuracy, LCSs are often calibrated via colocation with

a reference instrument, which corrects sensor drift and cross-sensitivity to temperature, humidity, and non-target pollutants

(Liang, 2021; Karagulian et al., 2019; Liu et al., 2020).

In a colocation, sensors are placed next to a reference-grade monitor for a set period. The sensor signal is then calibrated

to the reference-grade concentration time series via a linear regression or machine learning calibration model (Liang, 2021;30

Okorn and Iraci, 2024). For certain pollutants, such as ozone and PM2.5, this process can significantly improve the accuracy of

LCSs (Barkjohn et al., 2021; Masiol et al., 2018). However, calibrating LCSs for other pollutants, especially volatile organic

compounds (VOCs), has had more limited success (Clements et al., 2017; Collier-Oxandale et al., 2019), leading some users

to interpret low-cost VOC data only qualitatively (Frischmon et al., 2025a; Raheja et al., 2022).

VOCs are a broad class of chemicals that originate from both natural sources, such as wildfires and vegetation, and anthro-35

pogenic sources, such as industrial solvents, consumer products, and fossil fuel extraction, refining, and combustion. VOCs

impact respiratory and cardiovascular health and can cause secondary health impacts by contributing to the formation of sec-

ondary organic aerosols and tropospheric ozone (Kampa and Castanas, 2008; Haagen-Smit et al., 1953; Laaksonen et al.,

2008). Benzene, toluene, ethylbenzene, and xylenes, or BTEX, are a subset of VOCs that are especially relevant to human

health due to their carcinogenicity (Kampa and Castanas, 2008). Total VOCs (TVOCs) and subsets like BTEX are challenging40

to quantify using LCSs in part because of their relatively low ambient concentrations (Spinelle et al., 2017b). Additionally, the

chemical makeup of TVOCs can include many different species to which LCSs exhibit varying sensitivities. Low-cost TVOC

and BTEX sensors can also show greater sensitivity to temperature and humidity than to VOC species, and they exhibit drift

over long-term use (Lewis et al., 2016; Collier-Oxandale et al., 2019). Given these challenges, researchers have had the greatest

success in calibrating these sensors for indoor use only, where concentrations tend to be higher and temperature and humidity45

can be controlled (Robin et al., 2021; Leidinger et al., 2014).

In this paper, we demonstrate a comprehensive calibration approach to better address the challenges of ambient, outdoor

TVOC and BTEX quantification using LCSs. This approach involves a two-step colocation and a robust evaluation of machine

learning calibration models. We include NO2 quantification as a comparison to demonstrate how our approach can be used for

other pollutants as well.50

1.1 Two-step colocation

Calibration models that perform well with colocation data may still produce large error in field predictions if the model is

not transferable to the environmental and sensor conditions at field sites. For instance, Malings et al. (2019) showed how
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sensor drift reduces the accuracy of calibration models when applied to field data collected long after the colocation period.

Others have demonstrated how calibration models can overfit to the environmental conditions, source mixtures, and pollutant55

concentrations present at the colocation site, making the model less reliable when transferred to field sites (Malyan et al., 2024;

Casey and Hannigan, 2018; Vikram et al., 2019; Nowack et al., 2021). These impacts are especially important to consider for

VOCs, which exhibit higher spatial variability than other pollutants and are composed of a complex mixture of chemicals,

further complicating model transferability (Collier-Oxandale et al., 2018).

To ensure a calibration model is transferable to field data, colocations must capture the range of environmental conditions60

expected during field deployment, though many colocations occur only before and/or after field deployment, potentially during

different seasons (Zamora et al., 2023). In contrast, a two-step colocation occurs simultaneously with field deployment, making

it possible to capture data under the same seasonal conditions. In a two-step colocation, a single LCS system, referred to here

as the secondary standard, is colocated with a reference-grade monitor while the remaining LCS systems collect data at field

sites (Sá et al., 2023; Okorn and Hannigan, 2021b). The field sensors are then colocated with the secondary standard for a65

shorter period, referred to as the harmonization step, to address intra-sensor variability. A two-step colocation can improve

calibration transferability, especially when the colocation with the reference monitor occurs close to the field deployment sites,

as this increases the likelihood of capturing similar environmental conditions within the same seasonal timeframe. Two-step

colocations also allow for more extensive colocation periods without decreasing the amount of field data that can be collected,

which is advantageous for complex machine learning models that require extensive data to prevent overfitting. In this study,70

we improve upon the two-step colocation process developed by Sá et al. (2023) and Okorn and Hannigan (2021b) to further

address sensor drift and model transferability.

1.2 Evaluation of machine learning calibration models

Machine learning algorithms can improve calibration models by accounting for the non-linear signal response of LCSs (Robin

et al., 2021; Liang, 2021). Due to their complexity, machine learning models require more extensive colocation data to prevent75

model overfitting to the colocation data, as this can make the model less reliable under changing field conditions (Concas

et al., 2021). The optimal machine learning model varies by dataset and is typically selected by comparing calibration model

performance metrics, such as root mean squared error (RMSE) and mean bias error (MBE), for a portion of colocation data

excluded from model training (Wang, 2024). Evaluating the excluded data, called testing data, helps prevent overfitting to the

training data.80

Studies comparing the performance of various machine learning calibration models, such as random forest, artificial neural

networks, support vector machine regressions, and gradient boosting, have relied on PM2.5, CO, NO2, CO2, and O3 datasets

(Zimmerman et al., 2018; Casey and Hannigan, 2018; Johnson et al., 2018; Srishti et al., 2023; Considine et al., 2021). Com-

pared to these pollutants, TVOC and BTEX data are often much more imbalanced, with the majority of measurements clustered

near low parts-per-billion baseline levels and occasional episodic spikes multiple orders of magnitude higher (Edgerton et al.,85

1989; Ou-Yang et al., 2018). Imbalanced datasets make it more difficult to assess calibration model performance, as models

that poorly fit elevated concentrations may still achieve strong overall performance metrics if they accurately predict baseline
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concentrations (Okorn and Hannigan, 2021a; Silberstein et al., 2024). In these cases, partitioning the performance metrics by

data percentile can reveal significantly underestimated peak concentrations (Zimmerman et al., 2018; Frischmon et al., 2025b).

Additionally, certain machine learning models, especially gradient boosting, are generally better suited to address data im-90

balance (Galar et al., 2011), but calibrations for low-cost TVOC and BTEX sensors have been limited to linear regression,

random forest, and neural network models (De Vito et al., 2008; Frischmon et al., 2025b; Spinelle et al., 2017a; Yurko et al.,

2019; Hong et al., 2023; Robin et al., 2021; Li et al., 2023; Okorn et al., 2021; Okorn and Hannigan, 2021a). Thus, our study

provides the first comparison to our knowledge of a comprehensive suite of machine learning models for TVOC and BTEX

sensor calibration, including random forest, gradient boosting, support vector regression, artificial neural network, ridge, and95

lasso algorithms. We also evaluate model performance for NO2 calibration to compare how these models perform on a more

balanced dataset.

2 Methods

We deployed a network of low-cost sensor platforms, called HAQ-Pods, in South Los Angeles to study the impacts of local

oil and gas development. Field data collection is ongoing as of July 2025. However, since this study is focused only on sensor100

calibration, rather than field data analysis, we limit the present analysis to data collected between 10/4/2023 and 3/28/2024 to

use just one pre- and post-harmonization. The pre-harmonization occurred from 10/4/23 to 10/9/23, and the post-harmonization

occurred from 3/18/24 to 3/28/24. From 10/10/23 to 3/18/24, the secondary standard HAQ-Pod was colocated with a reference

instrument for calibration, while all other pods were deployed at field sites in South Los Angeles (Figure 1).

2.1 Instrumentation105

HAQ-Pods were developed in the Hannigan Air Quality (HAQ) Lab and have previously been used to capture local pollution

events (Frischmon et al., 2025a; Silberstein et al., 2024). HAQ-Pods use interchangeable, commercial sensors to quantify

various pollutants. In this study, we used Figaro TGS 2600, TGS 2602, and TGS 2611 metal oxide sensors for TVOC and

BTEX quantification and Alphasense B-4 electrochemical sensor for NO2 quantification. We also used a Bosch BME 680

sensor for temperature and humidity measurements. The sensors are housed in a weather-proof case (10.7" x 9.8" x 4.8")110

outfitted with fans to draw air across the sensor surfaces. HAQ-Pods feature updated circuitry compared to Y-Pod air monitors,

which have been described elsewhere (Collier-Oxandale et al., 2020, 2018).

For the TVOC calibration, the secondary standard HAQ-Pod was colocated with an Extractive Fourier Transform Infrared

Spectrometer operated and maintained by the South Coast Air Quality Management District (South Coast AQMD) using

methods similar to those described in Mellqvist et al. (2017). Ambient air is continuously drawn through heated Teflon inlet115

(1-inch ID) mounted on the roof of the station into a 25-liter cell at 25 liters per minute. Infrared light is generated with a

glow-bar and directed into the cell with a series of mirrors. The light beam is passed through the cell multiple times via a

series of curved mirrors to achieve a total path length of 100m before exiting the cell and being directed into the infrared
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spectrometer (Bruker, Type: Matrix-M). Light is detected with an Indium/Antimonide detector in the 1800-4000 cm1 region

and the spectrometer has a spectral resolution of 0.5 cm1.120

Gas concentrations are calculated using synthetic spectra generated by fitting calibration spectra taken from the HITRAN

(Sharpe et al., 2004) and PNNL (Rothman et al., 2005) databases to the raw spectra collected by the spectrometer in a linear

least squares type fitting algorithm within the spectral evaluation window of 2725 cm-1 to 3007 cm-1 (Griffith, 1996; Johansson

et al., 2014). The spectral fit includes calibration spectra for H2O, CH4, HDO, Propane, Butane, and Octane with TVOC

reported as the sum of Propane, Butane, and Octane.125

For the BTEX calibration, the secondary standard HAQ-Pod was collocated with an automated gas chromatograph (auto-

GC) instrument (Tricorntech; MiTAP P320 Series) operated and maintained by South Coast AQMD. The auto-GC operates

continuously with a distinct sampling and analysis phase that span 40 min and 20 min, respectively. During the sampling phase,

the auto-GC continuously draws ambient air at 5 cm3/min through a roof mounted inlet into a pre-concentrator sample volume

for 40 min totaling 200 cm3 of gas. During the analysis phase, the sample passes through a series of heated GC columns130

by way of pressurized inert carrier gas (N2), where compounds are separated by polarity and subsequently detected with a

series of photoionization detectors. Digital chromatograms are recorded and used to calculate ambient gas concentration via

reference to a set of previously determined calibration chromatograms. Calibration chromatograms are determined by routinely

(twice weekly) directing gas from a concentration-certified compressed cylinder into the auto-GC. The method is capable of

an accuracy of 0.1 parts per billion volume (ppbv).135

For the NO2 calibration, the secondary standard HAQ-Pod was colocated with a reference Teledyne T200 instrument main-

tained by the South Coast AQMD. The reference instrument was calibrated by the South Coast AQMD every six months and

underwent weekly zero and span checks, in addition to nightly PC checks to ensure correct values.

2.2 Two-step colocation

The secondary standard HAQ-pod was colocated with the South Coast AQMD instruments while all other HAQ-pods were de-140

ployed at field sites in South Los Angeles from 10/10/23 to 3/18/24. The field HAQ-pods were harmonized with the secondary

standard HAQ-pod from 10/4/23 to 10/9/23 and from 3/18/24 to 3/28/24. The physical set-up of the harmonization is shown in

Figure 2. Unlike previous two-step colocations, the HAQ-Pods were harmonized with the secondary standard both before and

after field deployment to better account for sensor drift across the entire study period, as suggested by Sá et al. (2023).

Sá et al. (2023) and Okorn and Hannigan (2021b) demonstrated different approaches for propogating the calibration model to145

the field LCSs in a two-step colocation (Figure 3). Okorn and Hannigan (2021b) developed a primary calibration model between

the secondary standard and reference instrument. In the harmonization step, the field LCS systems were then calibrated via

a secondary calibration model to the concentration timeseries predicted by the calibrated secondary standard. This method is

better suited for projects where the colocation and harmonization steps are similar in length, since each step requires equally

complex calibration models.150

Conversely, Sá et al. (2023) first developed a multi-linear regression model for each sensor signal corrected to the secondary

standard’s corresponding sensor signal. The multi-linear regression models for the pollutant sensors included temperature and
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Figure 1. The TVOC and BTEX colocation site is indicated by the black icon, while the NO2 colocation site is indicated by the gray icon.

The harmonization site and field sites are encompassed in the blue box. ©OpenStreetMap contributors 2025. Distributed under the Open

Data Commons Open Database License (ODbL) v1.0.

humidity in addition to the pollutant sensor signal. The primary calibration model between the secondary standard and reference

monitor could then be applied directly to the corrected field LCS systems. Since this method uses only a linear regression in

the harmonization step, it is well-suited for projects where the harmonization is much shorter than the colocation. However,155

including temperature and humidity in the pollutant sensor regression model may introduce dependencies on environmental

conditions that then require the harmonization step to span the full range of conditions expected in the field—thereby reducing

the method’s usefulness for short harmonizations. To avoid this, we included only the pollutant sensor signal and a time elapsed

variable in our linear regressions for harmonization, so that the regression corrects only for intra-sensor linear baseline shifts

and drift (Equation 1).160

yi = β0 + β1xi + β2Ti + ϵi (1)
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Figure 2. Harmonization set up in Los Angeles

Where βs represent the model coefficients, xi is the sensor signal for the ith observation, Ti is the time elapsed from the start

of data collection for the ith observation, and ϵi represents the error term for the ith observation.

2.3 Calibration model development

Inputs into the TVOC and BTEX colocation calibration models included the metal oxide, temperature, and humidity sensor165

signals, as well as a time elapsed feature to account for sensor drift. The NO2 calibration model used inputs from the electro-

chemical NO2 sensor along with temperature, humidity, and time-elapsed data.

To evaluate model performance, we split the colocation data into training and testing datasets, allocating 80% for training and

20% for testing. While this train/test split is typically performed once, we repeated the calibration process 20 times to assess

model robustness. For each run, we used a different split of the data. Specifically, for each iteration, we randomly selected170

a starting point in the time series and designated the next 10% of data as testing data. A second 10% segment was selected

from a point halfway through the dataset relative to the first chunk, wrapping around if necessary. This approach ensured that

the testing data spanned different seasons or environmental states while minimizing information leakage between training and

testing datasets (Nowack et al., 2021).

The sensor signals are time averaged to 60-minute intervals prior to model training to reduce noise (Cabello-Solorzano et al.,175

2023). Signals were then z-scored to a mean zero and standard deviation equal to one based on the training data. During model

training, we use k-fold cross-validation (k=5) to tune hyper-parameters to values that minimize the loss function, or mean

squared error (MSE), shown in Equation 2. We used the Scikit-learn Python module for all models except the artificial neural

network, which used Tensorflow, and extreme gradient boosting, which used the Xgboost package.
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Figure 3. Model propogation methods for two-step colocation. This example has two sensor signal inputs: the target pollutant signal and

temperature. Solid lines indicate a concentration timeseries and dotted lines indicate raw sensor signal. Note that Sa et. al. include temperature

and humidity in all linear correction models, while we include time elapsed in all linear correction models in this paper.

MSE =
1
n

n∑

i=1

(yi− ŷi)2 (2)180

Where yi is the reference concentration for the ith observation and ŷi is the predicted concentration for the ith observation,

and n is the number of observations.
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2.4 Machine learning model descriptions

2.4.1 Linear regression (LR)

LR employs the following expression to predict the reference concentration using the input sensor signals:185

yi = β0 + Σp
j=1βjxij + ϵi (3)

Where βs represent the model coefficients, yi is the reference concentration for the ith observation, xij is the jth feature or

input for the ith observation, p is the number of features or model inputs, and ϵi represents the error term for the ith observation.

The model coefficients are tuned by minimizing the model error. There are no hyper-parameters that require tuning via k-fold

cross-validation in a linear regression model.190

2.4.2 Regularized linear regression: Lasso (L) and ridge (R)

Lasso (L) and ridge (R) are regularized linear regression models that add a penalty term to the loss function to reduce overfitting.

Lasso uses L1 regularization, which adds the sum of the absolute values of the regression coefficients to the loss function

(Equation 4) (Tibshirani, 1996). This reduces the coefficients of unimportant inputs to zero, removing them from the model.

Lasso regression is useful when it is suspected that not all model inputs are important for prediction. In ridge regression (L2195

regularization), the penalty term is the sum of the squared values of the model coefficients (Equation 5), which reduces the

coefficients towards zero without setting them at zero (Hoerl and Kennard, 1970). Thus, ridge regression simplifies the model

while retaining all inputs in the model.

Lasso loss Function =
1
n

n∑

i=1

(yi− ŷi)2 + λ

p∑

j=1

|βj | (4)

Ridge loss Function =
1
n

n∑

i=1

(yi− ŷi)2 + λ

p∑

j=1

β2
j (5)200

Where yi is the reference concentration for the ith observation, ŷi is the predicted concentration for the ith observation, βj

is the coefficient for the jth model input, and λ is the regularization hyper-parameter, which determines the strength of the

regularization.

2.4.3 Ensemble decision tree-based models: Random forest (RF), gradient boosting (GB), and Extreme Gradient

Boosting (XGB)205

Random forest (RF), gradient boosting (GB), and extreme gradient boosting (XGB) are ensemble decision tree-based learning

methods. Similarly to a flow chart, a decision tree separates the data into nodes based on the characteristics of the data,
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eventually reaching a final node that determines the prediction of the data (Song and Ying, 2015). As ensemble methods, these

models combine outputs from multiple trees to produce a more robust solution (Breiman, 2001; Natekin and Knoll, 2013). RF

uses a bootstrap aggregating approach (bagging) to combine the trees, where each tree is built independently and given equal210

weight in the final solution (Kumar and Sahu, 2021; Breiman, 2001). In contrast, GB and XGB use a "boosting" technique,

where trees are built sequentially and seek to improve upon the error of the prior tree (Kumar and Sahu, 2021; Natekin and

Knoll, 2013). XGB is a faster, optimized version of GB that also adds regularization (lasso and ridge) to reduce overfitting

(Chen and Guestrin, 2016).

2.4.4 Support vector machine regression (SVR)215

Support vector machine regression (SVR) maps the data to a high-dimensional space using a kernel function and determines

the best-fitting hyperplane for the transformed data (Smola and Schölkopf, 2004). SVR minimizes the model complexity by

only fitting the hyperplane to points falling outside a margin of tolerance. This is different than other machine learning models,

which seek to minimize overall error across all data points.

2.4.5 Artificial neural network (ANN)220

An artificial neural network (ANN) is a machine learning model designed to mimic the way input signals are processed and

transformed into output signals in the brain (Wesolowski and Suchacz, 2012). In an ANN, the input signals pass through

interconnected layers of nodes. The connections between the nodes are assigned weights, which are adjusted as the model is

trained to optimize the output signal accuracy (Stansbury, 2014; Krogh, 2008).

2.5 Calibration model evaluation225

We evaluated the overall fit of the calibration models using three performance metrics: root mean squared error (RMSE)

(Equation 6), mean bias error (MBE) (Equation 7), and coefficient of determination (R2) (Equation 8). We also evaluated

RMSE and MBE by percentile groups to assess model fits across the entire range of data. For the percentile-based assessment,

the data were partitioned into 0-5th percentile, 5th-25th percentile, 25th-75th percentile, 75-95th percentile, and 95th-100th

percentile groups.230

RMSE =

√√√√ 1
n

n∑

i=1

(yi− ŷi)2 (6)

MBE =
1
n

n∑

i=1

(yi− ŷi) (7)

R2 = 1−
∑n

i=1(yi− ŷi)2∑n
i=1(yi− ȳ)2

(8)
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Where yi is the reference concentration for the ith observation and ŷi is the predicted concentration for the ith observation,

and n is the number of observations.235

Lastly, we applied the calibration models to sensor data collected from three field sites within the Los Angeles study area.

We compare the predictions of each model to understand how they vary when applied to field conditions.

3 Results and Discussion

The full HAQ-Pod network included 11 field sites. We show data for just three sites to maintain the focus on sensor calibration

in the present study. These three HAQ-Pods, along with the secondary standard HAQ-Pod had 100% data completeness in240

the harmonization step, resulting in 333 harmonization data measurements for each HAQ-Pod after hourly averaging. Data

completeness for HAQ-Pods 1, 2, and 3 in the field was 89%, 86% and 99%, respectively, resulting in 3413, 3289, 3789 field

data points for each HAQ-Pod. The secondary standard HAQ-Pod had 90% data completeness, resulting in 3452 data points

for the colocation calibration models.

3.1 Two-step colocation245

As observed during harmonization, colocated HAQ-Pod raw sensor signals are generally well correlated, with correlation co-

efficients between the secondary standard HAQ-pod raw signals and corresponding raw signals in the other HAQ-pods ranging

from 0.87 to 1 (supplemental). However, some shifted baselines and amplitudes are still visible in the left column of Figure 4,

especially for the metal oxide sensors, demonstrating the importance of correcting individual sensor signals rather than relying

on a universal or general calibration. After applying the linear correction developed during harmonization (coefficients listed250

in Tables S2-S7), the signals are visually more aligned (right column of Figure 4 and have correlation coefficients with the

colocation HAQ-pod signal ranging from 0.96-1 (supplemental).

The left column of Figure 4 also reveals why performing both pre- and post-harmonization is essential for some sensors,

especially Figaro TGS 2600 and 2611 in this case. These sensors show different behavior compared to the secondary standard

HAQ-pod signal in the pre- and post- harmonization, indicating sensor drift. We addressed this drift by including a time-255

elapsed feature in the harmonization correction, which approximates the drift as a linear function. It is likely the sensor drift

is not perfectly linear, but the approximation appears to be sufficient here based on performance at both the start and end of

harmonization. Conducting both pre- and post- harmonizations was essential for checking the drift approximation, as otherwise

the model may extrapolate drift beyond what is reasonably possible.
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Figure 4. Raw sensor signal collected during harmonization (left column) and corrected signals after harmonization with the colocation

HAQ-pod (right column).

The temperature and humidity ranges recorded during the field deployment show strong overlap with the temperature and260

humidity ranges recorded at the HAQ-pod colocation site (Figure 5, note that measurements are uncalibrated sensor temperature

and humidity). This overlap, which is important for colocation model transferability to field data, is possible because the

two-step colocation allows for simultaneous colocation and field data collection. If colocation had occurred only before and

after field deployment, as is typical for many low-cost sensor deployments, the overlap would look more like that of the

field and harmonization phases in Figure 5. Conditions during the harmonization phase trended towards higher temperature265

and humidity because the harmonizations occurred in fall and spring, while the field deployment was mainly in winter. This

seasonal difference could lead to poor transferability if temperature and humidity impacts on the sensors were corrected in
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the harmonization phases because the model would have to extrapolate the impacts at low temperature and humidity ranges.

Instead, our two-step colocation strategy corrects for sensor cross-sensitivity to temperature and humidity in the colocation

phase only, where there is sufficient overlap of environmental conditions.270

Figure 5. Relative humidity (RH) and temperature (T) observed during field (green), colocation (orange), and harmonization (purple) phases.

These plotted values are harmonized sensor signals not calibrated to a true T or RH measurement.

3.2 Evaluation of machine learning calibration models

Figure 6 highlights how the distribution of TVOC and BTEX concentrations measured by the reference instruments during

colocation are more skewed than NO2, as 75% and 78% of the total concentration range falls within the 95-100th percentile

group for TVOC and BTEX, respectively, compared with just 31% for NO2. Thus, the inclusion of NO2 in our analysis provides

a useful comparison of machine learning calibration performance on a more balanced dataset.275
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Figure 6. Reference concentrations, divided into data percentile ranges, of each pollutant collected during colocation.

In the following sections, we show the calibration model performance for each pollutant across all 20 calibration repetitions

(Figures 7, 10, 13). R2 values for these models are available in Figure S1. To better visualize how these models actually predict

testing and field data concentrations, we show predicted data from one calibration run in Figures 8, 9, 11, 12, 14, and 15. The

calibration run we selected to visualize in these plots is one that was close to the median overall performance, based on RMSE

and MBE, for each pollutant.280

3.2.1 TVOC calibration

Depending on the test/train split of the data, the overall RMSE and MBE for each model varied by 25-35 ppb (Panels A, C in

Figure 7). Within each run, the models showed similar overall testing RMSE and MBE, indicating the calibration performance

depended more on test/train split than model choice. All the models tended to overestimate baseline concentrations in the

0–5th percentile, with the linear models showing the least overestimation bias (Figure 7, panel d). The models also tended to285

underestimate peak concentrations in the 95–100th percentile, though gradient boosting (GB) performed best for these peak

values based on its median MBE.
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Figure 7. Performance statistics for TVOC calibration models, including overall RMSE (a), RMSE by percentile group (b), overall MBE

(c), and MBE by percentile group (d). The calibration models are linear regression (LR), lasso (L), ridge (R), random forest (RF), gradient

boosting (GB), extreme gradient boosting (XGB), artificial neural network (ANN), and support vector regression (SVR).

Linear regression (LR) and ridge regression (R) have nearly identical performance statistics, indicating that ridge, or L2,

regularization of the linear model is not necessary for this data. Lasso, or L1, regularization removed humidity and time

elapsed from the model inputs in 16 of 20 runs, removed temperature in one run, temperature and time elapsed in one run, and290

just time elapsed in two runs. None of these combinations significantly changed the model’s performance compared to LR and

R.

Visual inspection of the scatter plots in Figure 8 shows that all models except the two boosting models, GB and XGB,

severely underpredict the five highest concentrations. Boosting models are known to better predict extreme values in a regres-

sion model. These results suggest that boosting models are a good choice for applications where accurately capturing extreme295

concentrations is critical, such as pollution episode detection.
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Figure 8. Predicted concentration versus reference concentration for TVOC calibration models: linear regression (LR), lasso (L), ridge

(R), random forest (RF), gradient boosting (GB), extreme gradient boosting (XGB), artificial neural network (ANN), and support vector

regression (SVR).

When applied to field data, the models predict similar mean concentrations, within a few parts per billion, but vary more in

their predictions of extreme concentrations (baseline and peak) (Figure 9). For the most part, this variation reflects the models

performance on testing data. For example, LR, L, R, and SVR predict a negative baseline, which is also evident in the testing

data predictions for these models, though less pronounced (Figure 8). The boosting models (GB, XGB) consistently predict the300

highest maximum concentration, which is reflective of these models’ performances in the 95-100th percentile of testing data.

Overall, the models are correlated in their predictions, with correlation coefficients ranging from 0.88 to 1 between each model

(supplemental).

Figure 9. VOC concentration predictions at three field sites for each calibration model: linear regression (LR), lasso (L), ridge (R), random

forest (RF), gradient boosting (GB), extreme gradient boosting (XGB), artificial neural network (ANN), and support vector regression (SVR)
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3.2.2 BTEX calibration

The BTEX calibration models show little variability in performance across different test/train splits, except for data above the305

95th percentile, where RMSE varied more than 5 ppb and MBE varied by more than 3 ppb for all models (Figure 10). Lasso (L)

had the worst performance overall, while the other two linear models (LR, R) show slightly better performance at the highest

percentile and have the best overall RMSE and MBE.

Figure 10. Performance statistics for BTEX calibration models, including overall RMSE (a), RMSE by percentile group (b), overall MBE

(c), and MBE by percentile group (d). The calibration models are linear regression (LR), lasso (L), ridge (R), random forest (RF), gradient

boosting (GB), extreme gradient boosting (XGB), artificial neural network (ANN), and support vector regression (SVR)

SVR shows less overestimation of baseline concentrations (0-25th percentile) than the other models. Comparing this model

to ANN in Figure 10 reveals an important issue regarding overall MBE as a performance statistic. Both models show similar310

bias above the 50th percentile. However, ANN overpredicts lower concentrations (0-50th percentile) much more than SVR. As

a result, ANN has a better overall MBE compared to SVR. This is important to consider because in a practical sense, a model

that shows less overall bias by equally overpredicting the baseline and underpredicting peak values may not be more useful

than a model that accurately predicts baseline concentrations but underpredicts peaks.

Figure 11 shows how the L model predicts far less variability than other models, with few data points predicted above 5 ppb.315

The L1 regularization used in L removed all inputs except TGS 2602, resulting in a poor model. The L2 regularization in R did

not significantly change the model compared to LR.
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Figure 11. Predicted concentration versus reference concentration for BTEX calibration models: linear regression (LR), lasso (L), ridge

(R), random forest (RF), gradient boosting (GB), extreme gradient boosting (XGB), artificial neural network (ANN), and support vector

regression (SVR).

Like TVOC, the mean concentrations predicted at each field site show little variation between models, but variation is higher

when comparing the entire range of data (Figure 12). L consistently has the smallest interquartile range, reflecting the lower

variability predicted in the testing data. At sites 1 and 3, all models except L predict similar maximum concentrations. However,320

at site 2, RF, GB, and XGB predict much lower maximums than LR, R, ANN, and SVR. It is not clear why this inconsistency

is occurring; however, it may indicate issues with transferability of the models for BTEX given their changing behavior across

field sites. Overall, the models are still highly correlated with each other, with correlation coefficients between models at each

field site ranging from 0.89 to 1 (supplementary).

Figure 12. BTEX concentration predictions at three field sites for each calibration model: linear regression (LR), lasso (L), ridge (R), random

forest (RF), gradient boosting (GB), extreme gradient boosting (XGB), artificial neural network (ANN), and support vector regression (SVR)
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3.2.3 NO2 calibration325

Overall, all the NO2 calibration models tend to overpredict concentrations below the 25th percentile and underpredict concen-

trations above the 50th percentile (Figure 13, panel d). However, underprediction of data above the 95th percentile is much less

severe than TVOC and BTEX predictions, likely because the distribution of reference NO2 concentrations is more balanced

than the BTEX and TVOC concentration distributions, resulting in a much smaller range of peak concentrations to predict.

RMSE remains much more consistent across percentiles for NO2 compared to TVOC and BTEX (Figure 13, panel b).330

Figure 13. Performance statistics for NO2 calibration models, including overall RMSE (a), RMSE by percentile group (b), overall MBE

(c), and MBE by percentile group (d). The calibration models are linear regression (LR), lasso (L), ridge (R), random forest (RF), gradient

boosting (GB), extreme gradient boosting (XGB), artificial neural network (ANN), and support vector regression (SVR)

The three linear-based models (LR, L, R) perform poorly for NO2, particularly in the low percentile range of concentrations,

where the models predict negative concentrations (Figure 14). L1 regularization in the L model removes temperature. The

poor performance of L across the high and low percentile ranges compared to LR indicates that all inputs (NO2 target sensor,

temperature, humidity, and time elapsed) are necessary for this calibration.
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Figure 14. Predicted concentration versus reference concentration for NO2 calibration models: linear regression (LR), lasso (L), ridge (R),

random forest (RF), gradient boosting (GB), extreme gradient boosting (XGB), artificial neural network (ANN), and support vector regression

(SVR).

Once again, differences in the field predictions between each model exist mainly in the extreme values (Figure 15). As335

expected from testing data performance, the linear models predict some highly negative concentrations. RF is also consistent

with its testing performance, specifically its baseline overestimation, as it shows the highest minimum concentration for all

three sites. The correlation coefficients between a linear model (LR, R, L) and a non-linear model (RF, GB, XGB, ANN, SVR)

are lower (0.73-0.93) than the correlation coefficients between two linear or two non-linear models (0.89-1) (supplementary).

This is likely because of the unique negative concentrations predicted by the linear models.340

Figure 15. NO2 concentration predictions at three field sites for each calibration model: linear regression (LR), lasso (L), ridge (R), random

forest (RF), gradient boosting (GB), extreme gradient boosting (XGB), artificial neural network (ANN), and support vector regression (SVR)
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3.3 Discussion

Across the three pollutants, the calibration models generally underestimated peak concentrations and overestimated baseline

levels, though the extent of this bias varied with the distribution of the reference data. For TVOC and BTEX, which had more

imbalanced distributions, peak underestimation was more pronounced, likely due to the wider range of high concentrations.

These results highlight the importance of evaluating model performance across the full concentration distribution, rather than345

relying solely on overall metrics. In many cases, biases at the extremes were masked in the overall statistics because the baseline

overestimation and peak underestimation often offset each other around the median, resulting in overall MBE values near zero.

While there was broad variability in model performance across pollutants, some patterns still emerged. For example, our

results also showed nearly identical performance for linear regression (LR) and ridge regression (R) across the three pollutants,

suggesting that L2 regularization was not beneficial for these datasets. Lasso regression also did not lead to improved predictive350

performance for linear regression, especially for BTEX and NO2, where the regularization removed important features for

calibration.

Boosting methods, which are known for their improved ability to handle imbalanced data, reduced the underestimation of

peak concentrations for TVOC. However, for BTEX, linear-based models (LR and R) actually outperformed boosting methods

and other complex machine learning models for both peak concentrations and overall performance. For NO2, the linear models355

performed the worst, especially at baseline concentrations, highlighting that no single model consistently performs best across

all colocation datasets. When applied to field data, the models predicted similar mean concentrations for each site but had more

variability in baseline and peak concentration predictions. Generally, the variability followed patterns evident in the testing

data performance.

We built each calibration model multiple times, with differing test/train splits, to assess the robustness of each model.360

The performance metrics showed some variability, especially in the 95-100th percentile for BTEX and TVOC, based on the

test/train split. This was not surprising, given that the range of concentrations in the 95-100th percentile for the BTEX and

TVOC testing data could vary dramatically depending on the test/train split. These results motivate further study into how data

should be split into testing and training sets to ensure transferability and robustness. At a minimum, we suggest ensuring that

the testing data encompass the full range of concentrations measured during colocation.365

4 Conclusions

Combining the two-step colocation process with a robust evaluation of multiple machine learning models led to satisfactory

calibration of TVOC, BTEX, and NO2 sensors in this study. Our two-step colocation strategy supported model transferability

by ensuring the colocation encompassed more similar environmental conditions than was possible with only a pre- and post-

calibration. We also showed why a two-step colocation is preferable to a universal calibration model, as the harmonization370

step was able to correct for the variability and drift unique to each individual sensor in a network. We found that calibration

model performance is not one-size-fits-all and is affected by the distribution of reference concentrations and the test/train split.

Even for models with little overall bias, percentile-based analysis revealed systemic overestimation of baseline concentrations
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and underestimation of peaks across all eight models: linear regression, lasso, ridge, random forest, gradient boosting, extreme

gradient boosting, artificial neural network, and support vector regression.375
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