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Abstract:	Supporting	stakeholders	with	science-based	decision-making	to	mitigate	and	adapt	5 
to	 climate	 change	 impacts	 is	 a	 central	 mandate	 of	 the	 climate	 research	 community.	 In	
particular,	 mapping	 out	 scenario-dependent	 climate	 risk	 landscapes	 is	 one	 of	 the	 most	
pressing	 challenges.	 Increasingly,	 communities	 and	 regions	 are	 experiencing	 high-impact	
climate	and	weather	extremes	that	arise	from	a	complex	interplay	of	processes	and	events		
acting	across	various	spatial	and	temporal	scales.	To	account	for	these	emerging	trends,	there	10 
is	 a	 growing	 recognition	 that	 both	 climate	 impact	 and	 early	 warning	 research	 needs	 to	
incorporate	risks	from	compound	events	to	better	inform	climate	adaptation	and	mitigation	
efforts.	This	demand	for	more	fine-grained	and	applicable	knowledge gives	rise	to	new	data	
and	 modeling	 needs,	 and	 can	 increase	 uncertainties.	 Consequently,	 new	 methodological	
approaches	and	effective	communication	strategies	are	required	for	making	research	usable	15 
outside	scientific	communities.	In	this	perspective,	we	reflect	on	this	usability	challenge	by	
discussing	 impact	 data	 products,	 early	 warning	 and	 modeling	 capabilities,	 and	
communication	tools,	urging	climate	impact	scientists	to	increasingly	incorporate	usability	
considerations	 in	 their	 research	 to	meet	 the	pressing	demand	 for	usable	 compound	event	
research.	20 
 

0. Introduction		
An	 increase	 in	 more	 impactful	 climate	 and	 weather	 extremes	 is	 a	 direct	 consequence	 of	 global	
warming	 (Intergovernmental	Panel	On	Climate	Change	 (Ipcc)	2023).	Unambiguous	observational	
evidence	 of	more	 frequent	 and	more	 intense	weather	 extremes	has	 emerged	 for	 various	 climate	25 
hazards,	 from	heatwaves	 (Kornhuber	 et	 al.	 2024;	Perkins-Kirkpatrick	 and	Lewis	2020),	 to	heavy	
rainfall	 (Robinson	et	 al.	 2021;	Fischer	 and	Knutti	2016)	 and	 floods	 (Slater	 et	 al.	 2021),	droughts	
(Chen	et	al.	2025)	and	wildfire	conditions	(Jones	et	al.	2022)	—	a	trend	that	is	consistent	with	our	
understanding	of	how	the	Earth’s	climate	system	responds	to	increasing	greenhouse	gas	emissions.	
These	changes	contribute	to	increasing	interactions	between	climate	hazards	and	extremes,	through	30 
physical	 processes	 and	 from	 mere	 stochastic	 reasons	 driven	 by	 rising	 event	 frequencies.	 Thus,	
climate	change	increasingly	leads	to	situations	where	the	impacts	of	multiple	climate	hazards	can	be	
amplified	beyond	the	sum	of	single	hazard	impacts	(Messori	et	al.	2025;	Ridder	et	al.	2022).	Under	
these	conditions,	the	assumption	that	single	climate	hazards	act	independently	when	assessing	their	
impacts	is	increasingly	inaccurate	(Touma	et	al.	2022;	Sarhadi	et	al.	2018).	In	particular,	climate	risk	35 
assessment	frameworks	in	the	private	and	public	sector	need	to	consider	the	interconnectedness	of	
increasingly	compounding	weather	events,	which	is	not	a	routine	exercise	to	date	(Dolk	et	al.	2023).	
Doing	so	could	avoid	 the	underestimation	of	 some	climate	 risks,	 and	some	of	 the	most	 impactful	
events	could	be	better	anticipated.	Fully	accounting	for	often	complex	hazard	and	impact	dynamics,	
however,	is	not	a	trivial	exercise.	40 
		
Compound	event	research	has	emerged	as	a	new	perspective	in	climate	and	environmental	science	
over	the	past	two	decades	(Field	et	al.	2012;	Brett	et	al.	2024),	recognizing	that	for	a	comprehensive	
understanding	of	the	climate	risk	landscape	the	full	range	of	spatio-temporal	hazard	dynamics	needs	
to	be	taken	into	account	(Zscheischler	et	al.	2018;	Raymond,	Horton,	et	al.	2020).	Compound	events	45 
‘emerge	 from	 the	 combination	 of	 multiple	 drivers	 and/or	 hazards	 that	 contribute	 to	 societal	 or	
environmental	risks’	(Intergovernmental	Panel	On	Climate	Change	(Ipcc)	2023;	Zscheischler	et	al.	
2020).	A	compound	event	perspective	therefore	goes	beyond	former	risk-concepts	in	which	climate	
impact	 drivers	 are	 assumed	 to	 act	 independently	 from	 each	 other.	 Categorized	 by	 the	 three	
dimensions	over	which	climate	impacts	unfold:	space,	time,	and	impact	drivers,	 four	categories	of	50 
compound	events	have	been	defined	(Zscheischler	et	al.	2020;	Bevacqua	et	al.	2021):	i.	Multivariate	
events	 describe	 co-located,	 simultaneous	 drivers	 or	 hazards	 resulting	 in	 amplified	 impacts.	 ii.	
Spatially	compounding	events	describe	events	where	impacts	result	from	multiple	spatially	separated	
events	that	co-occur	within	a	restricted	time	window.	iii.	Temporally	compounding	events	refer	to	the	
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sequential	occurrence	of	hazards	within	the	same	region	and	within	a	specific	time	window.	Lastly,	55 
iv.	preconditioned	 events	 refer	 to	 situations	 in	which	prior	 climatic	 conditions	 set	 the	 stage	 for	 a	
hazard	 to	 unfold.	 For	 example,	 extensive	wildfires	 that	 expose	 hillsides	 to	 erosion	 and	 scald	 the	
ground,	 followed	by	 intense	rain,	constitute	a	preconditioned	event	(Touma	et	al.	2022).	 In	 these	
situations,	 water	 cannot	 be	 absorbed	 in	 the	 hydrophobic	 soils,	 increasing	 the	 risk	 of	 floods	 and	
mudslides.	60 
	
Complex	risks	 from	compounding	 factors	have	been	described	by	other	terms	in	related	contexts	
(Simpson	et	al.	2021).	Multi-hazards,	for	instance,	consider	the	full	range	of	hazards,	climate	impact	
drivers	as	well	as	non-climatic	hazards	(e.g.	geological	hazards	such	as	earthquakes	and	landslides	
or	biological	hazards	such	as	epidemics).	Complex	risk	on	the	other	hand	is	an	overarching	term	that	65 
also	considers	sectoral	dependencies	across	different	societal	systems,	allowing	for	the	investigation	
of	 shock	 cascades	 (e.g.	 impacts	 on	 the	 electricity	 grid	 and	 financial-,	 health-	 or	 food	 systems)	
(Simpson	et	al.	2021;	Kruczkiewicz	et	al.	2021).	Such	relationships	have	also	been	discussed	in	the	
contexts	of	Systemic	Risk	frameworks	(ISC-UNDRR-RISK	KAN	Briefing	Note	on	Systemic	Risk	2022)	and	
Connected	Extremes	(Raymond,	Horton,	et	al.	2020),	in	recognition	that	human	responses	to	one	type	70 
of	hazard	can	amplify	the	risk	from	another	(Simpson	et	al.	2021).	In	this	perspective	we	focus	on	
Compound	 Events	 from	 interacting	 weather,	 climate	 and	 environmental	 hazards,	 while	
acknowledging	that	the	other	terms	and	concepts	carry	value	in	their	respective	contexts.		
	
Compound	 events	 research	 is	 strongly	motivated	 by	 the	 potential	 for	 harmful	 consequences	 for	75 
societal	 and	 environmental	 systems.	 Due	 to	 often	 complex	 hazard	 and	 impact	 dynamics,	 these	
harmful	consequences	can	occur	unexpectedly,	especially	when	new	hazard	combinations	emerge	
due	to	climate	change	(see	e.g.	(Ramos	et	al.	2023).	Sectors	at	risk	include	infrastructure	and	urban	
resilience	(Hemmati	et	al.	2022),	agriculture	(Kornhuber	et	al.	2023;	Lesk	et	al.	2022),	water	and	
ecosystem	management	(Lian	et	al.	2025),	and	biodiversity	conservation,	public	health	(Raymond,	80 
Matthews,	 et	 al.	 2020;	 Rogers	 et	 al.	 2021),	 energy	 systems	 (Lesk	 and	 Kornhuber	 2022),	 and	
particularly	globally	interconnected	networks	such	as	food	systems	(Kornhuber	et	al.	2020;	Lesk	et	
al.	 2021),	 transport,	 trade	and	 supply	 chains,	 and	 the	 insurance	and	 financial	 sectors	 (Dolk	et	 al.	
2023;	Singh	et	al.	2023).	A	better	understanding	of	the	intricate	interconnections	of	climate	hazards,	
coupled	with	a	 frictionless	 integration	of	knowledge	 into	early	warning	systems	(Reichstein	et	al.	85 
2025;	Kruczkiewicz	et	al.	2021)	and	climate	adaptation	and	mitigation	processes	(Field	et	al.	2012;	
Raymond,	 Horton,	 et	 al.	 2020),	 carries	 the	 potential	 for	 a	 reduction	 of	 climate	 risks	 and	 their	
associated	societal	harm.		
	
Bridging	science	and	practice	has	long	been	identified	as	a	challenge	within	climate	science	(Brett	et	90 
al.	2025).	Recently,	questions	about	scientific	usability	were	raised	to	foster	introspection	about	how	
constrained	 time	 and	 budget	 capacities	 in	 academia	 can	 be	 best	 invested	 given	 the	 reality	 of	 an	
unfolding	and	escalating	climate	emergency	(Coen	and	Sobel	2022).	Sobel	&	Cohen	(Coen	and	Sobel	
2022)	 argue	 that	 a	 lack	 of	 scientific	 evidence	 is	 often	 not	 a	 limiting	 factor	 in	 ongoing	 efforts	 to	
mitigate	global	warming	and	that	scientific	efforts	should	be	steered	towards	adaptation	research	95 
instead	of	blue-sky	fundamental	research.	In	essence,	‘usable	climate	science	is	adaptation	science’	
(Sobel	2021).		
	
While	agreeing	with	the	premise	of	this	argument,	we	propose	that	usable	adaptation	is	reliant	on	
accurate	 climate	 risk	 estimates	 which	 in	 turn	 are	 only	 useful	 if	 based	 on	 a	 sufficiently	 mature	100 
understanding	of	the	physical	processes	and	statistics	of	high	impact	-	often	compound	events	-	in	a	
warming	world.	Due	 to	 the	 inherent	 complexity	 of	 compound	 events	 and	 their	 impacts-focussed	
nature,	 a	 multitude	 of	 disciplines	 are	 required	 to	 explore,	 understand,	 and	 model	 risks	 from	
compound	events,	including	characterizing	exposure	and	vulnerability	dimensions.	Understanding	
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physical	processes	 relies	on	expertise	 in	various	components	of	 the	weather	and	climate	 system,	105 
including	 atmospheric	 and	 climate	 dynamics,	 meteorology,	 oceanography,	 vegetation	 and	 land-
process	 science,	 cryosphere,	 forestry,	 and	 agriculture.	 Next	 to	 physical	 processes,	 the	 rarity	 and	
complexity	 of	 climate	 extremes	 require	 advanced	 statistics,	 as	 well	 as	 reliable	 data	 from	 earth	
observations	 and	 regional	 and	 global	 climate	 models.	 Finally,	 hazards	 are	 only	 one	 of	 the	
determinants	of	risk:	vulnerability	and	exposure	dynamics	are	challenging	to	quantify,	and	require	110 
other	 disciplines	 including	 geography,	 social	 sciences	 and	 disaster	 risk	management	 perspective	
(Raymond,	Horton,	et	al.	2020;	Simpson	et	al.	2021;	Rusca	et	al.	2021).	Thus,	fundamental	research	
in	multiple	disciplines	is	needed	to	effectively	map	out	the	dynamical	properties	of	a	more	complex	
climate	risk	landscape	associated	with	compound	events.	
	115 
This	perspective	reflects	on	usability	aspects	of	major	pillars	of	compound	event	research,	impact	
data,	early	warning,	modelling	and	uncertainty	with	a	dual	purpose:	to	provide	usability	guidelines	
for	 the	 research	 community	 and	 a	 manual	 for	 end-users	 to	 better	 understand	 challenges	 and	
limitations.	 In	 the	 first	 section,	we	 find	 that	Socioeconomic	and	 environmental	 impact	 data	 lack	 a	
common	standard	or	are	not	freely	available,	inhibiting	comprehensive	compound	event	databases	120 
that	would	allow	for	generating	usable	impact	specific	damage	functions.	In	the	second	section	on	
Prediction	and	early	warning	of	compound	events,	we	propose	that	truly	usable	early	warning	systems	
need	to	incorporate	compound	events	to	avoid	blindspots.	In	section	three	Modeling	and	projecting	
compound	events,	we	reflect	on	compound	event	specific	challenges	when	modelling	extremes	at	high	
resolution.	In	the	final	section	we	address	Uncertainty	in	compound	event	projections	with	a	focus	on	125 
storyline	 approaches.	 We	 close	 with	 a	 synopsis	 on	 overarching	 challenges	 and	 a	 set	 of	
recommendations	for	aligning	compound	events	research	with	a	usability	perspective.	

1. Socioeconomic	and	environmental	impact	data		
Effectively	 mitigating	 the	 risks	 from	 compound	 events	 requires	 a	 deep	 understanding	 of	 their	
potential	impact	on	different	socioeconomic	and	environmental	sectors.	Impact	datasets	often	stand	130 
at	the	beginning	of	establishing	robust	relationships	between	compound	events	and	impacts	as	they	
provide	a	record	of	historical	event–damage	combinations.	Damage	functions	constitute	statistical	
relationships	between	cause	(the	event	type)	and	effect	(the	damage	on	a	specific	sector)	and	are	
fundamental	for	projecting	and	forecasting	potential	damages	from	compound	events	(Hagenlocher	
et	al.	2023;	Hobeichi	et	al.	2022)	for	the	purpose	of	adaptation	and	early	warning.	Impact	datasets	135 
and	damage	functions	are	therefore	essential	 for	the	usability	of	compound	event	science	as	they	
help	build	bridges	between	academic	knowledge	and	the	end-user	application.	Thus,	reliable	impact	
datasets	can	be	equally	important	as	a	good	understanding	of	compound	event	dynamics	in	providing	
damage	outlooks.		
	140 
While	a	wide	range	of	impact	datasets	exists	(e.g.	EM-DAT,	Desiventar,	see	Table	1),	there	are	several	
factors	 that	 make	 it	 challenging	 to	 identify	 usable	 connections	 between	 compound	 events	 and	
damages.	Here	we	describe	three	main	challenges	that	go	beyond	the	well	known	general	issues	of	
hazard	bias,	temporal	bias,	threshold	bias,	accounting	bias,	geographic	bias,	and	systemic	bias	(Gall	
et	al.	2009),	questionable	quality	of	impact	data	(Moriyama	et	al.	2018;	Panwar	and	Sen	2020),	and	145 
data	gaps	(Jones	et	al.	2022).	
	
First,	events	 listed	 in	these	databases	are	often	not	described	in	their	 full	complexity	of	events	 in	
impact	databases,	particularly	the	interactions	between	different	hazards	(Gill	and	Malamud	2014;	
AghaKouchak	et	al.	2021;	Niggli	et	al.	2022;	De	Brito	2021).	High	impact	events	are	often	caused	by	150 
multiple	coincident	drivers.	For	example,	tropical	cyclones	cause	damage	with	high	wind	speeds	as	
well	as	flooding	from	heavy	precipitation	and	storm	surges.	Impacts,	such	as	casualties	and	economic	
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damages,	however,	are	rarely	attributed	to	combinations	of	multiple	impact	drivers	but	rather	to	a	
main	 impact	 driver.	 Most	 existing	 open	 impact	 datasets	 often	 cover	 only	 specific	 hazard	 types,	
regions,	and	impact	categories	(see	Table	1	for	examples).	A	well-known	exception	is	the	EM-DAT	155 
database	where	events	can	include	multiple	hazard	types	and	which	has	been	used	for	multi-hazard	
analyses.	(Lee	et	al.	2024)	studied	the	various	combinations	of	natural	hazard	types	in	the	events	and	
classified	 them	 into	 single-hazard	events	or	one	of	 the	 four	 compound	event	 types	 (multivariate,	
preconditioning,	 spatially	 compounding	 and	 temporally	 compounding).	 The	 results	 show	 that	
approximately	19%	of	the	disasters	recorded	in	EM-DAT	can	be	classified	as	multi-hazard	events.	160 
However,	 (Jäger	 et	 al.	 2025)	 found	 that	multi-hazard	 events	 are	 also	 often	 reported	 as	multiple	
separate	single-hazard	events	in	EM-DAT	suggesting	a	higher	percentage	of	multi-hazard	events	than	
reported	 and	 pointing	 to	 a	 lack	 of	 multi-hazard	 information	 in	 EM-DAT.	 More	 detail	 in	 impact	
reporting,	 especially	 including	 information	 about	 different	 contributing	 hazards,	 is	 needed	 to	
disentangle	the	specifics	of	impact	drivers	e.g.	(Calvello	and	Pecoraro	2018;	Crozier	2017).	165 
	
Second,	impact	datasets	are	often	biased	towards	very	high-impact	acute	events,	whereas	small-scale	
“nuisance”	events	may	remain	underreported.	For	example,	EM-DAT	only	reports	events	above	a	
certain	impact	threshold	(Delforge	et	al.	2025).		Nevertheless,	temporally	compounding	small-scale	
events	can	result	in	a	constant	stream	of	local	losses	without	adequate	recovery	time	between	events,	170 
therefore	resulting	in	substantial	losses	for	the	region	(De	Ruiter	et	al.	2020;	Van	Der	Wiel	et	al.	2020;	
Brennan	and	Danielak	2022;	Moftakhari	et	al.	2017).	In	addition,	existing	databases	typically	do	not	
account	for	slow-onset	or	long-lasting	impacts,	such	as	those	from	drought,	which	may	be	felt	long	
after	the	peak	of	the	physical	hazard	(Erian	et	al.,	2021)	and	can	precondition	and	amplify	impacts	
from	other	hazards	(Gill	and	Malamud	2014).		175 
	
Third,	 inconsistent	 or	 incomplete	 information	 on	 the	 temporal	 and	 spatial	 characteristics	 of	 the	
reported	events	(e.g.,	(Jäger	et	al.	2025))	can	hinder	building	robust	connections	between	event	types	
and	damages.	Spatial	information	is	provided	in	various	forms,	for	instance,	cities,	natural	features	
(e.g.,	the	Alps),	administrative	divisions,	whole	countries,	or	geographical	areas	without	clear	formal	180 
boundaries.	Yet,	climate	events	do	not	follow	political	boundaries	and	the	impacts	of	events	often	
extend	beyond	the	region	they	affect.	Similarly,	temporal	specifications	for	events	in	the	same	hazard	
category	 can	 be	 assigned	 a	 date	 range	 in	 days,	 months,	 or	 years,	 or	 only	 a	 starting	 date.	 These	
inconsistencies	 limit	 the	 derivation	 of	 relationships	 between	 impacts	 and	 climate	 anomalies,	 in	
particular	 for	compound	events	where	these	characteristics	are	essential	 for	differentiating	event	185 
types.		
	
To	address	the	challenges	described	above	and	develop	socioeconomic	and	environmental	impact	
datasets	that	are	usable	for	compound	events	research,	efforts	must	focus	on	standardization,	data	
assimilation,	and	 integration,	along	with	a	more	nuanced	characterization	of	events	that	captures	190 
their	complexity.	A	shift	in	perspective	is	needed	regarding	data	collection	and	structuring,	including	
the	 consideration	 of	 amplified	 impacts	 generated	 by	 compound	 events.	 Rather	 than	 collecting	
information	about	multiple	hazards	and	impacts	individually,	which	can	result	in	the	loss	of	critical	
interconnections,	records	need	to	be	linked	in	a	standardized	and	comprehensive	way.		
	195 
A	promising	example	is	the	LAND-deFeND	database	(Napolitano	et	al.	2018),	which	allows	for	storing	
multiple	nature-related,	human-related,	geospatial-related,	and	information	source-related	entries	
to	comprehensively	describe	geo-hydrological	events.	Another	promising	example	is	the	multi-risk	
database	 by	 (Dallons	 Thanneur	 et	 al.	 2025),	 which	 explicitly	 documents	 possible	 interactions	
between	hazards,	their	characteristics	and	detailed	impacts	for	events	related	to	rockfall,	landslides,	200 
snow	 avalanches,	 hydrological	 and	 glacial	 hazards	 in	 the	 French	 Alps.	 Lastly,	 newspaper	 based	
databases	are	also	useful	even	if	they	are	biased	towards	urban	areas.	An	example	of	it	is	the	Disaster	
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Database	 for	 Portugal	 which	 includes	 hydro-geomorphologic	 cases	 (floods	 and	 landslides)	 that	
generated	human	damages	in	Portugal	since	1865	(Pereira	et	al.	2018).	
	205 
In	addition,	overviews	 that	merge	 the	 information	 from	multiple	datasets	across	a	wide	 range	of	
hazards,	following	the	example	set	by	(Lindersson	et	al.	2020),	are	useful	to	understand	and	address	
the	challenges	associated	with	their	use.	Some	important	steps	towards	standardization	have	also	
already	been	taken	by	the	Centre	for	Research	on	the	Epidemiology	of	Disasters	(CRED)	and	other	
stakeholders	 to	 develop	 a	 standardised	 disaster	 category	 classification	 system	 and	 the	 GLobal	210 
IDEntifier	 (GLIDE)	 number	 attempts	 to	 enable	 unique	 identification	 of	 events	 across	 databases	
(Nishikawa	2003).	
	
There	is	a	need	for	improved	impact	and	hazard	datasets,	with	global	coverage	and	high	temporal	
and	spatial	resolution,	covering	multi-hazards	and	multi-impacts	across	different	sectors	to	support	215 
usable	risk	assessments.	To	be	 fit	 for	purpose,	we	argue	 that	addressing	 this	challenge	requires	a	
multi-faceted	 approach,	 including	 three	 avenues:	 (1)	 improved	 open	 and	 collaborative	 data	
infrastructure,	 (2)	employing	novel	data	 sources,	 and	 (3)	better	 leveraging	of	 existing	data	using	
statistical	methods	that	have	already	proven	useful	for	other	applications	(Fig.1).		
State	institutions,	governments,	and	international	organizations	should	work	towards	streamlining	220 
their	data	collection	and	implementing	data	collection	infrastructure	to	improve	global	coverage	and	
help	close	the	climate	impact	data	gap	(Osuteye	et	al.	2017).	It	is,	however,	important	to	note	that	
increased	access	and	availability	of	data	from	Global	South	countries	should	be	utilized	ethically,	with	
efforts	 made	 to	 meaningfully	 engage	 and	 collaborate	 with	 local	 scientists,	 facilitate	 resource	
investments	 in	 local	 institutions,	credit	contributions	 from	 local	 researchers	and	 institutions,	and	225 
support	 capacity	 building	 (Serwadda	 et	 al.	 2018).	 In	 addition,	 corporate	datasets	 should	become	
openly	 accessible	 for	 scientific	 research	 to	 be	 truly	 usable	 	 (UNDRR	 2024:	
https://www.undrr.org/explainer/uncounted-costs-of-disasters-2023).	 In	 particular	 those	 impact	
data	 sets	 that	 provide	 information	 on	 financial	 and	 insurance	 impacts	 of	 natural	 hazards,	 are	
corporate	 intellectual	 property	 and	 therefore	 often	 not	 freely	 accessible	 for	 climate	 impact	230 
researchers	 and	 decision	makers	 (see	 Table	 1	 for	 examples).	 This	 lack	 of	 access	 to	 impact	 data	
hinders	the	public	and	equitable	use	of	information	that	could	be	used	to	adapt	to	climate	hazards	
and	 advance	 climate	 science	 (see	 comment	 in	 New	 York	 Times	 by	 Justin	 Mankin: 
https://www.nytimes.com/2024/01/20/opinion/climate-risk-disasters-data.html).	
	235 

A	concrete	avenue	for	increasing	the	quantity	of	impact	data	involves	exploring	novel	data	sources	
and	developing	advanced	methods	for	collecting	impact	information.	For	example,	natural	language	
processing	 techniques	have	predominantly	been	applied	 to	univariate	hazard	 types,	but	 could	be	
applied	 to	 compound	 events	 as	 well:	 automated	 data	 extraction	 from	 text	 has	 been	 utilized	 for	
estimating	the	impacts	of	droughts	(Sodoge	et	al.	2023),	floods	(Madruga	De	Brito	et	al.	2025),	as	well	240 
as	 for	building	 global,	 spatiotemporally	 referenced,	multi-hazard	 impact	databases	Using	LLMs	 to	
Build	 a	 Database	 of	 Climate	 Extreme	 Impacts	 (Li	 et	 al.	 2024).	 Another	 notable	 area	 of	 interest	 is	
opportunistic	sensing.	For	example,	data	from	ubiquitous	technologies,	such	as	Waze	(a	navigation	
app	with	live	traffic	information),	can	be	utilized	to	rapidly	identify	flooded	areas	(Lowrie	et	al.	2022;	
Yuan	et	al.	2023),	while	analyzing	credit	card	transactions	can	provide	insights	into	spatial	patterns	245 
of	disaster	impacts	and	recovery	duration	(Yuan	et	al.	2022),	and	nighttime	light	satellite	data	can	be	
used	to	assess	changes	in	economic	activity	and	recovery	(Qiang	et	al.	2020;	Barton-Henry	and	Wenz	
2022).	Social	media	data	can	also	be	used	to	assess	the	impacts	of	individual	and	compound	hazards.	
For	example,	(Moore	and	Obradovich	2020),	used	social	media	data	to	estimate	county-level	flooding.	
Such	an	approach	could	also	be	applied	to	source	impact	data.	Lastly,	citizen	science,	such	as	people	250 
submitting	 observation	 reports	 with	 descriptions	 and	 photos	 of	 drought	 impacts	
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(https://www.drought.gov/data-maps-tools/condition-monitoring-observer-reports-drought-
cmor-drought),	has	potential	a	valuable	source	for	impact	data	(e.g.,	(Walker	et	al.	2024)).	 

	
Finally,	as	a	timely	and	pragmatic	solution,	statistical	techniques	can	be	applied	to	currently	available	255 
impact	datasets	to	provide	additional	information.	For	example,	statistical	techniques	can	be	applied	
to	 fill	 data	 gaps.	 (Jones	 et	 al.	 2023)	 provide	 an	 overview	 of	 studies	 attempting	 imputation	 and	
augmentation	 techniques	 to	 fill	 data	 gaps	 in	 EM-DAT,	 however,	 the	 authors	 note	 that	 these	
approaches	“were	commonly	ad-hoc	with	 little	statistical	basis.”	Other	studies	 focus	on	extending	
impact	 datasets	 with	 additional	 information.	 For	 example,	 (Tschumi	 and	 Zscheischler	 2020)	260 
investigated	countrywide	climate	 features	associated	with	disasters	 in	EM-DAT	and	(Rosvold	and	
Buhaug	2021)	geo-coded	information	from	EM-DAT	into	a	new	GDIS	data	set	to	improve	usability.	
(Jäger	et	 al.	2025)	 combined	GDIS	and	EM-DAT	and	developed	an	algorithm	 to	 identify	potential	
multi-hazard	events	and	their	impacts	based	on	spatio-temporal	relationships	between	individual	
disaster	records.	Moreover,	impacts	may	be	estimated	and	gaps	may	be	filled	using	impact	domain	265 
or	sector-specific	models,	 for	 instance,	(Wang	et	al.	2019)	applied	a	mathematical	model	 for	road	
networks	 to	 estimate	 large-scale	 road	 disruptions	 due	 to	 floods,	 an	 approach	 that	 could	 also	 be	
employed	 for	 other	 types	 of	 infrastructure	 and	 multiple	 hazards.	 Of	 course,	 such	 an	 approach	
requires	substantial	knowledge	about	the	hazard(s)	in	question,	which	might	not	always	be	available.	
 270 
Table 1. Selected examples of impact datasets and relevant attributes.  
 

Dataset Name Dataset Type Publisher Open Link / 
Reference 

Emergency Events 
Database (EM-DAT) 

Multi-hazards 
disaster impacts 
database 

Centre for 
Research on the 
Epidemiology of 
Disasters (CRED) 

Yes EM-DAT: 
https://www.emd
at.be (Delforge 
et al. 2025) 
 
11.11.25 
11:27:00 

International Flood 
Network (IFNet) 

Flood impact 
database 

IFNet Yes IFNet: 
http://www.inter
nationalfloodnet
work.org 

Historical Analysis of 
Natural HaZards in Europe 
(HANZE) 

Flood impact 
database 

- Yes (Paprotny et al. 
2018; 2024) 

Database of Flood 
Fatalities from the Euro-
Mediterranean region 
(FFEM-DB) 

Flood impact 
database 

- Yes (Papagiannaki 
et al. 2022) 

Dartmouth Flood 
Observatory Archive 

Flood impact 
database 

Dartmouth College Yes Dartmouth 
Flood 
Observatory: 
https://floodobse
rvatory.colorado.
edu 
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U.S. Drought Impact 
Reporter 

Drought impact 
database 

National Drought 
Mitigation Center 

Yes U.S. Drought 
Impact 
Reporter: 
https://www.dro
ught.gov/data-
maps-
tools/drought-
impact-
reporter-dir 

European Drought Impact 
Report Inventory 

Drought impact 
database 

European 
Commission 

Yes European 
Drought Impact 
Report 
Inventory: 
https://europeand
roughtcentre.co
m/news/europea
n-drought-
impact-report-
inventory-edii-
and-european-
drought-
reference-edr-
database/ 

NatCatService Corporate multi-
hazard disaster 
impact database 

Munich Re No NatCatService: 
https://www.mu
nichre.com/en/so
lutions/for-
industry-
clients/natcatserv
ice.html 

Sigma Explorer Multi-hazards 
disaster impacts 
database 

Swiss Re No Sigma: 
https://www.swi
ssre.com/institut
e/research/sigma
-research.html 

PERILS Compilation of 
multi-hazard 
exposure and 
loss data from 
insurance 
companies 

PERILS No PERILS: 
https://www.peri
ls.org 
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 275 
Figure 1. Steps towards usable socioeconomic and environmental impact data for compound 
events research. From comprehensive datasets to improved process understanding, modeling, 
projections, and early warning of compounding hazards. 
 

2. Prediction	and	early	warning	of	compound	events	280 

The	impacts	of	extreme	weather	events	can	be	mitigated	through	early	responses	from	emergency	
services,	 communities,	 local	 authorities,	 and	 individuals,	 which	 are	 in	 turn	 dependent	 on	 the	
availability,	 quality,	 and	 successful	 communication	 of	 local	 hydrological	 and	 weather	 forecasts,	
impact	forecasts	(where	available),	and	early	warning	systems	(Golding	2022;	WMO	2023).	In	2022,	
the	United	Nations	 launched	the	Early	Warnings	 for	All	 initiative	 to	build	and	expand	capacity	 to	285 
enable	access	to	early	warnings	for	everyone	by	2027	to	minimize	risks	from	future	climate	hazards.	
Improving	 early	 warnings	 on	 various	 predictive	 timescales	 can	 be	 achieved	 by	 considering	 the	
complex	interconnections	between	hazards	and	their	drivers,	together	with	knowledge	of	direct	and	
indirect	impacts.		
	290 
The	 current	 ability	 of	 early	warning	 systems	 to	provide	 adequate	warnings	 for	 extreme	weather	
events,	including	compound	events,	strongly	depends	on	the	hazard(s)	in	question	(Golding	2022;	
UNDRR	2022a),	 the	 location	of	the	event	(Judt	2020),	the	 lead-time	required	by	the	user,	and	the	
ability	to	translate	hazards	into	impacts	through	impact	forecasting	(Shyrokaya	et	al.	2024),	among	
other	 factors.	 In	 particular,	 impact	 forecasting	 in	 a	multi-hazard	 context	 has	 been	 recognized	 as	295 
essential	for	effective	response	measures	(WMO	2015),	yet	the	field	still	faces	a	number	of	challenges.	
With	many	 hazards	 exhibiting	 increasing	 trends	 due	 to	 factors	 including	 the	 greater	 energy	 and	
moisture	capacity	of	a	warming	atmosphere,	changing	seasonality,	and	changes	 in	dynamics	(e.g.,	
(Rogers	et	al.	2022)),	certain	previously	rare	or	unknown	hazard	combinations	have	become	much	
more	probable	(Messori	et	al.	2025),	challenging	established	univariate	warning	systems.	Further,	300 
interactions	between	certain	hazards	may	not	be	well	understood	or	considered	 in	existing	early	
warning	systems,	such	as	compounding	risk	from	tropical	cyclone–extreme	heat	combinations	that	
have	emerged	in	recent	years	(Matthews	et	al.	2019).	Challenges	and	potential	solutions	for	early	
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warning	 systems	 for	 compound	 events	 are	 illustrated	 in	 Figure	 2	 and	 discussed	 throughout	 this	
section.	305 
	
Early	 warning	 systems	 for	 compound	 events	 face	 specific	 challenges.	 For	 example,	 due	 to	 the	
relatively	short	lead	time	of	operational	forecasts	of	approximately	one	week,	certain	preconditioned	
or	temporally	compounding	events	may	not	be	predictable	before	the	first	event	has	occurred,	such	
as	multiple	floods	in	the	same	location	over	several	months.	Knowledge	of	the	second	event	could	310 
impact	holistic	risk	assessments,	alter	preparations	that	might	otherwise	be	taken	for	the	first	event	
in	 isolation,	 and	 inform	 disaster	 response	 resources	 and	 strategies	 that	 might	 be	 impacted	 by	
successive	 events.	 However,	 an	 understanding	 of	 the	 historical	 dependence	 structures	 and	 the	
temporal	relationships	between	specific	hazards,	their	local	and	remote	physical	drivers,	and	how	
these	relationships	may	have	already	changed	in	a	non-stationary	climate	can	provide	predictability	315 
on	 subseasonal-to-seasonal	 scales	 (Golding	 2022).	 For	 instance,	 the	 knowledge	 that	 natural	
variability	modes	 such	 as	 the	 El	Niño-Southern	Oscillation	 can	 lead	 to	 simultaneous	 droughts	 in	
multiple	regions	(Singh	et	al.	2021;	2022)	can	be	used	to	forecast	food	shortages	or	food	insecurity	
on	seasonal	timescales,	which	can	inform	the	allocation	of	food	aid	and	humanitarian	resources.	With	
such	anticipation,	coordinated	preparation	and	response	plans	could	be	developed.	A	well-developed	320 
multi-hazard	warning	system	could	 incorporate	 information	about	the	effects	of	recent	events	on	
physical	systems	(e.g.	preconditioning)	or	on	human	systems	(e.g.	response	capacity)	to	refine	risk	
assessment	and	communication.		
	
Opportunities	exist	 to	develop	 low-cost,	but	 limited,	multi-hazard	warning	systems	by	combining	325 
existing	warning	products.	The	harmonization	of	multiple	hazard	warning	systems	is	a	crucial	step	
when	deciding	where	 to	deploy	 limited	emergency	response	resources,	or	when	shaping	a	single	
warning	 message	 that	 acknowledges	 the	 potentially	 conflicting	 responses	 required	 of	 multiple	
hazards.	For	example,	in	March	2021	in	the	southeastern	United	States,	tornado	warnings	advised	
people	to	seek	shelter	in	basements	to	provide	protection	from	flying	debris,	but	the	advice	did	not	330 
appear	to	consider	simultaneous	forecasts	for	flash	flooding,	whereby	people	are	typically	advised	to	
move	to	higher	ground	to	avoid	the	hazard	(Henderson	et	al.	2020;	First	et	al.	2022).	Compound	event	
early	warning	systems	should	consider	the	risks	associated	with	such	coinciding	hazards	along	with	
responses	that	will	likely	differ	for	coinciding	hazards	relative	to	responses	for	individual	hazards.	
Substantial	expert	input	would	likely	be	needed	for	this	delicate	and	context-specific	task	(Merz	et	335 
al.	2020).	
	
Forecast	 uncertainty	 can	 come	 from	 many	 factors,	 including	 data	 quality,	 human	 judgment,	
limitations	of	NWPs	 for	certain	univariate	hazards,	and	varying	prediction	skill	across	compound	
event	components	(Rennie	et	al.	2021;	Henderson	et	al.	2023;	Porras	et	al.	2021).	Uncertainty	can	be	340 
quantified	through	verification	methods	to	support	decision	making,	but	this	is	likely	to	be	difficult	
to	 homogenize	 across	 compound	 event	 types,	 forecast	 quality	 metrics,	 and	 prediction	 type	 (i.e.,	
deterministic	versus	probabilistic).	By	their	own	nature,	distinct	event	types	in	different	locations	
require	 different	 verification	 tools,	 with	 time	 aggregations	meaningful	 to	 users	 (Domeisen	 et	 al.	
2022).	Appropriate	verification	methods	 for	 compound	events	are	 largely	unexplored	and	would	345 
require	novel	skill	measures,	forecast	timescales,	and	calibration	techniques,	specifically	adapted	for	
forecasts	of	multivariate	extremes,	as	well	as	suitable	sample	sizes	to	address	sampling	uncertainties	
(Coelho	et	al.	2019).	These	verification	methods	need	to	be	designed	to	build	knowledge	about	the	
strengths	 and	 weaknesses	 of	 forecasts,	 and	 eventually	 increase	 confidence	 in	 compound	 event	
forecast	products	and	applications	(Goddard	et	al.	2015;	White	et	al.	2022).	350 
	
Improvements	 in	 existing	 forecasting	 capabilities	 can	 potentially	 enhance	 compound	 event	
prediction	opportunities.	The	combination	of	dynamical-	and	data-driven	forecasts,	as	well	as	large	
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ensemble	probabilistic	forecasts	(Maier-Gerber	et	al.	2021)	and	subseasonal-to-seasonal	forecasts	
(White	et	al.	2022),	are	promising	tools	to	predict	extreme	events	on	longer	forecasting	timescales	355 
(Domeisen	 et	 al.	 2022).	 Current	 dynamical	 models	 can	 be	 additionally	 improved	 by	 resolving	
processes,	 whereby	 spatial	 resolution	 is	 increased	 to	 avoid	 parameterization	 (Judt	 2020).	 The	
propagation	 of	 errors	 is	 also	 important	 (Judt	 2020;	 Golding	 2022),	 especially	 with	 the	 different	
temporal	and	spatial	scales	involved	in	compound	events.	One	potential	method	of	error	reduction	
for	 compound	 events	 is	 via	 multivariate	 post-processing	 of	 numerical	 models,	 to	 preserve	 the	360 
dependency	between	variables	requiring	bias	adjustment	(see	section	3	and	(Vrac	and	Friederichs	
2015)).	Additional	opportunities	for	forecast	improvement	arise	from	recent	advances	in	artificial	
intelligence	 (AI)	 based	 weather	 forecasting	 models,	 such	 as	 ECMWF’s	 Artificial	 Intelligence	
Forecasting	System	(AIFS)	(Lang	et	al.	2024),	Pangu-Weather	(Bi	et	al.	2023),	and	GraphCast	(Lam	et	
al.	2023),	however,	further	development	is	required.	After	testing	four	different	AI	forecasts	of	a	high-365 
impact	weather	event,	(Charlton-Perez	et	al.	2024)	note	that	while	the	AI	models	showed	promise	
compared	 to	 traditional	 NWP	models,	 none	 of	 them	 could	 replicate	 the	magnitude	 of	 the	 event.	
Recent	analyses	suggest	that	numerical	models	still	outperform	AI	based	approaches	when	it	comes	
to	unprecedented	extremes	(Zhang	et	al.	2025).	
	370 
A	lack	of	knowledge	of	hazard	interactions	(in	particular	in	a	non-stationary	climate)	can	prevent	
adequate	preparations	from	being	put	in	place.	Knowledge	about	the	complex	web	of	compounding	
and	cascading	hazards	and	impacts	is	crucial	for	predicting	societal	impacts	of	compound	events	and	
for	making	robust	decisions.	Given	the	sheer	number	of	potential	interconnections,	a	pragmatic	and	
location	 specific	 focus	 on	 the	most	 relevant	 event	 combinations	 is	 crucial.	 Probabilistic	weather	375 
forecasts	 can	 be	 leveraged	 to	 evaluate	 the	 potential	 of	 anticipated	 low-likelihood,	 high-impact	
compound	event	scenarios,	which	can	also	inform	planning	and	response.	In	addition,	AI	models	can	
potentially	identify	hazard	relationships	and	drivers,	including	causal	links,	due	to	the	abilities	of	AI	
to	connect	complex	chains	of	compound	events	(Reichstein	et	al.	2025;	Allen	et	al.	2025).	Developing	
a	comprehensive	understanding	of	historic	hazard	interactions,	how	they	are	changing	in	a	warmer	380 
climate,	and	their	consequences	requires	not	only	high-quality	weather	observations,	but	also	readily	
available	socioeconomic	and	environmental	 impact	data	(as	discussed	 in	section	1)	–	all	of	which	
should	 be	 considered	 when	 assessing	 hazard	 interactions.	 A	 further	 challenge	 is	 posed	 by	 the	
emergence	 of	 previously	 unprecedented	 events,	 which	 can	 include	 previously	 unseen	 individual	
hazard	 intensities	due	to	compounding	drivers	(Bartusek	et	al.	2022)	or	combinations	of	hazards	385 
that	do	not	exist	in	the	observational	record	(Zscheischler	et	al.	2018;	AghaKouchak	et	al.	2020;	Feng	
et	 al.	 2022).	 The	 complex	 nature	 of	 compound	 events	 can	 lead	 to	 overlooking	 subtleties	 and	
potentially	underestimating	upcoming	events	or	 their	 impacts	 (Bastos	et	 al.	 2023;	De	Brito	et	 al.	
2024).	
	390 
Useful	early	warning	systems	also	require	an	understanding	of	vulnerability	and	exposure,	both	of	
which	 are	 unlikely	 to	 be	 consistent	 across	 different	 hazards	 (WMO	 2023).	 For	 example,	 certain	
housing	types	might	be	well	prepared	for	univariate	extreme	heat,	featuring	design	elements	such	as	
wide	verandahs	and	cross-flow	ventilation,	but	are	 left	vulnerable	 if	 the	heat	co-occurs	with	high	
levels	of	pollution	(Ahmed	et	al.	2021).	Certain	compound	events	may	have	unprecedented	impacts,	395 
not	because	the	individual	hazards	are	unprecedented,	but	because	exposure	and	vulnerability	are	
nonstationary	and	might	be	modulated	by	past	events	(De	Ruiter	et	al.	2020;	WMO	2023).	That	is,	if	
vulnerability	and	exposure	are	elevated	during	the	recovery	period	of	an	initial	hazard,	the	threshold	
for	 compounding	 impacts	 from	 additional	 hazards	will	 be	 lower.	 Thus,	 the	 criteria	 for	 issuing	 a	
warning	 needs	 to	 shift	 during	 recovery	 periods	 (Manning	 et	 al.	 2025).	 For	 example,	 a	 loss	 of	400 
electricity	and	air	conditioning	due	to	a	tropical	cyclone	is	likely	to	lower	the	threshold	for	dangerous	
heat.	 In	 this	 context,	 subseasonal-to-seasonal	 forecasts	 may	 offer	 great	 value	 (e.g.,	 (White	 et	 al.	
2022))allowing	for	a	‘pre-alert’	state.	Overall,	a	thorough	understanding	of	historic	compound	events	
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that	are	likely	to	recur,	as	well	as	their	impacts,	in	conjunction	with	current	and	projected	exposure	
and	vulnerability	data	can	help	bridge	this	gap.	Additionally,	even	more	so	than	univariate	extremes,	405 
many	 compound	 events	 cause	 socioeconomically	 regressive	 impacts,	 a	 factor	 that	 should	 be	
accounted	for	if	warning	systems	are	to	minimize	harm.	
	
Communicating	 warnings	 that	 result	 in	 efficient	 action	 requires	 effective	 communication	 of	
predictability	and	uncertainty	to	the	end	user,	and	optimization	of	the	amount	of	detail	in	the	warning	410 
(Krocak	 et	 al.	 2023),	 as	 too	much	 information	 can	 lead	 to	 confusion	 and	 inaction.	Given	 that	 the	
success	of	early	warning	systems	for	hazard	impact	reduction	is	heavily	dependent	on	products	from	
local	weather	forecasters	and	action	taken	on	the	ground	by	first	responders	(Sengupta	et	al.	2022),	
early	warning	systems	should	be	co-designed	with	these	users	to	ensure	the	necessary	data,	context,	
and	uncertainties	are	provided.	Suggested	responses	to	cope	with	the	risks	should	also	include	how	415 
the	impacts	might	manifest	and	options	specific	to	different	vulnerable	populations,	which	requires	
understanding	 how	 these	 communities	 minimize	 risk	 and	 engaging	 these	 populations	 in	 the	
development	 of	 early	 warning	 messages.	 The	 development	 of	 useful	 early	 warning	 systems	 for	
compound	 events	will	 not	 be	 a	 simple	 task	 and	will	 require	 bringing	 together	 currently	 discrete	
communities	 to	 instigate	a	 step-change	 in	 the	way	compound	event	predictions	on	various	 time-420 
scales	are	produced,	communicated,	and	used.	As	such,	this	co-design	process	should	also	include	
users	and	practitioners	to	ensure	the	necessary	data,	context,	and	uncertainties	are	provided.	It	is	
also	crucial	that	we	learn	from	and	share	our	successes	and	shortcomings	as	a	global	community	of	
researchers	 and	 practitioners	 (UNDRR	2022a).	 Communication	 of	 early	warnings	 should	 also	 be	
adapted	to	different	 local	 languages	and	provided	via	multiple	communication	pathways	to	reach	425 
affected	communities,	including	remote	and	historically	underserved	communities.	

 
Figure 2 Challenges (top row) and proposed solutions (bottom row) for early warning systems for 
compound events. The elements of a compound event (middle row) are depicted as described by 
(Zscheischler et al. 2020). 430 
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3. Modeling	and	projecting	compound	events		
Climate	models	are	essential	tools	for	exploring	compound	events	under	different	climatic	conditions	
on	timescales	of	decades	to	centuries.	The	usability	of	climate	models	in	the	context	of	compound	
events	 research	 is	 linked	 to	 the	 degree	 of	 certainty	 with	 which	 a	 specific	 event	 probability	 is	
provided,	the	accuracy	by	which	impact-relevant	event	characteristics	are	reproduced	and	the	level	435 
of	temporal	and	spatial	detail	provided	by	the	model.		
	
High	levels	of	spatio-temporal	detail	and	uncertainty	exploration	are	limited	by	computational	and	
storage	capacities,	while	a	skillful	reproduction	of	event	specifics	can	also	be	limited	by	our	process	
understanding.	 In	 particular,	 for	 compound	 events	 and	 impacts,	 a	 trade-off	 remains	 between	440 
computational	affordability	and	obtaining	localized	climate	information	using	high	resolution	models	
that	 can	 have	 higher	 fidelity	 in	 representing	 compounding	 processes.	 Furthermore,	 compound	
events	are	often	extreme	events	that	contribute	to	the	tails	of	multivariate	distributions.	Due	to	their	
rare	occurrence,	large	datasets	are	necessary	to	narrow	down	uncertainty	ranges	and	enhance	the	
understanding	of	 the	 influence	of	natural	variability	and	physical	uncertainty.	Different	modeling	445 
architectures	 and	 methods	 have	 been	 proposed	 to	 find	 a	 balance	 between	 high-resolution	 and	
extreme	event	datasets,	enabling	conclusive	sample	sizes.		
	
Uncertainty	tends	to	increase	substantially	with	the	number	of	elements	included	in	an	analysis	(the	
‘curse	of	dimensionality’).	The	rarity	of	many	compound	events	and	their	specific	combinations	of	450 
hazards	 and	 drivers	 requires	 	 a	 large	 sample	 size	 to	 obtain	 a	 representative	 sample	 of	 the	 joint	
distribution	tails	to	study	these	events.	Thus,	uncertainties	in	frequencies	of	compound	events	over	
a	 specific	 time	period	are	particularly	 large.	For	example,	 the	 frequency	of	 three	consecutive	dry	
years	averaged	across	Central	North	America	varies	by	a	 factor	of	more	 than	10	across	different	
plausible	31-year	datasets	(Bevacqua	et	al.	2023)	(see	further	details	on	uncertainties	discussed	in	455 
section	4,	also).	
	
Large	 climate	 model	 datasets	 consisting	 of	 hundreds	 to	 thousands	 of	 years	 of	 data	 from	 large	
ensemble	simulations	(e.g.	Single	Model	Initial-condition	Large	Ensembles	(SMILES)	(Lehner	2024)	
and	UNprecedented	Simulated	Extreme	Ensembles	(UNSEEN),	(Thompson	et	al.	2017)	can		be	used	460 
to	 explore	 low-likelihood,	 high-impact	 scenarios	 and	obtain	 appropriate	uncertainty	 estimates	 of	
very	 rare,	 often	 extreme	 events	 in	 present	 and	 future	 climates.	 These	 datasets	 consist	 of	 many	
simulations	done	with	Earth	System	Models	(ESMs)	and	General	Circulation	Models	(GCMs),	which	
are	 highly	 complex	 and	 aim	 to	 model	 all	 relevant	 components	 of	 the	 climate	 system	 and	 their	
interactions.	 ESMs,	 particularly	 those	 coordinated	 by	 CMIP	 (Eyring	 et	 al.	 2016),	 are	 evolving	 in	465 
accuracy	in	conjunction	with	our	physical	understanding	of	the	earth	system	and	our	computational	
abilities	(Intergovernmental	Panel	On	Climate	Change	(Ipcc)	2023),	with	some	ESMs	operating	at	50	
to	100	kilometer	and	3-hourly	to	daily	scales	(Olonscheck	et	al.	2023).			
	
Simple	climate	models	or	climate	emulators	offer	rapid	and	computationally	affordable	production	470 
of	 climate	 projections	 under	 various	 emission	 scenarios,	 which	 enables	 the	 generation	 of	 large	
datasets	to	efficiently	explore	sources	of	uncertainty	surrounding	climate	projections.	In	contrast	to	
GCMs	and	ESMs,	emulators	are	not	based	on	physics	but	instead	rely	on	statistical	approximations	of	
relationships	 identified	 from	GCM	output.	Emulators	 rely	on	stochastic	generative	principles	 that	
approximate	a	given	variable	based	on	key	covariance	structures,	commonly	covariance	with	global	475 
mean	 temperatures	 (GMTs)	 as	 well	 as	 spatio-temporal	 covariances,	 which	 can	 be	 informed	 by	
process	understanding.	Thus,	emulators	can	produce	realistic	estimates	of	 the	evolution	of	global	
patterns	of	certain	climate	variables	at	given	GMT	levels.	Some	emulators	manage	to	leap	the	climate	
layer	and	 link	GMT	 levels	directly	 to	specific	 impact	drivers	such	as	droughts,	wildfires	and	even	
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impacts	themselves	(Byers	et	al.	2025),	making	emulators	a	potent	tool	for	high	level	exploration	of	480 
climate	risks	and	impacts	under	different	scenarios	for	climate	policy	work.			
	
While	 emulators	 are	 able	 to	 produce	 very	 large	 and	 versatile	 climate	 datasets,	 they	 struggle	 at	
accurately	 modeling	 the	 extreme	 tails	 of	 distributions	 and	 can	 fail	 to	 capture	 more	 complex	
interrelationships	between	different	parts	of	the	earth	system,	both	of	which	are	important	when	485 
considering	 high-impact,	 rare	 compound	 events.	 Further,	 emulations	 are	 often	 univariate,	 with	
information	 provided	 at	 low	 temporal	 resolution	 of	 monthly	 or	 annual	 timescales,	 making	 the	
application	to	compound	events	a	challenge	for	which	cross-variable	covariance	structures	should	
be	maintained.	While	most	existing	emulators	model	one	variable	at	a	time,	several	approaches	have	
already	been	taken	for	multivariate	emulation	(e.g.,	(Nath	et	al.	2025;	Quilcaille	et	al.	2023)),	to	jointly	490 
generate	multiple	 variables,	 thus	maintaining	 covariance	 between	 variables	 (e.g.	 (Claassen	 et	 al.	
2024).	Advances	in	AI	based	emulators	(e.g.	Quickclim	(Kitsios	et	al.	2023))	could	provide	further	
avenues	for	fast,	accurate	and	skillful	modeling	of	compound	events,	but	further	research	is	required.		
	
GCMs	often	operate	at	coarse	spatial	resolutions	(~100	km).	However,	climate	hazards	and	impacts	495 
can	unfold	at	much	finer	scales	–	from	sub-kilometer	to	kilometer	scales	–	scales	relevant	for,	e.g.,	
urban	infrastructure	and	highly	localised	assets.	New	generation	1–10	kilometer-scale	GCMs	offer	a	
better	representation	of	dynamical	processes	(see	e.g.,	Destination	Earth	and	nextGEMS	(Hohenegger	
et	 al.	 2023;	 Rackow	 et	 al.	 2025)),	 such	 as	 ocean	 and	 atmospheric	 eddies,	 and	 thermodynamic	
mechanisms,	 including	convection	and	cloud	mechanisms.	While	kilometer-scale	models	could	be	500 
particularly	 valuable	 for	 studying	 compound	 events	 due	 to	 their	 ability	 to	 resolve	 relevant	
meteorological	processes,	such	as	strongly	improving	the	representation	of	convective	precipitation,	
their	implementation	comes	with	substantial	computational	costs	and	data	management	challenges,	
and	large	ensembles	of	these	higher	resolution	models	are	currently	not	computationally	feasible.	
	505 
Downscaling	 techniques	 allow	 for	 the	 generation	of	 high	 resolution	 climate	data	 based	on	 lower	
resolution	data.	The	two	main	downscaling	approaches	are:	statistical	downscaling	and	dynamical	
downscaling.	Dynamical	 downscaling	 is	 a	 physics-based	 approach	 that	 feeds	 ESM	 outputs	 into	 a	
nested,	high	resolution	Regional	Climate	Model	(RCM),	such	as	the	CORDEX	initiative	((Jacob	et	al.	
2014).	Dynamical	downscaling	can	produce	output	at	various	scales,	but	at	spatial	resolutions	of	4	510 
km	or	less,	RCMs	are	assumed	to	explicitly	resolve	convection	and	are	therefore	called	convection-
permitting	models	 (CPM;	 (Prein	et	 al.	 2015)).	Often,	dynamical	downscaling	experiments	are	not	
coupled,	thus	high-resolution	information	cannot	feed	back	into	the	driving	global	climate.	This	limits	
the	 representation	of	 some	compound	effects	 in	which	 two-way	 interactions	with	 the	 large-scale		
circulation	 are	 important.	 Further,	 since	 the	 spatial	 extent	 of	 RCMs	 is	 limited,	 global	515 
interrelationships	that	extend	outside	the	downscaled	region	cannot	be	investigated,	such	as	large-
scale	co-occurring	extreme	heat	events.	Still,	RCMs	can	provide	added	value	compared	to	the	global	
simulations,	both	in	terms	of	mean	climate	and	the	representation	of	extremes	(Pichelli	et	al.	2021;	
Ban	et	al.	2021;	Hundhausen	et	al.	2024;	Poschlod	and	Koh	2024;	Klimiuk	et	al.	2025)	and	compound	
events	(Zscheischler	et	al.	2021).	In	addition,	large	multi-model	ensembles	of	high-resolution	climate	520 
model	data	over	selected	areas	are	available				(Coppola	et	al.	2021;	Kendon	et	al.	2023;	Hundhausen	
et	al.	2023).	Another	approach	combines	 the	added	value	of	dynamical	downscaling	and	SMILEs,	
producing	RCM	SMILEs	(Aalbers	et	al.	2018;	Leduc	et	al.	2019),	which	deliver	large	sample	sizes	and	
high	resolution	at	impact-relevant	scales		(Ehmele	et	al.	2022;	Santos	et	al.	2021;	Felsche	et	al.	2024;	
Van	Den	Hurk	et	al.	2015).	525 
	
For	statistical	downscaling,	 in	 turn,	statistical	relationships	are	 identified	between	 large-scale	and	
local	variables	from	observational	data.	These	relationships	are	then	applied	to	GCM	/	ESM	output	to	
generate	 high-resolution	 simulations	 (Maraun	 and	 Widmann	 2018;	 Maraun	 et	 al.	 2010).	 Many	
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implementations	of	different	grades	of	sophistication	exist,	for	example,	statistical	downscaling	using	530 
terrain	and	large-scale	atmospheric	predictors	(e.g.	CHELSA	(Karger	et	al.	2023),	PRISM	(Daly	et	al.	
2008)),	 can	 account	 for	 sub-grid	 climate	 conditions,	 thus	 improving	 hydrologic	 simulations	 (e.g.	
(Michalek	et	al.	2023)).	However,	these	deterministic	methods	have	limitations	–	they	can	break	the	
physical	dependence	between	variables	(Karger	et	al.,	2023)	and	fail	to	represent	local	variability	
and	 extreme	 events	 that	 occur	 at	 scales	 smaller	 than	 the	 initial	 resolution.	 To	 address	 these	535 
shortcomings,	stochastic	methods	have	been	developed,	which	are	essentially	weather	generators	
driven	by	GCM	/	ESM	output.	 Typical	 limitations	 of	 these	models	 are	 the	 representation	of	 local	
feedbacks,	interannual	variability	and	spatial	dependence	(Maraun	&	Widmann,	2018,	Maraun	et	al.,	
2019;	Widmann	et	al.,	2019).	Over	the	last	decade,	machine	learning	has	emerged	as	a	subclass	of	
statistical	 downscaling	 (Rampal	 et	 al.	 2024).	 These	 approaches	 outperform	 earlier	 statistical	540 
downscaling	 approaches	 (Baño-Medina	 et	 al.	 2020)	 and	 show	 potential	 for	 the	 fine-scale	
reproduction	of	extreme	events	(Rampal	et	al.	2024;	Vosper	et	al.	2023).	However,	a	key	challenge	
remains:	 preserving	 interdependencies	 between	 climate	 variables	 –	 which	 is	 crucial	 for	 usable	
compound	event	research	(Quesada-Chacón	et	al.	2023).				
	545 
Impact	relevant	event	characteristics	such	as	duration,	 timing,	magnitude	and	 frequency	must	be	
accurately	reproduced	in	models.	Bias	adjustment,	also	known	as	bias	correction	or	calibration,	is	a	
commonly	used	approach	in	impact	and	hazard	modeling	to	account	for	known	deficiencies	of	GCMs,	
RCMs	 and	 CPMs	 in	 the	 representation	 of	 impact	 relevant	 variables	 and	 their	 extremes	 (Suarez-
Gutierrez	et	al.	2021;	Bevacqua	et	al.	2023).	In	this	process,		model	output	is	adjusted	by	statistical	550 
postprocessing	towards	reference	observations	(Maraun	2016).	Being	a	purely	statistical	and	non-
physics	based	approach,	bias	adjustment	needs	to	be	applied	carefully,	as	unwanted	artefacts	may	
occur	(Maraun	et	al.	2017)	and	in	the	worst	case	may	deteriorate	the	original	model	simulation.		

Bias	 adjustment	 is	 particularly	 challenging	 in	 the	 context	 of	 compound	 events.	 For	 instance,	
univariate	quantile	mapping	methods	do	not	necessarily	conserve	multivariate	relationships,	as	they	555 
act	differently	depending	on	which	variable	and	which	part	of	the	distribution	they	are	applied	to	
(e.g.,	(Zscheischler	et	al.	2019)),		without	considering	physical	dependencies	(e.g.	heat	and	drought).	
Therefore,	 bias	 adjustment	 methods	 have	 been	 proposed	 that	 maintain	 statistical	 relationships	
between	 impact-relevant	 variables	 	 (Vrac	 and	Friederichs	2015;	Cannon	2018;	Hess	 et	 al.	 2023).	
While	 some	 research	 shows	 that	 multivariate	 methods	 perform	 better	 than	 univariate	 methods	560 
(Vogel	et	al.	2023),	others	suggest	that	univariate	methods	can	maintain	inter-variable	dependencies	
(Wilcke	et	al.	2013).	All	bias	correction	methods	reduce	the	consistency	between	the	bias	corrected	
data	and	the	driving	model,	however,	these	inconsistencies	can	be	amplified	when	using	multivariate	
methods	(Maraun	2016).	Careful	consideration	should	be	made	as	to	which	aspects	of	the	data	can	
be	adjusted	without	breaking	consistency	with	the	driving	processes	565 

The	 stronger	 the	 initial	 model	 biases,	 the	 stronger	 the	 error	 propagation	 and	 final	 artefacts.	
Therefore,	it	is	often	an	advantage	to	use	RCM	and	particularly	CPM	data	as	a	starting	point	for	bias	
correction,	as	these	models	provide	a	much	better	representation	of	the	target	variables	and	their	
variability	on	regional	to	local	scales	(Prein	et	al.,	2015,	Pichelli	et	al.,	2021).	Ideally,	hybrid	models	
can	be	trained	with	this	very	high-resolution	model	data	to	provide	effective	ways	for	bias	correction	570 
and	downscaling	of	large	CMIP	ensembles.	Another	major	limitation	of	bias	adjusting	climate	data	is	
a	lack	of	suitable	reference	datasets	in	some	locations.	Bias	adjustment	without	accurate,	spatially	
and	temporally	complete	observational	data	records	will	be	of	limited	benefit.	Since	some	regions	
have	 good	 records	 for	 some	 variables	 but	 incomplete	 records	 for	 others	 (e.g.,	 temperature	 and	
humidity,	 respectively,	 over	 southern	 Africa,	 (Rogers	 et	 al.	 2021)),	 bias	 adjustment	 for	 derived	575 
multivariate	 indices,	such	as	wet-bulb	 temperature,	can	pose	additional	challenges	 for	compound	
events	 research.	 Lastly,	 purely	 statistical	 bias	 adjustment	 methods	 might	 miss	 changes	 to	
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dependence	structures	and	changes	in	the	shape	of	the	distributions	induced	for	example	by	novel	
feedback	dynamics	under	different	warming	levels	(Bartusek	et	al.	2022;	Kornhuber	et	al.	2024).	 	
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4. Addressing	uncertainty	in	compound	event	projections	580 
 
Uncertainty	poses	a	particular	challenge	to	the	usability	of	compound	event	assessments.	Various	
methods,	 tools,	 and	 frameworks	 for	dealing	with	 compound	events	under	 large	uncertainty	have	
been	developed	 (Ward	et	 al.	 2022).	There	are	 three	main	 types	of	uncertainty	 in	 climate	models	
(Lehner	et	al.	2020):	(1)	model	uncertainty	(see	section	3),	(2)	internal	variability,	due	to	the	chaotic	585 
nature	of	the	climate	system,	and	(3)	scenario	uncertainty,	due	to	the	multiple	possible	pathways	of	
future	 greenhouse	 gas	 emissions.	 This	 section	 discusses	 these	 three	 types	 of	 uncertainty	 and	
discusses	avenues	for	addressing	them.	
	
Model	 uncertainty	 arises	 from	 our	 incomplete	 understanding	 and	 representation	 of	 the	 climate	590 
system	 and	 how	 impact-relevant	 variables	 respond	 to	 human-induced	 climate	 change	 on	 a	 local	
scale.	Although	we	are	far	from	a	perfect	modelling	of	compound	events	(Villalobos-Herrera	et	al.	
2021),	 model	 uncertainty	 can	 be	 reduced	 by	 improving	 the	 representation	 of	 relevant	 physical	
processes	 in	models.	Model	uncertainty	 can	also	be	 reduced	by	narrowing	 the	plausible	 range	of	
future	 projections	 by	 applying	 emergent	 constraints,	 based	 on	 relationships	 between	 observable	595 
historical	 variables	 and	 future	 climate	 responses	 in	 models	 (Wu	 et	 al.	 2025),	 and	 by	 applying	
performance	constraints,	based	on	the	ability	of	models	to	reproduce	observed	processes	or	metrics	
(Palmer	 et	 al.	 2023).	 Uncertainty	 related	 to	 compound	 events	 may	 be	 amplified	 if	 interactions	
between	components	of	compound	events	or	cascading	hazards	are	not	captured	well	in	models.		
	600 
In	 contrast	 to	model	 uncertainty,	 uncertainty	 arising	 from	 internal	 climate	 variability	 cannot	 be	
reduced	 as	 it	 is	 inherent	 to	 the	 climate	 system	 (Hawkins	 et	 al.	 2016).	 That	 is,	 	 the	 chaotic,	 non-
deterministic	nature	of	 the	 climate	 system,	 as	well	 as	 cyclical	modes	of	ocean	 currents	 and	 their	
atmospheric	responses	and	feedbacks,	all	contribute	to	internal	variability.	This	means	that	a	perfect	
model,	seamlessly	initialized	with	a	perfect	set	of	observations	from	the	real	world,	would	not	be	able	605 
to	deterministically	predict	the	future	climate	trajectory	beyond	the	predictability	horizon.	Beyond	
this	 predictability	 horizon,	 which	 ranges	 from	 one	 to	 two	weeks	 for	most	 atmospheric	 weather	
processes	such	as	heatwaves	(Lorenz	1969)	to	a	few	years	for	the	upper	oceans	(Branstator	and	Teng	
2010),	 this	 idealized	perfect	model	would	 rather	produce	a	 range	of	plausible	 	 climate	outcomes	
determined	by	the	system’s	internal	variability.		610 
	
Scenario	uncertainty	relates	to	a	vast	range	of	possible	climate	futures	that	depend	mostly	on	societal	
decisions	in	the	context	of	climate	policies,	such	as	chosen	emissions	pathways	or	land-use	change.	
Although	we,	as	humans,	are	in	control	of	these	decisions,	societal	actions	and	their	consequences	
are	very	difficult,	if	not	impossible,	to	predict	in	a	deterministic	way	(Lehner	et	al.	2020;	Moraga	et	615 
al.	2022).	Uncertainties	can	be	particularly	 large	 in	the	context	of	compound	event	projections	as	
each	 climate	 variable	 may	 contribute	 its	 own	 uncertainties	 in	 timing,	 location	 and	 magnitude	
respectively.		
	
In	 the	 context	 of	 future	 climate	 risks	 from	 compound	 events,	 storylines	 can	be	used	 as	 a	 tool	 to	620 
explore	the	range	of	plausible	future	compound	climate	events	(Sillmann	et	al.	2021;	Van	Der	Wiel	et	
al.	 2024)	 despite	 potentially	 large	 uncertainties.	 Storylines	 can	 be	 considered	 stress-testing	
exercises,	in	which	a	plausible	high-risk	scenario	is	designed	to	test	the	resilience	of	the	system	in	
question,	 often	with	 the	 use	 of	 climate	models.	 There	 have	 also	 been	 recent	 efforts	 to	 integrate	
societal	processes	in	storylines,	to	enable	linking	climate	risks	to	societal	impacts	(Rusca	et	al.	2023).	625 
In	 general,	 storylines	 describe	 either	 physically	 consistent	 future	 climates,	 hereinafter	 climate	
storylines,	or	individual	events,	hereinafter	weather	event-based	storylines,	under	plausible	future	
conditions	(Shepherd	et	al.	2018;	Bevacqua	et	al.	2023;	Sillmann	et	al.	2021;	Klimiuk	et	al.	2025)	(Fig.	
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3a).	For	both	storyline	types,	emphasis	is	placed	on	the	physical	plausibility	of	the	storyline	rather	
than	 on	 its	 probability	 given	 the	 difficulty	 associated	 with	 attaching	 probability	 accurately	630 
(Shepherd,	Boyd,	Calel,	Chapman,	Dessai,	Dima-West,	Fowler,	James,	Maraun,	Martius,	Senior,	Sobel,	
Stainforth,	Tett,	Trenberth,	van	den	Hurk,	et	al.	2018).	To	illustrate	how	climate	storylines	can	help	
address	model	uncertainty,	we	explore	the	example	of	hot-dry	summers	in	southern	Africa,	which	
are	climatic	impact-drivers	threatening	agriculture	and	food	security,	in	a	world	that	is	3	°C	warmer	
than	 pre-industrial	 conditions	 (Fig.	 3b,	 c).	 Potential	 high-impact	 and	 low-impact	 storylines	 are	635 
compared,	which	are	represented	by	a	model	with	a	high	frequency	of	future	hot-dry	events	(GFDL-
ESM2M)	and	one	with	a	lower	frequency	(CanESM2).	Note	that	both	of	these	outcomes	are	physically	
plausible	outcomes	from	climate	models,	which	are	a	priori	equally	likely.	Scenario	uncertainty	can	
be	 addressed	 in	 a	 similar	way,	 	 e.g.	 by	 anchoring	 storylines	 to	 different	 emission	 pathways	 and	
associated	 warming	 levels.	 In	 contrast,	 where	 internal	 climate	 variability	 controls	 uncertainty,	640 
divergent	 climate	 conditions	 can	 be	 identified	 using	 different	 ensemble	members	 from	 the	 same	
SMILE	(Deser	2020).		
	
To	better	understand	specific	compound	event	types	in	the	future,	weather	event-based	storylines	
can	be	used	to	identify	historic	high-impact	events	or	near	misses	(Woo	2021)	and	explore	how	they	645 
may	unfold	in	the	future.	For	example,	using	a	severe	landslide	event	that	occurred	in	Austria	in	2009	
due	to	compounding	effects	of	rainfall	and	soil	moisture,	Maraun	et	al.	(2022)	(Maraun	et	al.	2022)	
provided	 stakeholders	 with	 information	 on	 probabilities	 of	 future	 landslide	 and	 options	 for	
adaptation	by	revealing	how	the	event	may	unfold	under	multiple	plausible	future	climates	and	land-
use	 changes.	 As	 another	 example,	 (Goulart	 et	 al.	 2024)	 generated	 storylines	 of	Hurricane	 Sandy,	650 
including	the	effects	of	both	climate	change	and	natural	variability,	with	a	compound	flood	modeling	
framework	to	explore	and	quantify	alternative	flood	impacts	of	Sandy	on	critical	 infrastructure	in	
New	York	City.		
	
A	standard	approach	for	event-based	storylines	are	pseudo	global	warming	simulations,	in	which	the	655 
meteorological	conditions	associated	with	an	observed	event	are	reproduced	in	a	regional	climate	
model	with	boundary	conditions	from	historic	and	future	conditions	(Takayabu	et	al.	2015;	Ludwig	
et	 al.	 2023).	 Given	 that	 large-scale	 atmospheric	 circulation	 is	 fixed	 in	 these	 simulations,	 internal	
variability	is	considerably	reduced	for	weather	event-based	storylines,	which	improves	the	signal-
to-noise	ratio,	enabling	better	quantification	of	the	actual	event-specific	thermodynamic	and	local	660 
responses	to	climate	change.	These	simulations	can	show	what	certain	historic	events	would	have	
looked	like	under	different	global	warming	levels.	Another	approach	is		downward	counterfactuals	
(Ciullo	et	al.	2021).	This	approach	builds	plausible	events	for	storylines	by	modifying	one	or	more	
impact	relevant	components	of	an	observed	event	 to	simulate	alternative,	more	severe	outcomes	
(Woo	2021).	This	approach	can	be	used	for	stress-testing	exercises,	or	to	account	for	both	grey	swan	665 
events	 (rare	 but	 foreseeable	 high-impact	 events)	 and	 black	 swan	 events	 (extreme	 outliers	 with	
severe	consequences	that	have	no	historical	analogue).	For	example,	a	study	evaluating	the	impacts	
of	 tropical	 cyclones	 on	 the	 European	 Union	 Solidarity	 Fund	 found	 that	 some	 counterfactuals	 of	
tropical	cyclones	increased	impacts	by	90%	(Ciullo	et	al.	2021).		
	670 
The	inability	to	model	potential	unprecedented	event	types	or	interactions	between	multiple	climate	
drivers	under	future	warming	is	a	limitation	for	weather	event-based	storylines	that	are	built	solely	
on	past	high-impact	events.	Examples	include	the	recent	emergence	of	tropical	cyclone–deadly	heat	
events	 (Matthews	 et	 al.	 2019)	 and	 the	 unprecedented	 intensity	 of	 the	 2021	 heatwave	 in	
northwestern	North	America	(Bartusek	et	al.	2022).	To	anticipate	emerging	compound	events	driven	675 
by	new	combinations	of	climate	drivers	at	a	specific	 location,	 insights	can	be	drawn	from	historic	
events	 at	 other	 locations.	 For	 instance,	 to	 help	 anticipate	 occurrences	 of	 megafloods	 in	 a	 given	
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catchment	 in	 Europe,	 observations	 of	 megafloods	 in	 hydrologically	 similar	 catchments	 in	 other	
climate	zones	can	be	used	(Bertola	et	al.	2023).	
	680 
Despite	their	limitations,	event-based	storylines	provide	a	useful	modeling	framework	to	link	climate	
and	 impact	 simulations.	To	 translate	 climate	 storylines	 into	associated	 impacts,	 impact	models—
such	 as	 renewable	 energy,	 hydrological,	 or	 crop	 models—can	 be	 forced	 with	 the	 most	 extreme	
storylines	 (Goulart	 et	 al.	2021;	Lucia	Martin	et	 al.	2025).	 Such	storylines	 can	be	 identified	via	an	
impact	 indicator,	 which	 should	 be	 co-designed	 by	 climate	 scientists,	 impact	 modelers,	 and	685 
stakeholders,	carefully	considering	that	extreme	impacts	often	result	from	unexpected	combinations	
of	hazards	(van	der	Wiel	et	al.,	2020;	Lehner	et	al.	2024).	For	example,	 for	 the	renewable	energy	
sector,	 an	 impact	 indicator	 could	 use	 climate	 model	 simulations	 to	 identify	 future	 extreme,	
widespread	 heatwaves	 and	wintertime	 cold	 spells	 (Singh	 et	 al.	 2024;	Mattu	 et	 al.	 2025),	 (which	
increase	electricity	demand),	that	co-occur	with	very	low	wind	conditions	(which	decrease	energy	690 
production)	(Meng	et	al.	2025).	In	general,	estimating	impacts	from	specific	compound	event	types	
requires	a	clear	understanding	of	weather–impact	relationships.	A	systematic	assessment	of	these	
relationships	relies	on	well	maintained	and	comprehensive	impact	datasets	(see	section	1)	as	well	as	
high-quality	weather	observations.		
	695 
One	of	the	major	challenges	associated	with	communicating	future	climate	change	impacts	and	risk	
is	 the	 accurate	 yet	 concise	 communication	 of	 uncertainty	 and	 the	 implications	 it	 has	 for	 how	 to	
interpret	climate	projections.	This	challenge	is	complicated	when	considering	the	multiple	hazards	
and/or	drivers	comprising	compound	events.	Further,	too	much	information	can	result	in	inaction	
as	deciding	on	a	course	of	action	is	too	difficult,	but	too	little	information	can	result	in	overconfidence	700 
in	an	action,	 followed	by	dissatisfaction,	 for	example,	when	an	adaptation	 falls	 short	of	 an	actual	
hazard	 impact.	 Lessons	 can	 be	 learned	 from	 related	 disciplines	 that	 have	 developed	 effective	
methods	 and	 strategies	 for	 effective	 communication	 of	 complex	 risks,	 e.g.,	 the	 frameworks	 for	
systemic	multi-hazard	and	multi-risk	assessment	and	management	developed	in	(Hochrainer-Stigler	
et	 al.	 2023).	 This	 six-step	 framework	 provides	 a	 generic	 approach	 for	 analysing	 risk	 across	 a	705 
spectrum	ranging	from	single	to	multi-risk	and	systemic	risk,	providing	a	user	with	simple	‘guidance	
protocols’	 for	each	step,	 i.e.,	 guiding	questions	 to	help	 them	carry	out	 the	steps.	Another	popular	
approach	is	the	use	of	impact	chains	(e.g.	(Schneiderbauer	et	al.	2013;	Zebisch	et	al.	2021).	These	are	
conceptual	models	using	cause-effect	chains	that	include	all	major	factors	and	processes	leading	to	
specific	risks	in	a	given	context.	These,	and	other	approaches	such	as	narrative	descriptions,	hazard	710 
wheels,	hazard	matrices,	network	diagrams,	and	hazard/risk	indices,	(Kappes	et	al.	2012;	Tilloy	et	al.	
2019;	Gill	and	Malamud	2014)	could	be	integrated	into	the	research	on	compound	climate	events,	
which	would	assist	in	further	aligning	these	fields.	This	is	also	important	in	the	context	of	the	global	
agendas	(e.g.	Sendai	Framework	for	Disaster	Risk	Reduction,	Paris	Agreement	on	Climate	Change,	
Sustainable	 Development	 Goals),	 which	 are	 increasingly	 focusing	 on	 common	 targets	 and	 goals,	715 
further	alignment,	and	more	closely	synergising	the	closely-related	fields	of	climate	adaptation	and	
disaster	risk	management	(UNDRR	2022b).	
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Figure 3 Climate and event-based storylines.  a Climate and event-based storylines to explore 720 
uncertainties in future climatic conditions for a representative compound event type defined by 
two climate drivers. Impacts increase with higher values of both drivers (top-right corner). The 
historical climate (black ellipse) may shift in multiple ways – via changes in mean and variance of 
the climate drivers, as well as their correlations – as represented by a higher-risk (red) and lower-
risk (red) climate storylines. Event-based storylines are shown as dots, with two historical events 725 
(in black, a near miss without impacts and a historical impactful event), which can evolve 
differently into higher-risk (red) to lower-risk (blue) future event-based storylines. b, c Future 
climate storylines characterized by high and low frequency of compound hot-dry summers in 
Southern Africa in a 3 °C warmer world than pre-industrial conditions. The storylines are obtained 
by ranking seven climate models (selected based on their large sample size so as to ensure a 730 
robust frequency of compound events) in terms of the future frequency of compound hot-dry 
summers averaged over the Southern Africa region (green box). Adapted from (Bevacqua et al. 
2023).  
 

5. Overarching	challenges	and	the	way	forward	735 

While	 compound	 events	 have	 occurred	 throughout	 the	 historical	 record,	 new	 compound	 event	
combinations,	as	well	as	the	rapidly	increasing	frequency	and	intensity	of	many	types	of	events,	pose	
emerging	risks	to	societies	in	a	changing	climate	(Messori	et	al.	2025).	While	univariate	climate	risk	
assessments	are	on	the	way	to	being	operationalized	as	ready	to	use	frameworks	by	non-academic,	
private	 sector	 entities,	 compound	 events	 remain	 a	 scientific	 frontier	 where	 out-of-the-box	740 
approaches	are	not	yet	readily	available.	Similarly,	an	improved	understanding	of	amplified	impacts	
from	 compound	 events	 can	 be	 used	 to	 produce	 more	 informative	 and	 usable	 impact	 data	 and	
warnings.	 Setting	 standards	 for	 usable	 compound	 event	 research	 could	 help	 provide	 publicly	
accessible	climate	risk	knowledge.	We	therefore	propose	four	guiding	principles,	detailed	below.		
		745 
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Accessibility	 and	 interpretability:	 Climate	 risk	 information	 should	 be	 provided	 free	 of	 charge	 and		
presented	in	an	intuitive	way.	
	
Impact	datasets	constitute	the	foundation	of	compound	event	research	as	they	allow	us	to	establish	
robust	event–impact	relationships	and	inform	the	search	for	highly-impactful	event	combinations.	750 
Often	 impact	 datasets	 are	 not	 publicly	 accessible,	 are	 incomplete,	 or	 are	 structured	 in	ways	 that	
hinder	the	investigation	of	compound	events	(see	section	1).	We	call	for	impact	data	from	a	variety	
of	sectors,	such	as	health,	agriculture,	energy,	and	insurance,	to	be	made	readily.	This	shared	data	
will	 facilitate	 the	 advancement	 of	 our	 understanding	 of	 the	 impacts	 of	 individual	 and	 compound	
climate	 events.	 There	 are	 substantial	 data	 gaps	 over	 certain	 regions,	 particularly	 South	America,	755 
Africa,	and	parts	of	Asia,	that	limit	the	characterization	of	compounding	climate	risks	in	those	regions.	
Alongside	efforts	to	increase	data	availability	from	these		regions,	(Serwadda	et	al.	2018)	underscore	
the	 need	 for	 researchers	 to	 employ	 best	 practices	 for	 ethical	 use	 of	 the	 data,	 engage	 in	 local	
collaborations	that	are	meaningful	and	equitable,	and	support	the	development	of	local	capacity	and	
resources	 to	 support	 climate	 resilience.	 In	 contrast,	 much	 progress	 has	 been	 made	 regarding	760 
accessible	hazard	data,	where	numerous	ready	to	use	datasets	can	be	found	online	(e.g.,	(Kong	and	
Huber	2025)).	Online	tools	for	downloading	time	series	and	geospatial	analyses,	such	as	the	Climate	
Impact	 Explorer	 (https://climate-impact-explorer.climateanalytics.org)	 could	 be	 extended	 to	
include	 a	 wide	 range	 of	 standardized	 compound	 event	 types,	 such	 as	 those	 provided	 in	 the	
framework	of	(Yin	et	al.	2025).	765 
	
Interpretability	can	be	fostered	by	working	towards	a	common	goal.	Different	scientific	fields,	such	
as	 climatology,	 hydrology,	 disaster	 risk	 science,	 and	 social	 sciences,	 often	 use	 the	 same	 terms	 to	
describe	slightly	to	completely	different	concepts	(Gill	et	al.	2022).	For	example,	an	impact	can	refer	
either	to	a	hazardous	event	caused	by	climatic	drivers	(from	a	compound	perspective)	or	the	physical	770 
or	economic	loss	resulting	from	a	combination	of	hazard,	exposure,	and	vulnerability	from	a	(multi-
hazard)	 disaster	 science	 or	 IPCC	 perspective.	 Furthermore,	 terms	 like	 "impact"	 and	 "risk"	 are	
subjective	 and	 context-dependent.	 Setting	 standards	 and	 agreement	 on	 common	 definitions	 (e.g.	
through	glossaries)	can	help	to	reduce	confusion	across	scientific	communities		(Zscheischler	et	al.	
2021,	 Simpson	 et	 al	 2021).	 Positive	 examples	 include	 the	DAMOCLES	 Cost	 Action	 on	 Compound	775 
Events,	which	included	research	from	a	multitude	of	scientific	backgrounds,	and	the	Risk	Knowledge	
Action	Network	(Risk	KAN)	on	Emergent	Risks	and	Extreme	Events,	a	 joint	 initiative	from	Future	
Earth	 and	 WCRP	 consisting	 of	 a	 set	 of	 working	 groups	 that	 bring	 together	 practitioners	 and	
researchers	 from	 different	 disciplines.	 ANTICIPATE,	 a	 newly	 funded	 European	 COST	 Action,	will	
focus	 on	 the	 prediction	 of	 compound	 events	 on	 different	 timescales	 and	 will	 tackle	 challenges	780 
discussed	in	section	2	of	this	perspective.	
	
Fitness	for	purpose:	Sufficient	detail	in	time	and	space	at	certainty	levels	that	match	the	application.		
	
To	ensure	fitness	for	purpose,	compound	event	scientists,	stakeholders,	decision	makers,	and	hazard	785 
responders	must	come	together	in	the	co-development	process	from	the	outset,	to	ensure	that	the	
development	of	models,	metrics,	 and	other	 tools	 are	 truly	usable	on	 the	necessary	 temporal	 and	
spatial	scales.	Transdisciplinary	approaches	with	non-academic	stakeholders	for	co-developing	the	
research	design	and	generating	knowledge	can	help	(Norström	et	al.	2020).	Integrating	researchers,	
agencies,	and	other	stakeholders	helps	to	dissolve	barriers	between	different	sectors	and	align	the	790 
expectations	of	the	different	stakeholders	by	focusing	on	shared	outcomes	and	creating	a	common	
understanding,	 bridging	 the	 science-policy-practice	 gap	 (Gall	 et	 al.	 2015;	 Brett	 et	 al.	 2025).		
Expectation	management	 is	a	key	part	of	 such	processes	as	uncertainties	are	an	 inherent	part	of	
climate	risk	projection	and	early	warnings.	This	holds	in	particular	for	highly	resolved	spatial	and	
temporal	risk	estimates,	which	can	go	beyond	the	capacities	of	what	the	state-of-science	can	deliver.	795 
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Communicating	the	full	range	of	uncertainties	is	also	important	to	enable	users	to	determine	the	level	
of	risk	that	they	want	to	incorporate	in	their	applications	of	this	information,	whether	it	be	for	design,	
planning,	or	preparedness.		
	
Timeliness	and	pragmatism:	The	best	available	knowledge	should	be	provided,	as	early	as	possible.		800 

	
Unmitigated	climate	change	leads	to	situations	in	which	the	emergence	of	compound	hazards	and	
the	need	for	actionable	information	outpaces	scientific	progress.	As	compound	climate	events	affect	
societies	now,	imperfect	and	available	information	might	at	times	be	the	preferred	option,	compared	
to	a	perfect	solution	potentially	available	beyond	undefined	time-horizons	(e.g.,	accurate	and	near	805 
deterministic	 risk	 estimates	 at	 sub	 kilometer-scales).	 In	 this	 context,	 the	 communication	 of	
underlying	 assumptions	 and	 limitations	 of	 chosen	 approaches	 are	 of	 high	 importance.	
Considerations	around	timeliness	and	pragmatism	should	therefore	be	tailored	towards	the	specific	
target	 audience.	 While	 technical	 professionals	 in	 public	 agencies	 need	 detailed	 data	 on	 climate	
models	 and	 risk	 assessments	 for	 effective	 risk	 management,	 policymakers	 require	 concise,	810 
comprehensible	 evidence	 to	 quickly	 inform	 policies	 and	 emergency	 preparedness	without	 being	
overwhelmed	 by	 technicalities.	 On	 the	 other	 hand,	 the	 private	 sector,	 including	 agriculture	 and	
insurance,	requires	detailed	risk	assessments	and	forecasts	to	plan	for	business	continuity	and	to	
manage	risks.		
	815 
Transparency	and	accountability:	Assumptions,	limitations	and	methods	need	to	be	clearly	stated	and	
underlying	data	needs	to	be	publicly	available.		
	
In	 a	 landscape	of	 imperfect	 solutions,	 transparency	of	underlying	assumptions	and	 limitations	of	
chosen	approaches	can	prevent	misinterpretation	and	inappropriate	application	of	compound	event	820 
knowledge.	While	strict	code	and	data	availability	requirements	are	becoming	standard	in	academic	
research,	 no	 such	 scrutiny	 exists	 in	 the	 private	 sector.	 Transparency	 of	 methodologies	 is	 also	
imperative	to	ensure	that	analyses	are	repeatable	and	reproducible.	This	transparency	also	allows	
researchers	 and	 other	 users	 to	 better	 understand	 analyses	 and	 potentially	 identify	 unforeseen	
limitations,	again	reducing	the	misinterpretation	of	results	and	allowing	methods	to	be	improved	in	825 
the	future.	Profit	interests	in	a	competitive	market	can	disincentivize	transparent	communication	of	
methods	and	limitations	of	the	offered	products	and	services,	with	risks	of	maladaptation	leading	to	
increased	 exposure	 and	 vulnerability	 to	 hazards.	 New	 accountability	 standards	 for	 hazard	 and	
climate	risk	estimates	from	the	private	sector	could	help	in	securing	the	reliability	and	trust	in	such	
products.	Further,	an	open,	intellectual	environment,	with	best	practices	shared	across	disciplines,	830 
geographies,	and	hazards,	encourages	the	needed	dynamism	for	meaningful,	usable	climate-impact	
advances.		
	
As	 extreme	 events	 are	 already	 occurring	 at	 a	 rate	 that	 increasingly	 outpaces	 climate	 scientists’	
capacity	 to	 thoroughly	 investigate	 them,	a	slowdown	and	reversal	of	global	warming	 to	meet	 the	835 
Paris	Agreement	targets	by	mitigating	greenhouse	gas	emissions	is	imperative.	Notwithstanding	this	
objectiv	an	 improved	knowledge	of	 the	complex	 interactions	of	hazards	and	 their	 climate	 impact	
drivers	 in	 a	 non-stationary	 climate	 is	 certainly	 needed.	 More	 comprehensive	 and	 standardized	
climate	impact	datasets	and	modeling	efforts	are	a	key	element	in	moving	towards	producing	more	
usable	 climate	 information	 and	 reducing	 uncertainties.	 While	 these	 efforts	 will	 not	 be	 able	 to	840 
eliminate	 limits	 to	 adaptation,	 which	 are	 set	 by	 local	 adaptive	 capacity,	 human	 liveability	 and	
survivability	thresholds,	and	global	tipping	points	that	might	cause	rapid	irreversible	changes	in	the	
climate	system,	an	improved,	more	holistic	understanding	of	hazards	and	their	impacts	can	help	us	
understand	when,	where,	and	which	aspects	of	weather	extremes	merit	the	greatest	devotion	of	
research	and	operational	resources.	While	there	is	always	the	potential	to	extent	our	knowledge,	845 
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more	systematic	usability	reflections	facilitated	by	the	presented	guidelines	could	help	maximize	the	
application	potential	of	the	insights	and	methodologies	already	at	hand	right	now.		
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