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Abstract. Global warming poses substantial risks to natural and human systems worldwide. Understanding the complex in-

teractions between climate change and the economy is essential for designing effective policies and mitigation strategies. Yet,

existing modeling tools are often limited by coarse spatial aggregation, simplified climate representation, or lack of interaction

between climate and the economy. To address these gaps, we develop a novel framework that couples an Earth System Model

(ESM)—the Norwegian Earth System Model version 2 (NorESM2)—with a spatially disaggregated Integrated Assessment5

Model (IAM), the Disaggregated Integrated Assessment Model (DIAM). The resulting modeling tool, NorESM2-DIAM, in-

corporates state-of-the-art climate and weather dynamics, allows economic impacts to depend on the full distribution of weather

outcomes, and captures realistic spatial heterogeneity. To our knowledge, it is the first framework to fully couple an ESM with

a high-resolution
::::::::::
cost-benefit IAM. The primary contribution of this paper is to develop and implement the methodology that

enables this coupling. We demonstrate the utility of NorESM2–DIAM through a baseline simulation. The results show that the10

economic impacts of global warming vary dramatically across space and that internal climate variability generates substantial

volatility in regional GDP, highlighting the importance of high-resolution economic impact assessments. Although the baseline

simulation focuses on regional temperature, the framework can be easily extended to incorporate additional variables such as

precipitation and extreme events. It can also be applied to study a wide range of climate policies. NorESM2-DIAM represents

an important step towards improving the understanding of economic impacts of climate change and can ultimately become an15

important source of information for decision-makers.

Copyright statement. TEXT

1 Introduction

Integrated Assessment Models (IAMs) and Earth System Models (ESMs) are two key tools for investigating the complex

challenges posed by climate change. IAMs focus on the human aspect of climate change; ESMs focus on the natural climate20

system. With their differing foci and application areas, they are usually developed independently of each other. However, both
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modeling tools depend on information from the other, and cooperation between the ESM and IAM communities is essential to

understanding the full picture of climate change (e.g. van Vuuren et al., 2012; Calvin and Bond-Lamberty, 2018; Collins et al.,

2015; Keen et al., 2021).

IAMs have played a fundamental role in climate economics since the introduction of the DICE model (Nordhaus, 1991, 1992).25

These models simulate the economic impacts of climate change, allowing evaluation of the policy consequences and the feasi-

bility of various climate targets, and have produced influential results—most notably, estimates of the social cost of carbon—

that continue to inform climate policy (e.g. Weyant, 2017; Harremoës and Turner, 2001; Schneider, 1997; Nordhaus, 2010).

They usually consist of three separate elements: a climate system, a carbon cycle, and an economic model (van Vuuren et al.,

2011; Nordhaus, 1992). To maintain computational tractability, however, most IAMs rely on highly simplified representations30

of the climate system and the carbon cycle (Goodess et al., 2003; van Vuuren et al., 2012). Although practical, these simplifi-

cations often suppress both spatial and temporal variability and limit the models’ ability to capture the complex dynamics of

Earth system processes. This, in turn, limits their ability to accurately estimate the economic impacts of climate change.

One key limitation of many IAMs is their sensitivity to how climate dynamics are simplified. For example, they often cannot

reproduce either the delay between carbon emissions and warming or climate–carbon feedbacks, with important consequences35

for estimates of the social cost of carbon (Dietz et al., 2021; van Vuuren et al., 2011). Furthermore, most IAMs model very

few climate variables—primarily global mean surface temperature—despite growing recognition that economic outcomes are

shaped not only by long-term temperature trends but also by short-term, high-impact weather events such as heatwaves, storms,

floods and droughts (Callahan and Mankin, 2022; Frame et al., 2020). These events reflect local deviations from climatological

averages and often cause severe economic damages. Finally, IAMs typically operate on coarse spatial scales, which restricts40

their capacity to resolve regional variations in both physical climate responses and economic vulnerabilities (e.g. Dell et al.,

2014; Hsiang et al., 2017). Even when regional detail is included, it is often through stylized approaches that link local climate

directly to global averages, missing important regional dynamics.

In contrast, ESMs simulate the physical climate system based on fundamental geophysical principles. They include interac-

tive components of the atmosphere, land, ocean, and cryosphere, as well as representation of aerosols, atmospheric chemistry,45

and the carbon cycle (Taylor et al., 2012; van Vuuren et al., 2011). With their many components, ESMs produce high-resolution

outputs across a wide range of climate variables, including realizations of weather and extremes. However, ESMs lack human

components and rely on externally prescribed pathways for emissions and land use (e.g. Moss et al., 2010; O’Neill et al., 2017;

Riahi et al., 2017), thus excluding any climate–economy interactions.

Motivated by these shortcomings, we present a novel framework that couples the Norwegian Earth System Model ver-50

sion 2 (NorESM2) with a spatially disaggregated, dynamic model of the global economy. We refer to this framework as

NorESM2–DIAM, where DIAM stands for Disaggregated Integrated Assessment Model and builds on the high-resolution

climate–economy model developed in Krusell and Smith (2022). The coupling replaces stylized climate dynamics, carbon

cycle approximations, and simplified regional representations with physically-based, high-resolution outputs from NorESM2.

It also allows economic outcomes to depend on a wide variety of climate and weather variables, including extreme events. This55

framework thus delivers a new model that can be used to investigate the economic impacts of climate change both globally and
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regionally, incorporating both climate-economy feedbacks and internal variability. Finally, NorESM2–DIAM is a cost-benefit

IAMcapable of evaluating :
::::::::
economic

::::::
agents

::::::::::
(consumers

:::
and

::::::
firms)

::
in

:::
the

:::::
model

:::::
solve

::::::::::::::::
explicitly-specified

:::::::
dynamic

::::::::
decision

:::::::
problems

:::::
with

::::::::::
well-defined

:::::::::
objectives.

::
It

:::
can

::::::::
therefore

::::::
provide

::::::::::
quantitative

::::::::::
assessments

:::
of the welfare effects across time and

space of a wide range of scenarios for climate policy—from laissez-faire to optimal carbon taxation
::::::::::::
taxation—both

::::::
across

::::
time60

:::
and

:::::
space.

However, the
:::
The primary goal of this paper,

::::::::
however, is to demonstrate, using a prototype version of NorESM2–DIAM, how

to tackle two key methodological challenges in coupling an ESM with a high-resolution, dynamiceconomic model
::::::::
dynamic,

::::::::::::
high-resolution

:::::::::
economic

:::::
model

:::::::::
grounded

::
in

::::::::
dynamic

::::::::::
optimization. First, the two models operate on vastly different time

scales. Second, the economic model incorporates forward-looking behavior: the decisions of agents (consumers and firms)65

depend on their expectations about the future behavior of the climate, which is itself influenced by those very decisions.

Achieving consistency between agents’ expectations and the climate trajectory thus requires solving for an interdependent

equilibrium.

Successfully addressing these challenges lays the groundwork for using NorESM2–DIAM as a platform to explore the spatial

and temporal dimensions of climate–economy interactions, and to assess climate policy with a degree of geophysical and eco-70

nomic realism that is rare in existing IAMs. This platform contributes to a small but growing literature using dynamicstructural

:
,
::::::::::::::
forward-looking,

::::::::
structural

::::::::
economic

:
models to study the spatial effects of climate change (see, for example, Brock et al.,

2014; Desmet and Rossi-Hansberg, 2015; Fried, 2022; Krusell and Smith, 2022; Rudik et al., 2021; Bilal and Rossi-Hansberg,

2023; Cruz and Rossi-Hansberg, 2024; Kubler, 2023; Kotlikoff et al., 2024).

:::
Our

::::::::
approach

::
to

::::::::
coupling

::
an

:::::
ESM

:::
and

::
an

:::::
IAM,

:::::::::
embodied

::
in

:::::::::::::::
NorESM2–DIAM,

::::::::
contrasts

::::
with

:::
the

::::::::
approach

::::
taken

:::
in

:::::
iESM75

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Collins et al., 2015; Thornton et al., 2017; Calvin and Bond-Lamberty, 2018)

:::
and

::::::::::::
E3SM–GCAM

::::::::::::::::::::
(Di Vittorio et al., 2025)

:
,
:::
two

::::
other

::::::::::
frameworks

::::
that

:::::
couple

:::
an

::::
ESM

::::
and

::
an

:::::
IAM.

::::
The

::::
main

:::::::::
difference

:
is
::::
that

::::
both

:::::
iESM

:::
and

:::::::::::::
E3SM–GCAM

::::::
couple

::
an

:::::
ESM

::::
with

:::
the

::::::
Global

::::::
Change

::::::::::
Assessment

::::::
Model

:::::::::
(GCAM),

:
a
::::::::::::
process-based

:::::
rather

::::
than

::
a

::::::::::
cost-benefit

:::::
IAM.

::::::::
Although

::::
both

::::::
DIAM

:::
and

::::::
GCAM

:::
are

::::::::
dynamic,

::::::::
recursive

:::::::
models,

::
in

:::::
DIAM

::::::
agents

:::::
make

::::::::
decisions

:::::
taking

::::
into

::::::
account

:::
the

:::::
entire

::::::
future

::::
time

:::::::
horizon,

:::::::
whereas

::::::
GCAM

::::::
solves

::
for

:::::::::
outcomes

:::
one

::::
step

::
at

:
a
:::::
time,

:::::::::
considering

::::
only

:::
the

:::::::
current

::::
state.

:
80

:::
The

::::
two

::::::::::
approaches

::::
also

:::::
differ

::
in

::::::
spatial

:::::::::
resolution

::::
and

:::::::
sectoral

::::::
detail.

::::::
GCAM

:::::::::
represents

::::::::
multiple

::::::::::::::::
sectors—including

::::::
energy,

::::::::
industry,

::::::::
transport,

::::::::::
agriculture,

::::
and

::::
land

::::::::
use—but

:::::::
divides

:::
the

:::::
world

::::
into

:::::
only

:::
14

::::::
(iESM)

:::
or

:::
32

::::::::::::::
(E3SM-GCAM)

::::::::::::
socioeconomic

:::::::
regions.

:::
In

:::::::
contrast,

::::::::::::::::
NorESM2–DIAM

:::::::
contains

:::::
only

:
a
::::::

single
::::::
sector,

::::::::
focusing

:::::::
directly

:::
on

:::::
gross

::::::::
domestic

::::::
product

::::::
(GDP),

:::
but

::
at
::
a

::::
very

::::
high

:::::
degree

:::
of

:::::
spatial

:::::::::
resolution

::::::
(1°×1°

:::::
cells),

:::::::
enabling

:::::::::::::
high-resolution

:::::::
analysis

::
of

:::
the

:::::::
impacts

::
of

::::::
climate

:::
and

:::::::
weather

:::
on

::::
GDP

:::
and

:::::::::
emissions.

:
85

::::::
Finally,

:::
the

:::::
three

::::::
models

:::::
differ

:::
in

::::
how

::::
they

::::::::
represent

:::::::::::::::
climate–economy

::::::::::
interactions.

::::::
iESM

:::
and

:::::::::::::
E3SM-GCAM

::::::::
exchange

:::::::::::::
biogeochemical

::::::::
variables

::::
from

::::
the

::::
ESM

:::
to

:::::::
GCAM,

:::::::
whereas

:::
in

:::
our

::::::::::
framework,

::::::::::
temperature

:::::::
directly

::::::
affects

::::
the

::::::::
economy

::::::
through

:::
the

::::::::::
productivity

::
of

:::::
labor.

:::::::
GCAM

:::
also

::::::::
explicitly

:::::::::
represents

:::::::::
agriculture

:::
and

::::
land

:::
use,

::::::::
allowing

:::::
iESM

:::
and

:::::::::::::
E3SM–GCAM

::
to

:::::::
generate

::::::::::::
land-mediated

::::::::
feedbacks

::::
that

:::
are

::::::
absent

::
in

::::::::::::::
NorESM–DIAM.

:::::
Thus,

::::::::
although

::
all

:::::
three

::::::::::
frameworks

::::::
couple

::
an

:::::
IAM

::::
with

::
an

:::::
ESM,

:::
our

::::::::
approach

:::::::
employs

:
a
::::::::::::
fundamentally

:::::::
different

:::::
IAM,

::::::::
providing

::
a

::::::::::::
complementary

::::::::::
perspective

::
to

:::
the

:::
two

:::::::
existing90

::::::::::
frameworks.
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The rest of the paper is organized as follows: Section 2 describes the two components of our new framework, NorESM2–

DIAM. Section 3 explains in detail the interactive coupling between the two components of NorESM2–DIAM. Section 4

discusses the calibration of the model parameters. Section 5 presents quantitative results. Section 6 discusses limitations and

directions for further research using this new platform and, finally, Section 7 offers some concluding remarks.95

2 Model Description

This section describes the structure and functioning of NorESM2–DIAM, a coupled model that integrates climate and economic

dynamics. Section 2.1 begins with an overview of the overall framework. Section 2.2 then outlines the economic component,

DIAM, and its coupling with NorESM2. Section 2.3 introduces a standalone version of DIAM used to compute equilibrium

behavior in the fully coupled system. Finally, Section
::::
Sect. 2.4 provides a description of the Norwegian Earth System Model100

version 2 (NorESM2).

2.1 Overview

The two components of NorESM2–DIAM are coupled via a continuous, bidirectional flow of information .
::
as

:::::::::
illustrated

::
in

:::
Fig.

:::
1.

:
In each time period, economic agents in DIAM—households and firms—make decisions about energy use and

other economic variables, taking into account how local climate and weather conditions affect productivity. The resulting105

carbon emissions are passed to NorESM2, which simulates the climate response. These outcomes then feed back into DIAM,

influencing future economic decisions and creating a dynamic feedback loop between the climate and the economy.

Agents in DIAM solve forward-looking dynamic optimization problems, with decisions shaped by expectations about the

future evolution of climate and weather. To make these problems computationally tractable, we employ a standalone version

of DIAM with simplified climate dynamics, following standard practice in integrated assessment modeling. In the standalone110

model, agents’ decision-making relies on statistical temperature forecasts that approximate the behavior of NorESM2. Agents’

energy use decisions and consequent emissions then serve as input to NorESM2 itself when it updates climate and weather

variables.

An economic equilibrium in NorESM2–DIAM is defined by a fixed-point condition: agents’ expectations about future

climate and weather must align with the outcomes that emerge from their own economic behavior—particularly their choices115

regarding energy use and hence emissions. The standalone version of DIAM is instrumental in computing this equilibrium.

2.2 The economic model (DIAM)

This section describes DIAM, a spatially disaggregated model of the global economy that interacts with climate and weather.
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Figure 1.
:::::::
Schematic

::::::::
overview

::
of

:::
the

::::::::::::::
NorESM2–DIAM

:::::::
coupling

:::
and

::::::
internal

::::::::::
interactions.

::::::::
NorESM2

:::::::
provides

::::::
regional

::::::::::::
one-year-mean

:::::::::
temperatures

:::
for

:::
the

:::::
current

:::::
model

::::
year

::
to

:::::
DIAM

:::::
(dotted

::::::
arrows

::::::
indicate

:::::::
exchange

:::::::
between

::::::
models).

:::::::
Regional

::::::::::
temperature

:::::
directly

::::::
affects

::::::
regional

::::
GDP,

:::::
which

::
in

:::
turn

::::::::
determines

::::::
regional

:::::
wealth

:::::
(solid

:::::
arrows

::::::
indicate

::::::::
exchanges

::::::::
happening

:::::
within

:::
one

:::::
model

::
for

:::
the

:::::
current

:::::::
one-year

:::
time

::::
step

::
of

::
the

::::::
coupled

::::::
model).

:::::
Based

::
on

:::::::
regional

:::::::::
temperature

:::
and

::::::
wealth,

:::
each

:::::
region

::::
then

:::::
makes

:::::::
decisions

:::::
about

:::::
savings

::::
and

:::::
energy

:::
use

::::
using

:::::::::::
pre-computed

::::::
decision

::::
rules

::::::
derived

::::
from

:::
the

::::::::
standalone

::::::
version

::
of
::::::

DIAM.
::::::
Within

::::::
DIAM,

::::::
savings

:::::
affects

::::
GDP

::
in

:::
the

::::
next

:::::
model

:::
year

::::::
(dotted

:::::
arrows

::::::
indicate

::::::::
exchanges

::::::::
happening

:::::
within

:::
one

:::::
model

::
in

::
the

::::
next

:::
time

::::
step

::
of

::
the

::::::
coupled

::::::
model).

::::::
Energy

:::
use

::::::::
determines

::::
next

::::
year’s

::::::::
emissions,

:::::
which

:::
are

:::::::
provided

::
to

::::::::
NorESM2.

::::::
Finally,

::
to
::::::::

complete
::
the

:::::
cycle,

:::
the

::::::
different

:::::::
modules

::
of

::::::::
NorESM2

::::::
interact

::
to

:::::::
generate

:::
new

::::::
regional

:::::::::::
temperatures.

::::
Note

:::
that

::
the

:::::::
modules

::::::
interact

::::::
through

:
a
:::::::
coupler,

:::
and

::
the

::::::
timing

::::
varies

:::::::
between

:::::::
modules,

:::
but

:::
they

::
all

::::::::
exchange

::::::::
information

::
at
::::
least

::::
once

::::
every

::
24

:::::
hours

::::::::::::::::::::::::::::::::::
(Seland et al., 2020; Danabasoglu et al., 2020).

2.2.1 Space and Time

DIAM divides the globe into M regions, each corresponding to a 1◦ × 1◦ land cell with observed economic activity in 1990.120

Cells spanning multiple countries are subdivided along national borders, yielding approximately 19,000 distinct regions. Time

proceeds in discrete annual periods and begins in period 0.

2.2.2 Production technology

Each region i contains two production sectors: one for final goods and one for energy. Energy is used as an input in both

sectors. In each year t, the final goods sector produces output yit using three factors of production (physical capital, labor, and125

energy):

yit = F (kyit,L
y
it,x

y
it),
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where kyit, L
y
it, and xyit are the amounts of physical capital, labor, and energy, respectively, used in the final-goods sector and

F is the production function mapping inputs to output.

The energy sector uses the same types of inputs to produce energy xit:130

xit = ζ−1F (kxit,L
x
it,x

x
it),

where kxit, L
x
it, and xxit are the amounts of physical capital, labor, and energy, respectively, used in the energy sector and ζ

denotes the relative productivity of the final-goods sector compared to the energy sector. To simplify the structure, we use the

same production function in each sector, up to the relative productivity shifter ζ, but this assumption is not essential to the

analysis undertaken here.135

When inputs are efficiently allocated across sectors, net final-goods output (i.e., gross domestic product, or GDP) is given

by:

yit = F (kit,Lit,xit)− ζxit,

where kit = kyit + kxit, Lit = Ly
it +Lx

it, and xit = xyit +xxit denote the total amounts of capital, labor, and energy used in the

region. This allocation can be decentralized as a competitive equilibrium in which firms in both sectors choose their factors of140

production to maximize profits, taking factor prices as given, and prices adjust to clear factor markets.

Regional population Nit evolves exogenously over time. Labor productivity consists of two components: (i) an exogenous

factor Ait capturing socioeconomic and technological influences outside the scope of the model, and (ii) a climate-sensitive

factor that depends on local climate. In the current prototype of NorESM2–DIAM, the latter depends solely on average annual

temperature Tit. Effective labor input is therefore defined as:145

Lit =NitAitD(Tit),

where D(·) is a “damage function” capturing the effect of temperature on labor productivity. As described in detail in Section

::::
Sect. 4, D has an inverse U -shape with a maximum at T ∗ so that productivity declines monotonically as regional temperature

deviates from T ∗.

Each period, agents allocate the output of final goods between consumption cit and investment ιit, subject to a budget150

constraint:

yit = cit + ιit.

Capital depreciates at a constant rate δ, with investment replenishing the capital stock:

ki,t+1 = (1− δ)kit + ιit.

2.2.3 Carbon emissions155

Energy use is measured in gigatons of oil equivalent (Gtoe), where one Gtoe corresponds to 3.97×1016 BTUs (British Thermal

Units). One unit of energy use releases ψϕt gigatons of carbon emissions (GtC) into the atmosphere in period t. The fraction

6



ϕt is normalized to 1 in period 0, so that ϕt measures the “dirtiness” of energy use relative to period 0. From period tg onward,

all energy is assumed to be fully green, implying ϕt = 0 for all t≥ tg . The full trajectory of ϕt is described in Section
::::
Sect. 4.

Total global emissions in period t, denoted Et, are the sum of regional emissions:160

Et =

M∑
i=1

eit, where eit = ψϕtxit.

2.2.4 Markets

This version of DIAM excludes international capital markets, so capital is immobile across regions. As noted by Krusell

and Smith (2022), this simplification has only minor effects on the dynamics examined here. Consequently, regions interact

solely through the climate system, whose evolution is determined by their collective energy-use choices and associated carbon165

emissions. Regions can adapt to climate change by adjusting their capital accumulation and energy-use decisions accordingly.

2.2.5 Preferences

Agents in each region seek to maximize welfare, defined here as the expected discounted utility of consumption:

E0

∞∑
t=0

βtNitU(cit)

 cit
Nit
:::

 ,

where β ∈ [0,1) is the discount factor, U(cit) is per capita utility from
::
the

::::::
utility

::
of

:::
per

:::::
capita

:
consumption, and E0 denotes170

expectations formed at time 0. They do so by choosing paths for consumption, investment, and energy use subject to the

production and capital accumulation constraints outlined in Section
::::
Sect. 2.2.2. This is a dynamic optimization problem in

which agents’ decisions hinge on expectations about future labor productivity, which is itself influenced by climate conditions.

Agents can therefore adapt to changes in regional climate by shifting their patterns of consumption, investment, and energy

use over time.175

2.2.6 Climate feedback

Conventional IAMs link the economy and climate through a simplified climate system and carbon cycle: global emissions

feed into this reduced-form climate representation, which then produces projections of climate variables—typically global and

regional mean temperatures. These climate variables, in turn, affect economic productivity. While computationally convenient,

this leaves out many of the complex, region-specific processes that drive climate change and its impacts.180

Our approach replaces this simplification with a direct coupling between regional emissions and NorESM2, a state-of-the-

art Earth System Model described in Section
::::
Sect.

:
2.4. NorESM2 resolves the physical climate system in much greater detail,

simulating geophysical responses—including temperatures—at high spatial and temporal resolution. This enables the economic

model to respond to a climate signal that captures fine-scale processes, regional heterogeneity, and nonlinear interactions often

omitted in IAMs.185
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Realizing this coupling requires overcoming two key challenges. First, DIAM operates on annual decision intervals, whereas

NorESM2 advances in much finer time steps—hourly or sub-hourly. Within each DIAM year, NorESM2 must run many high-

frequency computations before returning updated climate and weather inputs. Section
::::
Sect.

:
3 describes how this temporal

mismatch is reconciled.

Second, NorESM2’s high-dimensional, nonlinear dynamics make it computationally impossible to embed directly into190

DIAM’s regional optimization problem. To address this difficulty, the next section develops a standalone version of DIAM

with a simplified climate representation calibrated to remain broadly consistent with NorESM2. This allows agents to form

approximate yet reliable climate forecasts, keeping their decisions close to the true optimum while making the coupled system

computationally feasible.

2.3 The standalone version of DIAM195

This section describes a simplified version of DIAM in which agents forecast regional temperatures using a reduced-form cli-

mate model. This standalone model facilitates solving the regional optimization problems and enables computing an economic

equilibrium—defined as a fixed point where agents’ forecasts align with realized outcomes. Computing this fixed point offers

a tractable approach for approximating equilibrium in the full coupled model.

Section 2.3.1 introduces the statistical approach used to forecast regional temperatures, Section
::::
Sect. 2.3.2 outlines the200

optimization problem faced by agents, and Section
::::
Sect. 2.3.3 explains how equilibrium is computed in the standalone setting.

2.3.1 Statistical temperature forecasting

In the standalone DIAM, agents forecast regional temperatures—key determinants of productivity—using a low-dimensional

statistical approach. This forecast approximates NorESM2’s geophysical dynamics and can be calibrated using both historical

and future scenario simulations of NorESM2.205

The model has two components. The first relates the expected regional temperature in region i at time t to cumulative global

carbon emissions since the pre-industrial era:

T it = T i + γi1St + γi2S
2
t , (1)

where T i is the pre-industrial temperature in region i and St denotes cumulative global emissions up to the beginning of period

t. The functional form and
:::::::::
justification

:::
for

:::::
using

::
a

::::::::
quadratic

:::::
rather

::::
than

:::::
linear

::::::::
functional

:::::
form,

:::::
along

::::
with

::::::
details

:::
on

::::
how the210

parameters γi1 and γi2 are estimated from data, as described in Section 4.
::
is

:::::::
provided

::
in

:::::
Sect.

:::
4.7.

:

The second component captures deviations from the expected temperature due to internal climate variability. While these

fluctuations follow nonlinear, non-stochastic laws of motion in NorESM2, they are modeled stochastically here as an AR(1)

process:

zi,t+1 = ρizit + ϵi,t+1, (2)215
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where {ϵit} is a sequence of independent, normally distributed shocks with mean zero and standard deviation σi. The realized

temperature is then:

Tit = T it + zit.

The parameters ρi and σi are also estimated using data from NorESM2 simulations (see Section
::::
Sect. 4). We assume that these

parameters remain constant as the climate warms, and leave the exploration of potential deviations from this assumption to220

future work.

2.3.2 Dynamic optimization

To make forward-looking decisions, agents form expectations about future temperatures using the statistical model introduced

in Section
::::
Sect. 2.3.1. Because a single region’s emissions have a negligible effect on global totals, agents treat the sequence

of cumulative global emissions S≡ {St}∞t=0 as exogenous when making decisions. Furthermore, since annual fluctuations in225

global emissions are small relative to their overall level, agents assume that this sequence is deterministic. These assumptions

enable them to forecast the expected component of regional temperature.

Given physical capital and effective labor, agents choose energy use to maximize net output of final goods. This static

optimization yields a decision rule for energy use:

hxit(kit,zit) = argmax
xit

[F (kit,Lit,xit)− ζxit] , (3)230

where

Lit =NitAitD(T it + zit).

The decision rule for optimal energy use is time-varying because effective labor Lit depends on population Nit, exogenous

productivityAit, and expected temperature T it—all of which follow deterministic paths that agents take as given when solving

their optimization problems.235

The investment decision is dynamic and is characterized recursively by the Bellman equation:

vit(ωit,zit) = max
ki,t+1

[NitU(ωit − ki,t+1)+Et(vi,t+1(ωi,t+1,zi,t+1))] ,

where vit(ωit,zit) is the value function, representing the optimal expected utility from period t onward, given current wealth

ωit and the current temperature deviation zit, which serves as a sufficient statistic for computing forecasts of future temperature

deviations. Regional wealth ωit in any period t is defined as:240

ωit = F (kit,Lit,xit)− ζxit +(1− δ)kit, (4)

with energy use xit chosen optimally according to the static decision rule.

The expectations operator Et in the Bellman equation denotes integration of vi,t+1(ωi,t+1,zi,t+1) over the conditional

distribution of zi,t+1 given zit. According to the statistical temperature forecast in Section
::::
Sect.

:
2.3.1, this distribution is

9



normal with mean ρzit and standard deviation σi. Note that the value function in period t+1 depends both directly and245

indirectly on zi,t+1, since future wealth ωi,t+1 also varies with zi,t+1.

Solving the Bellman equation yields a decision rule for investment:

ki,t+1 = hkit(ωit,zit), (5)

This decision rule is time-varying, as it depends on the entire forward-looking path—from period t onward—of population,

exogenous productivity, and expected temperature, all of which evolve deterministically. Each region faces a distinct optimiza-250

tion problem due to differences in these trajectories and in the region-specific parameters that govern temperature forecasts:

T i, γi1, γi2, ρi, and σi. We solve each region’s dynamic programming problem numerically using the endogenous grid method

(see Appendix A for details). Solving the approximately 19,000 dynamic programs in parallel is straightforward and takes

about five minutes in Julia using 80 cores on Yale University’s High Performance Cluster.

2.3.3 Equilibrium255

This section examines equilibrium in the standalone model under the assumption that the statistical temperature forecasting

approach in Section
::::
Sect.

:
2.3.1 accurately describes the actual evolution of regional temperatures. Under this assumption, the

standalone model is fully self-contained and requires no interaction with NorESM2 in any period. We further assume that,

when simulating the standalone model, there is no internal variability: all realized temperature deviations zit are set to zero,

so that realized regional temperatures exactly match their expected values in every period. Under these conditions, a perfect-260

foresight equilibrium is defined as a fixed point in the sequence S of cumulative global emissions: agents take S as given when

solving their optimization problems, and their optimal decisions reproduce the same sequence S.

To compute this equilibrium, we begin with an initial guess for the global emissions sequence {E(0)
t }Tt=0, truncating the

infinite horizon at T > tg so that Et = 0 when tg ≤ t≤ T . Using this sequence we calculate the corresponding cumulative

emissions sequence S(0) via S(0)
t+1 = S

(0)
t +E

(0)
t with S(0)

0 predetermined. Given S(0), each region’s decision rules are computed265

by solving its dynamic programming problem backward from t= T to t= 0 as described in Appendix A. We then simulate

the global economy forward in time from the initial regional capital stocks, imposing zit = 0 for all i and t. Energy use

and capital accumulation follow xit = hxit(kit,0) and ki,t+1 = hkit(ωit,0), where wealth ωit is given by eq. 4
::
Eq

:::
(4)

:
with

Lit =NitAitD(T it).

The forward simulation produces a new global emissions sequence {E(1)
t }Tt=0 and corresponding cumulative emissions S(1).270

If S(1) is within the chosen convergence tolerance of S(0), we take S(1) as the equilibrium sequence S∗. Otherwise, we update

the guess by replacing S(0) with S(1) and repeat the backward–forward iteration until convergence. In practice, this algorithm

converges after a small number of iterations (typically five or fewer). The resulting S∗ serves as a candidate for the equilibrium

path of cumulative emissions in the fully coupled NorESM2–DIAM model.
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2.4 The Norwegian Earth System Model version 2 (NorESM2)275

Earth System Models (ESMs) are state-of-the-art computational models designed to simulate and understand the dynamics

of the climate system. They divide the atmosphere, ocean, and land surface into a three-dimensional grid, within which they

numerically solve equations that describe key physical, chemical, and biological processes. These calculations are typically

performed at hourly or even sub-hourly time steps, generating high-resolution output across time and space for a wide range of

climate variables, including temperature, precipitation, wind, and carbon stocks. Processes that cannot be resolved directly—280

either because they occur at scales smaller than the grid or are too complex to model in full detail—are represented using

simplified representations known as parameterizations.

NorESM2 is an ESM with coupled atmosphere, ocean, land, river transport, and sea ice (for full description see Seland et al.,

2020), which contributed to the 6th phase of the Coupled Model Intercomparison Project (CMIP6; Eyring et al., 2015). It is

largely based on the Community Earth System Model version 2 (CESM2; Danabasoglu et al., 2020) with two main differences:285

1. The atmospheric component, the Community Atmosphere Model (CAM6) is replaced by CAM6-Nor, which includes

several modifications from CAM6: A different aerosol module OsloAero6 (Kirkevåg et al., 2018), specific modifications

and tunings of the atmosphere component (Toniazzo et al., 2020), as well as an updated parameterisation of turbulent

air-sea fluxes (The NorESM developers group,, 2020).

2. A different ocean model with isopycnic coordinates: The Bergen Layered Ocean Model (BLOM; The NorESM devel-290

opers group,, 2020), which is coupled to the Hamburg Ocean Carbon Cycle Model (Tjiputra et al., 2020).

We use the NorESM2-LME configuration, which has an active carbon cycle enabled. This version has 1◦ ocean and sea ice

resolution, 2◦ atmosphere and land resolution, 32 vertical layers in the atmosphere, a 30-minute timestep
::::
time

::::
step for atmo-

sphere, land, and sea ice, and a 1-hour timestep
:::
time

::::
step for the ocean (Seland et al., 2020). When the carbon cycle is active,

the model calculates greenhouse gas concentrations from spatial emissions, otherwise, the greenhouse gas concentrations must295

be prescribed.

The climate of NorESM2 has been assessed through various experiments (see Eyring et al., 2015, for details of the bench-

mark simulations). Its historical simulations follow the observations relatively well, although NorESM2 has a weaker warming

between 1930 and 1970 than the observations (Seland et al., 2020). Simulations with a 1% increase in CO2 each year until

doubling, and with an abrupt quadrupling of CO2 were performed to calculate the transient climate response (TCR; the tem-300

perature change at doubling of CO2 without climate stabilization) and an approximation of the equilibrium climate sensitivity

(ECS; temperature change at doubling of CO2 after the climate has stabilised), respectably (Eyring et al., 2015). In NorESM2,

TCR is 1.48K and ECS is 2.54K (Seland et al., 2020), which is within the likely ranges estimated by the IPCC (Forster et al.,

2021)—although at the lower end.
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2.4.1 The carbon cycle305

The carbon cycle describes the exchange and storage of carbon between the atmosphere, ocean, land surface, and lithosphere

through physical, chemical, and biological processes. The carbon cycle includes several feedbacks with other components of

the climate system: Changes in climate due to increased carbon in the atmosphere (e.g., increasing temperature or changing pre-

cipitation) may change the rate of carbon transfer (e.g., photosynthesis) or carbon storage capacity (e.g., forest or permafrost),

thus either amplifying or reducing the initial increase.310

In the carbon cycle of NorESM2, anthropogenic carbon emissions from fossil fuel combustion and changes in land use are

prescribed. The carbon cycle is represented mainly through the land model (CLM5; Lawrence et al., 2019) and the biogeochem-

ical component (iHAMOCC) coupled with the ocean component (BLOM) (Tjiputra et al., 2020). The land model simulates the

uptake, storage, and release of carbon from vegetation and soil through photosynthesis, respiration, and decomposition, as well

as nitrogen cycling and disturbances such as forest fires (Lawrence et al., 2019). The biogeochemical component calculates315

the partial pressure of CO2 based on temperature, salinity, dissolved inorganic carbon, and alkalinity, and uses it to calculate

the air-sea CO2 fluxes (Tjiputra et al., 2020). An ecosystem module simulates phytoplankton and zooplankton with limiting

nutrients (nitrate, phosphate, and dissolved iron), dissolved organic carbon, and particulate matter (The NorESM developers

group,, 2020). Furthermore, there are vertical fluxes of organic and inorganic carbon, and the former is remineralized at a

given rate (Schwinger et al., 2016). Finally, a sediment module collects the non-remineralized particle matter (The NorESM320

developers group,, 2020).

2.4.2 Preparing NorESM2 for coupling

Before NorESM2 was ready for use, it was initialized and run to a steady state—a process known as the spin-up. This was

carried out by the NorESM2 developers’ group (The NorESM developers group,, 2020; Seland et al., 2020) in parallel with the

final calibrations of the model: They initialized NorESM2—without an active carbon cycle—with a combination of previous325

model simulations and observational estimates for the pre-industrial climate (i.e., year 1850). Human emissions of greenhouse

gases and aerosols were set to zero or close to zero. The model was then run for more than 1000 years to allow the climate to

reach a steady state. During the spin-up, some additional model parameters were tuned to reach this steady state. Finally, the

carbon cycle was turned on and the model ran another for 100 years.

For the prototype NorESM2–DIAM coupling, only CO2 emissions are included. The model is initialized from 1850 pre-330

industrial conditions, with all non-CO2 anthropogenic forcings fixed at 1850 levels. CO2 emissions follow the CMIP6 historical

dataset (Eyring et al., 2015) until 1990, after which they are endogenously determined by the energy-use decisions of agents.

An extension to NorESM2-DIAM which links economic activity to the emission of other climate forcing agents than CO2 will

be the focus of future research.

No changes to the model code were necessary for the purpose of the coupling.335
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3 Coupling

This section describes how the two components of NorESM2–DIAM are coupled. The procedure has three stages: (1) compute

the equilibrium of the standalone DIAM, which serves as a candidate equilibrium for the coupled model; (2) run a dynamic

simulation of the fully coupled system, exchanging information between the two components at each annual time step; and (3)

assess the accuracy of the candidate equilibrium.340

In the first stage, we solve for the equilibrium path of cumulative emissions, S∗, in the standalone DIAM without internal

variability, as described in Section
::::
Sect. 2.3.3. Doing so yields time-varying regional decision rules for optimal investment and

energy use, given S∗. These rules rely on the temperature forecasting approach described in Section
::::
Sect. 2.3.1; however, in the

fully coupled NorESM2–DIAM, climate and weather outcomes are generated by the complete NorESM2 dynamics.

In the second stage, we simulate the coupled global economy–climate system on a year-by-year basis using the decision rules345

computed in the first stage. A key challenge is a temporal mismatch: NorESM2 operates on hourly or sub-hourly time steps,

while DIAM operates annually. Consequently, economic decisions are fixed once per year and cannot respond to intra-annual

weather fluctuations.

To address this temporal mismatch, we assume that regional energy use in year t equals its conditional expectation, formed in

year t−1 based on the year-t capital stock kit (set the previous year) and the previous year’s temperature deviation zi,t−1 from350

its expected value in year t− 1 as specified in eq.
:::
Eq (1). Using the decision rule for energy use, this conditional expectation,

to first order, is:

x̄it = hxit
(
kit, Et−1(zit)

)
, Et−1(zit) = ρi zi,t−1.

NorESM2 uses the resulting regional emissions ϕitx̄it—distributed evenly across the year—to advance the climate by one

year, producing high-frequency weather data, including temperature, for each sub-period. The realized annual average temper-355

ature in region i is denoted Tit. Actual energy use is then

xzit = hxit(kit,zit),

where zit is the deviation of Tit from its expected value, T it, in year t.

Reconciling the temporal mismatch in this way introduces a small gap between actual and expected emissions, given by

xzit−x̄it. This gap averages to zero over time, and each year’s gap is added to the next year’s expected emissions for consistency.360

Regional wealth evolves each year according to

ωit = F
(
kit, NitAitD(Tit), x

z
it

)
− pxzit +(1− δ)kit. (6)

Once the state variables ωit and zit have been updated, the model advances to the next annual cycle. The capital stock for year

t+1 is then determined by the investment rule in eq.
::
Eq

:
(5), completing the sequence of yearly decisions.

Appendix A contains additional details on how we execute the coupled simulation.365

In addition to the temporal mismatch, there is also a spatial mismatch: DIAM operates at a 1◦ resolution, while NorESM2

uses 2◦ resolution for its atmosphere and land components. We reconcile these grids using linear interpolation.
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In the third and final stage, we evaluate the accuracy of the candidate equilibrium by assessing whether the behavior of the

fully coupled simulation aligns with the temperature forecasts that agents rely on to make optimal decisions. The main task is

to compare the cumulative emissions path from the coupled run, Sc, with the fixed-point path S∗ from the standalone DIAM.370

Internal variability—absent in the calculation of S∗—introduces persistent weather-driven fluctuations in the coupled run,

producing year-to-year variation in global emissions and hence in Sc. These deviations, however, are small and agents would

gain little from incorporating them into the temperature forecasts guiding their decisions. Apart from these minor discrepancies,

Sc and S∗ track each other closely, as we discuss in detail in Section
::::
Sect. 5. Consequently, we find that there is no need to

refine the candidate equilibrium through additional iterations between successive full-model simulations. This conclusion has375

important practical significance for our methodology: running NorESM2–DIAM is computationally demanding—each annual

cycle requires about an hour on a supercomputer—whereas computing the candidate equilibrium in the standalone model

typically takes less than an hour in total.

4 Calibration

This section details the calibration of parameters in DIAM, including the temperature forecasting approach used in the stan-380

dalone version. It also outlines the choice of initial regional capital stocks and the construction of projected trajectories for

regional population and the exogenous component of regional productivity. The base year in the calibration is 1990, the earli-

est date for which we have regional data on output and population.

4.1 Production technology

The production function F (k,L,x) is Cobb-Douglas and exhibits constant returns to scale:385

F (k,L,x) =
(
kαL1−α

)θ
x1−θ, (7)

where α, capital’s share of income (or GDP), is set to 0.36.

The productivity of the final-good sectors relative to the energy sector, ζ, equals the equilibrium price, p, of a unit of energy.

Let sit denote the share of energy production in region i in year t, measured as a fraction of regional GDP:

sit =
pxit
yit

.390

In equilibrium, each region chooses energy to solve the optimization problem in eq.
:::
Eq (3). The first-order condition for this

problem sets the marginal product of energy equal to p:

Fx(kit,Lit,xit) = p. (8)

This condition implies that the energy share is constant:

sit =
θ

1− θ
≡ s.395
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Following Krusell and Smith (2022), we set θ = 0.058, so that s equals the observed global energy share of GDP in 1990.

The price p is pinned down by matching global data from 1990:

p=
sYi0
Xi0

,

where Yi0 is global GDP in 1990 ($36.1 trillion in 1990 according to the G-Econ database discussed in further detail in Section

::::
Sect.

:
4.3) and Xi0 is global energy use in 1990 (10.3 Gtoes as reported in Krusell and Smith (2022)). This gives a calibrated

value of p= 0.203.

The annual growth rate, g, of the exogenous component of labor productivity,Ait, is set to 1.5% across all years and regions.400

Allowing for variation across regions and years would be straightforward, but we leave this for future work. Section 4.3 explains

how the initial regional levels Ai0 are determined.

The parameter ψ measuring gigatons of carbon emissions per Gtoe in 1990 is set to 0.586 to match global emissions of 6.03

GtC in 1990. Finally, the annual rate of depreciation of the capital stock, δ, is set to 0.06.

4.2 Preferences405

The period utility function U(c) = log(c). Along a balanced growth path (after the transition to clean energy is complete), the

equilibrium interest rate r∗ ≡ β−1(1+ g)− 1. We set β = 0.985, so that r∗ = 0.03, or 3% per year.

4.3 Initial regional capital stocks and productivity

We use version 4.0 of the G-Econ database (Nordhaus et al., 2006) to obtain regional GDP, yi0, and population, Ni0, in 1990.

Regions with very small populations are excluded, leaving 19,240 regions in total. Figure 2 displays the logarithm of regional410

GDP in 1990, revealing substantial heterogeneity across space.

Let labor productivity in region i in 1990 be ai0 =Ai0D(Ti0). To determine values for ai0 and physical capital ki0 in 1990,

we impose two conditions. First, regional GDP in the model must match GDP yi0 in the G-Econ database in 1990:

F (ki0,Li0,xi0)− pxi0 = yi0,

where Li0 =Ni0ai0 is effective labor in 1990 and the optimal energy choice xi0 satisfies the first-order condition in eq.
::
Eq

:
(8).415

Second, consistent with the evidence in Caselli and Feyrer (2007), we require that the marginal net return to capital be

equalized across regions in 1990:

Fk(ki0,Li0,xi0)− δ = r∗,

where Fk is the marginal product of capital. We set the common net return to r∗, under the assumption that in 1990 the global

economy was approximately on a balanced growth path (when the effects of global warming were still small). The initial value420

of Ai0 is then equal to ai0/D(Ti0), using the damage function D specified in Section
::::
Sect. 4.5.
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Figure 2. Logarithm of regional GDP in 1990.

4.4 Population

To construct time paths for regional population from 1990 to 2140 (the time horizon of DIAM), we proceed in five steps.

Step 1. Historical data (1990–2005). We begin with the G-Econ database, which provides regional population data for

1990, 1995, 2000, and 2005. Linear interpolation is used to fill in annual values between these benchmark years.425

Step 2. Regional shares within countries. For 1990–2005, we compute each region’s share of its country’s total population.

Because these shares evolve over time, we project them forward to 2100 by assuming that the logarithm of the shares follows a

linear trend estimated from the 1990–2005 data. We keep the shares constant after 2100. The key idea is that multiplying these

projected shares by country-level population yields regional population after 2005.

Step 3. Country-level population growth rates. To construct country-level populations, we first calculate annual growth430

rates from 2006 to 2100 using data from the 2024 Revision of the United Nations World Population Prospects (United Nations,

2024): historical estimates up to 2024 and projections thereafter. Beyond 2100, we assume that annual growth rates decline

linearly to zero by 2140.

Step 4. Country-level population paths. Using these growth rates, starting from the G-Econ country-level populations in

2005, we generate annual country-level population paths from 2006 to 2140.435

Step 5. Regional populations. Finally, we obtain regional populations by multiplying the country-level populations by the

projected regional shares.

Figure 3 shows the projected percentage change in regional populations between 1990 and 2100. The results highlight a

pronounced demographic shift: sharp population declines in Europe, Russia, and East Asia are counterbalanced by substantial

growth in Africa and the Middle East.440
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Figure 3. Percent change in population from 1900 to 2100. The color bar is not linear; instead each increment in the color bar represents the

same number of regions.

4.5 Damages and regional temperature

The damage function D(Tit) captures how labor productivity, measured as a fraction of optimal productivity Ait at any point

in time, varies with regional temperature Tit. It has an inverse U -shape and is normalized so that its maximum value equals 1

at its peak T ∗:

D(Tit) =


(
(1− d)e−κ+(Tit−T∗)2 + d

) 1
1−α

if Tit ≥ T ∗(
(1− d)e−κ−(Tit−T∗)2 + d

) 1
1−α

if Tit < T ∗,
(9)445

where the parameter d is a lower bound on D1−α. The parameters κ− and κ+ govern how quickly D declines from its peak to

the left and right sides of T ∗, respectively. Following Bjordal et al. (2022), we set T ∗ = 12.61, κ− = 0.00328, κ+ = 0.00363,

and d= 0.02, so the optimum temperature is approximately 12.6◦C and theU -shape is bounded below by 0.02 and asymmetric,

declining more rapidly to the right of the peak than to the left; see Fig. 4.

Figure 5 displays regional productivity using annual temperatures in 1990. There is substantial heterogeneity in productivity450

across space, reflecting the wide variation in regional temperatures. In addition, comparing to Fig. 2, regions with high GDP

in 1990 tend to have productivity near the peak of D, while regions with low GDP tend to have lower productivity. The shape

of D plays a key role in determining aggregate economic damages from global warming; we discuss these further in Section

::::
Sect. 5.
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Figure 4. The damage function in DIAM as given in eq.
::
Eq (9). The optimum temperature is approximately 12.6◦C.
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Figure 5. Regional productivity in 1990.
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4.6 The transition to green energy455

The economic model assumes that energy use gradually becomes green, represented by the sequence {ϕt}. The initial value,

ϕ0, is normalized to 1, so that the dirtiness of energy use is measured relative to 1990. We assume that ϕt = 0 for t≥ tg = 111,

implying that
::::::
t≥ tg ,

::::
after

:::::
which

:::::
point energy use is fully greenby the year 2100.

:
. To model the transition, we use a logistic function of time:

H(t) =

(
1+ exp

(
log

(
0.01

0.99

)
t−n0.5

n0.01 −n0.5

))−1

,460

with parameters n0.01 = 10 and n0.5 = 75. This function is close to 1 when t= 0 and declines slowly at first before accelerating,

with H(10) = 0.99and ,
:
H(75) = 0.5

:
,
:::
and

:::::::::::::
H(140) = 0.01. For t < tg , we then define

ϕt =
H(t)

H(0)
.

Figure 6 shows 1−ϕt, which we refer to as the greening function. The transition is slow in the early decades: by 2025, only

about 5% of energy use is green. This aligns reasonably well with observed data: the share of green energy (renewables and465

nuclear) was 11.3% in 1990 and 17.6% in 2024 according to Ritchie and Rosado (2020) so an incremental 5% greening relative

to 1990 by 2025 is consistent. After 2025, the pace accelerates, with half of energy use projected to be green by around 2065.

::
To

::::::::
conserve

::
on

:::::::::::
computation

:::::
time,

:::
we

:::
run

:::
the

:::::::::::
fully-coupled

::::::
model

::::
only

::::
until

:::::
2100,

::
at
::::::

which
:::::
point

:::
we

::::::
assume

::::
that

::::::
energy

:::
use

:::::::
becomes

:::::
fully

:::::
green

::::
(i.e.,

:::
we

:::
set

:::::::::
tg = 111).

:::
We

:::::
make

:::
this

::::::::::
assumption

:::
so

::::
that,

:::::
when

:::::::::
computing

:::::::
decision

:::::
rules

:::::
using

:::
the

:::::::::
standalone

::::::
model,

:::::::
regional

::::::::::
temperatures

:::::
reach

::
a
:::::
steady

:::::
state

::
in

:::::
2100.

:::
The

::::::::::
consequent

:::::
small

::::
kink

::
in

:::
the

:::::::
greening

::::::::
function

:::
has470

::::::::
negligible

::::::
effects

::
on

:::
the

::::::::::
quantitative

::::::
results

:::::::
because

::::::
annual

::::::::
emissions

:::
are

:::::::
already

::::
quite

::::
low

::
by

:::::
2100

::::
and,

:::::::::::
consequently,

:::::
their

:::::
impact

:::
on

:::::::::
cumulative

:::::::::
emissions

:
is
:::::
close

::
to

::::
zero

:::
by

:::
that

:::::
point.

:

4.7 Temperature forecasts in the standalone model

In the standalone version of DIAM, agents form temperature forecasts using a simple statistical approach, described in Section

::::
Sect. 2.3.1. First, they use cumulative CO2 emissions to project the expected value of regional temperatures, as specified in eq.475

::
Eq

:
(1). Second, they model stochastic deviations from this expected value with an AR(1) process, given in eq.

:::
Eq (2).

To ensure consistency with NorESM2—a key requirement when coupling DIAM with the climate model—we estimate the

parameters of these two equations using data generated by NorESM2. Specifically, we draw on three NorESM2 simulations

with CO2 emissions as the sole forcing. The first simulation begins in 1850, follows historical emissions until 2014 (Eyring

et al., 2015), and continues with a future projection of CO2 emissions from SSP3-7.0 for 2015–2100 (van Vuuren et al., 2014;480

Kriegler et al., 2014; Riahi et al., 2017). The other two simulations start in 1990 (branching off from the first simulation) and

extend to 2100, following lower emissions trajectories derived from standalone DIAM runs. All three simulations are shown

in Fig. 7.

The estimation proceeds in two steps. In the first step, we pool the three simulations and regress regional temperature

anomalies, T it −T i, on a quadratic function of cumulative emissions (excluding a constant term), yielding estimates of the485
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Figure 6. The greening function, showing the fraction of energy use that is green.

parameters γi1 and γi2 in eq.
::
Eq

:
(1). In the second step, we compute the residuals from this regression and regress them on

their lagged values (again excluding a constant) to estimate ρi and σi in eq.
::
Eq (2).

The relationship between temperature change and cumulative CO2 emissions is referred to as the Transient Climate Response

to Cumulative CO2 Emissions (TCRE). It is generally found to be nearly linear, both at the global scale (Matthews et al., 2009;

Canadell et al., 2021) and regionally (Leduc et al., 2016). However, as seen in Fig. 7, in NorESM2 the global temperature is a490

slightly concave function of cumulative emissions. For that reason, we include a quadratic term in eq. 1
::
Eq

:::
(1), and we find that

the estimates of γi2, the coefficient on this term, are almost all negative (though small in absolute value). This concavity likely

reflects nonlinearities in certain climate feedbacks captured by NorESM2, though exploring these mechanisms lies beyond the

scope of this paper.

Finally, Fig. 8 illustrates substantial heterogeneity in regional warming responses: the amount of regional warming associated495

with a one-degree increase in global mean temperature (over populated areas only, relative to 1990) varies widely, from less

than one degree in much of the Southern Hemipshere to more than one degree—and as high as several degrees—in the northern

latitudes. The AR(1) estimates also display heterogeneity: the median estimate of ρi is 0.266, with an interquartile range (IQR)

of 0.206 to 0.316, while the median estimate of σi is 0.632, with an IQR of 0.497 to 0.862.

5 Results500

This section presents the quantitative findings from our new coupled model. We begin by verifying that the candidate equi-

librium computed with the standalone model is consistent with the behavior of the fully coupled system. We then analyze the
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Figure 7. NorESM2 global mean temperature change from pre-industrial over land against cumulative emissions since 1850. The red line

shows the global mean expected temperature over land obtained by summing eq.
::
Eq

:
(1) across regions. The black dots are from a NorESM2

simulation with historical CO2 emissions followed by the CO2 emissions from SSP3-7.0. The light and dark gray dots are from two NorESM2

simulations from 1990 until 2100 with much lower total emissions at the end of the century.

secular trends in temperature and GDP projected by the model, both globally and regionally. Finally, we investigate short-term

fluctuations in global and regional GDP, highlighting the deviations from long-term trends that arise from internal variability

in NorESM2–DIAM.505

5.1 Assessing the candidate equilibrium

We initialize cumulative emissions in 1990 to match the historical NorESM2 input (Eyring et al., 2015). Figure 9 presents the

equilibrium path of cumulative emissions in the standalone model (absent internal variability), alongside historical emissions

through 2014 and four Shared Socioeconomic Pathway (SSP) projections thereafter. From 1990 to 2024, the standalone model

closely tracks observed cumulative emissions. Beyond 2024, its trajectory aligns most closely with SSP3-7.0, before flattening510

and ultimately ending the century between SSP2-4.5 and SSP3-7.0.

Figure 10 shows the difference in annual and cumulative emissions between the standalone model and those generated by

NorESM2–DIAM. In the coupled model, internal variability in regional temperatures causes realized regional emissions—

which depend on actual rather than expected temperatures—to diverge from expectations. These deviations do not cancel
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Figure 8. Regional warming in response to a 1◦C increase in area-weighted average temperature (over regions with economic activity) based

on the statistical temperature forecast approach. The color bar is not linear; instead each increment in the color bar represents the same

number of regions.
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Figure 9. Cumulative CO2 emissions (excluding land–use change) since 1850 for the years 1980 to 2100 measured in GtC. The black line

is the emissions used by NorESM2 for historical simulations, based on estimated historical emissions, and goes until 2014. The four blue

lines are the emissions used in the four most common emission scenarios, starting in 2014. The yellow line is cumulative emissions from the

standalone model, which starts from the historical cumulative emissions in 1990.
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Figure 10. Percentage difference in annual emissions (black) and cumulative emissions grey) between the coupled NorESM2-DIAM simu-

lation and the DIAM standalone.

out across regions: even at the global level, emissions often differ from the standalone model by several percentage points515

in absolute value, as shown by the black line in Fig. 10. However, because annual flows are small relative to the stock of

cumulative emissions, the coupled model’s cumulative emission path remains close to that of the standalone model, differing

by no more than 0.4% (gray line in Fig. 10). As a result, agents’ forecasts of future expected temperature—based on the

standalone model’s cumulative emissions path—are highly accurate: accounting for the minor deviations in the coupled model

would change forecasts only marginally. Taken together with the assumption that the AR(1) process describing deviations of520

regional temperature from its expected path is invariant to global warming (see Section
::::
Sect. 2.3.1), this result supports the

conclusion that the behavior of the coupled model provides a reasonable approximation to an exact economic equilibrium.

5.2 Global change

Figure 11 (a) displays the path for population-weighted global temperature in NorESM2-DIAM, together with the trend path

from the standalone model. (We use population-weighted temperature to focus on regions where people live; recall that regional525

population shifts over time so that the population weights change over time.) The global temperature in NorESM–DIAM tracks

the trend path, providing additional evidence that the behavior of NorESM–DIAM aligns with the candidate equilibrium from

the standalone model. There are substantial variations in global temperature around this trend path, driven by internal variability

in NorESM2. Comparing with Fig. 10, there is a positive relationship between deviations of global emissions and deviations
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Figure 11. Global mean values of (a) population weighted temperature change from pre-industrial, (b) percentage change in GDP since 1990,

and (c) percentage change in GDP per capita since 1990. For GDP and GDP per capita the exogenous growth is removed. The solid line

is the value from the DIAM standalone model, while the dashed line is the calculated value from the coupled NorESM2-DIAM. Panel (c)

also shows the decomposition of GDP per capita into contributions from population only (green), climate change only (red), and interaction

effects (yellow).

of global temperature from their respective trend paths: higher temperatures tend to reduce global productivity (as we discuss530

further below), in turn leading to lower energy use and fewer emissions.
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Note that the NorESM2–DIAM simulation begins from a relatively cold temperature compared with the trend path in the

standalone model. This discrepancy reflects two factors: the historical simulation used to initialize NorESM2–DIAM is rela-

tively cool in 1990, and the statistical temperature forecast provides a less precise fit at low levels of cumulative emissions (see

Fig. 7). Nevertheless, the statistical temperature forecast captures NorESM2’s behavior well overall.535

The corresponding change in global GDP is shown in Fig. 11 (b), expressed as a percentage relative to 1990. To isolate

the effects of climate change and population dynamics, we remove the underlying constant growth rate of 1.5% driven by the

exogenous component of productivity. As expected, GDP in NorESM2-DIAM closely tracks the standalone model, consistent

with the alignment in temperatures between the two models. Global GDP rises until around 2040, reaching about 35% above

1990 levels, before beginning to decline. The initial increase reflects population growth, which peaks in the 2080s, while the540

subsequent downturn results from both population shifts and the impacts of climate change, as we discuss further below.

Finally, Fig. 11 (c) displays the change in global GDP per capita since 1990 (again with the underlying growth trend of 1.5%

removed). Once again, NorESM2–DIAM tracks the trend in the standalone model closely, and in both models global GDP per

capita declines by about 35% by 2100.

To understand this decline, Fig. 11 (c) also displays the results of two counterfactual experiments using the standalone545

model, one in which the climate changes over time but regional population does not, and another in which regional population

changes over time but the climate does not. These experiments reveal that most of the decline in GDP per capita (about 64%)

can be attributed to shifts in regional population. In particular, as shown in Fig. 3, according to our projections, the distribution

of global population changes strikingly over time, with population tending to grow (shrink) in regions that are relatively poor

(rich) in 1990, as measured by the initial value of the exogenous component of productivity (which in turn reflects differences550

in regional GDP per capita in 1990). Even as global GDP increases initially (due to a growing global population), global GDP

per capita declines throughout because poor regions are becoming relatively more populated.

Climate change alone, in turn, causes a decline of about 8% in GDP per capita by 2100, or about 23% of the total decline.

This decline is a quantitative measure of the global damages from climate change generated by NorESM–DIAM when the

global (population-weighted) temperature increases by close to 3.5◦C. These global damages are larger than in the most recent555

version of Nordhaus’s DICE model (see Barrage and Nordhaus (2024) in which damages are about 4% of global GDP at 3.5◦C

of warming) but in line with other estimates in the literature (see, for example, Rennert et al., 2022). In NorESM2–DIAM,

global damages depend critically on the regional damage function D (see Fig. 4), and the specific calibration of this function

that we use here can then be viewed as a reasonable one in the sense that it generates quantitatively reasonable global damages

(see Krusell and Smith (2022) and Bjordal et al. (2022) for a thorough discussion).560

The rest of the decline in global GDP per capita (about 13%) can be attributed to an interaction effect between climate change

and population shifts, as shown in Fig. 11 (c): in particular, population tends to shift over time not only to poorer regions but

also to hotter regions, that is, regions whose initial temperatures in 1990 are to the right of the optimum temperature in see Fig.

4 and which therefore experience greater damages from climate change than cooler regions. (The latter may even experience

gains from climate change if they are cool enough, a point to which we return in Section
::::
Sect.

:
5.3 below.)565
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a) Standalone Model in 2040 b) NorESM2-DIAM in 2040

c) Standalone Model in 2090 d) NorESM2-DIAM in 2090

Figure 12. Maps of temperature change from pre-industrial for years 2040 and 2090, for the DIAM standalone and the coupled NorESM2-

DIAM. a) is the DIAM standalone for year 2040, b) is NorESM2-DIAM for year 2040, c) is the DIAM standalone for 2090, and d) is

NorESM2-DIAM for year 2090.

As discussed in section
::::
Sect.

:
4.1, in our calibration the exogenous component of productivity has the same constant growth

rate in all regions. A more realistic calibration might allow poorer regions to grow faster initially as they catch up to the global

technology frontier. Such a calibration would lead to a different decomposition than the one displayed in Fig. 11 (c), likely

reducing the role of population shifts in causing declines in global GDP per capita. It is entirely feasible in our methodology

to allow the growth rate of the exogenous component of productivity to vary across time and space, but we leave this to future570

work.

5.3 Regional change

We now turn to patterns of regional change. Figure 12 shows, for both the standalone model and the fully-coupled model,

projected changes in regional temperature from 1990 to 2040 and 2090 in response to global warming. Consistent with Fig. 8,

regions in high northern latitudes warm the most, reflecting Arctic amplification (Meredith et al., 2019). Differences between575

the standalone and NorESM2–DIAM simulations reflect internal variability in NorESM2–DIAM, which is suppressed in the

standalone model.

The maps in Fig. 13 show how the percentage change in GDP per capita is distributed corresponding to the temperature

maps in Fig. 12. Note that these are relative to the underlying trend path growing at 1.5% year (driven by growth in the

exogenous component of productivity). There are large differences across regions, with many regions’ economies growing580

relative to trend growth, often by large amounts, and other regions’ economies shrinking. Moreover, the differences across
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a) Standalone Model in 2040 b) NorESM-DIAM in 2040

c) Standalone Model in 2090 d) NorESM-DIAM in 2090

Figure 13. Maps of percentage change in regional GDP per capita (relative to the underlying trend path growing at 1.5% per year) from 1990

to 2040 and 2090. a) is the standalone model for year 2040, b) is NorESM2-DIAM for year 2040, c) is the standalone model for 2090, and d)

is NorESM2-DIAM for year 2090. Note that the color bar is not linear; instead each increment in the color bar represents the same number

of regions.

regions increase substantially over time, with the percentage changes in regional GDP from 1990 to 2090 displaying much

more spatial variation than the percentage changes from 1990 to 2040.

These patterns, in turn, reflect how regional productivity varies over time as the global climate warms. Cool regions, located

to the left of the optimum temperature in the damage function D in 1990 (see Fig. 4), warm over time, leading to increases585

in productivity as their temperatures move towards the optimum temperature. Initially warm regions, by contrast, decline in

productivity as their temperatures move away from the optimum temperature.

As for regional temperatures, the percentage changes in regional GDP differ across the standalone model and NorESM2–

DIAM, reflecting internal variability in NorESM2–DIAM: realized regional temperatures fluctuate relative to expected tem-

perature, leading to fluctuations in productivity and hence GDP. We discuss this variability in Section
::::
Sect.

:
5.4 below.590

In the maps in Fig. 13, GDP per capita increases in large areas, seeming to suggest that global GDP per capita increases

over time, rather than decrease as shown in Fig. 11 (c). But it is important to note that most of the regions in which GDP per

capita increases have small populations and consequently contribute little to global GDP. To see this more clearly, Fig. 14 (a)

and (b) aggregates regions into countries and shows the percentage change in each country’s temperature and GDP per capita

from the last decade of the 20th century (1990-1999) to the last decade of the 21st century (2090-2099). These figures reveal595

that for most, though not all, countries, GDP per capita declines over the century. Moreover, global GDP per capita (see the

circle labeled “GLOBAL”) has a larger decrease than most individual countries.
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Figure 14. Country-level change in temperature and GDP per capita in 2090-2099 compared to 1990-1999. a) and b) show each country’s

percentage change in decadal GDP per capita on the y-axis against decadal population-weighted temperature change on the x-axis as calcu-

lated by NorESM2-DIAM. c) show the differences between NorESM2-DIAM and the standalone model for the change in temperature and

GDP per capita. In a) each country’s circle, as well as the global mean, is colored based on the percentage change in population (2090-2099

compared to 1990-1999), and the size indicates the population in year 1990. In b) and c) the top row, each country’s symbol, as well as the

global mean, is colored based on the 1990-1999 population-weighted temperature, and the size indicates the GDP per capita average over

1990-1999.
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To better understand this finding, Fig. 14 (a) emphasizes the effect of population. Here, the size of each circle corresponds

to initial population and the color of each circle corresponds to changes in population. Many of the countries with a large

decrease in GDP per capita also have a large increase in population, whereas for many of the countries in which GDP per600

capita increases, population decreases. Consequently, global GDP per capita falls by more than it does in many individual

countries.

Figure 14 (b) is the analogue of Fig. 14 (a), but here the size of each circle corresponds to initial temperature (i.e., the

decadal average for 1990-1999) and the color of each circle corresponds to GDP per capita in 1990-1999. As is the case for

individual regions, in warm countries GDP per capita decreases over time (relative to the underlying trend), while in colder605

countries it increases. This figure shows clearly that most poor countries (i.e., those represented by smaller circles) experience

large damages from climate change in the sense that GDP per capita falls substantially in them.

5.4 Variability in productivity and GDP

Internal variability in NorESM2–DIAM leads to large fluctuations in regional temperatures around their trend paths, as quan-

tified in the estimated coefficients of the AR(1) process that agents use to make forecasts of future regional temperatures (see610

Section
::::
Sect.

:
2.3.1). Likewise, the global temperature fluctuates substantially around its trend path, as illustrated in Fig. 11 (a).

These temperature fluctuations, in turn, lead to quantitatively significant fluctuations in productivity and hence in regional

and global GDP. Figure 15 shows that in NorESM2–DIAM, the standard deviation of (annual) regional GDP, expressed as a

percentage relative to its trend, ranges from near zero to 33%, with most values lying between 2% and 10%. The large spatial

heterogeneity in this measure of GDP volatility has two sources. First, there is substantial spatial heterogeneity in the volatility615

of regional temperature itself. Second, average regional temperatures vary greatly across space, so that regions are located at

very different points along the inverse U -shaped damage function (see Fig
::::
Sect. 4.5) determining regional productivity. For a

given amount of volatility in regional temperature, regions near the peak of the damage function experience smaller fluctuations

in productivity than regions either to the left or right of the peak where the slope of the damage function is larger (in absolute

value).620

Figure 14 (c) illustrates this variability at the country level. Specifically, this figure shows the differences between NorESM2-

DIAM and the standalone model, i.e., the difference between the change from 1990-1999 to 2090-2099 in the two models.

Averaging over a decade dampens a considerable amount of the internal variability in NorESM–DIAM. Nonetheless, even

over this longer horizon, internal variability still leads to quantitatively important variations in GDP per capita. (Note that the

contribution from population changes is not relevant here, as the two have the same population changes.) For example, in a cold625

country that experiences a higher-than-normal temperature, productivity increases, leading to an increase in GDP per capita in

the short run. Similarly, in a hot country that experiences a lower-than-normal temperature, productivity also increases, leading

again to an increase in GDP per capita. By contrast, in a cold country that experiences a lower-than-normal temperature (or in

a hot country that experiences a higher-than-normal temperature), productivity and GDP per capita fall in the short run.

Finally, as shown in Fig. 11 (b), global GDP itself experiences large fluctuations relative to its trend, about 1% in percentage630

terms. Evidently, even though the number of regions is large, deviations of regional GDP do not wash out in
:::::::::
magnitude.
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Figure 15. Standard deviation of regional GDP (expressed as a percentage relative to trend).

:::
The

:::::::
patterns

::
of

::::::
spatial

:::::::::
correlation

::
in

:::::::
regional

:::::::::::
temperatures

::::::::
generated

:::
by

::::::::
NorESM2

::::
play

::
a

:::
key

:::
role

::
in
:::::::
driving

:::
this

:::::::::
variability

::
in

:::::
global

:::::
GDP.

::
To

:::::::
examine

:::
the

::::
role

::
of

::::
these

:::::::
patterns,

:::
we

::::::::
simulated

:::
the

::::::::
behavior

::
of

:::
the

::::::::
standalone

::::::
model

::::
with

:::::::
regional

::::::::::
temperature

:::::
shocks

::::::
drawn

:::::::::
according

::
to

:::
Eq.

::::
(2),

::::
with

:::
the

::::::::::
parameters

::
of

:::
the

::::::::
regional

:::::
AR(1)

:::::::::
processes

::::::::
calibrated

:::
to

::::::::
simulated

::::
data

:::::
from

::::::::
NorESM2

:::
as

::::::::
described

::
in

:::::
Sect.

::
4.

::
In

:::
the

:::::::::
standalone

:::::::
model,

::::
these

::::::
shocks

::::
are

:::::::
assumed

::
to

:::
be

::::::::::
statistically

::::::::::
independent

::::::
across635

::::::
regions

:::
and

::::::::
therefore

::::::
exhibit

::
no

::::::
spatial

:::::::::
correlation

:::
by

:::::::::::
construction.

::
In

:::
this

:::::
case,

:::::::::
fluctuations

::
in
::::::
global

::::
GDP

:::
are

:::::
about

:::::
0.1%,

:::
an

::::
order

::
of

:::::::::
magnitude

:::::::
smaller

::::
than

::
in the aggregate, for two reasons. First, regional temperatures are correlated in space. Second,

economic activity is highly concentrated in space. As a result, the effective number of regions is much smaller than 19, 000,

slowing down the action of the law of large numbers
:::::::::::
fully-coupled

::::::
model.

::::::
Failing

::
to

:::::::
account

:::
for

:::::::
patterns

::
of

::::::
spatial

:::::::::
correlation

:::::
would

::::::::
therefore

::::
lead

::
to

:
a
::::
large

:::::::::::::
understatement

::
of

::::::::
volatility

::
in

::::::
global

::::
GDP.

:
640

::
To

::::
gain

::::::
further

::::::
insight

:::
into

:::
the

::::
role

::
of

:::::
spatial

::::::::::
correlation

::
in

::::::::
generating

:::::::::
aggregate

::::::::::
fluctuations,

::::
Sect.

:::
A8

::
in

::::::::
Appendix

::
A
::::::
shows

::::::::::
analytically,

::
in

:
a
:::::::
stylized

::::::
model,

:::
that

::::::
spatial

:::::::::
correlation

::::
can

::::::
amplify

:::
the

::::
size

::
of

:::::
these

:::::::::
fluctuations

:::::
under

::::::
certain

:::::::::
conditions

::::
that

:::
our

::::::::
calibrated

::::::
model

::::::
satisfies.

6 Discussion

We have developed a coupled model consisting of two main components—an IAM and an ESM—that exchange information645

every year at a gridded level. We find, like Krusell and Smith (2022), Bjordal et al. (2022), and Cruz and Rossi-Hansberg (2024),

that changes to GDP per capita induced by global warming vary greatly across regions, underscoring again the importance of

making regional assessments of economic impacts. In line with previous research (Kotz et al., 2021; Kikstra et al., 2021;

Waidelich et al., 2024; Kotz et al., 2024), we also find that internal variability—which is ignored in most IAMs—can be

important for assessing the economic impacts of global warming, both annually and on longer time scales.650
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The quantitative results depend critically on the shape of the regional damage function. We show that our calibration of the

damage function generates aggregate damages in line with existing estimates, but it is important in future work to provide

stronger empirical foundations for this function. Specifically, we plan to evaluate the quantitative effects of different damage

functions, including those that depend on additional climate and weather variables beyond annual mean temperature. The

damage function we use here also assumes implicitly that a permanent change in climate (such as a permanent increase in655

average annual temperature) has the same economic impacts as a transitory change in weather (such as relatively hot or cold

year), ignoring possible adaptation to changes in climate. We hope to address this shortcoming in future work too.

In the prototype model implemented here, NorESM2 and DIAM exchange only regional temperatures and emissions. But

the NorESM2-DIAM framework opens many possibilities for future model development. For example, we can easily extend

our methodology to include additional climate variables which have been shown to be important for assessing the economic660

damages of climate change. (Waidelich et al., 2024; Kotz et al., 2024). NorESM2 already provides information on a plethora of

climate and weather variables. Given a damage function that depends on (a subset of) these variables, extending the methodol-

ogy simply requires incorporating these additional variables into the statistical model that agents use to forecast future regional

damages.

Another important question is whether climate change affects the growth rate of economic activity, rather than merely665

shifting the level of activity as in our prototype model. This issue remains unsettled (see, e.g., Dell et al., 2012; Howard and

Sterner, 2017; Burke et al., 2015), but again our framework can be readily extended to accommodate such effects by modifying

the damage function accordingly.

The economic model (DIAM) in the prototype model developed here is relatively simple, with several important limitations

that could be important for assessing the spatial effects of climate change. These include constant exogenous productivity670

growth across time and space, no capital mobility, and exogenous population changes. We also limit attention to CO2, though

including forcings from other greenhouse gases would permit better a better representation of how the climate changes in

response to economic decisions. However, many of these limitations (with the possible exception of migration in response to

climate change) can be easily incorporated into the existing framework. The advantage of starting with a simple model is that

its output is relatively easy to understand and interpret. This model can also serve as a baseline against which future model675

versions with more complex connections between climate and the economy can be compared.

An important limitation of NorESM2-DIAM, compared to existing IAMs, is its computational cost. While IAMs such

as DICE or PAGE can be run in a matter of minutes or less (e.g. Moore et al., 2018) on any computer, full ESMs—and

consequently NorESM2-DIAM—take hours or days on a supercomputer. Therefore, we must limit the number and length of

model simulations. However, the computational cost is close to that of running an ESM, so running NorESM2 with an economic680

module has a negligible effect on the overall run time. In principle, NorESM2-DIAM can be used for all the same experiments

as IAMs. However, due to the computational cost, it makes most sense to use NorESM2-DIAM to answer questions where a

good representation of the climate system and the carbon cycle is important, such as how extreme weather events and internal

variability affect economic outcomes.
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In addition to the NorESM2-DIAM model, we now have a simple representation of NorESM2’s climate in the standalone685

version of DIAM. The standalone model is computationally inexpensive relative to the full coupled model, so it can be useful

when speed is important, for example, to perform many different simulations or very long simulations. The standalone model

can also be used as a guide to what simulations it would be worthwhile to run in the full model. Finally, in cases where

we have already performed simulations of the full model with similar emission trajectories, we could use NorESM2 data

for regional temperatures (and possibly other variables) as an input to the standalone model, in a sort of offline coupling:690

different combinations of economic growth, greening, and policy can in some cases deliver similar paths for emissions and

consequently temperatures, yet still have very different economic impacts. Finally, the simple model could also be useful for

teaching purposes.

7 Conclusions

In conclusion, the NorESM2-DIAM framework successfully couples a state-of-the-art Earth System Model and a cost-benefit695

Integrated Assessment Model with high geographical resolution. The new model exchanges temperature and CO2 emissions

on a yearly basis on a regional gridded level, generating dynamic emissions trajectories. The results highlight the importance

of spatial and temporal variability for economic outcomes as well as the wide range of outcomes among regions.

A caveat to keep in mind is that these are early results using a coupled model that is, to our knowledge, the first of its

kind. The quantitative results presented here should therefore be interpreted with caution. There are still large uncertainties,700

particularly regarding the proper form of the damage function, and there are several important features (see the discussion

in Section
::::
Sect. 6) that we would like to add to the model in order to assess their quantitative importance. Nevertheless, our

results demonstrate how the two components of the coupled model work together and the framework we develop here is a

good starting point for future model development, opening up a wide range of new opportunities for more comprehensive and

sophisticated simulations of climate-economy interactions.705

Code and data availability. The frozen NorESM2 source code used in this study is archived as release-noresm2.0.9 on Zenodo (https:

//doi.org/10.5281/zenodo.17865358; Seland et al., 2025). The NorESM2 restart files required to run the simulations are available on Zenodo

(https://doi.org/10.5281/zenodo.17856602; Bjordal, 2025), and the additional model input files not generated by our own scripts are likewise

provided via Zenodo (https://doi.org/10.5281/zenodo.17865023; NorESM Climate Modeling Consortium,, 2025). Further information on

installing and configuring NorESM2 can be found in The NorESM developers group, (2020).710

The complete NorESM2-DIAM codebase—comprising the standalone DIAM model, coupling scripts, input file generation scripts, all out-

put data reported in this paper, and the plotting scripts—is archived as release-v1.0.2 on Zenodo (https://doi.org/10.5281/zenodo.17986166;

Bjordal et al., 2025). The accompanying README provides an overview of input and output data for NorESM2-DIAM and detailed instruc-

tions for reproducing the results and running the model.
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Appendix A715

A1 Introduction

Sections A2 to A6 of this Appendix explain how we solve the regional dynamic programming problems. Section A7 gives

details on how we execute a forward simulation using NorESM2.
::::::
Section

::::
A8

::::
uses

:
a
:::::::
stylized

::::::
model

::
to

:::::::
examine

::::
the

:::
role

:::
of

:::::
spatial

:::::::::
correlation

::
in
:::::::::
generating

::::::::::
fluctuations

::
in

::::::
global

:::::::::
aggregates.

:

A2 Setup720

Time is discrete and starts in year 0, corresponding to the real-world year R. Agents in region i assume that their temperature

in year t, Tit, is given by:

Tit = T it + zit, (A1)

where T it is region i’s expected temperature in year t and zit is a region-specific random shock to regional temperature.

Assume that T it = T i + γi1St + γi2S
2
t , where T i is pre-industrial temperature in region i and St is cumulative global carbon725

emissions (since the pre-industrial era) at the beginning of year t. Assume that zit follows an AR(1) process:

zit = ρizi,t−1 + ϵit, (A2)

where {ϵit}∞t=0 is an i.i.d. (independent and identically distributed) sequence of random variables with a N(0,σ2
i ) distribution.

Let kit be the physical capital stock in region i at the beginning of year t, let ωit denote wealth in region i at the beginning of

year t, and let xit denote energy use (measured in BTUs) in region i during year t.Let δ be the rate at which capital depreciates.730

Let population in region i in year t, Nit, evolve according to Ni,t+1 = (1+ gNi,t+1)Nit, where Ni0 is a given number and

{gNit }∞t=1 is an exogenous sequence.

Let ψϕit be carbon emissions (in GtCs) per BTU in region i in year t and let eit be carbon emissions in region i in year t,

i.e., eit = ψϕitxit. Then global emissions in year t are equal to:

Et ≡
M∑
i=1

eit,

where M is the number of regions. Then St+1 = St+Et for t≥ 0, where S0 is cumulative emissions (since the pre-industrial

era) through the beginning of real-world year R. Alternatively, for t≥ 1,

St = S0 +

t−1∑
s=0

Es.

Each region takes as given the sequence {St}∞t=0. Using (A1), this sequence in turn determines the sequence {T it}∞t=0.

Finally, assume that St = S∗ for t≥ t1 (i.e., starting in year t1, ϕit = 0 for all i, so that there are no further carbon emissions).
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A3 Dynamic program of a typical region735

Each region i solves the following dynamic programming problem, where ωit is aggregate wealth in region i at the beginning

of year t and kit is the aggregate capital stock in region i at the beginning of year t:

vit (ωit,zit,Nit,Ait) =

max
ki,t+1

[
NitU

(
ωit − ki,t+1

Nit

)
+βEt

(
vit+1(ωi,t+1,zi,t+1,Ni,t+1,Ai,t+1)

)]
,

subject to eq.
::
Eq

:
(A1), (A2), the borrowing constraint ki,t+1 ≥ 0, and the law of motion for wealth:

ωi,t+1 = max
xi,t+1

(
F
(
kαi,t+1ℓ

1−α
i,t+1,xi,t+1

)
− pixi,t+1

)
+(1− δ)ki,t+1, (A3)

where ℓit =NitAitD(Tit) is aggregate efficiency units of labor in region i in year t, pi is the price of a unit of energy (ex-

pressed in units of the final consumption good), D(Tit) is a nonnegative, inverse U -shaped function with a unique maximum

at D(T ∗) = 1, and the sequence {Ait}∞t=0 obeys: Ai,t+1 = (1+ gAi,t+1)Ait, where Ai0 is a given number and {gAit}∞t=1 is an740

exogenous sequence. Note that the value function in region i, vit, implicitly depends on the region-specific parameters T i, ρi,

γi1, γi2, and σ2
i ; the region-specific sequences of growth rates {gNit }∞t=1 and {gAit}∞t=1; and the common sequence {St}∞t=0.

Assume finally that, for t≥ t2 > t1, gNit = gN and gAit = gA, i.e., the growth rates of population and exogenous technological

progress are constant across time and space starting in year t2.

A4 Detrending the dynamic program745

For any variable yit, define the scaled variable

ŷit ≡
yit

NitAitD(T it)
.

Because the production function, F , is assumed to have constant returns to scale in its two arguments, the law of motion for

wealth (eq
:::
Eq. A3) can be rewritten:

ω̂i,t+1 = max
x̂i,t+1

(
F
(
k̂αi,t+1

(
dit+1(Ti,t+1)

)1−α
, x̂i,t+1

)
− pix̂i,t+1

)
+(1− δ)k̂i,t+1, (A4)

where

dit(·)≡
D(·)
D(T it)

.

Assume that U(c) = c1−γ . Then

U

(
ωit − ki,t+1

Nit

)
=

(
AitD(T it)ω̂it −

Ni,t+1Ai,t+1

NitAit
AitD(T i,t+1)k̂i,t+1

)1−γ

750

=
(
AitD(T it)

)1−γ
(
ω̂it − (1+ gNi,t+1)(1+ gAi,t+1)d

i
t(T i,t+1)k̂i,t+1

)1−γ

.

Guessing that vit(ωit,zit,Nit,Ait) =Nit

(
AitD(T it)

)1−γ
v̂it(ω̂it,zit), rewrite region i’s dynamic program as:

Nit

(
AitD(T it)

)1−γ
v̂it(ω̂it,zit) =
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max
k̂i,t+1, x̂i,t+1

[
Nit

(
AitD(T it)

)1−γ
(
ω̂it − (1+ gNi,t+1)(1+ gAi,t+1)d

i
t(T i,t+1)k̂i,t+1

)1−γ

βEt

(
Ni,t+1

(
Ai,t+1D(T i,t+1)

)1−γ
v̂it+1(ωi,t+1,zi,t+1)

)]
,

subject to eq
::
Eq. (A1), (A2), (A4), and the borrowing constraint. Simplify this equation to get:

v̂it(ω̂it,zit) = (A5)

max
k̂i,t+1, x̂i,t+1

[(
ω̂it − (1+ gNi,t+1)(1+ gAi,t+1)d

i
t(T i,t+1)k̂i,t+1

)1−γ

+

β(1+ gNi,t+1)(1+ gAi,t+1)
1−γ

(
dit(T i,t+1)

)1−γ Et

(
v̂it+1(ω̂i,t+1,zi,t+1)

)]
,

subject to eq
::
Eq. (A1), (A2), (A4), and the borrowing constraint.

A5 Solving the dynamic program backwards755

Starting in year t2, region i’s dynamic programming problem then has a time-invariant solution and simplifies to:

v̂i(ω̂it,zit) = max
k̂i,t+1, x̂i,t+1

[(
ω̂it − (1+ gN )(1+ gA)k̂i,t+1

)1−γ

+ (A6)

β(1+ gN )(1+ gA)1−γ Et

(
v̂i(ω̂i,t+1,zi,t+1)

)]
,

subject to eq
::
Eq. (A1), (A2), (A4), and the borrowing constraint, where now

T it = T
∗
i ≡ T i + γi1S

∗ + γi2 (S
∗)

2
.

The first step in solving problem (A5) is to find the function v̂i(ω̂it,zit) that solves equation (A6).

Next, for t= t1, . . . , t2 − 1, problem (A5) simplifies to:

v̂it(ω̂it,zit) = (A7)760

max
k̂i,t+1, x̂i,t+1

[(
ω̂it − (1+ gNi,t+1)(1+ gAi,t+1)k̂i,t+1

)1−γ

+

β(1+ gNi,t+1)(1+ gAi,t+1)
1−γ Et

(
v̂it+1(ω̂i,t+1,zi,t+1)

)]
,

subject to eq
::
Eq. (A1), (A2), (A4), and T it = T

∗
i for all t. Note that

v̂it2(ω̂i,t2 ,zi,t2) = v̂i(ω̂i,t2 ,zi,t2),

where the latter function was computed in the first step. The second step in solving problem (A5) is to find, working backwards

from t= t2 − 1 to t= t1, the sequence of functions v̂it(ω̂it,zit) that solves eq
::
Eq. (A7) for t= t1, . . . , t2 − 1.

The third and final step is then to iterate backwards on eq
:::
Eq. (A5), from t= t1−1 to t= 0, to find the sequence of functions

v̂it(ω̂it,zit) that solves eq
::
Eq. (A5) for t= 0, . . . , t1 − 1.
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A byproduct of solving problem (A5) is a set of decision rules for each region i:765

k̂i,t+1 = hkit(ω̂it,zit)

x̂it = hxit(kit,zit),

for t= 0, . . . , t2 − 1; and a pair of time-invariant decision rules,

k̂i,t+1 = hki (ω̂it,zit)

x̂it = hxi (kit,zit),770

for t≥ t2.

A6 The endogenous grid point method

This section describes how to the use the “endogenous gridpoint" method to solve the dynamic program.

A6.1 The steady-state problem

Start with the steady-state problem (A6), now assuming that U(c) = log(c):775

v̂i(ω̂it,zit) = max
k̂i,t+1

[
log

(
ω̂it − (1+ gN )(1+ gA)k̂i,t+1

)
+ (A8)

β(1+ gN )Et

(
v̂i(ω̂i,t+1,zi,t+1)

)]
,

subject to eq
::
Eq. (A1), (A2), (A4), and the borrowing constraint. In equation

::
Eq.

:
(A4), the law of motion for wealth, note that

the optimal choice for x̂i,t+1 solves:

Fx

(
k̂αi,t+1

(
dit+1(Ti,t+1)

)1−α
, x̂i,t+1

)
= pi,

where Fx denotes the partial derivative of F with respect to its second argument. Recalling that, in the steady state, Ti,t+1 =

T
∗
i + zi,t+1, this first-order condition implicitly defines a time-invariant decision rule for (scaled) energy use:

x̂i,t+1 = hxi (k̂i,t+1,zi,t+1). (A9)

Substitute this decision rule into eq
::
Eq. (A4):780

ω̂i,t+1 = F
(
k̂αi,t+1

(
dit+1(Ti,t+1)

)1−α
,hxi (k̂i,t+1,zi,t+1)

)
− pih

x
i (k̂i,t+1,zi,t+1)+

(1− δ)k̂i,t+1,

≡ Gi(k̂i,t+1,zi,t+1). (A10)

The first-order condition to problem (A8) is then:

β−1(1+ gA)
(
ω̂it − (1+ gN )(1+ gA)k̂i,t+1

)−1

= Et

[
v̂iω(ω̂i,t+1,zi,t+1)G

k
i (k̂i,t+1,zi,t+1)

]
, (A11)785
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where v̂iω denotes the partial derivative of v̂i with respect to its first argument and Gk
i denotes the partial derivative of Gi with

respect to its first argument. The right-hand side of this first-order condition can be rewritten as:

Et

[
v̂iω(ω̂i,t+1,zi,t+1)G

k
i (k̂i,t+1,zi,t+1)

]
= (A12)

∞∫
−∞

v̂iω(Gi(k̂i,t+1,zi,t+1),zi,t+1)G
k
i (k̂i,t+1,zi,t+1)f(zi,t+1;ρizit,σ

2
i )dzi,t+1 ≡

Hi(k̂i,t+1,zit),

where f(z;µ,σ2) is the density function for a random variable z that has a normal distribution with mean µ and variance σ2.

So then the first-order condition can be written:790

β−1(1+ gA)
(
ω̂it − (1+ gN )(1+ gA)k̂i,t+1

)−1

=Hi(k̂i,t+1,zit). (A13)

The first step in the endogenous grid point method is to use eq
::
Eq. (A13) to solve for ω̂it on a grid of points for k̂i,t+1 and

zit, given a guess for Hi on the grid. Let the grid points be {k̄′j}
nk
j=1 (where ′ denotes “next period") and {z̄ℓ}nℓ

ℓ=1, respectively,

and guess on an initial set of values for Hi on this grid, i.e., {{H0
i (k̄

′
j , z̄ℓ)}

nℓ

ℓ=1}
nk
j=1. Then, for each (j,ℓ) pair,

ω̄0
jℓ = β−1(1+ gA)

(
H0

i (k̄
′
j , z̄ℓ)

)−1
+(1+ gN )(1+ gA)k̄′j

thereby determining, for each ℓ, the optimal choice for savings on the implied grid for ω (which varies with ℓ):

k̄′j = hki (ω̄
0
jℓ, z̄ℓ), j = 1, . . . ,nk. (A14)

In the second step, choose a fixed grid for ω, i.e., {ω̄j}nω
j=1, where the grid points for ω in this case do not depend on zℓ. For

each ℓ, interpolate (linearly) using the information in (A14) to determine the optimal choice for savings, k̄′jℓ, at the grid points795

(ω̄j ,zℓ), j = 1 . . . ,nω:

k̄′jl = hki (ω̄j , z̄ℓ), j = 1, . . . ,nω. (A15)

The information in (A15) can then be used (using bilinear interpolation) to calculate optimal savings choices for any (ω,z)

pair; call this interpolated function k′ = ĥki (ω,z).

In the third step, use the envelope condition to problem (A8) to update the guess on H0
i . In particular, the envelope condition800

is:

v̂iω(ω̂it,zit) =
(
ω̂it − (1+ gN )(1+ gA)k̂i,t+1

)−1

(A16)

Update one period:

v̂iω(ω̂i,t+1,zi,t+1) =
(
ω̂i,t+1 − (1+ gN )(1+ gA)k̂i,t+2

)−1

=
(
Gi(k̂i,t+1,zi,t+1)− (1+ gN )(1+ gA)ĥki (ω̂i,t+1,zi,t+1)

)−1

805

=
(
Gi(k̂i,t+1,zi,t+1)− (1+ gN )(1+ gA)ĥki (Gi(k̂i,t+1,zi,t+1),zi,t+1)

)−1

≡ Λi(k̂i,t+1,zi,t+1).
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To update the guess on H0
i , calculate

H1
i (k̂i,t+1,zit) = Et

[
Λi(k̂i,t+1,zi,t+1)G

k
i (k̂i,t+1,zi,t+1)

]
=

∞∫
−∞

Λi(k̂i,t+1,zi,t+1)G
k
i (k̂i,t+1,zi,t+1)f(zi,t+1;ρizit,σ

2
i )dzi,t+1810

≈ π−1/2
M∑

m=1

wmΛi(k̂i,t+1,z
m
i )Gk

i (k̂i,t+1,z
m
i ),

where zmi = ρizit+
√
2σiam and (wm,am),m= 1, . . . ,M , are the Gauss-Hermite weights and abscissas forM -point Gaussian

quadrature. In particular, calculate H1
i (·, ·) at the grid points {{(k̄′j , z̄ℓ)}

nℓ

ℓ=1}
nk
j=1, replace H0

i with H1
i at these grid points, and

then repeat the three steps above until H0
i and H1

i are close.

A6.2 Euler equation errors in the steady-state problem815

One way to check the accuracy of the candidate decision rule, ĥki (ω,z), computed in Section
::::
Sect. A6.1, to calculate Euler

equation errors, expressed in consumption units. These should be exactly zero for any choice of the state variables. To obtain

the Euler equation, substitute the envelope condition (A16), updated one period, into the first-order condition (A11):

β−1GA
(
ω̂it −GAN k̂i,t+1

)−1

= Et

[(
ω̂i,t+1 −GAN k̂i,t+2

)−1

Gk
i (k̂i,t+1,zi,t+1)

]
. (A17)

where GA ≡ 1+ gA and GAN ≡ (1+ gA)(1+ gN ). Using the candidate decision rule and the function Gi, the right-hand side820

of this equation can be rewritten:

Et

[(
ω̂i,t+1 −GAN k̂i,t+2

)−1

Gk
i (k̂i,t+1,zi,t+1)

]
=

Et

[(
Gi(k̂i,t+1,zi,t+1)−GAN ĥki (ω̂i,t+1,zi,t+1)

)−1

Gk
i (ĥ

k
i (ω̂it,zit),zi,t+1)

]
=

Et

[(
Gi(ĥ

k
i (ω̂it,zit),zi,t+1)−GAN ĥki (Gi(ĥ

k
i (ω̂it,zit),zi,t+1),zi,t+1)

)−1

·

Gk
i (ĥ

k
i (ω̂it,zit),zi,t+1)

]
≡825

Φi(ω̂it,zit),

where the conditional expectation in the definition of Φit can be approximated via Gaussian quadrature as before. Inverting

both sides of (A17) and rearranging, the Euler equation error, Ei(ω̂it,zit), is defined as follows:

Ei(ω̂it,zit) ≡ ω̂it −GAN k̂i,t+1 −β−1GAΦ−1
i (ω̂it,zit)

= ω̂it −GAN ĥki (ω̂it,zit)−β−1GAΦ−1
i (ω̂it,zit). (A18)830
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This error should be close to zero for any pair (ω̂it,zit); it would be exactly zero if ĥki were the exact decision rule. The error

relative to period-t consumption is:

Êi(ω̂it,zit) ≡ Ei(ω̂it,zit)

ω̂it −GAN k̂i,t+1

= 1− β−1GAΦ−1
i (ω̂it,zit)

ω̂it −GAN ĥki (ω̂it,zit)
.

A6.3 The transition problem835

Now consider the transition problem:

v̂it(ω̂it,zit) = max
k̂i,t+1

[
log

(
ω̂it −GAN

i,t+1d
t+1
it k̂i,t+1

)
+βGN

i,t+1Et (v̂i,t+1(ω̂i,t+1,zi,t+1))
]
, (A19)

where GN
it ≡ 1+gNit , GA

it ≡ 1+gAit , GAN
it ≡ (1+gNit )(1+g

A
it), and dt+1

it ≡ dit(T i,t+1), subject to eq
:::
Eq. (A1), (A2), (A4), and

the borrowing constraint. As in Section
::::
Sect. A6.1, the optimal choice for x̂i,t+1 in the law of motion for wealth solves:

Fx

(
k̂αi,t+1

(
dit+1(Ti,t+1)

)1−α
, x̂i,t+1

)
= pi,

Along the transition path, Ti,t+1 = T i,t+1 + zi,t+1, so this first-order condition defines a decision rule for (scaled) energy use

that now depends on time:

x̂i,t+1 = hxi,t+1(k̂i,t+1,zi,t+1). (A20)840

Substitute this decision rule into (A4):

ω̂i,t+1 = F
(
k̂αi,t+1

(
dit+1(Ti,t+1)

)1−α
,hxi,t+1(k̂i,t+1,zi,t+1)

)
− pih

x
i,t+1(k̂i,t+1,zi,t+1)+

(1− δ)k̂i,t+1,

≡ Gi,t+1(k̂i,t+1,zi,t+1). (A21)

The first-order condition to problem (A19) is then:845

β−1GA
i,t+1d

t+1
it

(
ω̂it −GAN

i,t+1d
t+1
it k̂i,t+1

)−1

= Et

[
v̂ωi,t+1(ω̂i,t+1,zi,t+1)G

k
i,t+1(k̂i,t+1,zi,t+1)

]
, (A22)

where v̂ωi,t+1 denotes the partial derivative of v̂i,t+1 with respect to its first argument, Gk
i,t+1 denotes the partial derivative

of Gi,t+1 with respect to its first argument, and GA
i,t+1 ≡ 1+ gAi,t+1. The right-hand side of this first-order condition can be

rewritten as:

Et

[
v̂ωi,t+1(ω̂i,t+1,zi,t+1)G

k
i,t+1(k̂i,t+1,zi,t+1)

]
= (A23)850

∞∫
−∞

v̂ωi,t+1(Gi,t+1(k̂i,t+1,zi,t+1),zi,t+1)G
k
i,t+1(k̂i,t+1,zi,t+1)f(zi,t+1;ρizit,σ

2
i )dzi,t+1 ≡
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Hi,t+1(k̂i,t+1,zit),

where f(z;µ,σ2) is the density function for a random variable z that has a normal distribution with mean µ and variance σ2.

So then the first-order condition can be written:

β−1GA
i,t+1d

t+1
it

(
ω̂it −GAN

i,t+1d
t+1
it k̂i,t+1

)−1

=Hi,t+1(k̂i,t+1,zit). (A24)

Given knowledge of Hi,t+1(k̂i,t+1,zit) on a grid points {(k̄′j , z̄ℓ)}
nℓ

ℓ=1}
nk
j=1, the goal is to calculate Hit(k̂it,zi,t−1) and then

continue iterating backwards in a similar fashion to time 0.855

To do so, use eq
::
Eq. (A24) to solve for ω̂it at each grid point:

ω̄jℓ = β−1GA
i,t+1d

t+1
it

(
Hi,t+1(k̄

′
j , z̄ℓ)

)−1
+GAN

i,t+1d
t+1
it k̄′j

thereby determining, for each ℓ, the optimal choice for savings, at time t, on the implied grid for ω (which varies with ℓ):

k̄′j = hkit(ω̄jℓ, z̄ℓ), j = 1, . . . ,nk. (A25)

Next, choose a fixed grid for ω, i.e., {ω̄j}nω
j=1, where the grid points for ω in this case do not depend on zℓ. For each ℓ,

interpolate (linearly) using the information in (A25) to determine the optimal choice for savings, k̄′jℓ, at the grid points (ω̄j ,zℓ),

j = 1 . . . ,nω:860

k̄′jl = hkit(ω̄j , z̄ℓ), j = 1, . . . ,nω. (A26)

The information in (A26) can then be used (using bilinear interpolation) to calculate optimal savings choices for any (ω,z)

pair; call this interpolated function k′ = ĥkit(ω,z).

The envelope condition for the transition problem (A19) is:

vωit(ω̂it,zit) =
(
ω̂it −GAN

i,t+1d
t+1
it k̂i,t+1

)−1

865

=
(
Git(k̂it,zit)−GAN

i,t+1d
t+1
it ĥkit(ω̂it,zit)

)−1

=
(
Git(k̂it,zit)−GAN

i,t+1d
t+1
it ĥkit(Git(k̂it,zit),zit)

)−1

By definition,

Hit(k̂it,zi,t−1) = Et−1

[
v̂ωit(ω̂it,zit)G

k
it(k̂it,zit)

]
870

= Et−1

[(
Git(k̂it,zit)−GAN

i,t+1ĥ
k
it(Git(k̂it,zit),zit)

)−1

Gk
it(k̂it,zit)

]
.

Use this equation, together with the already-calculated approximate decision ĥkit, to calculate {{Hit(k̄
′
j , z̄ℓ)}

nℓ

ℓ=1}
nk
j=1 and then

iterate backwards following the same steps as laid out above.

40



For t≥ t2, gAit = gA, gNit = gN , and T it = T
∗
i as in the steady-state problem. Therefore, when t= t2 − 1, the first-order

condition (A24) is:

β−1GAdt+1
it

(
ω̂it −GANdt+1

it k̂i,t+1

)−1

=Hi(k̂i,t+1,zit),

where Hi has already been computed when solving the steady-state problem. Hi is, therefore, the starting point for the back-

wards iterations.875

A6.4 Euler equation errors in the transition problem

By analogy to the Euler eq
:::
Eq. (A17) in the steady-state problem, the Euler equation along a transition is:

β−1GA
i,t+1 d

t+1
it

(
ω̂it −GAN

i,t+1d
t+1
it k̂i,t+1

)−1

=

Et

[(
ω̂i,t+1 −GAN

i,t+2 d
t+2
i,t+1k̂i,t+2

)−1

Gk
i,t+1(k̂i,t+1,zi,t+1)

]
. (A27)

The right-hand side of this equation can be rewritten:880
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]
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k
i,t+1(Gi,t+1(k̂i,t+1,zi,t+1),zi,t+1)
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k
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]
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k
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Gk
i,t+1(ĥ

k
it(ω̂it,zit),zi,t+1)

]
≡

Φit(ω̂it,zit),

where the conditional expectation in the definition of Φit can be approximated via Gaussian quadrature. (Note that, in the last

period of the transition, when t= t2 − 1, ĥki,t+1 = ĥki , i.e., the decision rule from the steady-state problem.)

Inverting both sides of (A27) and rearranging, the Euler equation error, Eit(ω̂it,zit), at time t is:890

Eit(ω̂it,zit) ≡ ω̂it −GAN
i,t+1 d

t+1
it k̂i,t+1 −β−1GA

i,t+1 d
t+1
it Φ−1

it (ω̂it,zit)

= ω̂it −GAN
i,t+1 d

t+1
it ĥkit(ω̂it,zit)−β−1GA

i,t+1 d
t+1
it Φ−1

it (ω̂it,zit). (A28)

This error should be close to zero for any pair (ω̂it,zit). The error relative to period-t consumption is:

Êit(ω̂it,zit) ≡ Eit(ω̂it,zit)

ω̂it −GAN
i,t+1 d

t+1
it k̂i,t+1

= 1−
β−1GA

i,t+1 d
t+1
it Φ−1

it (ω̂it,zit)

ω̂it −GAN
i,t+1 d

t+1
it ĥkit(ω̂it,zit)

.895
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A6.5
:::::
Euler

::::::::
equation

::::::
errors:

:::::::::
numerical

::::::
values

::
To

:::::
check

:::
the

::::::::
accuracy

::
of

:::
the

:::::::::
computed

:::::::
decision

:::::
rules,

::::
both

::::::
along

:::
the

::::::::
transition

:::
and

::
in
::::

the
:::::
steady

:::::
state,

:::
we

:::::::::
calculated

:::::
Euler

::::::::
equations

:::::
errors

::
as

::::::::
described

::
in

::::
Sect.

:::::
A6.2

:::
and

:::::
A6.4.

:::::
These

:::::
errors

:::
are

::::
very

:::::
close

::
to

::::
zero.

::
In

:::::::::
particular,

::
the

:::::::
average

::::
error

:::::::
relative

::
to

::::::::::
consumption

::::::::::
(averaging

:::::
across

::::
both

:::::::
regions

:::
and

:::
the

::::::
values

::
of

:::
the

::::
state

:::::::::
variables)

::
is

:::
less

::::
than

::::::::
0.0024%

:::
(in

:::::::
absolute

::::::
value)

::
in

:::::
every

::::
time

::::::
period.

::
In

::::::::
addition,

:::
the

:::::::
average

::
of

::::
the

:::::::
absolute

::::::
values

::
of

:::
the

:::::
errors

::
is
::::

less
::::
than

:::::::
0.021%

::
in

:::::
every

::::
time

:::::::
period.900

::::::
Finally,

:::::
apart

::::
from

:
a
::::
very

:::::
small

:::::::
number

::
of

::::::
outliers

::::::
(fewer

::::
than

::::
10),

:::
the

:::::
largest

:::::::::::::
error—looking

:::::
across

:::
all

:::::::
regions,

::::
time

:::::::
periods,

:::
and

:::::::
states—

::
is

::::::
smaller

::::
than

:::::
0.6%

::
in

:::::::
absolute

:::::
value.

:

A7 Simulating forwards using NorESM2

This section describes how to simulate the model using NorESM2 up to, and including, year t0 < t1.

Each year t is divided into J subperiods indexed by j. Let Titj be temperature in region i in subperiod j of year t and define

average temperature in region i in year t as follows:

Tit = J−1
J∑

j=1

Titj .

Define ait ≡AitD(T it). The initial value of ai0 in each region is chosen to match regional data in real-world year R. The905

ratio of successive values of ait is given by:

ait
ai,t−1

=
Ait

Ai,t−1

D(T it)

D(T i,t−1)

=
(
1+ gAit

)
dit−1(T it),

so that the sequence {ait}, for t≥ 1, obeys the recursion

ait =
(
1+ gAit

)
dit−1(T it)ai,t−1, (A29)910

where the sequence {T it} depends on the sequence {St} taken as given when solving each region’s dynamic programming

problem.

At the beginning of year 0, k̂i0 and x̂i0 are chosen in each region to match real-world data in yearR. The value of cumulative

emissions in year 0, S0, is also chosen to match real-world data in year R.

The simulation in any given year t proceeds in the following steps, starting with t= 0:915

1. If t≥ 1, calculate ait according to (A29). (Recall that ai0 is set to match regional data at time 0, i.e., in real-world year

R.)

2. If t= 0, calculate regional emissions according to: ei0 = ϕi0Ni0ai0x̂i0, i= 1, . . . ,M . If t≥ 1, use expected energy use,

Et−1[x̂it], as calculated in the simulation for year t− 1, to calculate (expected) emissions in each region i:

eit = ϕitNitaitEt−1[x̂it] + ezi,t−1 − ei,t−1,
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where ezt−1 is actual emissions in region i in period t− 1, as defined in step 7 below. Expected emissions are used to

drive NorESM2 in step 3. The term ezi,t−1 − ei,t−1 corrects for the deviation between actual and expected emissions in

any given period by adding this correction to expected emissions in the subsequent period.920

3. Use {eit}Mi=1 in NorESM2 to generate time paths for temperature in each region in each subperiod of year t, i.e.,

{{Titj}Jj=1}Mi=1, and use these in turn to calculate average temperature in region i in year t, i.e.,

Tit = J−1
J∑

j=1

Titj , i= 1, . . . ,M.

For each region, calculate the deviation of its temperature in year t from its expected temperature in year t, i.e., zit =

Tit −T it.

4. Calculate actual scaled energy use in each region: x̂zit = hxit(k̂it,zit), i= 1, . . . ,M . Note that the function ĥxit, as defined

in (A20), has a closed-form expression if the production function, F , has a particular functional form. (Recall too that

the function hxit depends on T it.)925

5. Insert x̂zit into (A4) to calculate (scaled) wealth in each region i in year t:

ω̂it = F
(
k̂αit

(
dit(Tit)

)1−α
, x̂zit

)
− pix̂

z
it +(1− δ)k̂it, i= 1, . . . ,M.

(Recall too that dit(Tit) depends on T it.)

6. Use the year-t decision rules to calculate regional savings in year t: k̂i,t+1 = hkit(ω̂it,zit), i= 1, . . . ,M . The function hkit
is known only on a two-dimensional grid of points, so use bilinear interpolation to calculate it off the grid, as explained

in Section ??. .
:

7. Calculate actual emissions in each region: ezit = ϕitNitaitx̂
z
it, i= 1, . . . ,M .930

8. Calculate the expected value of energy use in each region in period t+1:

Et[x̂i,t+1] = Et

[
ĥxi,t+1(k̂i,t+1,zi,t+1)

]
.

Approximate the conditional expectation in this expression by replacing zi,t+1 with its conditional expectation ρizit:

Et[x̂i,t+1] = ĥxi,t+1(k̂i,t+1,ρizit).

9. The simulation in year t is now complete: return to step 1 to conduct the simulation for year t+1.

Having completed the entire simulation, calculate actual cumulative global emissions at the beginning of each year according

to: Sz
t+1 = Sz

t +Ez
t , where Ez

t is actual aggregate emissions in period t:

Ez
t =

M∑
i=1

ezit.
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(When t= 0, set Sz
t = S0.) Then calculate a new sequence for expected regional temperature using the sequence {Sz

t }: T
z

it =

T i + γi1S
z
t + γi2 (S

z
t )

2 for t≥ 0. Finally, for each t, calculate the differences Sz
t −St and {T z

it −T it}Mi=1 and confirm that935

these differences are small.

A8
::::::
Spatial

::::::::::
correlation

::::
and

:::::::::
aggregate

:::::::::::
fluctuations:

::
a

::::::
stylized

::::::
model

::::
This

::::::
section

::::
uses

:
a
:::::::
stylized

:::::
model

::::
that

:::::::
captures

:::::
some

::
of

:::
the

:::
key

:::::::
features

::
of

:::::::::::::::
NorESM2–DIAM

:::
to

::::
show

::::
that

::::::
spatial

:::::::::
correlation

::
in

:::::::
regional

::::::::::
temperatures

::::
can

::::::
amplify

:::::::::
aggregate

:::::::::
fluctuations

::::::
under

:::::
certain

:::::::::
conditions

::::
that

:::
our

::::::::
calibrated

::::::
model

:::::::
satisfies.

:

:::::::
Consider

:
a
::::::
model

::
in

:::::
which

:::::::
regional

:::::::::::
temperatures

:::
are

:::::
drawn

::::
from

:
a
::::::
jointly

::::::
normal

::::::::::
distribution

:
at
::::
any

::::
point

::
in

:::::
time.

::::::::::
Specifically,

::::::
assume

:::
that

:

T = (T1, . . . ,TM )⊤ ∼N(T i,Σ),
::::::::::::::::::::::::::

::::
with

:::::::
Σii = σ2

::::
and

:::::::::
Σij = ρσ2

:::
for

:::::
i ̸= j,

::::::
where

::::::::
ρ ∈ [0,1].

::::::
Define

::::::::::::
T̂i ≡ Ti −T ∗

:::
and

:::::::::::::
µi ≡ T i −T ∗,

:::::
where

:::
T ∗

::::::::::
maximizes

:::
the940

::::::
damage

::::::::
function.

:::::
Then

:::::::::::::
T̂i ∼N(µi,σ

2)
::::
and

:::::::::::::
corr(Ti,Tj) = ρ

::::
for

:::::
i ̸= j,

::::
i.e.,

:::
the

::::::::
deviation

::
of

::::::::
regional

::::::::::
temperature

:::::
from

:::
the

::::::
optimal

:::::::::::
temperature,

:::
T ∗,

::
is

::::::::
normally

:::::::::
distributed

::::
with

:
a
:::::::::::::
region-specific

:::::
mean,

:::
µi,:::

and
::
a
:::::::
common

::::::::
variance,

:::
σ2,

::::::
across

:::::::
regions;

:::
and

:::
the

:::::::::
correlation

:::::::
between

::::::::::
temperature

:::::::::
deviations

::
in

:::
any

::::
pair

::
of

::::::
regions

::
is
:::::
equal

::
to

::
ρ.

:

::::::
Assume

::::
that

:::
the

:::::::
damage

:::::::
function

:::::::::::::::::::::::::
D(Ti) = exp(−κ(Ti −T ∗)2),

::
so

:::
that

:::
D

:
is
:::::::::
symmetric

::::::
around

:::
the

:::::::
optimal

::::::::::
temperature

:::
(in

:::::::::::::::
NorESM2–DIAM,

:::
by

:::::::
contrast,

:::
the

:::::::
damage

:::::::
function

::
is

:::
not

::::
quite

::::::::::
symmetric).

:
945

:::
Let

::::
each

:::::
region

:::
be

:::::::
assigned

::
a

::::::
weight

:::
wi, ::::

with
M∑
i=1

wi = 1.

:::::::::

:::
and

::
let

::
S
:::
be

:::
the

:::::::
weighted

:::::::
average

::
of

:::
the

::::::::
logarithm

:::
of

:::::::
regional

::::::::::
productivity:

:

S ≡
M∑
i=1

wi logD(Ti) =−λ
M∑
i=1

wiT̂
2
i .

::::::::::::::::::::::::::::::

:::
The

:::::::
variance

:::
of

::
S

::
is

::::
then

:
a
::::::::
measure

::
of

:::
the

::::::::
volatility

::
of

:::::::::
aggregate

::::::::::
productivity,

::::
one

::
of

:::
the

::::
key

::::::
drivers

::
of

::::::::
volatility

::
in

::::::
global

::::
GDP.

::::
The

:::::::
question

::
is

::::
how

:::
this

:::::::
variance

:::::
varies

::
as

:::
the

:::::::::
correlation

:::::::
between

:::::::
regional

:::::::::::
temperatures

::::::::
increases.

::::
The

:::::::
variance

::
is

:::::
given

:::
by:

Var(S) = 2σ2λ2
[
σ2W2 +2M2 +σ2ρ2(1−W2)+ 2ρ(M2

1 −M2)
]
,

:::::::::::::::::::::::::::::::::::::::::::::::::::::::

:::::
where

M1 ≡
M∑
i=1

wiµi, M2 ≡
M∑
i=1

w2
i µ

2
i , W2 ≡

M∑
i=1

w2
i .

::::::::::::::::::::::::::::::::::::::

::::
This

:::::::::
expression

::
is

::
an

:::::::::
increasing

:::::::
function

::
of

::
ρ
::::
over

:::
the

:::::
entire

:::::
range

:::::
[0,1]

:
if
::::

and
::::
only

::
if

::::::::::::
M2

1 −M2 > 0,
:::

or
::::::::::
equivalently,

::
if
::::
and

::::
only

:
if
:::::::::::::::
R≡M2

1 /M2 > 1.
:

::::
This

::::::::
condition

:::
can

:::
be

:::::::
checked

:::::
using

:::::::
different

:::::::::
weighting

:::::::
schemes

:::
for

::::
the

::::::
16,826

::::::
distinct

:::::
cells

::
in

::::::::::::::::
NorESM2–DIAM,

::::
with

::
the

::::
µis::::::::::::

corresponding
::
to

:::
the

::::::::
deviation

:::
of

:::::::
regional

::::::::::::
pre-industrial

:::::::::::
temperatures

::::
from

:::
the

:::::::
optimal

:::::::::::
temperature.

:::::
Most

:::::::
relevant
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::
for

::::::
global

:::::
GDP

::
is

:::::::
weights

::::::::::::
corresponding

:::
to

:::::::
regional

:::::
GDP

::
in

::::::
1990,

::
in

::::::
which

::::
case

::::::::::
R= 184.4.

::::::::::::
Alternatively,

:::
for

:::::::
weights950

:::::::::::
corresponding

::
to
::::::::
regional

:::::::::
population

::
in

:::::
1990,

:::::::::
R= 722.5.

::
In

::::
both

::::::
cases,

::::::::
therefore,

:::
the

:::::::
required

::::::::
condition

::
is

:::::
easily

::::::::
satisfied.

::::::::
Although

:::
this

::::::
simple

::::::
model

::
is

::::
quite

:::::::
stylized

:::
in

:::
that

::
it
::::
does

::::
not

:::::::::
correspond

:::::::
exactly

::
to

:::
the

::::::::
behavior

::
of

::::::::::::::::
NorESM2–DIAM,

:::::::::
nonetheless

:::::
these

::::::::::
calculations

:::
do

::::::
suggest

::::
that

:::::::
positive

::::::
spatial

:::::::::
correlation

:::::::
between

:::::::
regional

:::::::::::
temperatures

::::::::
amplifies

:::::::::
aggregate

:::::::::
fluctuations

::
in
::::::::::::::::
NorESM2–DIAM.

:::::
They

:::
are

:::
also

:::::::::
consistent

::::
with

:::
the

::::::
finding

:::::::
reported

::
in
:::::
Sect.

:::
5.4

:::
that

:::
the

:::::::::
standalone

::::::
model

:::
(in

:::::
which

::::::
spatial

:::::::::
correlation

::
is

::::::
absent)

::::::::
produces

:::::
much

::::::
smaller

::::::::
aggregate

::::::::::
fluctuations

::::
than

:::
the

:::::::::::
fully-coupled

::::::
model.

:
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Tan, T., Watson, M., Wong, T. E., and Anthoff, D.: Comprehensive Evidence Implies a Higher Social Cost of CO2, Nature, pp. 1–3,

https://doi.org/10.1038/s41586-022-05224-9, publisher: Nature Publishing Group, 2022.

Riahi, K., Van Vuuren, D. P., Kriegler, E., Edmonds, J., O’neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., and1105

others: The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview, Global

Environmental Change, 42, 153–168, https://doi.org/10.1016/j.gloenvcha.2016.05.009, 2017.

Ritchie, H. and Rosado, P.: Energy mix, Our World in Data, 2020.

Rudik, I., Lyn, G., Tan, W., and Ortiz-Bobea, A.: The Economic Effects of Climate Change in Dynamic Spatial Equilibrium,

https://doi.org/10.31235/osf.io/usghb, 2021.1110

Schneider, S. H.: Integrated assessment modeling of global climate change: Transparent rational tool for policy making or opaque screen

hiding value-laden assumptions?, Environmental Modeling and Assessment, 2, 229–249, https://doi.org/10.1023/a:1019090117643, bib-

tex*[publisher=Springer Science and Business Media LLC], 1997.

Schwinger, J., Goris, N., Tjiputra, J. F., Kriest, I., Bentsen, M., Bethke, I., Ilicak, M., Assmann, K. M., and Heinze, C.: Evaluation of

NorESM-OC (versions 1 and 1.2), the ocean carbon-cycle stand-alone configuration of the Norwegian Earth System Model (NorESM1),1115

Geoscientific Model Development, 9, 2589–2622, https://doi.org/10.5194/gmd-9-2589-2016, publisher: Copernicus GmbH, 2016.

Seland, , Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y.-C., Kirkevåg, A.,

Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren,

49

https://doi.org/10.1017/9781009157964.005
https://doi.org/10.1038/sdata.2018.187
https://doi.org/10.1038/nature08823
https://www.jstor.org/stable/2006843
https://www.jstor.org/stable/2006843
https://www.jstor.org/stable/2006843
https://doi.org/10.1126/science.258.5086.1315
https://doi.org/10.1073/pnas.1005985107
https://doi.org/10.5281/zenodo.17865023
https://doi.org/10.1016/j.gloenvcha.2015.01.004
https://doi.org/10.1038/s41586-022-05224-9
https://doi.org/10.1016/j.gloenvcha.2016.05.009
https://doi.org/10.31235/osf.io/usghb
https://doi.org/10.1023/a:1019090117643
https://doi.org/10.5194/gmd-9-2589-2016


O., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: Overview

of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations,1120

Geoscientific Model Development, 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, publisher: Copernicus GmbH, 2020.

Seland, , Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y., Kirkevåg, A., Schwinger,

J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Gao, S., Griesfeller, J., Grini, A., Guo, C., and others: NorESM2 source code as used for

CMIP6 simulations (includes additional experimental setups, extended model documentation, corrections in atmosphere diagnostics,

additional capabilities in BLOM/iHAMOCC, and technical modifications), https://doi.org/10.5281/zenodo.17865358, 2025.1125

Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design, Bulletin of the American Meteorological

Society, 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, bibtex*[publisher=American Meteorological Society], 2012.

The NorESM developers group,: Welcome to the NorESM2 User’s Guide! — NorESM documentation, https://noresm-docs.readthedocs.io/

en/latest/, 2020.

Thornton, P. E., Calvin, K., Jones, A. D., Di Vittorio, A. V., Bond-Lamberty, B., Chini, L., Shi, X., Mao, J., Collins, W. D., Edmonds, J.,1130

Thomson, A., Truesdale, J., Craig, A., Branstetter, M. L., and Hurtt, G.: Biospheric feedback effects in a synchronously coupled model

of human and Earth systems, Nature Climate Change, 7, 496–500, https://doi.org/10.1038/nclimate3310, publisher: Nature Publishing

Group, 2017.

Tjiputra, J. F., Schwinger, J., Bentsen, M., Morée, A. L., Gao, S., Bethke, I., Heinze, C., Goris, N., Gupta, A., He, Y.-C., Olivié, D., Seland, ,

and Schulz, M.: Ocean biogeochemistry in the Norwegian Earth System Model version 2 (NorESM2), Geoscientific Model Development,1135

13, 2393–2431, https://doi.org/10.5194/gmd-13-2393-2020, publisher: Copernicus GmbH, 2020.

Toniazzo, T., Bentsen, M., Craig, C., Eaton, B. E., Edwards, J., Goldhaber, S., Jablonowski, C., and Lauritzen, P. H.: Enforcing conserva-

tion of axial angular momentum in the atmospheric general circulation model CAM6, Geoscientific Model Development, 13, 685–705,

https://doi.org/10.5194/gmd-13-685-2020, publisher: Copernicus GmbH, 2020.

United Nations, Department of Economic and Social Affairs, P. D.: World population prospects 2024, online edition, https://population.un.1140

org/wpp/, 2024.

van Vuuren, D. P., Lowe, J., Stehfest, E., Gohar, L., Hof, A. F., Hope, C., Warren, R., Meinshausen, M., and Plattner, G.-K.: How well

do integrated assessment models simulate climate change?, Climatic Change, 104, 255–285, https://doi.org/10.1007/s10584-009-9764-2,

2011.

van Vuuren, D. P., Bayer, L. B., Chuwah, C., Ganzeveld, L., Hazeleger, W., van den Hurk, B., Van Noije, T., O’Neill, B., and Strengers, B. J.:1145

A comprehensive view on climate change: coupling of earth system and integrated assessment models, Environmental Research Letters,

7, 024 012, https://doi.org/10.1088/1748-9326/7/2/024012, 2012.

van Vuuren, D. P., Kriegler, E., O’Neill, B. C., Ebi, K. L., Riahi, K., Carter, T. R., Edmonds, J., Hallegatte, S., Kram, T., Mathur, R.,

and others: A new scenario framework for climate change research: scenario matrix architecture, Climatic Change, 122, 373–386,

https://doi.org/10.1007/s10584-013-0906-1, bibtex*[publisher=Springer], 2014.1150

Waidelich, P., Batibeniz, F., Rising, J., Kikstra, J. S., and Seneviratne, S. I.: Climate damage projections beyond annual temperature, Nature

Climate Change, pp. 1–8, https://doi.org/10.1038/s41558-024-01990-8, publisher: Nature Publishing Group, 2024.

Weyant, J.: Some Contributions of Integrated Assessment Models of Global Climate Change, Review of Environmental Economics and

Policy, 11, 115–137, https://doi.org/10.1093/reep/rew018, publisher: The University of Chicago Press, 2017.

50

https://doi.org/10.5194/gmd-13-6165-2020
https://doi.org/10.5281/zenodo.17865358
https://doi.org/10.1175/BAMS-D-11-00094.1
https://noresm-docs.readthedocs.io/en/latest/
https://noresm-docs.readthedocs.io/en/latest/
https://noresm-docs.readthedocs.io/en/latest/
https://doi.org/10.1038/nclimate3310
https://doi.org/10.5194/gmd-13-2393-2020
https://doi.org/10.5194/gmd-13-685-2020
https://population.un.org/wpp/
https://population.un.org/wpp/
https://population.un.org/wpp/
https://doi.org/10.1007/s10584-009-9764-2
https://doi.org/10.1088/1748-9326/7/2/024012
https://doi.org/10.1007/s10584-013-0906-1
https://doi.org/10.1038/s41558-024-01990-8
https://doi.org/10.1093/reep/rew018

