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Abstract. Global warming poses substantial risks to natural and human systems worldwide. Understanding the complex in-
teractions between climate change and the economy is essential for designing effective policies and mitigation strategies. Yet,
existing modeling tools are often limited by coarse spatial aggregation, simplified climate representation, or lack of interaction
between climate and the economy. To address these gaps, we develop a novel framework that couples an Earth System Model
(ESM)—the Norwegian Earth System Model version 2 (NorESM2)—with a spatially disaggregated Integrated Assessment
Model (IAM), the Disaggregated Integrated Assessment Model (DIAM). The resulting modeling tool, NorESM2-DIAM, in-
corporates state-of-the-art climate and weather dynamics, allows economic impacts to depend on the full distribution of weather
outcomes, and captures realistic spatial heterogeneity. To our knowledge, it is the first framework to fully couple an ESM with
a high-resolution cost-benefit IAM. The primary contribution of this paper is to develop and implement the methodology that
enables this coupling. We demonstrate the utility of NorESM2-DIAM through a baseline simulation. The results show that the
economic impacts of global warming vary dramatically across space and that internal climate variability generates substantial
volatility in regional GDP, highlighting the importance of high-resolution economic impact assessments. Although the baseline
simulation focuses on regional temperature, the framework can be easily extended to incorporate additional variables such as
precipitation and extreme events. It can also be applied to study a wide range of climate policies. NorESM2-DIAM represents
an important step towards improving the understanding of economic impacts of climate change and can ultimately become an

important source of information for decision-makers.
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1 Introduction

Integrated Assessment Models (IAMs) and Earth System Models (ESMs) are two key tools for investigating the complex
challenges posed by climate change. IAMs focus on the human aspect of climate change; ESMs focus on the natural climate

system. With their differing foci and application areas, they are usually developed independently of each other. However, both
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modeling tools depend on information from the other, and cooperation between the ESM and IAM communities is essential to
understanding the full picture of climate change (e.g. van Vuuren et al., 2012; Calvin and Bond-Lamberty, 2018; Collins et al.,
2015; Keen et al., 2021).

IAMs have played a fundamental role in climate economics since the introduction of the DICE model (Nordhaus, 1991, 1992).
These models simulate the economic impacts of climate change, allowing evaluation of the policy consequences and the feasi-
bility of various climate targets, and have produced influential results—most notably, estimates of the social cost of carbon—
that continue to inform climate policy (e.g. Weyant, 2017; Harremoé&s and Turner, 2001; Schneider, 1997; Nordhaus, 2010).
They usually consist of three separate elements: a climate system, a carbon cycle, and an economic model (van Vuuren et al.,
2011; Nordhaus, 1992). To maintain computational tractability, however, most IAMs rely on highly simplified representations
of the climate system and the carbon cycle (Goodess et al., 2003; van Vuuren et al., 2012). Although practical, these simplifi-
cations often suppress both spatial and temporal variability and limit the models’ ability to capture the complex dynamics of
Earth system processes. This, in turn, limits their ability to accurately estimate the economic impacts of climate change.

One key limitation of many IAMs is their sensitivity to how climate dynamics are simplified. For example, they often cannot
reproduce either the delay between carbon emissions and warming or climate—carbon feedbacks, with important consequences
for estimates of the social cost of carbon (Dietz et al., 2021; van Vuuren et al., 2011). Furthermore, most IAMs model very
few climate variables—primarily global mean surface temperature—despite growing recognition that economic outcomes are
shaped not only by long-term temperature trends but also by short-term, high-impact weather events such as heatwaves, storms,
floods and droughts (Callahan and Mankin, 2022; Frame et al., 2020). These events reflect local deviations from climatological
averages and often cause severe economic damages. Finally, IAMs typically operate on coarse spatial scales, which restricts
their capacity to resolve regional variations in both physical climate responses and economic vulnerabilities (e.g. Dell et al.,
2014; Hsiang et al., 2017). Even when regional detail is included, it is often through stylized approaches that link local climate
directly to global averages, missing important regional dynamics.

In contrast, ESMs simulate the physical climate system based on fundamental geophysical principles. They include interac-
tive components of the atmosphere, land, ocean, and cryosphere, as well as representation of aerosols, atmospheric chemistry,
and the carbon cycle (Taylor et al., 2012; van Vuuren et al., 2011). With their many components, ESMs produce high-resolution
outputs across a wide range of climate variables, including realizations of weather and extremes. However, ESMs lack human
components and rely on externally prescribed pathways for emissions and land use (e.g. Moss et al., 2010; O’Neill et al., 2017,
Riahi et al., 2017), thus excluding any climate—economy interactions.

Motivated by these shortcomings, we present a novel framework that couples the Norwegian Earth System Model ver-
sion 2 (NorESM2) with a spatially disaggregated, dynamic model of the global economy. We refer to this framework as
NorESM2-DIAM, where DIAM stands for Disaggregated Integrated Assessment Model and builds on the high-resolution
climate—economy model developed in Krusell and Smith (2022). The coupling replaces stylized climate dynamics, carbon
cycle approximations, and simplified regional representations with physically-based, high-resolution outputs from NorESM2.
It also allows economic outcomes to depend on a wide variety of climate and weather variables, including extreme events. This

framework thus delivers a new model that can be used to investigate the economic impacts of climate change both globally and
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regionally, incorporating both climate-economy feedbacks and internal variability. Finally, NorESM2-DIAM is a cost-benefit

IAMeapable-of-evaluating—: economic agents (consumers and firms) in the model solve explicitly-specified dynamic decision
roblems with well-defined objectives. It can therefore provide quantitative assessments of the welfare effects across-time-and

spaee-of a wide range of scenarios for climate policy—from laissez-faire to optimal carbon taxatientaxation—both across time

and space.
Hewever-the-The primary goal of this paper, however, is to demonstrate, using a prototype version of NorESM2-DIAM, how
to tackle two key methodological challenges in coupling an ESM with a high-reselution,-dynamiceconomie-modeldynamic,

high-resolution economic model grounded in dynamic optimization. First, the two models operate on vastly different time
scales. Second, the economic model incorporates forward-looking behavior: the decisions of agents (consumers-and-firms)

depend on their expectations about the future behavior of the climate, which is itself influenced by those very decisions.
Achieving consistency between agents’ expectations and the climate trajectory thus requires solving for an interdependent
equilibrium.

Successfully addressing these challenges lays the groundwork for using NorESM2-DIAM as a platform to explore the spatial
and temporal dimensions of climate—economy interactions, and to assess climate policy with a degree of geophysical and eco-
nomic realism that is rare in existing IAMs. This platform contributes to a small but growing literature using dynamicstruetaral
, forward-looking, structural economic models to study the spatial effects of climate change (see, for example, Brock et al.,
2014; Desmet and Rossi-Hansberg, 2015; Fried, 2022; Krusell and Smith, 2022; Rudik et al., 2021; Bilal and Rossi-Hansberg,
2023; Cruz and Rossi-Hansberg, 2024; Kubler, 2023; Kotlikoff et al., 2024).

Collins et al., 2015; Thornton et al., 2017; Calvin and Bond-Lamberty, 2018) and E3SM—GCAM (Di Vittorio et al., 2025), two
with the Global Change Assessment Model (GCAM), a process-based rather than a cost-benefit IAM. Although both DIAM
and GCAM are dynamic, recursive models, in DIAM agents make decisions taking into account the entire future time horizon,
whereas GEAM solves for outcomes one step at a time, considering only the current state.

The two approaches also differ in spatial resolution and sectoral detail. GCAM represents multiple sectors—including
energy, industry, transport, agriculture, and land use—but divides the world into only 14 GESM) or 32 (E3SM-GCAM
socioeconomic regions. In contrast, NorESM2-DIAM contains only a single sector, focusing directly on gross domestic
product (GDP), but at a very high degree of spatial resolution (1°x1° cells), enabling high-resolution analysis of the impacts of
climate and weather on GDP and emissions.

Finally, the three models differ in how they represent climate—economy interactions. iESM and E3SM-GCAM exchange
biogeochemical variables from the ESM to GCAM, whereas in our framework, temperature directly affects the economy
to generate land-mediated feedbacks that are absent in NorESM-DIAM. Thus, although all three frameworks couple an IAM
with an ESM, our approach employs a fundamentally different IAM, providing a complementary perspective to the two existing

frameworks.
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The rest of the paper is organized as follows: Section 2 describes the two components of our new framework, NorESM2—
DIAM. Section 3 explains in detail the interactive coupling between the two components of NorESM2-DIAM. Section 4
discusses the calibration of the model parameters. Section 5 presents quantitative results. Section 6 discusses limitations and

directions for further research using this new platform and, finally, Section 7 offers some concluding remarks.

2 Model Description

This section describes the structure and functioning of NorESM2-DIAM, a coupled model that integrates climate and economic
dynamics. Section 2.1 begins with an overview of the overall framework. Section 2.2 then outlines the economic component,
DIAM, and its coupling with NorESM?2. Section 2.3 introduces a standalone version of DIAM used to compute equilibrium
behavior in the fully coupled system. Finally, Seetion-Sect. 2.4 provides a description of the Norwegian Earth System Model
version 2 (NorESM2).

2.1 Overview

The two components of NorESM2-DIAM are coupled via a continuous, bidirectional flow of information —as_illustrated
in Fig. 1. In each time period, economic agents in DIAM—households and firms—make decisions about energy use and
other economic variables, taking into account how local climate and weather conditions affect productivity. The resulting
carbon emissions are passed to NorESM2, which simulates the climate response. These outcomes then feed back into DIAM,
influencing future economic decisions and creating a dynamic feedback loop between the climate and the economy.

Agents in DIAM solve forward-looking dynamic optimization problems, with decisions shaped by expectations about the
future evolution of climate and weather. To make these problems computationally tractable, we employ a standalone version
of DIAM with simplified climate dynamics, following standard practice in integrated assessment modeling. In the standalone
model, agents’ decision-making relies on statistical temperature forecasts that approximate the behavior of NorESM2. Agents’
energy use decisions and consequent emissions then serve as input to NorESM2 itself when it updates climate and weather
variables.

An economic equilibrium in NorESM2-DIAM is defined by a fixed-point condition: agents’ expectations about future
climate and weather must align with the outcomes that emerge from their own economic behavior—particularly their choices

regarding energy use and hence emissions. The standalone version of DIAM is instrumental in computing this equilibrium.
2.2 The economic model (DIAM)

This section describes DIAM, a spatially disaggregated model of the global economy that interacts with climate and weather.
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Figure 1. Schematic overview of the NorESM2-DIAM coupling and internal interactions. NorESM?2 provides regional one-year-mean

temperatures for the current model year to DIAM (dotted arrows indicate exchange between models). Regional temperature directly affects

regional GDP, which in turn determines regional wealth (solid arrows indicate exchanges happening within one model for the current one-year

time step of the coupled model). Based on regional temperature and wealth, each region then makes decisions about savings and energy use

using pre-computed decision rules derived from the standalone version of DIAM. Within DIAM, savings affects GDP in the next model

ear (dotted arrows indicate exchanges happening within one model in the next time step of the coupled model). Energy use determines next

ear’s emissions, which are provided to NorESM2. Finally, to complete the cycle, the different modules of NorESM2 interact to generate

new regional temperatures. Note that the modules interact through a coupler, and the timing varies between modules, but they all exchange

information at least once every 24 hours (Seland et al., 2020; Danabasoglu et al., 2020).

2.2.1 Space and Time

DIAM divides the globe into M regions, each corresponding to a 1° x 1° land cell with observed economic activity in 1990.
Cells spanning multiple countries are subdivided along national borders, yielding approximately 19,000 distinct regions. Time

proceeds in discrete annual periods and begins in period O.
2.2.2 Production technology

Each region ¢ contains two production sectors: one for final goods and one for energy. Energy is used as an input in both

sectors. In each year ¢, the final goods sector produces output y;; using three factors of production (physical capital, labor, and

energy):

Yit = F<k§lt7 Lgtﬂx?t)ﬂ
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where kY., LY

Y., LY, and z¥, are the amounts of physical capital, labor, and energy, respectively, used in the final-goods sector and

F'is the production function mapping inputs to output.

The energy sector uses the same types of inputs to produce energy z;¢:
-1
zip = (¢ F(kj, L, a3),

where k7, L7,, and x¥, are the amounts of physical capital, labor, and energy, respectively, used in the energy sector and ¢
denotes the relative productivity of the final-goods sector compared to the energy sector. To simplify the structure, we use the
same production function in each sector, up to the relative productivity shifter ¢, but this assumption is not essential to the
analysis undertaken here.

When inputs are efficiently allocated across sectors, net final-goods output (i.e., gross domestic product, or GDP) is given

by:
Yit = F(Kit, Lit, i) — (it

where ki, = k¥, + k},, Ly = LY, + L7, and x;; = x}, + x%, denote the total amounts of capital, labor, and energy used in the
region. This allocation can be decentralized as a competitive equilibrium in which firms in both sectors choose their factors of
production to maximize profits, taking factor prices as given, and prices adjust to clear factor markets.

Regional population N;; evolves exogenously over time. Labor productivity consists of two components: (i) an exogenous
factor A;; capturing socioeconomic and technological influences outside the scope of the model, and (ii) a climate-sensitive
factor that depends on local climate. In the current prototype of NorESM2-DIAM, the latter depends solely on average annual

temperature 7;;. Effective labor input is therefore defined as:
Lit = Niz Ay D(Tit),

where D(+) is a “damage function” capturing the effect of temperature on labor productivity. As described in detail in Seetion
Sect. 4, D has an inverse U-shape with a maximum at 7™ so that productivity declines monotonically as regional temperature
deviates from 7.

Each period, agents allocate the output of final goods between consumption c¢;; and investment ¢, subject to a budget

constraint:

Yit = Cit + Lit.-

Capital depreciates at a constant rate d, with investment replenishing the capital stock:
kirr1=(1—=08)kit + it

2.2.3 Carbon emissions

Energy use is measured in gigatons of oil equivalent (Gtoe), where one Gtoe corresponds to 3.97 x 1016 BTUs (British Thermal

Units). One unit of energy use releases ¢, gigatons of carbon emissions (GtC) into the atmosphere in period ¢. The fraction
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¢¢ is normalized to 1 in period 0, so that ¢; measures the “dirtiness” of energy use relative to period 0. From period ¢, onward,
all energy is assumed to be fully green, implying ¢; = 0 for all £ > ¢,. The full trajectory of ¢; is described in SeetionSect. 4.

Total global emissions in period ¢, denoted E}, are the sum of regional emissions:

M
E,= E e;t, Wwhere e;; =Y @ ai.

i=1

2.2.4 Markets

This version of DIAM excludes international capital markets, so capital is immobile across regions. As noted by Krusell
and Smith (2022), this simplification has only minor effects on the dynamics examined here. Consequently, regions interact
solely through the climate system, whose evolution is determined by their collective energy-use choices and associated carbon

emissions. Regions can adapt to climate change by adjusting their capital accumulation and energy-use decisions accordingly.
2.2.5 Preferences

Agents in each region seek to maximize welfare, defined here as the expected discounted utility of consumption:

> Cit
Eo Y B'NuUlca) | — |,
= — \ N

where § € [0,1) is the discount factor, U(c;;) is per-eapitautility-from-the utility of per capita consumption, and Eq denotes
expectations formed at time 0. They do so by choosing paths for consumption, investment, and energy use subject to the

production and capital accumulation constraints outlined in Seetion-Sect. 2.2.2. This is a dynamic optimization problem in
which agents’ decisions hinge on expectations about future labor productivity, which is itself influenced by climate conditions.
Agents can therefore adapt to changes in regional climate by shifting their patterns of consumption, investment, and energy

use over time.
2.2.6 Climate feedback

Conventional IAMs link the economy and climate through a simplified climate system and carbon cycle: global emissions
feed into this reduced-form climate representation, which then produces projections of climate variables—typically global and
regional mean temperatures. These climate variables, in turn, affect economic productivity. While computationally convenient,
this leaves out many of the complex, region-specific processes that drive climate change and its impacts.

Our approach replaces this simplification with a direct coupling between regional emissions and NorESM2, a state-of-the-
art Earth System Model described in Seetion-Sect. 2.4. NorESM2 resolves the physical climate system in much greater detail,
simulating geophysical responses—including temperatures—at high spatial and temporal resolution. This enables the economic
model to respond to a climate signal that captures fine-scale processes, regional heterogeneity, and nonlinear interactions often

omitted in JAMs.
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Realizing this coupling requires overcoming two key challenges. First, DIAM operates on annual decision intervals, whereas
NorESM2 advances in much finer time steps—hourly or sub-hourly. Within each DIAM year, NorESM?2 must run many high-
frequency computations before returning updated climate and weather inputs. Seetion—Sect. 3 describes how this temporal
mismatch is reconciled.

Second, NorESM?2’s high-dimensional, nonlinear dynamics make it computationally impossible to embed directly into
DIAM’s regional optimization problem. To address this difficulty, the next section develops a standalone version of DIAM
with a simplified climate representation calibrated to remain broadly consistent with NorESM2. This allows agents to form
approximate yet reliable climate forecasts, keeping their decisions close to the true optimum while making the coupled system

computationally feasible.
2.3 The standalone version of DIAM

This section describes a simplified version of DIAM in which agents forecast regional temperatures using a reduced-form cli-
mate model. This standalone model facilitates solving the regional optimization problems and enables computing an economic
equilibrium—defined as a fixed point where agents’ forecasts align with realized outcomes. Computing this fixed point offers
a tractable approach for approximating equilibrium in the full coupled model.

Section 2.3.1 introduces the statistical approach used to forecast regional temperatures, Seetion-Sect. 2.3.2 outlines the

optimization problem faced by agents, and Seetion-Sect. 2.3.3 explains how equilibrium is computed in the standalone setting.
2.3.1 Statistical temperature forecasting

In the standalone DIAM, agents forecast regional temperatures—key determinants of productivity—using a low-dimensional
statistical approach. This forecast approximates NorESM2’s geophysical dynamics and can be calibrated using both historical
and future scenario simulations of NorESM2.

The model has two components. The first relates the expected regional temperature in region 7 at time ¢ to cumulative global

carbon emissions since the pre-industrial era:

Tit =T; + 1S +7i2SE, (N

where T; is the pre-industrial temperature in region i and S; denotes cumulative global emissions up to the beginning of period
t. The funetionak-form-and-justification for using a quadratic rather than linear functional form, along with details on how the
parameters ;1 and ;o are estimated from data, as-deseribed-in-Seetion4—is provided in Sect. 4.7,

The second component captures deviations from the expected temperature due to internal climate variability. While these
fluctuations follow nonlinear, non-stochastic laws of motion in NorESM2, they are modeled stochastically here as an AR(1)

process:

Zit+1 = PiZit + €i 141, )
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where {€;;} is a sequence of independent, normally distributed shocks with mean zero and standard deviation o;. The realized

temperature is then:

Ty =Tt + 2.
The parameters p; and o; are also estimated using data from NorESM2 simulations (see Seetion-Sect. 4). We assume that these
parameters remain constant as the climate warms, and leave the exploration of potential deviations from this assumption to

future work.
2.3.2 Dynamic optimization

To make forward-looking decisions, agents form expectations about future temperatures using the statistical model introduced
in Seetion-Sect. 2.3.1. Because a single region’s emissions have a negligible effect on global totals, agents treat the sequence
of cumulative global emissions S = {S;}$°, as exogenous when making decisions. Furthermore, since annual fluctuations in
global emissions are small relative to their overall level, agents assume that this sequence is deterministic. These assumptions
enable them to forecast the expected component of regional temperature.

Given physical capital and effective labor, agents choose energy use to maximize net output of final goods. This static
optimization yields a decision rule for energy use:
hii (Kit, zit) = argmax [F (kie, Lit, 2it) — Cat] 3)

where
Lit = NjpAit D(Tit + 2it).

The decision rule for optimal energy use is time-varying because effective labor L;; depends on population N;;, exogenous
productivity A;;, and expected temperature T';;—all of which follow deterministic paths that agents take as given when solving
their optimization problems.
The investment decision is dynamic and is characterized recursively by the Bellman equation:
(%7 (Wm Zit) = ’gnax [NitU(Wit - ki,t+1) + Et(vi,t+1(wi,t+lazi,t+1))] ,
i,t+1

where v;; (wit, z;) is the value function, representing the optimal expected utility from period ¢ onward, given current wealth
w;; and the current temperature deviation z;;, which serves as a sufficient statistic for computing forecasts of future temperature

deviations. Regional wealth w;; in any period ¢ is defined as:
wit = F(kit, Lit, wit) — G + (1 — 6) ki, “4)

with energy use x;; chosen optimally according to the static decision rule.
The expectations operator E; in the Bellman equation denotes integration of v; 441 (w; ¢1+1,%i,t+1) over the conditional

distribution of z; ;41 given z;. According to the statistical temperature forecast in Seetion-Sect. 2.3.1, this distribution is
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normal with mean pz;; and standard deviation ;. Note that the value function in period ¢+ 1 depends both directly and
indirectly on z; ¢+ 1, since future wealth w; ;1 also varies with z; ;4.

Solving the Bellman equation yields a decision rule for investment:
Kipr1 = hE (wir, i), )

This decision rule is time-varying, as it depends on the entire forward-looking path—from period ¢ onward—of population,
exogenous productivity, and expected temperature, all of which evolve deterministically. Each region faces a distinct optimiza-
tion problem due to differences in these trajectories and in the region-specific parameters that govern temperature forecasts:
T, i1, Yio» pi» and o;. We solve each region’s dynamic programming problem numerically using the endogenous grid method
(see Appendix A for details). Solving the approximately 19,000 dynamic programs in parallel is straightforward and takes

about five minutes in Julia using 80 cores on Yale University’s High Performance Cluster.
2.3.3 Equilibrium

This section examines equilibrium in the standalone model under the assumption that the statistical temperature forecasting
approach in Seetion-Sect. 2.3.1 accurately describes the actual evolution of regional temperatures. Under this assumption, the
standalone model is fully self-contained and requires no interaction with NorESM2 in any period. We further assume that,
when simulating the standalone model, there is no internal variability: all realized temperature deviations z;; are set to zero,
so that realized regional temperatures exactly match their expected values in every period. Under these conditions, a perfect-
foresight equilibrium is defined as a fixed point in the sequence S of cumulative global emissions: agents take S as given when
solving their optimization problems, and their optimal decisions reproduce the same sequence S.

To compute this equilibrium, we begin with an initial guess for the global emissions sequence {Et(o)}fzo, truncating the
infinite horizon at T > ¢, so that By = 0 when t, <t < T'. Using this sequence we calculate the corresponding cumulative
emissions sequence S() via St(?r)l = St(o) +E§O) with Séo) predetermined. Given S(°), each region’s decision rules are computed
by solving its dynamic programming problem backward from ¢t = 7" to ¢t = 0 as described in Appendix A. We then simulate
the global economy forward in time from the initial regional capital stocks, imposing z;; =0 for all ¢ and ¢. Energy use
and capital accumulation follow x;; = h%,(k;,0) and k; 141 = hft (wit,0), where wealth w;; is given by eq—4Eq (4) with
Lit = Niy Ayt D(Tiy).

The forward simulation produces a new global emissions sequence {Efl) }Z_, and corresponding cumulative emissions S,
If SOV is within the chosen convergence tolerance of S(9), we take S() as the equilibrium sequence S*. Otherwise, we update
the guess by replacing S(°) with S() and repeat the backward—forward iteration until convergence. In practice, this algorithm
converges after a small number of iterations (typically five or fewer). The resulting S* serves as a candidate for the equilibrium

path of cumulative emissions in the fully coupled NorESM2-DIAM model.

10
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2.4 The Norwegian Earth System Model version 2 (NorESM?2)

Earth System Models (ESMs) are state-of-the-art computational models designed to simulate and understand the dynamics
of the climate system. They divide the atmosphere, ocean, and land surface into a three-dimensional grid, within which they
numerically solve equations that describe key physical, chemical, and biological processes. These calculations are typically
performed at hourly or even sub-hourly time steps, generating high-resolution output across time and space for a wide range of
climate variables, including temperature, precipitation, wind, and carbon stocks. Processes that cannot be resolved directly—
either because they occur at scales smaller than the grid or are too complex to model in full detail—are represented using
simplified representations known as parameterizations.

NorESM2 is an ESM with coupled atmosphere, ocean, land, river transport, and sea ice (for full description see Seland et al.,
2020), which contributed to the 6th phase of the Coupled Model Intercomparison Project (CMIP6; Eyring et al., 2015). It is
largely based on the Community Earth System Model version 2 (CESM2; Danabasoglu et al., 2020) with two main differences:

1. The atmospheric component, the Community Atmosphere Model (CAMO) is replaced by CAM6-Nor, which includes
several modifications from CAM6: A different aerosol module OsloAero6 (Kirkevag et al., 2018), specific modifications
and tunings of the atmosphere component (Toniazzo et al., 2020), as well as an updated parameterisation of turbulent

air-sea fluxes (The NorESM developers group,, 2020).

2. A different ocean model with isopycnic coordinates: The Bergen Layered Ocean Model (BLOM; The NorESM devel-
opers group,, 2020), which is coupled to the Hamburg Ocean Carbon Cycle Model (Tjiputra et al., 2020).

We use the NorESM2-LME configuration, which has an active carbon cycle enabled. This version has 1° ocean and sea ice
resolution, 2° atmosphere and land resolution, 32 vertical layers in the atmosphere, a 30-minute timestep-time step for atmo-
sphere, land, and sea ice, and a 1-hour timestep-time step for the ocean (Seland et al., 2020). When the carbon cycle is active,
the model calculates greenhouse gas concentrations from spatial emissions, otherwise, the greenhouse gas concentrations must
be prescribed.

The climate of NorESM?2 has been assessed through various experiments (see Eyring et al., 2015, for details of the bench-
mark simulations). Its historical simulations follow the observations relatively well, although NorESM2 has a weaker warming
between 1930 and 1970 than the observations (Seland et al., 2020). Simulations with a 1% increase in CO, each year until
doubling, and with an abrupt quadrupling of CO, were performed to calculate the transient climate response (TCR; the tem-
perature change at doubling of CO4 without climate stabilization) and an approximation of the equilibrium climate sensitivity
(ECS; temperature change at doubling of CO,, after the climate has stabilised), respectably (Eyring et al., 2015). In NorESM2,
TCR is 1.48K and ECS is 2.54K (Seland et al., 2020), which is within the likely ranges estimated by the IPCC (Forster et al.,
2021)—although at the lower end.

11
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2.4.1 The carbon cycle

The carbon cycle describes the exchange and storage of carbon between the atmosphere, ocean, land surface, and lithosphere
through physical, chemical, and biological processes. The carbon cycle includes several feedbacks with other components of
the climate system: Changes in climate due to increased carbon in the atmosphere (e.g., increasing temperature or changing pre-
cipitation) may change the rate of carbon transfer (e.g., photosynthesis) or carbon storage capacity (e.g., forest or permafrost),
thus either amplifying or reducing the initial increase.

In the carbon cycle of NorESM2, anthropogenic carbon emissions from fossil fuel combustion and changes in land use are
prescribed. The carbon cycle is represented mainly through the land model (CLMS; Lawrence et al., 2019) and the biogeochem-
ical component iIHAMOCC) coupled with the ocean component (BLOM) (Tjiputra et al., 2020). The land model simulates the
uptake, storage, and release of carbon from vegetation and soil through photosynthesis, respiration, and decomposition, as well
as nitrogen cycling and disturbances such as forest fires (Lawrence et al., 2019). The biogeochemical component calculates
the partial pressure of CO2 based on temperature, salinity, dissolved inorganic carbon, and alkalinity, and uses it to calculate
the air-sea CO5 fluxes (Tjiputra et al., 2020). An ecosystem module simulates phytoplankton and zooplankton with limiting
nutrients (nitrate, phosphate, and dissolved iron), dissolved organic carbon, and particulate matter (The NorESM developers
group,, 2020). Furthermore, there are vertical fluxes of organic and inorganic carbon, and the former is remineralized at a
given rate (Schwinger et al., 2016). Finally, a sediment module collects the non-remineralized particle matter (The NorESM

developers group,, 2020).
2.4.2 Preparing NorESM2 for coupling

Before NorESM?2 was ready for use, it was initialized and run to a steady state—a process known as the spin-up. This was
carried out by the NorESM2 developers’ group (The NorESM developers group,, 2020; Seland et al., 2020) in parallel with the
final calibrations of the model: They initialized NorESM2—without an active carbon cycle—with a combination of previous
model simulations and observational estimates for the pre-industrial climate (i.e., year 1850). Human emissions of greenhouse
gases and aerosols were set to zero or close to zero. The model was then run for more than 1000 years to allow the climate to
reach a steady state. During the spin-up, some additional model parameters were tuned to reach this steady state. Finally, the
carbon cycle was turned on and the model ran another for 100 years.

For the prototype NorESM2-DIAM coupling, only CO- emissions are included. The model is initialized from 1850 pre-
industrial conditions, with all non-CO5 anthropogenic forcings fixed at 1850 levels. CO4 emissions follow the CMIP6 historical
dataset (Eyring et al., 2015) until 1990, after which they are endogenously determined by the energy-use decisions of agents.
An extension to NorESM2-DIAM which links economic activity to the emission of other climate forcing agents than CO2 will
be the focus of future research.

No changes to the model code were necessary for the purpose of the coupling.
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3 Coupling

This section describes how the two components of NorESM2-DIAM are coupled. The procedure has three stages: (1) compute
the equilibrium of the standalone DIAM, which serves as a candidate equilibrium for the coupled model; (2) run a dynamic
simulation of the fully coupled system, exchanging information between the two components at each annual time step; and (3)
assess the accuracy of the candidate equilibrium.

In the first stage, we solve for the equilibrium path of cumulative emissions, S*, in the standalone DIAM without internal
variability, as described in SeetienSect. 2.3.3. Doing so yields time-varying regional decision rules for optimal investment and
energy use, given S*. These rules rely on the temperature forecasting approach described in SeetionSect. 2.3.1; however, in the
fully coupled NorESM2-DIAM, climate and weather outcomes are generated by the complete NorESM2 dynamics.

In the second stage, we simulate the coupled global economy—climate system on a year-by-year basis using the decision rules
computed in the first stage. A key challenge is a temporal mismatch: NorESM2 operates on hourly or sub-hourly time steps,
while DIAM operates annually. Consequently, economic decisions are fixed once per year and cannot respond to intra-annual
weather fluctuations.

To address this temporal mismatch, we assume that regional energy use in year ¢ equals its conditional expectation, formed in
year t — 1 based on the year-¢ capital stock k;; (set the previous year) and the previous year’s temperature deviation z; ;—; from
its expected value in year ¢ — 1 as specified in eg—Eq (1). Using the decision rule for energy use, this conditional expectation,

to first order, is:
Ty = hi; (kit, Etﬂ(%‘t)), By 1(2it) = pizig—1-

NorESM2 uses the resulting regional emissions ¢;,Z;;—distributed evenly across the year—to advance the climate by one
year, producing high-frequency weather data, including temperature, for each sub-period. The realized annual average temper-

ature in region ¢ is denoted 7};. Actual energy use is then
xy = hiy(kie, i),

where z;, is the deviation of T}; from its expected value, T, in year t.
Reconciling the temporal mismatch in this way introduces a small gap between actual and expected emissions, given by
x;,—;. This gap averages to zero over time, and each year’s gap is added to the next year’s expected emissions for consistency.

Regional wealth evolves each year according to
wit = F(kit, Ny AuD(Tyr), x5,) — pag, + (1 —6)ki. (6)

Once the state variables w;; and z;; have been updated, the model advances to the next annual cycle. The capital stock for year
t + 1 is then determined by the investment rule in eg—Eq (5), completing the sequence of yearly decisions.

Appendix A contains additional details on how we execute the coupled simulation.

In addition to the temporal mismatch, there is also a spatial mismatch: DIAM operates at a 1° resolution, while NorESM2

uses 2° resolution for its atmosphere and land components. We reconcile these grids using linear interpolation.
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In the third and final stage, we evaluate the accuracy of the candidate equilibrium by assessing whether the behavior of the
fully coupled simulation aligns with the temperature forecasts that agents rely on to make optimal decisions. The main task is
to compare the cumulative emissions path from the coupled run, S°, with the fixed-point path S* from the standalone DIAM.
Internal variability—absent in the calculation of S*—introduces persistent weather-driven fluctuations in the coupled run,
producing year-to-year variation in global emissions and hence in S¢. These deviations, however, are small and agents would
gain little from incorporating them into the temperature forecasts guiding their decisions. Apart from these minor discrepancies,
S¢ and S* track each other closely, as we discuss in detail in SeetionSect. 5. Consequently, we find that there is no need to
refine the candidate equilibrium through additional iterations between successive full-model simulations. This conclusion has
important practical significance for our methodology: running NorESM2-DIAM is computationally demanding—each annual
cycle requires about an hour on a supercomputer—whereas computing the candidate equilibrium in the standalone model

typically takes less than an hour in total.

4 Calibration

This section details the calibration of parameters in DIAM, including the temperature forecasting approach used in the stan-
dalone version. It also outlines the choice of initial regional capital stocks and the construction of projected trajectories for
regional population and the exogenous component of regional productivity. The base year in the calibration is 1990, the earli-

est date for which we have regional data on output and population.

4.1 Production technology

The production function F'(k, L, x) is Cobb-Douglas and exhibits constant returns to scale:

F(k, L) = (kL) 2170, (7)

where «, capital’s share of income (or GDP), is set to 0.36.
The productivity of the final-good sectors relative to the energy sector, (, equals the equilibrium price, p, of a unit of energy.

Let s;; denote the share of energy production in region ¢ in year ¢, measured as a fraction of regional GDP:

_ bxit
Sit — .
Yit

In equilibrium, each region chooses energy to solve the optimization problem in eg—Eq (3). The first-order condition for this

problem sets the marginal product of energy equal to p:
Fy(kits Lit, xit) = p- (®)

This condition implies that the energy share is constant:

0
1-6

Sit — S.
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Following Krusell and Smith (2022), we set # = 0.058, so that s equals the observed global energy share of GDP in 1990.
The price p is pinned down by matching global data from 1990:

sY0
- b
Xio

where Y is global GDP in 1990 ($36.1 trillion in 1990 according to the G-Econ database discussed in further detail in Seetion
Sect. 4.3) and X is global energy use in 1990 (10.3 Gtoes as reported in Krusell and Smith (2022)). This gives a calibrated
value of p = 0.203.

The annual growth rate, g, of the exogenous component of labor productivity, A;;, is set to 1.5% across all years and regions.
Allowing for variation across regions and years would be straightforward, but we leave this for future work. Section 4.3 explains
how the initial regional levels A;( are determined.

The parameter 1 measuring gigatons of carbon emissions per Gtoe in 1990 is set to 0.586 to match global emissions of 6.03

GtC in 1990. Finally, the annual rate of depreciation of the capital stock, ¢, is set to 0.06.
4.2 Preferences

The period utility function U(c¢) = log(c). Along a balanced growth path (after the transition to clean energy is complete), the
equilibrium interest rate 7* = 71 (14 g) — 1. We set 3 = 0.985, so that 7* = 0.03, or 3% per year.

4.3 Initial regional capital stocks and productivity

We use version 4.0 of the G-Econ database (Nordhaus et al., 2006) to obtain regional GDP, y;(, and population, V,g, in 1990.
Regions with very small populations are excluded, leaving 19,240 regions in total. Figure 2 displays the logarithm of regional
GDP in 1990, revealing substantial heterogeneity across space.

Let labor productivity in region ¢ in 1990 be a;0 = A;0D(T}o). To determine values for a;o and physical capital k;o in 1990,

we impose two conditions. First, regional GDP in the model must match GDP ¥, in the G-Econ database in 1990:
F(kio, Lio, i0) — PTio = Yio,

where L;o = Njpay is effective labor in 1990 and the optimal energy choice ;¢ satisfies the first-order condition in eg-Eq (8).
Second, consistent with the evidence in Caselli and Feyrer (2007), we require that the marginal net return to capital be

equalized across regions in 1990:
Fy.(kio, Lio, wi0) — 6 =17,

where F}, is the marginal product of capital. We set the common net return to 7*, under the assumption that in 1990 the global
economy was approximately on a balanced growth path (when the effects of global warming were still small). The initial value

of A; is then equal to a;o/D(T;0), using the damage function D specified in Seetion-Sect. 4.5.
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Figure 2. Logarithm of regional GDP in 1990.

4.4 Population

To construct time paths for regional population from 1990 to 2140 (the time horizon of DIAM), we proceed in five steps.

Step 1. Historical data (1990-2005). We begin with the G-Econ database, which provides regional population data for
1990, 1995, 2000, and 2005. Linear interpolation is used to fill in annual values between these benchmark years.

Step 2. Regional shares within countries. For 1990-2005, we compute each region’s share of its country’s total population.
Because these shares evolve over time, we project them forward to 2100 by assuming that the logarithm of the shares follows a
linear trend estimated from the 1990-2005 data. We keep the shares constant after 2100. The key idea is that multiplying these
projected shares by country-level population yields regional population after 2005.

Step 3. Country-level population growth rates. To construct country-level populations, we first calculate annual growth
rates from 2006 to 2100 using data from the 2024 Revision of the United Nations World Population Prospects (United Nations,
2024): historical estimates up to 2024 and projections thereafter. Beyond 2100, we assume that annual growth rates decline
linearly to zero by 2140.

Step 4. Country-level population paths. Using these growth rates, starting from the G-Econ country-level populations in
2005, we generate annual country-level population paths from 2006 to 2140.

Step 5. Regional populations. Finally, we obtain regional populations by multiplying the country-level populations by the
projected regional shares.

Figure 3 shows the projected percentage change in regional populations between 1990 and 2100. The results highlight a
pronounced demographic shift: sharp population declines in Europe, Russia, and East Asia are counterbalanced by substantial

growth in Africa and the Middle East.
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Figure 3. Percent change in population from 1900 to 2100. The color bar is not linear; instead each increment in the color bar represents the

same number of regions.

4.5 Damages and regional temperature

The damage function D(T};) captures how labor productivity, measured as a fraction of optimal productivity A;; at any point
in time, varies with regional temperature 7;;. It has an inverse U-shape and is normalized so that its maximum value equals 1

at its peak 7™:

1
(0= e @t L) i T > 7

D(Ti) = B . o )
((1—d)e‘” (Tie=T") +d) if Ty < T,

where the parameter d is a lower bound on D'~®, The parameters x~ and x* govern how quickly D declines from its peak to
the left and right sides of T*, respectively. Following Bjordal et al. (2022), we set T* = 12.61, k~ = 0.00328, ™ = 0.00363,
and d = 0.02, so the optimum temperature is approximately 12.6°C and the U-shape is bounded below by 0.02 and asymmetric,
declining more rapidly to the right of the peak than to the left; see Fig. 4.

Figure 5 displays regional productivity using annual temperatures in 1990. There is substantial heterogeneity in productivity
across space, reflecting the wide variation in regional temperatures. In addition, comparing to Fig. 2, regions with high GDP
in 1990 tend to have productivity near the peak of D, while regions with low GDP tend to have lower productivity. The shape
of D plays a key role in determining aggregate economic damages from global warming; we discuss these further in Seetion

Sect. 5.
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4.6 The transition to green energy

The economic model assumes that energy use gradually becomes green, represented by the sequence {¢; }. The initial value,

¢o, is normalized to 1, so that the dirtiness of energy use is measured relative to 1990. We assume that ¢; = 0 for t=>t;="1+
implying-that{ > t,, after which point energy use is fully greenby-the-year2100--

. To model the transition, we use a logistic function of time:

0.01\ t—ny. -
H(t)= (1 +exp <log (0.99> oo —07150 5)) ,

with parameters n¢.o1 = 10 and ng 5 = 75. This function is close to 1 when ¢ = 0 and declines slowly at first before accelerating,
with H(10) = 0.99and-, H(75) = 0.5, and H(140) = 0.01. For ¢ < ¢4, we then define

H(t
o= 1)

Figure 6 shows 1 — ¢;, which we refer to as the greening function. The transition is slow in the early decades: by 2025, only
about 5% of energy use is green. This aligns reasonably well with observed data: the share of green energy (renewables and
nuclear) was 11.3% in 1990 and 17.6% in 2024 according to Ritchie and Rosado (2020) so an incremental 5% greening relative
to 1990 by 2025 is consistent. After 2025, the pace accelerates, with half of energy use projected to be green by around 2065.

To conserve on computation time, we run the fully-coupled model only until 2100, at which point we assume that energy
use becomes full
standalone model, regional temperatures reach a steady state in 2100. The consequent small kink in the greening function has
negligible effects on the quantitative results because annual emissions are already quite low by 2100 and, consequently, their

impact on cumulative emissions is close to zero by that point.

reen (i.e., we set t, = 111). We make this assumption so that, when computing decision rules using the

4.7 Temperature forecasts in the standalone model

In the standalone version of DIAM, agents form temperature forecasts using a simple statistical approach, described in Seetion
Sect. 2.3.1. First, they use cumulative CO, emissions to project the expected value of regional temperatures, as specified in eg-
Eq (1). Second, they model stochastic deviations from this expected value with an AR(1) process, given in eg=Eq (2).

To ensure consistency with NorESM2—a key requirement when coupling DIAM with the climate model—we estimate the
parameters of these two equations using data generated by NorESM2. Specifically, we draw on three NorESM2 simulations
with CO5 emissions as the sole forcing. The first simulation begins in 1850, follows historical emissions until 2014 (Eyring
et al., 2015), and continues with a future projection of CO5 emissions from SSP3-7.0 for 2015-2100 (van Vuuren et al., 2014;
Kriegler et al., 2014; Riahi et al., 2017). The other two simulations start in 1990 (branching off from the first simulation) and
extend to 2100, following lower emissions trajectories derived from standalone DIAM runs. All three simulations are shown
in Fig. 7.

The estimation proceeds in two steps. In the first step, we pool the three simulations and regress regional temperature

anomalies, T';; — T';, on a quadratic function of cumulative emissions (excluding a constant term), yielding estimates of the
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Figure 6. The greening function, showing the fraction of energy use that is green.

parameters ;1 and ;2 in eg—Eq (1). In the second step, we compute the residuals from this regression and regress them on
their lagged values (again excluding a constant) to estimate p; and o; in eg—Eq (2).

The relationship between temperature change and cumulative CO5 emissions is referred to as the Transient Climate Response
to Cumulative CO4 Emissions (TCRE). It is generally found to be nearly linear, both at the global scale (Matthews et al., 2009;
Canadell et al., 2021) and regionally (Leduc et al., 2016). However, as seen in Fig. 7, in NorESM2 the global temperature is a
slightly concave function of cumulative emissions. For that reason, we include a quadratic term in eg—Eq (1), and we find that
the estimates of ;2, the coefficient on this term, are almost all negative (though small in absolute value). This concavity likely
reflects nonlinearities in certain climate feedbacks captured by NorESM2, though exploring these mechanisms lies beyond the
scope of this paper.

Finally, Fig. 8 illustrates substantial heterogeneity in regional warming responses: the amount of regional warming associated
with a one-degree increase in global mean temperature (over populated areas only, relative to 1990) varies widely, from less
than one degree in much of the Southern Hemipshere to more than one degree—and as high as several degrees—in the northern
latitudes. The AR(1) estimates also display heterogeneity: the median estimate of p; is 0.266, with an interquartile range (IQR)
of 0.206 to 0.316, while the median estimate of o; is 0.632, with an IQR of 0.497 to 0.862.

5 Results

This section presents the quantitative findings from our new coupled model. We begin by verifying that the candidate equi-

librium computed with the standalone model is consistent with the behavior of the fully coupled system. We then analyze the
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Figure 7. NorESM2 global mean temperature change from pre-industrial over land against cumulative emissions since 1850. The red line
shows the global mean expected temperature over land obtained by summing eg-Eqg (1) across regions. The black dots are from a NorESM2
simulation with historical CO2 emissions followed by the CO2 emissions from SSP3-7.0. The light and dark gray dots are from two NorESM2

simulations from 1990 until 2100 with much lower total emissions at the end of the century.

secular trends in temperature and GDP projected by the model, both globally and regionally. Finally, we investigate short-term
fluctuations in global and regional GDP, highlighting the deviations from long-term trends that arise from internal variability
in NorESM2-DIAM.

5.1 Assessing the candidate equilibrium

We initialize cumulative emissions in 1990 to match the historical NorESM2 input (Eyring et al., 2015). Figure 9 presents the
equilibrium path of cumulative emissions in the standalone model (absent internal variability), alongside historical emissions
through 2014 and four Shared Socioeconomic Pathway (SSP) projections thereafter. From 1990 to 2024, the standalone model
closely tracks observed cumulative emissions. Beyond 2024, its trajectory aligns most closely with SSP3-7.0, before flattening
and ultimately ending the century between SSP2-4.5 and SSP3-7.0.

Figure 10 shows the difference in annual and cumulative emissions between the standalone model and those generated by
NorESM2-DIAM. In the coupled model, internal variability in regional temperatures causes realized regional emissions—

which depend on actual rather than expected temperatures—to diverge from expectations. These deviations do not cancel
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Figure 9. Cumulative CO emissions (excluding land—use change) since 1850 for the years 1980 to 2100 measured in GtC. The black line
is the emissions used by NorESM2 for historical simulations, based on estimated historical emissions, and goes until 2014. The four blue
lines are the emissions used in the four most common emission scenarios, starting in 2014. The yellow line is cumulative emissions from the

standalone model, which starts from the historical cumulative emissions in 1990.
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lation and the DIAM standalone.

out across regions: even at the global level, emissions often differ from the standalone model by several percentage points
in absolute value, as shown by the black line in Fig. 10. However, because annual flows are small relative to the stock of
cumulative emissions, the coupled model’s cumulative emission path remains close to that of the standalone model, differing
by no more than 0.4% (gray line in Fig. 10). As a result, agents’ forecasts of future expected temperature—based on the
standalone model’s cumulative emissions path—are highly accurate: accounting for the minor deviations in the coupled model
would change forecasts only marginally. Taken together with the assumption that the AR(1) process describing deviations of
regional temperature from its expected path is invariant to global warming (see Seetion-Sect. 2.3.1), this result supports the

conclusion that the behavior of the coupled model provides a reasonable approximation to an exact economic equilibrium.

5.2 Global change

Figure 11 (a) displays the path for population-weighted global temperature in NorESM2-DIAM, together with the trend path
from the standalone model. (We use population-weighted temperature to focus on regions where people live; recall that regional
population shifts over time so that the population weights change over time.) The global temperature in NorESM-DIAM tracks
the trend path, providing additional evidence that the behavior of NorESM—-DIAM aligns with the candidate equilibrium from
the standalone model. There are substantial variations in global temperature around this trend path, driven by internal variability

in NorESM2. Comparing with Fig. 10, there is a positive relationship between deviations of global emissions and deviations
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Figure 11. Global mean values of (a) population weighted temperature change from pre-industrial, (b) percentage change in GDP since 1990,
and (c) percentage change in GDP per capita since 1990. For GDP and GDP per capita the exogenous growth is removed. The solid line
is the value from the DIAM standalone model, while the dashed line is the calculated value from the coupled NorESM2-DIAM. Panel (c)
also shows the decomposition of GDP per capita into contributions from population only (green), climate change only (red), and interaction

effects (yellow).

of global temperature from their respective trend paths: higher temperatures tend to reduce global productivity (as we discuss

further below), in turn leading to lower energy use and fewer emissions.
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Note that the NorESM2-DIAM simulation begins from a relatively cold temperature compared with the trend path in the
standalone model. This discrepancy reflects two factors: the historical simulation used to initialize NorESM2-DIAM is rela-
tively cool in 1990, and the statistical temperature forecast provides a less precise fit at low levels of cumulative emissions (see
Fig. 7). Nevertheless, the statistical temperature forecast captures NorESM2’s behavior well overall.

The corresponding change in global GDP is shown in Fig. 11 (b), expressed as a percentage relative to 1990. To isolate
the effects of climate change and population dynamics, we remove the underlying constant growth rate of 1.5% driven by the
exogenous component of productivity. As expected, GDP in NorESM2-DIAM closely tracks the standalone model, consistent
with the alignment in temperatures between the two models. Global GDP rises until around 2040, reaching about 35% above
1990 levels, before beginning to decline. The initial increase reflects population growth, which peaks in the 2080s, while the
subsequent downturn results from both population shifts and the impacts of climate change, as we discuss further below.

Finally, Fig. 11 (c) displays the change in global GDP per capita since 1990 (again with the underlying growth trend of 1.5%
removed). Once again, NorESM2-DIAM tracks the trend in the standalone model closely, and in both models global GDP per
capita declines by about 35% by 2100.

To understand this decline, Fig. 11 (c¢) also displays the results of two counterfactual experiments using the standalone
model, one in which the climate changes over time but regional population does not, and another in which regional population
changes over time but the climate does not. These experiments reveal that most of the decline in GDP per capita (about 64%)
can be attributed to shifts in regional population. In particular, as shown in Fig. 3, according to our projections, the distribution
of global population changes strikingly over time, with population tending to grow (shrink) in regions that are relatively poor
(rich) in 1990, as measured by the initial value of the exogenous component of productivity (which in turn reflects differences
in regional GDP per capita in 1990). Even as global GDP increases initially (due to a growing global population), global GDP
per capita declines throughout because poor regions are becoming relatively more populated.

Climate change alone, in turn, causes a decline of about 8% in GDP per capita by 2100, or about 23% of the total decline.
This decline is a quantitative measure of the global damages from climate change generated by NorESM-DIAM when the
global (population-weighted) temperature increases by close to 3.5°C. These global damages are larger than in the most recent
version of Nordhaus’s DICE model (see Barrage and Nordhaus (2024) in which damages are about 4% of global GDP at 3.5°C
of warming) but in line with other estimates in the literature (see, for example, Rennert et al., 2022). In NorESM2-DIAM,
global damages depend critically on the regional damage function D (see Fig. 4), and the specific calibration of this function
that we use here can then be viewed as a reasonable one in the sense that it generates quantitatively reasonable global damages
(see Krusell and Smith (2022) and Bjordal et al. (2022) for a thorough discussion).

The rest of the decline in global GDP per capita (about 13%) can be attributed to an interaction effect between climate change
and population shifts, as shown in Fig. 11 (c): in particular, population tends to shift over time not only to poorer regions but
also to hotter regions, that is, regions whose initial temperatures in 1990 are to the right of the optimum temperature in see Fig.
4 and which therefore experience greater damages from climate change than cooler regions. (The latter may even experience

gains from climate change if they are cool enough, a point to which we return in Seetion-Sect. 5.3 below.)
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Figure 12. Maps of temperature change from pre-industrial for years 2040 and 2090, for the DIAM standalone and the coupled NorESM2-
DIAM. a) is the DIAM standalone for year 2040, b) is NorESM2-DIAM for year 2040, c) is the DIAM standalone for 2090, and d) is
NorESM2-DIAM for year 2090.

As discussed in seetion-Sect. 4.1, in our calibration the exogenous component of productivity has the same constant growth
rate in all regions. A more realistic calibration might allow poorer regions to grow faster initially as they catch up to the global
technology frontier. Such a calibration would lead to a different decomposition than the one displayed in Fig. 11 (c), likely
reducing the role of population shifts in causing declines in global GDP per capita. It is entirely feasible in our methodology
to allow the growth rate of the exogenous component of productivity to vary across time and space, but we leave this to future

work.
5.3 Regional change

We now turn to patterns of regional change. Figure 12 shows, for both the standalone model and the fully-coupled model,
projected changes in regional temperature from 1990 to 2040 and 2090 in response to global warming. Consistent with Fig. 8,
regions in high northern latitudes warm the most, reflecting Arctic amplification (Meredith et al., 2019). Differences between
the standalone and NorESM2-DIAM simulations reflect internal variability in NorESM2-DIAM, which is suppressed in the
standalone model.

The maps in Fig. 13 show how the percentage change in GDP per capita is distributed corresponding to the temperature
maps in Fig. 12. Note that these are relative to the underlying trend path growing at 1.5% year (driven by growth in the
exogenous component of productivity). There are large differences across regions, with many regions’ economies growing

relative to trend growth, often by large amounts, and other regions’ economies shrinking. Moreover, the differences across
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Figure 13. Maps of percentage change in regional GDP per capita (relative to the underlying trend path growing at 1.5% per year) from 1990
to 2040 and 2090. a) is the standalone model for year 2040, b) is NorESM2-DIAM for year 2040, c) is the standalone model for 2090, and d)
is NorESM2-DIAM for year 2090. Note that the color bar is not linear; instead each increment in the color bar represents the same number

of regions.

regions increase substantially over time, with the percentage changes in regional GDP from 1990 to 2090 displaying much
more spatial variation than the percentage changes from 1990 to 2040.

These patterns, in turn, reflect how regional productivity varies over time as the global climate warms. Cool regions, located
to the left of the optimum temperature in the damage function D in 1990 (see Fig. 4), warm over time, leading to increases
in productivity as their temperatures move towards the optimum temperature. Initially warm regions, by contrast, decline in
productivity as their temperatures move away from the optimum temperature.

As for regional temperatures, the percentage changes in regional GDP differ across the standalone model and NorESM2-
DIAM, reflecting internal variability in NorESM2-DIAM: realized regional temperatures fluctuate relative to expected tem-
perature, leading to fluctuations in productivity and hence GDP. We discuss this variability in Seetten-Sect. 5.4 below.

In the maps in Fig. 13, GDP per capita increases in large areas, seeming to suggest that global GDP per capita increases
over time, rather than decrease as shown in Fig. 11 (c). But it is important to note that most of the regions in which GDP per
capita increases have small populations and consequently contribute little to global GDP. To see this more clearly, Fig. 14 (a)
and (b) aggregates regions into countries and shows the percentage change in each country’s temperature and GDP per capita
from the last decade of the 20th century (1990-1999) to the last decade of the 21st century (2090-2099). These figures reveal
that for most, though not all, countries, GDP per capita declines over the century. Moreover, global GDP per capita (see the

circle labeled “GLOBAL”) has a larger decrease than most individual countries.
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Figure 14. Country-level change in temperature and GDP per capita in 2090-2099 compared to 1990-1999. a) and b) show each country’s

percentage change in decadal GDP per capita on the y-axis against decadal population-weighted temperature change on the x-axis as calcu-

lated by NorESM2-DIAM. c) show the differences between NorESM2-DIAM and the standalone model for the change in temperature and

GDP per capita. In a) each country’s circle, as well as the global mean, is colored based on the percentage change in population (2090-2099

compared to 1990-1999), and the size indicates the population in year 1990. In b) and c) the top row, each country’s symbol, as well as the

global mean, is colored based on the 1990-1999 population-weighted temperature, and the size indicates the GDP per capita average over

1990-1999.
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To better understand this finding, Fig. 14 (a) emphasizes the effect of population. Here, the size of each circle corresponds
to initial population and the color of each circle corresponds to changes in population. Many of the countries with a large
decrease in GDP per capita also have a large increase in population, whereas for many of the countries in which GDP per
capita increases, population decreases. Consequently, global GDP per capita falls by more than it does in many individual
countries.

Figure 14 (b) is the analogue of Fig. 14 (a), but here the size of each circle corresponds to initial temperature (i.e., the
decadal average for 1990-1999) and the color of each circle corresponds to GDP per capita in 1990-1999. As is the case for
individual regions, in warm countries GDP per capita decreases over time (relative to the underlying trend), while in colder
countries it increases. This figure shows clearly that most poor countries (i.e., those represented by smaller circles) experience

large damages from climate change in the sense that GDP per capita falls substantially in them.
5.4 Variability in productivity and GDP

Internal variability in NorESM2-DIAM leads to large fluctuations in regional temperatures around their trend paths, as quan-
tified in the estimated coefficients of the AR(1) process that agents use to make forecasts of future regional temperatures (see
Seetion-Sect. 2.3.1). Likewise, the global temperature fluctuates substantially around its trend path, as illustrated in Fig. 11 (a).

These temperature fluctuations, in turn, lead to quantitatively significant fluctuations in productivity and hence in regional
and global GDP. Figure 15 shows that in NorESM2-DIAM, the standard deviation of (annual) regional GDP, expressed as a
percentage relative to its trend, ranges from near zero to 33%, with most values lying between 2% and 10%. The large spatial
heterogeneity in this measure of GDP volatility has two sources. First, there is substantial spatial heterogeneity in the volatility
of regional temperature itself. Second, average regional temperatures vary greatly across space, so that regions are located at
very different points along the inverse U-shaped damage function (see FigSect. 4.5) determining regional productivity. For a
given amount of volatility in regional temperature, regions near the peak of the damage function experience smaller fluctuations
in productivity than regions either to the left or right of the peak where the slope of the damage function is larger (in absolute
value).

Figure 14 (c) illustrates this variability at the country level. Specifically, this figure shows the differences between NorESM2-
DIAM and the standalone model, i.e., the difference between the change from 1990-1999 to 2090-2099 in the two models.
Averaging over a decade dampens a considerable amount of the internal variability in NorESM-DIAM. Nonetheless, even
over this longer horizon, internal variability still leads to quantitatively important variations in GDP per capita. (Note that the
contribution from population changes is not relevant here, as the two have the same population changes.) For example, in a cold
country that experiences a higher-than-normal temperature, productivity increases, leading to an increase in GDP per capita in
the short run. Similarly, in a hot country that experiences a lower-than-normal temperature, productivity also increases, leading
again to an increase in GDP per capita. By contrast, in a cold country that experiences a lower-than-normal temperature (or in
a hot country that experiences a higher-than-normal temperature), productivity and GDP per capita fall in the short run.

Finally, as shown in Fig. 11 (b), global GDP itself experiences large fluctuations relative to its trend, about 1% in pereentage
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Figure 15. Standard deviation of regional GDP (expressed as a percentage relative to trend).

The patterns of spatial correlation in regional temperatures generated by NorESM?2 play a key role in driving this variability in

lobal GDP. To examine the role of these patterns, we simulated the behavior of the standalone model with regional temperature

shocks drawn according to Eq. (2), with the parameters of the regional AR(1) processes calibrated to simulated data from

NorESM?2 as described in Sect. 4. In the standalone model, these shocks are assumed to be statistically independent across

regions and therefore exhibit no spatial correlation by construction. In this case, fluctuations in global GDP are about 0.1%, an

stowi i ¢ sfully-coupled model. Failing to account for patterns of spatial correlation
would therefore lead to a large understatement of volatility in global GDP.

To gain further insight into the role of spatial correlation in generating aggregate fluctuations, Sect. A8 in Appendix A shows
analytically, in a stylized model, that spatial correlation can amplify the size of these fluctuations under certain conditions that

our calibrated model satisfies.

6 Discussion

We have developed a coupled model consisting of two main components—an IAM and an ESM—that exchange information
every year at a gridded level. We find, like Krusell and Smith (2022), Bjordal et al. (2022), and Cruz and Rossi-Hansberg (2024),
that changes to GDP per capita induced by global warming vary greatly across regions, underscoring again the importance of
making regional assessments of economic impacts. In line with previous research (Kotz et al., 2021; Kikstra et al., 2021;
Waidelich et al., 2024; Kotz et al., 2024), we also find that internal variability—which is ignored in most [AMs—can be

important for assessing the economic impacts of global warming, both annually and on longer time scales.
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The quantitative results depend critically on the shape of the regional damage function. We show that our calibration of the
damage function generates aggregate damages in line with existing estimates, but it is important in future work to provide
stronger empirical foundations for this function. Specifically, we plan to evaluate the quantitative effects of different damage
functions, including those that depend on additional climate and weather variables beyond annual mean temperature. The
damage function we use here also assumes implicitly that a permanent change in climate (such as a permanent increase in
average annual temperature) has the same economic impacts as a transitory change in weather (such as relatively hot or cold
year), ignoring possible adaptation to changes in climate. We hope to address this shortcoming in future work too.

In the prototype model implemented here, NorESM?2 and DIAM exchange only regional temperatures and emissions. But
the NorESM2-DIAM framework opens many possibilities for future model development. For example, we can easily extend
our methodology to include additional climate variables which have been shown to be important for assessing the economic
damages of climate change. (Waidelich et al., 2024; Kotz et al., 2024). NorESM2 already provides information on a plethora of
climate and weather variables. Given a damage function that depends on (a subset of) these variables, extending the methodol-
ogy simply requires incorporating these additional variables into the statistical model that agents use to forecast future regional
damages.

Another important question is whether climate change affects the growth rate of economic activity, rather than merely
shifting the level of activity as in our prototype model. This issue remains unsettled (see, e.g., Dell et al., 2012; Howard and
Sterner, 2017; Burke et al., 2015), but again our framework can be readily extended to accommodate such effects by modifying
the damage function accordingly.

The economic model (DIAM) in the prototype model developed here is relatively simple, with several important limitations
that could be important for assessing the spatial effects of climate change. These include constant exogenous productivity
growth across time and space, no capital mobility, and exogenous population changes. We also limit attention to CO-, though
including forcings from other greenhouse gases would permit better a better representation of how the climate changes in
response to economic decisions. However, many of these limitations (with the possible exception of migration in response to
climate change) can be easily incorporated into the existing framework. The advantage of starting with a simple model is that
its output is relatively easy to understand and interpret. This model can also serve as a baseline against which future model
versions with more complex connections between climate and the economy can be compared.

An important limitation of NorESM2-DIAM, compared to existing IAMs, is its computational cost. While IAMs such
as DICE or PAGE can be run in a matter of minutes or less (e.g. Moore et al., 2018) on any computer, full ESMs—and
consequently NorESM2-DIAM—take hours or days on a supercomputer. Therefore, we must limit the number and length of
model simulations. However, the computational cost is close to that of running an ESM, so running NorESM?2 with an economic
module has a negligible effect on the overall run time. In principle, NorESM2-DIAM can be used for all the same experiments
as [AMs. However, due to the computational cost, it makes most sense to use NorESM2-DIAM to answer questions where a
good representation of the climate system and the carbon cycle is important, such as how extreme weather events and internal

variability affect economic outcomes.
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In addition to the NorESM2-DIAM model, we now have a simple representation of NorESM2’s climate in the standalone
version of DIAM. The standalone model is computationally inexpensive relative to the full coupled model, so it can be useful
when speed is important, for example, to perform many different simulations or very long simulations. The standalone model
can also be used as a guide to what simulations it would be worthwhile to run in the full model. Finally, in cases where
we have already performed simulations of the full model with similar emission trajectories, we could use NorESM?2 data
for regional temperatures (and possibly other variables) as an input to the standalone model, in a sort of offline coupling:
different combinations of economic growth, greening, and policy can in some cases deliver similar paths for emissions and
consequently temperatures, yet still have very different economic impacts. Finally, the simple model could also be useful for

teaching purposes.

7 Conclusions

In conclusion, the NorESM2-DIAM framework successfully couples a state-of-the-art Earth System Model and a cost-benefit
Integrated Assessment Model with high geographical resolution. The new model exchanges temperature and CO5 emissions
on a yearly basis on a regional gridded level, generating dynamic emissions trajectories. The results highlight the importance
of spatial and temporal variability for economic outcomes as well as the wide range of outcomes among regions.

A caveat to keep in mind is that these are early results using a coupled model that is, to our knowledge, the first of its
kind. The quantitative results presented here should therefore be interpreted with caution. There are still large uncertainties,
particularly regarding the proper form of the damage function, and there are several important features (see the discussion
in Seetion-Sect. 6) that we would like to add to the model in order to assess their quantitative importance. Nevertheless, our
results demonstrate how the two components of the coupled model work together and the framework we develop here is a
good starting point for future model development, opening up a wide range of new opportunities for more comprehensive and

sophisticated simulations of climate-economy interactions.

Code and data availability. The frozen NorESM2 source code used in this study is archived as release-noresm2.0.9 on Zenodo (https:
//doi.org/10.5281/zenodo.17865358; Seland et al., 2025). The NorESM2 restart files required to run the simulations are available on Zenodo
(https://doi.org/10.5281/zenodo.17856602; Bjordal, 2025), and the additional model input files not generated by our own scripts are likewise
provided via Zenodo (https://doi.org/10.5281/zenodo.17865023; NorESM Climate Modeling Consortium,, 2025). Further information on
installing and configuring NorESM2 can be found in The NorESM developers group, (2020).

The complete NorESM2-DIAM codebase—comprising the standalone DIAM model, coupling scripts, input file generation scripts, all out-
put data reported in this paper, and the plotting scripts—is archived as release-v1.0.2 on Zenodo (https://doi.org/10.5281/zenodo.17986166;
Bjordal et al., 2025). The accompanying README provides an overview of input and output data for NorESM2-DIAM and detailed instruc-

tions for reproducing the results and running the model.

32


https://doi.org/10.5281/zenodo.17865358
https://doi.org/10.5281/zenodo.17865358
https://doi.org/10.5281/zenodo.17865358
https://doi.org/10.5281/zenodo.17856602
https://doi.org/10.5281/zenodo.17865023
https://doi.org/10.5281/zenodo.17986166

715

720

725

730

Appendix A
Al Introduction

Sections A2 to A6 of this Appendix explain how we solve the regional dynamic programming problems. Section A7 gives

details on how we execute a forward simulation using NorESM2. Section A8 uses a stylized model to examine the role of
spatial correlation in generating fluctuations in global aggregates.

A2 Setup

Time is discrete and starts in year 0, corresponding to the real-world year R. Agents in region ¢ assume that their temperature

in year t, T}, is given by:

Ty = Tit + 2t (A1)
where T';, is region i’s expected temperature in year ¢ and z;; is a region-specific random shock to regional temperature.
Assume that T,y = T'; + vi1S¢ + 7252, where T, is pre-industrial temperature in region ¢ and S; is cumulative global carbon

emissions (since the pre-industrial era) at the beginning of year ¢. Assume that z;; follows an AR(1) process:
Zit = PiZit—1 + €t (A2)

where {€;}22, is an i.i.d. (independent and identically distributed) sequence of random variables with a N (0,0?) distribution.
Let k;; be the physical capital stock in region ¢ at the beginning of year ¢, let w;; denote wealth in region ¢ at the beginning of
year ¢, and let z;; denote energy use (measured in BTUs) in region ¢ during year ¢.Let § be the rate at which capital depreciates.
Let population in region ¢ in year ¢, N;;, evolve according to V; ;11 = (1 + g% +1)Nit, where N;q is a given number and
{g 12, is an exogenous sequence.
Let ¥ ¢;+ be carbon emissions (in GtCs) per BTU in region ¢ in year ¢ and let e;; be carbon emissions in region ¢ in year ¢,

i.e., e, = YWo;xi¢. Then global emissions in year ¢ are equal to:

M
E = E €its
i=1

where M is the number of regions. Then S;11 = S; + E; for t > 0, where Sy is cumulative emissions (since the pre-industrial

era) through the beginning of real-world year R. Alternatively, for ¢t > 1,

t—1

Se=50+ Y E..

s=0

Each region takes as given the sequence {S;}5° . Using (A1), this sequence in turn determines the sequence {7';;}52,.

Finally, assume that .S; = S* for t > t; (i.e., starting in year ¢1, ¢;; = 0 for all 7, so that there are no further carbon emissions).

33



735

740

745

750

A3 Dynamic program of a typical region

Each region ¢ solves the following dynamic programming problem, where w;; is aggregate wealth in region ¢ at the beginning

of year ¢ and k;; is the aggregate capital stock in region ¢ at the beginning of year ¢:

i
Ut (WityzitaNihAit) =

ki t+1 N;

subject to eg—Eq (A1), (A2), the borrowing constraint k; ;1 > 0, and the law of motion for wealth:

wit — ks, i
max |:NitU (tHI) + BE¢ (Vi1 (Wi i1, 2141, N1, Ai 1)) |

wips1 = max (F (kY008 wie) — Pitiart) + (1= 0)kigsa, (A3)

T o1
where £;; = N;: A+ D(T;t) is aggregate efficiency units of labor in region i in year ¢, p; is the price of a unit of energy (ex-
pressed in units of the final consumption good), D(T;:) is a nonnegative, inverse U-shaped function with a unique maximum
at D(T*) =1, and the sequence {A;;}$2, obeys: A; 41 =(1 +g;‘}t+1)A¢t, where A;q is a given number and {g7 }£2, is an
exogenous sequence. Note that the value function in region 7, v}, implicitly depends on the region-specific parameters T';, p;,
i1, Yi2, and o?; the region-specific sequences of growth rates {g7} }5°; and {g7} }3,; and the common sequence {:S; }3°,,.
Assume finally that, for t >t > ¢, g} = ¢ and gg‘,} = g%, i.e., the growth rates of population and exogenous technological

progress are constant across time and space starting in year ts.
A4 Detrending the dynamic program

For any variable y;;, define the scaled variable
_ Yit
NitAiD(T'it)

Because the production function, F, is assumed to have constant returns to scale in its two arguments, the law of motion for

Uit

wealth (egEq. A3) can be rewritten:

N A~ - 1_ ~ N ~
Wi, 1+1 = max (F (kfft+1 (dip1(Tigsr)) 7-73i,t+1) —Piwi,tﬂ) + (1 —=0)ki 41, (A4)
Tttt
where
i D(-)
di() = —=
D(T'i)

Assume that U(c) = ¢! ~7. Then

wit — ki1
U )
( N; >

= Nir1Aiit1 = - 1=
<AitD(Tit)@it - MAitD(Ti,t-&-l)ki,t-&-l)
it At

— 1— R PR ~ 1—v
= (AuD(Tw) ' (Wz‘t —(1+gN )0+ 9ft+1)d§(Tz‘,t+1)ki,t+1)
Guessing that v} (wis, zit, Nit, Ai) = Nig (A D(T1)) ! (Wi, 2it ), rewrite region 4’s dynamic program as:

— 1— i
Nit (A D(Ty)) V0 (g, zit) =
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Yo sl 1— ~ g N 1—v
. max {Ni (AitD(Tit)) K (wit_ (l—l—gﬁtﬂ)(l +gz{?t+1)dt(Ti7t+l)ki,t+l)
ki t41,Ti 041

PR 17 Ai
BE, (Nz',t+1 (Ait+1D(Ti141)) ’yvt+1(wi,t+1azi,t+1))} ,

subject to egEq. (A1), (A2), (A4), and the borrowing constraint. Simplify this equation to get:
B (@i, 2it) = (AS)

. i » 1=y
. max {(wit —(1+gM )+ gf}t-ﬁ-l)dt (Ti,t+1)ki,t+1) +
ki,t+1,$z‘,t+1
_ i (7R 1—y
B(1+ gi]?]tJrl)(l + gZ‘t+1)1 K (dt(Ti,tH))

subject to egEq. (A1), (A2), (A4), and the borrowing constraint.

E; (@§+1 (d)i,t+1a Zi,t+1))] s

A5 Solving the dynamic program backwards

Starting in year ¢, region ’s dynamic programming problem then has a time-invariant solution and simplifies to:
S ~ N AVi 1=
0'(Wit,2zi4) = max (wit —(1+g")(1+g )ki,t+1) + (A6)
ki1, t41
B(1+ gN)(l + gA)l_W E; (@i(d}i,t+1; Zi,t+1))] )
subject to egEq. (A1), (A2), (A4), and the borrowing constraint, where now

Tt :T: ETi +’Yi15* + Vi2 (S*)2

The first step in solving problem (A5) is to find the function K (Wit, zi¢) that solves equation (A6).
Next, for t =t1,...,t5 — 1, problem (AS) simplifies to:

b7 (@it 2it) = (A7)

- 1—v
. max {(wit_ (1+g%+1)(1+gft+1)ki,t+1) +
ki,t+17117z',t+1

B+ gN )L+ gl ) 7 By (841 (@311, 20041)) ]

subject to eqEq. (A1), (A2), (A4), and T;, = T} for all £. Note that
1722 (@i,tQ s Zi,tg) =9 (d)i,tg y Ziyto ),

where the latter function was computed in the first step. The second step in solving problem (AS) is to find, working backwards
fromt =ty — 1 to t = t1, the sequence of functions f;g (Wit, it ) that solves eqEq. (A7) fort =1t1,...,to — 1.

The third and final step is then to iterate backwards on egEq. (A5), from ¢ =¢; —1 to ¢ = 0, to find the sequence of functions
04 (@4t, zi¢) that solves egEq. (A5) fort =0,...,t1 — 1.
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765 A byproduct of solving problem (A5) is a set of decision rules for each region i:

ki,t+1 = hft (@m Zit)
hz‘zt(kitazit)v

fort=0,...,t3 — 1; and a pair of time-invariant decision rules,

kitrr = h¥ (@i, 2i)
770 Zir = hi(kit, zit),
for ¢t > ts.

A6 The endogenous grid peintmethod
This section describes how to the-use the “endogenous gridpeint”" method to solve the dynamic program.
A6.1 The steady-state problem

775 Start with the steady-state problem (A6), now assuming that U (c) = log(c):

8" (@ir,zi0) = max [log (@i — (1+g™)(1+ g"iae1 ) + (A8)

ki t41

B+ g™ )Eq (0" (@i041,2i641)) ]

subject to egEq. (A1), (A2), (A4), and the borrowing constraint. In equation-Eq. (A4), the law of motion for wealth, note that

the optimal choice for Z; ;1 solves:

7.0 0 l-a .
Fy (ki,t—i-l (diy 1 (Ti041)) ,xi,t+1) = pi,

where F,, denotes the partial derivative of F' with respect to its second argument. Recalling that, in the steady state, T} ;41 =

T: + 2,141, this first-order condition implicitly defines a time-invariant decision rule for (scaled) energy use:

i’i,t—o—l = hz'z(ki,t+17zi,t+1)~ (A9)

780 Substitute this decision rule into egEq. (A4):

~ 7 " 11— ~ ~
Wigp1 = F (kioft+1 (dis1(Tie41)) “,hf(ki,tﬂ,zi,tﬂ)) —pihi (ki41,2i041) +
(1= 0)ki g1,

Gi(kijig1,2i04+1)- (A10)

The first-order condition to problem (AS) is then:

. -1 ,
785 5_1(1-1-9’4)(@it—(1+gN)(1+gA)ki,t+1) =E, {%(@i,whZi,t+1)Gf(ki,t+17Zi,t+1)7 (Al1)
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where ¢, denotes the partial derivative of 9* with respect to its first argument and G¥ denotes the partial derivative of G; with

respect to its first argument. The right-hand side of this first-order condition can be rewritten as:

E; |0 (Wz t415 24, t+1)Gf(]%i,t+1,Zi,t+1)] = (A12)

/ 08 (Gikitr1,2it11)s Zitr1) GR(Ritr1, Zir1) f(Zians pizie, 02) dzi g1 =

— 00

Hi(l%i,t+lazit)>

where f(z;u,0?) is the density function for a random variable z that has a normal distribution with mean 1 and variance o2,

So then the first-order condition can be written:
o -1 ~
11+ %) (@i — (14 ™)1+ gNhiann) = Hilhien, zi). (A13)

The first step in the endogenous grid peint-method is to use egEq. (A13) to solve for w;; on a grid of points for ]%i)tJrl and

zit, given a guess for H; on the grid. Let the grid points be {153 }i%, (where  denotes “next period") and {Z,};~,, respectively,

and guess on an initial set of values for H; on this grid, i.e., {{Hlo(l;;; sZ0) }yL1 }7E,. Then, for each (j,£) pair,

_ _ _ 1 .
Oje =B (14" (HP (K, 20)) + (1+ ™) (L +g™)E;
thereby determining, for each ¢, the optimal choice for savings on the implied grid for w (which varies with ¢):
k;-—h (@ JE,Zg) j=1,... ng. (A14)

In the second step, choose a fixed grid for w, i.e., {@;}7,, where the grid points for w in this case do not depend on z,. For

j=1
each /, interpolate (linearly) using the information in (A14) to determine the optimal choice for savings, k; ¢ at the grid points

(@j,Zg),j =1...,n,

K,

L =hi(@5,%), j=1,...,n. (A15)
The information in (A15) can then be used (using bilinear interpolation) to calculate optimal savings choices for any (w, z)
pair; call this interpolated function &’ = h¥(w, z).

In the third step, use the envelope condition to problem (A8) to update the guess on HY. In particular, the envelope condition

is:

, . -1
0, (Wit zit) = (@it—(l'i‘gN)(l"‘gA)ki,tH) (A16)
Update one period:

‘ . 1
O, (Qie41,2i041) = il — 1+9N)(1+9A)ki,t+2)

. . -1
keistszierr) — (144 g™MAE(Gy (ki rs1, 2in41)s Zi7t+1))

(¢

= ( kis1ziae) — (L4 gV ) (1+ g*) bk (Wzt+17zzt+1))_l
(Gith
A

i( i,t+1a2i,t+1)~
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To update the guess on HY, calculate

Hil(ki,tJrhzit) = [ |:Ai(]%i,t+17Zi,tJrl)Gi'c(]%i,tJrlaZi,t+1):|

oo
= / Ai(]%i,t+17Zi,t+1)G§(l%i,t+1azi,t+1) f(Zi,t+1;P¢ZityU?) dZi,H»l
—00

M
7Y wm Ak, 2 GE (ki 27,
m=1

where 2] = p;zit+ V20;a,, and (Wi s @), m = 1,..., M, are the Gauss-Hermite weights and abscissas for M -point Gaussian
quadrature. In particular, calculate H} (-, -) at the grid points {{(/_f; 1 Z0) }yLy Y7Ly, replace HY? with H} at these grid points, and

then repeat the three steps above until HY and H} are close.
A6.2 Euler equation errors in the steady-state problem

One way to check the accuracy of the candidate decision rule, fzf (w, z), computed in Seetton-Sect. A6.1, to calculate Euler
equation errors, expressed in consumption units. These should be exactly zero for any choice of the state variables. To obtain

the Euler equation, substitute the envelope condition (A16), updated one period, into the first-order condition (A11):
A -1 ~ -1 ~
g4 (@Jit — GANki,tJrl) =E; l:(d)i,ﬂrl - GAN]%,HQ) GF(kitr1,2i11)] - (A17)

where G4 =1+ g# and GAY = (14 g4)(1 + ¢"). Using the candidate decision rule and the function G;, the right-hand side

of this equation can be rewritten:

E

-

r 1
. AN} k(7
(Wi,tJrl -G ki,t+2) G; (ki,t+lazi,t+1):| =

E; (Gi(ifi,tﬂ, Zi,t+1) - GAN}AL? (@i,t+172¢,t+1))

—1 R
Gf(h?(@it»zit)7zi,t+1):| =

. R . -1
E, (Gi(hf(@it,zit),zi,t-u) - GANhf(Gi(hf(fDmZit)7Zi,t+1),Zi,t+1)) :

G?(ﬁf(witvzit)vzi,wrl)} =
D, (Wit Zit)

where the conditional expectation in the definition of ®;; can be approximated via Gaussian quadrature as before. Inverting

both sides of (A17) and rearranging, the Euler equation error, E; (@i, zit), is defined as follows:
Ei(@it, zie) = i — GAN/Afngl - tah ‘1);1(@%7 Zit)
= @ — GANEE (@i, 200) — BTIGA ;7 (Wit zit)- (A18)
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This error should be close to zero for any pair (W, 2;¢); it would be exactly zero if Bf were the exact decision rule. The error
relative to period-t consumption is:
Ei (@m Zit) M
Wit — GANE; 144
_ BLGAD; (@i, 2it)
@it — GANRF (@i, 250)

A6.3 The transition problem

Now consider the transition problem:

ki t+1

ﬁit(witazit) ma [log (wzt G7 t+1dlj_1i€i,t+1) +5Gﬁe+1 E; ({)i,t+1(@i,t+1azi,t+1))} s (A19)

where G = 1+gY, G4 =1+, GAN = (1+ g )(1+g4), and di ' = it (T 441), subject to eqEq. (A1), (A2), (A4), and

the borrowing constraint. As in Seetien-Sect. A6.1, the optimal choice for £; ;41 in the law of motion for wealth solves:

Fy (kioftﬂ (dy 1 (Tiu41)) ,Jﬁi,t+1> = pi,

Along the transition path, Tj ;1 = TMH + 2 t+1, so this first-order condition defines a decision rule for (scaled) energy use

that now depends on time:

Firr =Y yp (kist, Zipg1)- (A20)

Substitute this decision rule into (A4):

—Q

N S o i 1
Wigp1 = F (ki,t+1 (di1(Tie11))
(1—8)kiti1,
= Gi,t+1(ifi,t+1azi,t+1)o (A21)

7h§ft+1(ki,t+1,zi,t+1)) —pihi 1 (Kigr1, ziern) +

The first-order condition to problem (A19) is then:

-1

BTG d (Wzt G dif /Afi,tﬂ) =E, { 0341 (Wi t41, 24, t+1)G§,t+1(i€i,t+lvZi,tJrl)} ; (A22)

where 9y, denotes the partial derivative of ;411 with respect to its first argument, Gﬁ 141 denotes the partial derivative
of G141 with respect to its first argument, and Gft =1+ g;-‘}t 11~ The right-hand side of this first-order condition can be

rewritten as:

~ ~ k >
E, Ui‘ftﬂ(wi,tﬂ,Zi,t+1)Gi,t+1(ki,t+1,Zi,t+1)} = (A23)
oo

/ @({jt_:,.l(Gi,t—i-l(ki,t—i-lyzi,t—&-l);Zi,t+1)Gﬁt+1(ki,t+l7zi,t+1)f(zvi,t+1§pizvit70'i2)dzvl,t+1 =

—0o0
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Hi,tJrl (I%i,tJrh Zit)7

where f(z;u,0?) is the density function for a random variable z that has a normal distribution with mean 4 and variance o2.

So then the first-order condition can be written:
t+1 [ ~ t+17, -1 7
B~ Gz t+1dzt (Wzt Gz 41 d;; ki,t-‘rl) =it (ki,t+1a Zit)~ (A24)

Given knowledge of Hi’t+1(f€7;’t+1,zl't) on a grid points {(k],Z()}Z 1 j * |, the goal is to calculate Hlt(kmzi}t,l) and then
continue iterating backwards in a similar fashion to time 0.

To do so, use egEq. (A24) to solve for w;; at each grid point:
je =BG di (Hia (B 20) 7+ GEN L di 'R
thereby determining, for each ¢, the optimal choice for savings, at time ¢, on the implied grid for w (which varies with £):
K =hl(@j0,%), j=1,....n (A25)

Next, choose a fixed grid for w, i.e., {&;}7“,, where the grid points for w in this case do not depend on z,. For each ¢,

Jj=r
interpolate (linearly) using the information in (A25) to determine the optimal choice for savings, l_c; ¢» at the grid points (@, z¢),

j=1....ny

I_C/

L =hE(@,7), j=1,... . (A26)

The information in (A26) can then be used (using bilinear interpolation) to calculate optimal savings choices for any (w, 2)
pair; call this interpolated function k' = h¥ (w, z).

The envelope condition for the transition problem (A19) is:
R —1
Ui (Wit, zit) = (dm G; t+1dft+1ki,t+1)
. . -1
= (Git(kitazit) G; t+1dfj1h§t(@itazit))

. -1
= (Git(kitazit) G{qﬁldf+1hk(G (kitvzit)7zit))

By definition,

Hit(]%itazi,t—l) = [, 1[ (wzt,Zzt)Gft(i%tyzit)

A ~ -1 ~
E; 1 |:<Git(kitvzit) G; t+1hzt(Git<kitazit)aZit)) G];t(kitazit):| .

Use this equation, together with the already-calculated approximate decision /%, to calculate {{Hit (K}, ze) } - 1}7%, and then

iterate backwards following the same steps as laid out above.
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For t > ty, gi = g*, g =¢", and T;; =T as in the steady-state problem. Therefore, when ¢ = t, — 1, the first-order
condition (A24) is:
prGAdit ( — GV, t+1> = Hi(kigy1,2it),
where H; has already been computed when solving the steady-state problem. H; is, therefore, the starting point for the back-

wards iterations.
A6.4 Euler equation errors in the transition problem
By analogy to the Euler egEq. (A17) in the steady-state problem, the Euler equation along a transition is:
. —1
G i (= G A i) =
- t+2 7 s 7
E, {(wi,m GAN 2 A2 i) Gi,m(ki,m,zi,m)} . (A27)

The right-hand side of this equation can be rewritten:
r -1

N 12 7
E (wi,t+1 Gthr zt+1ki1t+2)

53

G?(/Afi,tﬂ,zi,tﬂ)} =

E

~

) 1 .
(Gi,t+1(kz’,t+1vzi,t+1) GAN L dit2 hE (@i, 2, t+1)) GY pir (Ml (@i, 2, Zi,t+1)] =

N N —1
E (Gi,t-‘rl(hi‘ct(‘:’itaZit)yzii-‘rl) Gm+2dfﬁ1hzt+1(Gz‘,t+1(kz‘,t+17Zi,t+1)7zi,t+1)> :

3

Gi'c,t+1(hft(d)itvzit)vzii-&-l)] =

N N N —1
E (Gi,t+1(hi'ct(djitaZit)’zi,tJrl) Gzt+2dfﬁﬁﬁtﬂ(GuH(ﬁﬁ(@JtaZit)7Zi,t+1),Zi,t+1)> :

G?,tJrl(hft(@it7zit)7zi,t+1):| =
i (Wit 2it),
where the conditional expectation in the definition of ®;; can be approximated via Gaussian quadrature. (Note that, in the last

period of the transition, when ¢t =t — 1, fbft 1= fzf, i.e., the decision rule from the steady-state problem.)

Inverting both sides of (A27) and rearranging, the Euler equation error, E;; (Wi, 2;¢), at time ¢ is:

« _ - 417 ¢
Ei(Qit,2ie) = wir — Glt+1d‘+ kity1—08~ Glt+1d+ o (@it zit)

= Qi — G”Hdt“hlt(wmzn) B8~ G”Hdt“@ Y (@i, 2it). (A28)

This error should be close to zero for any pair (¢4, z;+). The error relative to period-¢ consumption is:
N Eit (@i Z't)
Eiy (@i, zie) = - lANZ —
wir — G dzt Y 41
—1/A
B~ GZ t+1d q)‘ (Wit, zit)

~ AN t+1
wit — G i1 Qi hk (wmzzt)

=1
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A6.5 Euler equation errors: numerical values

To check the accuracy of the computed decision rules, both along the transition and in the steady state, we calculated Euler
equations errors as described in Sect. A6.2 and A6.4. These errors are very close to zero. In particular, the average error relative
to consumption (averaging across both regions and the values of the state variables) is less than 0.0024% (in absolute value)
in every time period. In addition, the average of the absolute values of the errors is less than 0.021% in every time period.
Finally, apart from a very small number of outliers (fewer than 10), the largest error—looking across all regions, time periods,

and states— is smaller than 0.6% in absolute value.
A7 Simulating forwards using NorESM?2

This section describes how to simulate the model using NorESM2 up to, and including, year g < t1.
Each year ¢ is divided into J subperiods indexed by j. Let T};; be temperature in region % in subperiod j of year ¢ and define

average temperature in region ¢ in year ¢ as follows:

J
Ty=J"" ZTitj~
j=1

Define a;; = A;;D(T';;). The initial value of a;o in each region is chosen to match regional data in real-world year R. The

ratio of successive values of a;; is given by:

@it _ Ay D(Ty)

Qg1 Ait—1 D(Ti 1)
(1 +gf2) i—1(Tr),

so that the sequence {a;; }, for t > 1, obeys the recursion
ai = (1+g4) di_ (Tit) ai—1, (A29)

where the sequence {7T';;} depends on the sequence {.S;} taken as given when solving each region’s dynamic programming
problem.

At the beginning of year 0, ko and 2 are chosen in each region to match real-world data in year R. The value of cumulative
emissions in year 0, Sy, is also chosen to match real-world data in year R.

The simulation in any given year ¢ proceeds in the following steps, starting with ¢ = 0:

1. If t > 1, calculate a;; according to (A29). (Recall that a;q is set to match regional data at time 0, i.e., in real-world year

R)

2. If t =0, calculate regional emissions according to: e;o = ¢;0N;0ai0Z40, ¢ =1,...,M.If t > 1, use expected energy use,

E;_1[#;], as calculated in the simulation for year ¢ — 1, to calculate (expected) emissions in each region i:
eit = Qi Nizait By 1 [ 23] + ef,t,l —€it—1,
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where e;_; is actual emissions in region ¢ in period ¢ — 1, as defined in step 7 below. Expected emissions are used to
drive NorESM2 in step 3. The term €7, ; — ;1 corrects for the deviation between actual and expected emissions in

any given period by adding this correction to expected emissions in the subsequent period.

. Use {ei}M, in NorESM2 to generate time paths for temperature in each region in each subperiod of year ¢, i.e.,

{{Tt;}7/_1}}L,. and use these in turn to calculate average temperature in region i in year ¢, i.e.,
J
-1 .
Ty =J 'Y Tyj, i=1,...,M.
Jj=1

For each region, calculate the deviation of its temperature in year ¢ from its expected temperature in year ¢, i.e., z;; =
Tyt — Tt

. Calculate actual scaled energy use in each region: &7, = hft(l%it, zit), 4 =1,..., M. Note that the function izf; as defined

in (A20), has a closed-form expression if the production function, F', has a particular functional form. (Recall too that

the function h% depends on T;.)

. Insert &7, into (A4) to calculate (scaled) wealth in each region ¢ in year ¢:

i = F (R (d3(T)) ™ 25) = pidfy + (L= Ohie, i =100, M,

(Recall too that d:(T;;) depends on T';;.)

. Use the year-t decision rules to calculate regional savings in year t: I%i’t+1 = hft (@it,2zit), 1 =1,..., M. The function hft

is known only on a two-dimensional grid of points, so use bilinear interpolation to calculate it off the grid;-as-explained

~

. Calculate actual emissions in each region: e}, = ¢4 Njaudi, ¢ =1,..., M.

. Calculate the expected value of energy use in each region in period ¢ + 1:

E, [C%i,tJrl] =L, [hitJrl(]%i,tJrlaZi,tJrl)] .

Approximate the conditional expectation in this expression by replacing z; ;11 with its conditional expectation p;z;;:

Et[Zi041] = b 111 (Kiet1, pizie)-

. The simulation in year ¢ is now complete: return to step 1 to conduct the simulation for year ¢ + 1.

Having completed the entire simulation, calculate actual cumulative global emissions at the beginning of each year according

to: S7,; = S7 + Ef, where E7 is actual aggregate emissions in period ¢:

M

z z

Ef = E Cit-
i=1
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(When ¢ =0, set S7 = Sp.) Then calculate a new sequence for expected regional temperature using the sequence {57 }: T; =
T'; +7i157 + iz (S7)? for ¢ > 0. Finally, for each ¢, calculate the differences S7 — S; and {T';, — Ty}, and confirm that

these differences are small.

A8 Spatial correlation and aggregate fluctuations: a stylized model

This section uses a stylized model that captures some of the key features of NorESM2-DIAM to show that spatial correlation
in regional temperatures can amplify aggregate fluctuations under certain conditions that our calibrated model satisfies.
Consider a model in which regional temperatures are drawn from a jointly normal distribution at any point in time. Specificall

assume that

T = (7_‘1,...71—’]\/[)—r NN(T17Z)7

where 7™ maximizes the

optimal temperature, 7", is normally distributed with a region-specific mean, 1;, and a common variance, o, across regions;
and the correlation between temperature deviations in any pair of regions is equal to p.

Assume that the damage function D(T}) = exp(—£(Z; = T*)?). so that D is symmetric around the optimal temperature (in
NorESM2-DIAM, by contrast, the damage function is not quite symmetric).

Let each region be assigned a weight w;, with

M
=
and let S be the weighted average of the logarithm of regional productivity:

M M

S = Zwi log D(T;) = —)\Zwin.
i=1 i=1

The variance of 5 is then a measure of the volatility of aggregate productivity, one of the key drivers of volatility in global

GDP, The guestion is how this variance varies as the correlation between regional temperatures increases. The variance is given

by:

where

M M M
_ _ 2 9 _ 2
Mlzg wi,ui,MQ:E ’LUZ-,LLZ-,Wgzg w; .
i=1 i=1 i=1

This expression is an increasing function of p over the entire range [0, 1] if and only if M7 — M, > 0, or equivalently, if and
only if R=M7P/Mp > 1.

This condition can be checked using different weighting schemes for the 16,826 distinct cells in NorESM2-DIAM, with
the y;s corresponding to the deviation of regional pre-industrial temperatures from the optimal temperature. Most relevant
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for global GDP is weights corresponding to regional GDP in 1990, in which case R = 184.4. Alternatively, for weights
corresponding to regional population in 1990, R = 722.5. In both cases, therefore, the required condition is easily satisfied.
Although this simple model is quite stylized in that it does not correspond exactly to the behavior of NorESM2-DIAM

nonetheless these calculations do suggest that positive spatial correlation between regional temperatures amplifies ageregate
fluctuations in NorESM2-DIAM. They are also consistent with the finding reported in Sect. 5.4 that the standalone model (in

which spatial correlation is absent) produces much smaller aggregate fluctuations than the fully-coupled model.

Author contributions. JB led the coupling process, performed the simulation involving NorESM2 (including the coupled simulations), pro-
duced many of the figures, and led the writing of the paper with help from the co-authors. AAS contributed to the coupling and helped
to write the paper, particularly sections on economics. HC contributed to the coupling, performed the standalone DIAM simulations, and
produced the map figures. TS conceived the idea of coupling the two models (together with AAS), contributed to the coupling, and helped to

write the paper.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. This research was funded by the Research Council of Norway through research grant number 281071 (“Climate Change
Modeling and Prediction of Economic Impact”) and grant number 309377 ("Integrating Macroeconomics, Climate Physics and Game Theory
for Innovative Education and Research"). The NorESM2 simulations were performed on resources provided by Sigma2 - the National
Infrastructure for High-Performance Computing and Data Storage in Norway through computing and storage grants number nn9600k and
ns9600k, respectively. We would like to acknowledge the Planetary Solutions Project at Yale University and the Cowles Foundation for

Research in Economics for financial support.

45



970

975

980

985

990

995

1000

References

Barrage, L. and Nordhaus, W.: Policies, projections, and the social cost of carbon: Results from the DICE-2023 model, Proceedings of
the National Academy of Sciences, 121, 2312030 121, https://doi.org/10.1073/pnas.2312030121, publisher: Proceedings of the National
Academy of Sciences, 2024.

Bilal, A. and Rossi-Hansberg, E.: Anticipating Climate Change Across the United States, https://doi.org/10.3386/w31323, 2023.

Bjordal, J.: NorESM2 restart files to be used for NorESM2-DIAM, https://doi.org/10.5281/zenodo.17856602, 2025.

Bjordal, J., Storelvmo, T., and Anthony A. Smith, J.: Quantifying uncertainty about global and regional economic impacts of climate change,
Environmental Research Letters, https://doi.org/10.1088/1748-9326/ac8ab1, 2022.

Bjordal, J., Cornec, H., and Smith, Jr., A. A.: NorESM2-DIAM, https://doi.org/10.5281/zenodo.17986166, 2025.

Brock, W., Engstrom, G., and Xepapadeas, A.: Spatial climate-economic models in the design of optimal climate policies across locations,
European Economic Review, 69, 78-103, https://doi.org/10.1016/j.euroecorev.2013.02.008, 2014.

Burke, M., Hsiang, S. M., and Miguel, E.: Global non-linear effect of temperature on economic production, Nature, 527, 235,
https://doi.org/10.1038/nature 15725, 2015.

Callahan, C. W. and Mankin, J. S.: Globally unequal effect of extreme heat on economic growth, Science Advances, 8, eadd3726,
https://doi.org/10.1126/sciadv.add3726, 2022.

Calvin, K. and Bond-Lamberty, B.: Integrated human-earth system modeling—state of the science and future directions, Environmental
Research Letters, 13, 063 006, https://doi.org/10.1088/1748-9326/aac642, 2018.

Canadell, J. G., Scheel Monteiro, P., Costa, M. H., Cotrim da Cunha, L., Cox, P. M., Eliseev, A. V., Henson, S., Ishii, M., Jaccard, S., Koven,
C., Lohila, A., Patra, P. K., Piao, S., Rogelj, J., Syampungani, S., Zaehle, S., and Zickfeld, K.: Global carbon and other biogeochemical
cycles and feedbacks, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan,
C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. 1., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K.,
Waterfield, T., Yelekei, , Yu, R., and Zhou, B., Cambridge University Press, 2021.

Caselli, F. and Feyrer, J.: The Marginal Product of Capital*, The Quarterly Journal of Economics, 122, 535-568,
https://doi.org/10.1162/qjec.122.2.535, 2007.

Collins, W. D., Craig, A. P, Truesdale, J. E., Di Vittorio, A. V., Jones, A. D., Bond-Lamberty, B., Calvin, K. V., Edmonds, J. A., Kim,
S. H., Thomson, A. M., and others: The integrated Earth system model version 1: formulation and functionality., Geoscientific Model
Development, 8, https://doi.org/10.5194/gmd-8-2203-2015, 2015.

Cruz, J.-L. and Rossi-Hansberg, E.: The Economic Geography of Global Warming, The Review of Economic Studies, 91, 899-939,
https://doi.org/10.1093/restud/rdad042, 2024.

Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R.,
Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M., Lenaerts, J. T. M., Lindsay, K., Lipscomb,
W. H., Mills, M. J., Neale, R., Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., Kampenhout, L., Vertenstein,
M., Bertini, A., Dennis, J., Deser, C., Fischer, C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E., Long, M. C.,
Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch, P. J., and Strand, W. G.: The Community Earth System Model Version
2 (CESM2), Journal of Advances in Modeling Earth Systems, 12, https://doi.org/10.1029/2019ms001916, bibtex*[publisher=American
Geophysical Union (AGU)], 2020.

46


https://doi.org/10.1073/pnas.2312030121
https://doi.org/10.3386/w31323
https://doi.org/10.5281/zenodo.17856602
https://doi.org/10.1088/1748-9326/ac8ab1
https://doi.org/10.5281/zenodo.17986166
https://doi.org/10.1016/j.euroecorev.2013.02.008
https://doi.org/10.1038/nature15725
https://doi.org/10.1126/sciadv.add3726
https://doi.org/10.1088/1748-9326/aac642
https://doi.org/10.1162/qjec.122.2.535
https://doi.org/10.5194/gmd-8-2203-2015
https://doi.org/10.1093/restud/rdad042
https://doi.org/10.1029/2019ms001916

1005

1010

1015

1020

1025

1030

1035

1040

Dell, M., Jones, B. F., and Olken, B. A.: Temperature Shocks and Economic Growth: Evidence from the Last Half Century, American
Economic Journal: Macroeconomics, 4, 6695, https://doi.org/10.1257/mac.4.3.66, 2012.

Dell, M., Jones, B. F., and Olken, B. A.: What Do We Learn from the Weather? The New Climate-Economy Literature, Journal of Economic
Literature, 52, 740-798, https://doi.org/10.1257/jel.52.3.740, 2014.

Desmet, K. and Rossi-Hansberg, E.: On the spatial economic impact of global warming, Journal of Urban Economics, 88, 16-37,
https://doi.org/10.1016/j.jue.2015.04.004, 2015.

Di Vittorio, A. V., Sinha, E., Hao, D., Singh, B., Calvin, K. V., Shippert, T., Patel, P., and Bond-Lamberty, B.: E3SM-GCAM:
A Synchronously Coupled Human Component in the E3SM Earth System Model Enables Novel Human-Earth Feedback Re-
search, Journal of Advances in Modeling Earth Systems, 17, ¢2024MS004 806, https://doi.org/10.1029/2024MS004806, _eprint:
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2024MS004806, 2025.

Dietz, S., van der Ploeg, F., Rezai, A., and Venmans, F.: Are Economists Getting Climate Dynamics Right and Does It Matter?, Journal of
the Association of Environmental and Resource Economists, 8, 895-921, https://doi.org/10.1086/713977, publisher: The University of
Chicago Press, 2021.

Eyring, V., Bony, S., Meehl, G. A., Senior, C., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercompar-
ison Project Phase 6 (CMIP6) experimental design and organisation, Geoscientific Model Development Discussions, 8, 10539-10 583,
https://doi.org/10.5194/gmdd-8-10539-2015, bibtex*[publisher=Copernicus GmbH], 2015.

Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J.-L., Frame, D., Lunt, D., Mauritsen, T., Palmer, M., Watanabe, M., Wild, M.,
and Zhang, H.: The Earth’s energy budget, climate feedbacks, and climate sensitivity, in: Climate Change 2021: The Physical Science
Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. 1., Huang,
M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekgi, O., Yu, R., and Zhou, B., Cambridge University
Press, https://www.ipcc.ch/report/ar6/wgl/downloads/report/IPCC_AR6_WGI_Citation.pdf, publisher: Open Access Victoria University
of Wellington| Te Herenga Waka, 2021.

Frame, D. J., Rosier, S. M., Noy, L., Harrington, L. J., Carey-Smith, T., Sparrow, S. N., Stone, D. A., and Dean, S. M.: Climate change
attribution and the economic costs of extreme weather events: a study on damages from extreme rainfall and drought, Climatic Change,
162, 781-797, https://doi.org/10.1007/s10584-020-02729-y, 2020.

Fried, S.: Seawalls and Stilts: A Quantitative Macro Study of Climate Adaptation, The Review of Economic Studies, 89, 3303-3344,
https://doi.org/10.1093/restud/rdab099, 2022.

Goodess, C. M., Hanson, C., Hulme, M., and Osborn, T. J.: Representing Climate and Extreme Weather Events in Inte-
grated Assessment Models: A Review of Existing Methods and Options for Development, Integrated Assessment, 4, 145-171,
https://doi.org/10.1076/iaij.4.3.145.23772, bibtex*[publisher=Swets & Zeitlinger Publishers], 2003.

Harremoés, P. and Turner, R.: Methods for integrated assessment, Regional Environmental Change, 2, 57-65,
https://doi.org/10.1007/s101130100027, bibtex*[publisher=Springer Science and Business Media LLC], 2001.

Howard, P. H. and Sterner, T.: Few and Not So Far Between: A Meta-analysis of Climate Damage Estimates, Environmental and Resource
Economics, 68, 197-225, https://doi.org/10.1007/s10640-017-0166-z, 2017.

Hsiang, S., Kopp, R., Jina, A., Rising, J., Delgado, M., Mohan, S., Rasmussen, D. J., Muir-Wood, R., Wilson, P., Oppenheimer, M., and others:
Estimating economic damage from climate change in the United States, Science, 356, 1362-1369, https://doi.org/10.1126/science.aal4369,
2017.

47


https://doi.org/10.1257/mac.4.3.66
https://doi.org/10.1257/jel.52.3.740
https://doi.org/10.1016/j.jue.2015.04.004
https://doi.org/10.1029/2024MS004806
https://doi.org/10.1086/713977
https://doi.org/10.5194/gmdd-8-10539-2015
https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Citation.pdf
https://doi.org/10.1007/s10584-020-02729-y
https://doi.org/10.1093/restud/rdab099
https://doi.org/10.1076/iaij.4.3.145.23772
https://doi.org/10.1007/s101130100027
https://doi.org/10.1007/s10640-017-0166-z
https://doi.org/10.1126/science.aal4369

1045

1050

1055

1060

1065

1070

1075

1080

Keen, S., Lenton, T. M., Godin, A., Yilmaz, D., Grasselli, M., and Garrett, T. J.: Economists’ erroneous estimates of damages from climate
change, arXiv:2108.07847 [econ, g-fin], http://arxiv.org/abs/2108.07847, arXiv: 2108.07847, 2021.

Kikstra, J., Waidelich, P., Rising, J., Yumashev, D., Hope, C., and Brierley, C.: The social cost of carbon dioxide under climate-economy
feedbacks and temperature variability, 2021.

Kirkevag, A., Grini, A., Olivié, D., Seland, , Alterskjer, K., Hummel, M., Karset, I. H. H., Lewinschal, A., Liu, X., Makkonen, R., Bethke,
L., Griesfeller, J., Schulz, M., and Iversen, T.: A production-tagged aerosol module for Earth system models, OsloAero5.3 — extensions
and updates for CAMS5.3-Oslo, Geoscientific Model Development, 11, 3945-3982, https://doi.org/10.5194/gmd-11-3945-2018, publisher:
Copernicus GmbH, 2018.

Kotlikoff, L., Kubler, F., Polbin, A., and Scheidegger, S.: Can today’s and tomorrow’s world uniformly gain from carbon taxation?, European
Economic Review, 168, 104 819, https://doi.org/10.1016/j.euroecorev.2024.104819, 2024.

Kotz, M., Wenz, L., Stechemesser, A., Kalkuhl, M., and Levermann, A.: Day-to-day temperature variability reduces eco-
nomic growth, Nature Climate Change, 11, 319-325, https://doi.org/10.1038/s41558-020-00985-5, bandiera_abtest: a Cg_type:
Nature Research Journals Number: 4 Primary_atype: Research Publisher: Nature Publishing Group Subject_term: Climate
change;Climate-change impacts;Economics;Environmental economics;Environmental impact Subject_term_id: climate-change;climate-
change-impacts;economics;environmental-economics;environmental-impact, 2021.

Kotz, M., Levermann, A., and Wenz, L.. The economic commitment of climate change, Nature, 628, 551-557,
https://doi.org/10.1038/s41586-024-07219-0, publisher: Nature Publishing Group, 2024.

Kriegler, E., Edmonds, J., Hallegatte, S., Ebi, K. L., Kram, T., Riahi, K., Winkler, H., and van Vuuren, D. P.: A new scenario framework for cli-
mate change research: the concept of shared climate policy assumptions, Climatic Change, 122, 401-414, https://doi.org/10.1007/s10584-
013-0971-5, bibtex*[publisher=Springer Science and Business Media LLC], 2014.

Krusell, P. and Smith, Jr., A. A.: Climate change around the world, Working Paper 30338, National Bureau of Economic Research, https:
/Iwww.nber.org/papers/w30338, 2022.

Kubler, E.: International Welfare Gains from Sharing Climate-Risk, https://doi.org/10.2139/ssrn.4561236, 2023.

Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., Collier, N., Ghimire, B., van Kampenhout, L.,
Kennedy, D., Kluzek, E., Lawrence, P. J., Li, F,, Li, H., Lombardozzi, D., Riley, W. J., Sacks, W. J., Shi, M., Vertenstein, M., Wieder,
W. R, Xu, C., Ali, A. A., Badger, A. M., Bisht, G., van den Broeke, M., Brunke, M. A., Burns, S. P, Buzan, J., Clark, M., Craig, A.,
Dahlin, K., Drewniak, B., Fisher, J. B., Flanner, M., Fox, A. M., Gentine, P., Hoffman, F., Keppel-Aleks, G., Knox, R., Kumar, S., Lenaerts,
J., Leung, L. R., Lipscomb, W. H., Lu, Y., Pandey, A., Pelletier, J. D., Perket, J., Randerson, J. T., Ricciuto, D. M., Sanderson, B. M.,
Slater, A., Subin, Z. M., Tang, J., Thomas, R. Q., Val Martin, M., and Zeng, X.: The Community Land Model Version 5: Description
of New Features, Benchmarking, and Impact of Forcing Uncertainty, Journal of Advances in Modeling Earth Systems, 11, 4245-4287,
https://doi.org/10.1029/2018MS001583, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2018MS001583, 2019.

Leduc, M., Matthews, H. D., and de Elia, R.: Regional estimates of the transient climate response to cumulative CO2 emissions, Nature
Climate Change, 6, 474—478, https://doi.org/10.1038/nclimate2913, publisher: Nature Publishing Group, 2016.

Matthews, H. D., Gillett, N. P, Stott, P. A, and Zickfeld, K.: The proportionality of global warming to cumulative carbon emissions, Nature,
459, 829-832, https://doi.org/10.1038/nature08047, number: 7248 Publisher: Nature Publishing Group, 2009.

Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A., Kofinas, G., Mackintosh, A., Melbourne-Thomas, J.,
Muelbert, M., Ottersen, G., Pritchard, H., and Schuur, E.: Polar regions, in: [IPCC special report on the ocean and cryosphere in a changing
climate, edited by Portner, H.-O., Roberts, D., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegria, A.,

48


http://arxiv.org/abs/2108.07847
https://doi.org/10.5194/gmd-11-3945-2018
https://doi.org/10.1016/j.euroecorev.2024.104819
https://doi.org/10.1038/s41558-020-00985-5
https://doi.org/10.1038/s41586-024-07219-0
https://doi.org/10.1007/s10584-013-0971-5
https://doi.org/10.1007/s10584-013-0971-5
https://doi.org/10.1007/s10584-013-0971-5
https://www.nber.org/papers/w30338
https://www.nber.org/papers/w30338
https://www.nber.org/papers/w30338
https://doi.org/10.2139/ssrn.4561236
https://doi.org/10.1029/2018MS001583
https://doi.org/10.1038/nclimate2913
https://doi.org/10.1038/nature08047

1085

1090

1095

1100

1105

1110

1115

Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N., pp. 203-320, Cambridge University Press, Cambridge, UK and New York,
NY, USA, https://doi.org/10.1017/9781009157964.005, 2019.

Moore, F. C., Rising, J., Lollo, N., Springer, C., Vasquez, V., Dolginow, A., Hope, C., and Anthoff, D.: Mimi-PAGE, an open-source im-
plementation of the PAGEQ9 integrated assessment model, Scientific Data, 5, 180 187, https://doi.org/10.1038/sdata.2018.187, publisher:
Nature Publishing Group, 2018.

Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van Vuuren, D. P, Carter, T. R., Emori, S., Kainuma,
M., Kram, T., and others: The next generation of scenarios for climate change research and assessment, Nature, 463, 747,
https://doi.org/10.1038/nature08823, 2010.

Nordhaus, W. D.: A Sketch of the Economics of the Greenhouse Effect, The American Economic Review, 81, 146—150, https://www.jstor.
org/stable/2006843, publisher: American Economic Association, 1991.

Nordhaus, W. D.: An optimal transition path for controlling greenhouse gases, Science, 258, 1315-1319,
https://doi.org/10.1126/science.258.5086.1315, 1992.

Nordhaus, W. D.: Economic aspects of global warming in a post-Copenhagen environment, Proceedings of the National Academy of Sci-
ences, 107, 11721-11 726, https://doi.org/10.1073/pnas.1005985107, 2010.

Nordhaus, W. D., Azam, Q., Corderi, D., Hood, K., Victor, N. M., Mohammed, M., Miltner, A., and Weiss, J.: The G-Econ database on
gridded output: methods and data, Yale University, New Haven, 6, 2006.

NorESM Climate Modeling Consortium,: NorESM2 inputdata used by NorESM2-DIAM, https://doi.org/10.5281/zenodo.17865023, 2025.

O’Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P., Birkmann, J.,
Kok, K., and others: The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century, Global
Environmental Change, 42, 169180, https://doi.org/10.1016/j.gloenvcha.2015.01.004, 2017.

Rennert, K., Errickson, F., Prest, B. C., Rennels, L., Newell, R. G., Pizer, W., Kingdon, C., Wingenroth, J., Cooke, R., Parthum, B.,
Smith, D., Cromar, K., Diaz, D., Moore, F. C., Miiller, U. K., Plevin, R. J., Raftery, A. E., gevéfkové, H., Sheets, H., Stock, J. H.,
Tan, T., Watson, M., Wong, T. E., and Anthoff, D.: Comprehensive Evidence Implies a Higher Social Cost of CO2, Nature, pp. 1-3,
https://doi.org/10.1038/s41586-022-05224-9, publisher: Nature Publishing Group, 2022.

Riahi, K., Van Vuuren, D. P., Kriegler, E., Edmonds, J., O’neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., and
others: The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview, Global
Environmental Change, 42, 153-168, https://doi.org/10.1016/j.gloenvcha.2016.05.009, 2017.

Ritchie, H. and Rosado, P.: Energy mix, Our World in Data, 2020.

Rudik, I., Lyn, G., Tan, W, and Ortiz-Bobea, A.: The Economic Effects of Climate Change in Dynamic Spatial Equilibrium,
https://doi.org/10.31235/0sf.io/usghb, 2021.

Schneider, S. H.: Integrated assessment modeling of global climate change: Transparent rational tool for policy making or opaque screen
hiding value-laden assumptions?, Environmental Modeling and Assessment, 2, 229-249, https://doi.org/10.1023/a:1019090117643, bib-
tex*[publisher=Springer Science and Business Media LLC], 1997.

Schwinger, J., Goris, N., Tjiputra, J. E, Kriest, I., Bentsen, M., Bethke, I., Ilicak, M., Assmann, K. M., and Heinze, C.: Evaluation of
NorESM-OC (versions 1 and 1.2), the ocean carbon-cycle stand-alone configuration of the Norwegian Earth System Model (NorESM1),
Geoscientific Model Development, 9, 25892622, https://doi.org/10.5194/gmd-9-2589-2016, publisher: Copernicus GmbH, 2016.

Seland, , Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y.-C., Kirkevag, A.,
Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, 1., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren,

49


https://doi.org/10.1017/9781009157964.005
https://doi.org/10.1038/sdata.2018.187
https://doi.org/10.1038/nature08823
https://www.jstor.org/stable/2006843
https://www.jstor.org/stable/2006843
https://www.jstor.org/stable/2006843
https://doi.org/10.1126/science.258.5086.1315
https://doi.org/10.1073/pnas.1005985107
https://doi.org/10.5281/zenodo.17865023
https://doi.org/10.1016/j.gloenvcha.2015.01.004
https://doi.org/10.1038/s41586-022-05224-9
https://doi.org/10.1016/j.gloenvcha.2016.05.009
https://doi.org/10.31235/osf.io/usghb
https://doi.org/10.1023/a:1019090117643
https://doi.org/10.5194/gmd-9-2589-2016

1120

1125

1130

1135

1140

1145

1150

0., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: Overview
of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations,
Geoscientific Model Development, 13, 6165-6200, https://doi.org/10.5194/gmd-13-6165-2020, publisher: Copernicus GmbH, 2020.

Seland, , Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y., Kirkevag, A., Schwinger,
J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Gao, S., Griesfeller, J., Grini, A., Guo, C., and others: NorESM2 source code as used for
CMIP6 simulations (includes additional experimental setups, extended model documentation, corrections in atmosphere diagnostics,
additional capabilities in BLOM/iHAMOCC, and technical modifications), https://doi.org/10.5281/zenodo.17865358, 2025.

Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design, Bulletin of the American Meteorological
Society, 93, 485-498, https://doi.org/10.1175/BAMS-D-11-00094.1, bibtex*[publisher=American Meteorological Society], 2012.

The NorESM developers group,: Welcome to the NorESM2 User’s Guide! — NorESM documentation, https://noresm-docs.readthedocs.io/
en/latest/, 2020.

Thornton, P. E., Calvin, K., Jones, A. D., Di Vittorio, A. V., Bond-Lamberty, B., Chini, L., Shi, X., Mao, J., Collins, W. D., Edmonds, J.,
Thomson, A., Truesdale, J., Craig, A., Branstetter, M. L., and Hurtt, G.: Biospheric feedback effects in a synchronously coupled model
of human and Earth systems, Nature Climate Change, 7, 496-500, https://doi.org/10.1038/nclimate3310, publisher: Nature Publishing
Group, 2017.

Tjiputra, J. F,, Schwinger, J., Bentsen, M., Morée, A. L., Gao, S., Bethke, I., Heinze, C., Goris, N., Gupta, A., He, Y.-C., Olivié, D., Seland, ,
and Schulz, M.: Ocean biogeochemistry in the Norwegian Earth System Model version 2 (NorESM2), Geoscientific Model Development,
13, 2393-2431, https://doi.org/10.5194/gmd-13-2393-2020, publisher: Copernicus GmbH, 2020.

Toniazzo, T., Bentsen, M., Craig, C., Eaton, B. E., Edwards, J., Goldhaber, S., Jablonowski, C., and Lauritzen, P. H.: Enforcing conserva-
tion of axial angular momentum in the atmospheric general circulation model CAM6, Geoscientific Model Development, 13, 685-705,
https://doi.org/10.5194/gmd-13-685-2020, publisher: Copernicus GmbH, 2020.

United Nations, Department of Economic and Social Affairs, P. D.: World population prospects 2024, online edition, https://population.un.
org/wpp/, 2024.

van Vuuren, D. P., Lowe, J., Stehfest, E., Gohar, L., Hof, A. F., Hope, C., Warren, R., Meinshausen, M., and Plattner, G.-K.: How well
do integrated assessment models simulate climate change?, Climatic Change, 104, 255-285, https://doi.org/10.1007/s10584-009-9764-2,
2011.

van Vuuren, D. P, Bayer, L. B., Chuwah, C., Ganzeveld, L., Hazeleger, W., van den Hurk, B., Van Noije, T., O’Neill, B., and Strengers, B. J.:
A comprehensive view on climate change: coupling of earth system and integrated assessment models, Environmental Research Letters,
7,024 012, https://doi.org/10.1088/1748-9326/7/2/024012, 2012.

van Vuuren, D. P., Kriegler, E., O’Neill, B. C., Ebi, K. L., Riahi, K., Carter, T. R., Edmonds, J., Hallegatte, S., Kram, T., Mathur, R.,
and others: A new scenario framework for climate change research: scenario matrix architecture, Climatic Change, 122, 373-386,
https://doi.org/10.1007/s10584-013-0906-1, bibtex *[publisher=Springer], 2014.

Waidelich, P., Batibeniz, F., Rising, J., Kikstra, J. S., and Seneviratne, S. I.: Climate damage projections beyond annual temperature, Nature
Climate Change, pp. 1-8, https://doi.org/10.1038/s41558-024-01990-8, publisher: Nature Publishing Group, 2024.

Weyant, J.: Some Contributions of Integrated Assessment Models of Global Climate Change, Review of Environmental Economics and

Policy, 11, 115-137, https://doi.org/10.1093/reep/rew018, publisher: The University of Chicago Press, 2017.

50


https://doi.org/10.5194/gmd-13-6165-2020
https://doi.org/10.5281/zenodo.17865358
https://doi.org/10.1175/BAMS-D-11-00094.1
https://noresm-docs.readthedocs.io/en/latest/
https://noresm-docs.readthedocs.io/en/latest/
https://noresm-docs.readthedocs.io/en/latest/
https://doi.org/10.1038/nclimate3310
https://doi.org/10.5194/gmd-13-2393-2020
https://doi.org/10.5194/gmd-13-685-2020
https://population.un.org/wpp/
https://population.un.org/wpp/
https://population.un.org/wpp/
https://doi.org/10.1007/s10584-009-9764-2
https://doi.org/10.1088/1748-9326/7/2/024012
https://doi.org/10.1007/s10584-013-0906-1
https://doi.org/10.1038/s41558-024-01990-8
https://doi.org/10.1093/reep/rew018

