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Abstract. Correlating late coda waves from large earthquakes produces stable waveforms that approximate inter-station core

phases. However, the properties of these coda waves often violate the strict assumptions underlying classical Green’s func-

tion retrieval, raising doubts about the physical correspondence of the reconstructed arrivals to true inter-station phases and

limiting their utility in seismic imaging. In this study, we present a perturbation analysis of core-phase interferometry and

show that accurate travel-time information can be recovered under locally uniform wave incidence along the inter-station path.5

We introduce a dimensionless parameter — defined as the ratio of the seismic wave period to the inter-station travel time

— which establishes a critical angular threshold. Our perturbation analysis reveals that the travel-time reconstruction accu-

racy scales with the cube of this threshold, allowing high-precision recovery of core phases, particularly those associated with

small threshold values. Numerical simulations validate the theoretical predictions. By applying the proposed framework to

real coda correlation data, we demonstrate that core phases can be reliably reconstructed using a sufficiently large number of10

global earthquakes — even without the traditionally assumed uniform source distribution. These results establish a rigorous

theoretical foundation for extracting high-precision core-phase travel times from coda correlations, enhancing the reliability of

seismological imaging of Earth’s deep interior.

1 Introduction

Over the past two decades, the use of ambient ground motions for imaging subsurface structures has advanced significantly.15

This progress is largely driven by the discovery that cross-correlating records between two stations yields waveforms with

dispersion characteristics resembling those of surface waves propagating between them (Campillo & Paul, 2003; Snieder,

2004). Commonly used ambient seismic sources include microseisms (1–50 period) and the Earth’s hum(50–300 s), both

generated by interactions between ocean waves and the solid Earth (Hasselmann, 1963; Ardhuin et al., 2015), as well as high-

frequency anthropogenic noise (periods < 1 s). Dispersion measurements derived from ambient noise correlations have been20

extensively employed to probe Earth’s interior structure (Shapiro et al., 2005; Sabra et al., 2005; Yao et al., 2006; Yang et al.,

2007; Nishida et al., 2009; Wang et al., 2019).
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Beyond ambient noise, late earthquake coda waves contain substantial body wave energy that has traversed deep Earth dis-

continuities. Consequently, coda correlations are enriched with core-sensitive phases that generally preserve accurate slowness

information (Lin et al., 2013; Nishida, 2013; Boué et al., 2014; Wu et al., 2018). Theoretically, the cross-correlation function25

(CCF) of noise records converges to the seismic Green’s function under ideal conditions — such as a uniform distribution of

noise sources enclosing the stations (Wapenaar, 2004) or equipartitioned wavefield energy (Lobkis & Weaver, 2001). However,

coda waves often violate these ideal conditions, resulting in anomalously high amplitudes in reconstructed phases compared to

earthquake data (Lin et al., 2013; Boué et al., 2014), as well as persistent features occurring at travel-time differences between

conventional phases (Boué et al., 2014; Phạm et al., 2018; Kennett & Phạm, 2018a, b).30

Deviations from ideal conditions are known to introduce nonphysical phases (Snieder et al., 2008) and also travel-time biases

in surface wave reconstruction (Weaver et al., 2009; Tsai, 2009; Froment et al., 2010). Yet for coda-based core phases, a critical

assessment of travel-time deviations between reconstructed and true inter-station arrivals remains lacking. Such an evaluation

is essential to establish the reliability of extracted travel times for inferring deep Earth structural anomalies.

This study aims to evaluate the travel-time accuracy of core phases extracted from coda wave correlations. Previous theo-35

retical studies on noise correlations often rely on asymptotic techniques — such as the stationary phase method — to establish

approximate relationships, which limits the rigorous assessment of travel-time reconstruction accuracy. To address this, we

introduce a perturbation-based approach to quantify potential travel-time deviations. A key aspect of this method is the de-

composition of the problem into “solvable” and “perturbation” components. We begin with a bounded homogeneous model

representing the solvable part, which is then perturbed to evaluate travel-time reconstruction accuracy. The proposed framework40

is validated through numerical simulations and demonstrated with real coda correlation data.

2 Theory

2.1 The reference model

We consider a homogeneous medium bounded by two discontinuous surfaces to simulate wave reflections between the Earth’s

surface and the core–mantle boundary. The layer thickness is denoted by h. For simplicity, P–S wave conversion at the discon-45

tinuities is initially neglected, and the wave speed — for both P and S waves — is represented by a constant c. Two seismic

stations are positioned at xa = (0,0,0) and xb = (R,0,0), with all excitation sources placed within the surface layer (Fig. 1).

For a wave originating from a source at position x = (x,y,0) and undergoing m reflections from the lower boundary before

reaching station xa, the ray path length is given by:

r(x,m) =
√
x2 + y2 + 4m2h2 . (1)50

Similarly, the path length for a wave arriving at xb after experiencing n reflections is

r′(x,n) =
√

(x−R)2 + y2 + 4n2h2 . (2)
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For a wave traveling directly between the two stations after undergoing p reflections, the path length is:

L(p) =
√
R2 + 4p2h2 . (3)

The spectral representation of reflected waves recorded at either xa or xb, excited by a source located at x, can be expressed55

using a generalized ray formulation as:

ui(x,ω) =ΣmAi(x,m,ω)eiωr(x,m)/c

u′j(x;ω) =ΣnA′j(x,n,ω)eiωr
′(x,n)/c . (4)

In these equations, ω represents the angular frequency, and i denotes the imaginary unit. The subscript i and j correspond

to the three components of the displacement vector, respectively. The functions Ai(x,m,ω) and A′j(x,n,ω) represent the

amplitude of reflected waves. In this study, we restrict our analysis to incident angles below the critical angle; consequently,60

neither Ai(x,m,ω) nor A′j(x,n,ω) incorporates a phase shift upon reflection and both remain real-valued.

We assume that the reflected wavefields excited by different sources are uncorrelated. Under this assumption, the total CCF,

summed over all sources, can be expressed as:

Cij(ω) =Σsu∗i (x,ω)u′j(x,ω)

=ΣsΣmΣnAi(x,m,ω)A′j(x,n,ω)eiωψ(x,m,n) , (5)

where the summation over s corresponds to the contribution from all individual sources. The travel-time difference between65

the two ray paths is defined as:

ψ(x,m,n) =
r′(x,n)− r(x,m)

c

=
1
c

[
√

(x−R)2 + y2 + 4n2h2−
√
x2 + y2 + 4m2h2] . (6)

2.2 The analytical solution of the CCF

The travel-time difference function in eq. (6) corresponds to the difference in travel times for wave propagation in a homoge-

neous medium. In this representation, the source is located at (x,y,2mh), and the two stations are positioned at (0,0,0) and70

(R,0,2ph), where p=m−n. Based on this equivalence, we evaluate the CCF in eq. (5) within this simplified homogeneous

setting (Fig. 2).

Since the cases p < 0 and p > 0 are complex conjugate in the computation, we consider only p > 0 for simplicity. To facilitate

the analysis, we apply a coordinate transformation by rotating the system about the y-axis so that the z-axis passes through the

imaginary station at (R,0,2ph). In this rotated frame, we introduce spherical coordinates (r,θ,φ). Note that the z-axis aligns75

with the reflected inter-station ray path originating from the station at (0,0,0); thus, the polar angle θ represents the angular

deviation of the incident wave from this ray path. Within this coordinate system, the travel-time difference function takes the
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Figure 1. Definition of geometrical variables for wave propagation in the homogeneous medium bounded by two discontinuous layers.

form:

ψ(r,θ,φ,p) =
1
c

√
(r sinθ cosφ)2 + (r sinθ sinφ)2 + [r cosθ−L(p)]2− r

c

=
r

c

√
1− 2L(p)cosθ

r
+
L(p)2

r2
− r

c

=− L(p)
c

cosθ . (7)

The final approximation holds under the condition r >> L(p), which corresponds to m>> p.80

In the CCF eq. (5), the variable pair (x,m) can be mapped to the spherical coordinates (r,θ,φ), and similarly, (x,n)

corresponds to (r,θ,φ,p). To proceed, we introduce a continuous function η(r,θ,φ) to represent the density of the source

distribution, which encapsulates the discrete contributions governed by the indices s and m. This allows the double summation

over s and m to be approximated by a volume integral. Accordingly, the CCF can be rewritten as:

Cij(ω) =ΣsΣmΣpAi(r,θ,φ,ω)A′j(r,θ,φ,p,ω)eiωψ(r,θ,φ)

=Σp

π/2∫

0

2π∫

0

Sij(θ,φ,p,ω)e−ikL(p)cosθ sinθdθdφ , (8)85

where k = ω/c is the wavenumber, and

Sij(θ,φ,p,ω) =

r2∫

r1

η(r,θ,φ)Ai(r,θ,φ,ω)A′j(r,θ,φ,p,ω)r2dr . (9)
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Figure 2. Definition of geometric variables for the case p= 1. The dashed circle and star denote the station and source mapped from

xb = (R,0,0) and (x,y,0), respectively.

In the function Sij(θ,φ,p,ω), we assume that the wave amplitudes at the two stations maintain a constant proportionality

when excited by different sources. Under this assumption, Sij(θ,φ,p,ω) represents the wave energy density within each solid

angle. We further assume that this energy density is uniform across all solid angles and denote it as S̄ij(p,ω). Consequently,90

the CCF can be expressed as:

Cij(ω) =Σp2πS̄ij(p,ω)
e−ikL(p)cosθ

ikL(p)

∣∣∣∣
θ0

0

=2πcΣpS̄ij(p,ω)
{[

eikL(p)

iωL(p)

]∗
−
[
eikL(p)cosθ0

iωL(p)

]∗}
. (10)

Here, θ0 represents upper boundary of the polar angle. We assume it is azimuthally symmetric (independent of φ). In the

time domain, the first term of this equation corresponds to arrivals at the travel times of the reflected waves between the two

stations, where the factor 1/iω corresponds to a time-domain integration operator. The second term corresponds to spurious95

waves arising due to a uniform truncation of the polar angle at different azimuthal angles. When p < 0, we consider the complex

conjugate of the CCF expression in eq. (5). Following the same derivation, we obtain an equivalent expression. As a result,

these arrivals appear on the causal and anti-causal sides of the CCF, respectively.

To ensure accurate reconstruction of the reflected waves, the polar angle θ0 must be sufficiently large to prevent interference

from spurious waves. This condition is met when the arrival times of the reflected and spurious wave packets are separated by100

at least one dominant period, corresponding to a 2π phase difference in the spectral domain. Adopting this phase difference as

our non-interference criterion, we obtain the inequality:

kL(p)− kL(p)cosθ0 ≥ 2π . (11)

5
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This yields a threshold angle expression:

θ0 = 2arcsin

√
λ

2L(p)
i.e., θ0 = 2arcsin

√
T

2t(p)
. (12)105

Here, T denotes the period of the reflected wave and t(p) represents the travel time of the inter-station wave that has undergone

p reflections. This result defines the minimum angular range of wave incidence required to maintain local wavefield uniformity,

thereby ensuring accurate wave reconstruction.

2.3 Perturbation analysis for realistic coda correlations

The derivation above assumes a cosine distribution for the travel time difference function, which depends on wave propagation110

taking place within a bounded homogeneous medium. In practice, this condition is not satisfied. Furthermore, late earthquake

coda correlations also involve P-to-S wave conversions. Under these circumstances, the actual travel time difference function

deviates from the cosine form. To accommodate such deviations, we express the perturbed travel time differences as:

ψ(r,θ,φ,p) =−t(p)cosθ+ δ(θ,p) , (13)

where t(p) denotes the travel time along curved ray paths between the two stations after p reflections, θ is the polar angle115

between the incident wave direction and the z-axis (where the z-axis is aligned with the direction of the inter-station reflected

wave at the station), and δ(θ,p) captures deviations from the idealized cosine distribution. Our analysis assumes azimuthal

symmetry (i.e., independent of φ) and ignores the dependence on travel distance r for simplicity. The formalism can be readily

extended to incorporate such dependencies by performing the analysis over discrete values of φ and r.

Since θ = 0 corresponds to the inter-station ray path, the travel time difference at this angle attains its extreme value. We120

impose:

δ(0,p) = 0 and δ(1)(0,p) = 0 , (14)

where the superscript (n) denotes the n-th derivative with respect to θ. Expanding δ(θ,p) in a Taylor series around θ = 0, the

travel time difference becomes:

ψ(r,θ,φ,p) =− t(p)cosθ+
1
2
δ(2)(0,p)θ2 +

1
6
δ(3)(0,p)θ3 +

1
24
δ(4)(0,p)θ4 + · · ·

=δ(2)(0,p)− [δ(2)(0,p) + t(p)]cosθ+
1
6
δ(3)(0,p)θ3 +

1
24

[δ(2)(0,p) + δ(4)(0,p)]θ4 + · · · , (15)125

where the second line follows from substituting the Taylor expansion of cosθ.
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Truncating the series at the θ3 term and substitute into eq. (8) (assuming that the polar angle is truncated at θ0, beyond which

wave construction is not affected) yields:

Cij(ω) =Σp

θ0∫

0

2π∫

0

Sij(p,ω)eiω{δ
(2)(0,p)−[δ(2)(0,p)+t(p)]cosθ} sinθdθdφ

=Σp
2πSij(p,ω)

iω[δ(2)(0,p) + t(p)]
eiωδ

(2)(0,p) · e−iω[δ(2)(0,p)+t(p)]cosθ

∣∣∣∣
θ0

0

=Σp
2πSij(p,ω)

δ(2)(r,0,p) + t(p)

{
eiω[δ(2)(0,p)(1−cosθ0)−t(p)cosθ0]

iω
+
[
eiωt(p)

iω

]∗}
. (16)

This result shows that the correlation still yields waves at the travel times of the reflected waves when truncating the series of130

the deviation function δ(θ,p) at θ3. We adopt, as before, our non-interference criterion for the phase difference. This leads to

the condition:

ωt(p) +ω[δ(2)(0,p)(1− cosθ0)− t(p)cosθ0]≥ 2π . (17)

We obtain a threshold angle expression:

θ0 = 2arcsin

√
T

2[t(p) + δ(2)(0,p)]
, (18)135

The second derivative δ(2)(r,0,p) affects the polar angle range over which the wavefield needs to be locally uniform. If we

neglect its impact in this equality, the expression reduces to equality (12).

Equation (16) demonstrates that time errors due to deviations from the cosine distribution arise from higher-order terms (θ3

and beyond) in the Taylor series expansion of the travel time difference function ψ(r,θ,φ,p). We estimate the time error as:

∆t≈ 1
6
δ(3)(0,p)θ30 +

1
24

[δ(2)(0,p) + δ(4)(0,p)]θ40 + · · · , (19)140

which scales proportionally to θ30 . For the reconstruction of core phases, such as the ScS wave with a period of 50 s and a

travel time of 1000 s, the threshold angle is:

θ0 = 2arcsin

√
50

2× 1000
= 18◦ . (20)

Converting this angle to radians and substituting into eq. (19) yields a time variation on the order of:

∆t≈ δ(3)(0,p)
220

. (21)145

Consequently, if δ(θ,p) is smooth near θ = 0 (i.e., its derivatives are small), the resulting time deviation is negligible. This

result demonstrates that the core phases can be accurately reconstructed via coda correlation under the assumption of local

wavefield uniformity.
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Figure 3. The computations of the CCF under three truncation angles.

3 Numerical simulations

We perform a numerical computation to investigate the impact of wave correlation under localized incidence uniformity. In150

the computation, we set the travel time of the reflected wave to 1000 s and wave correlation in the period range of 20–50 s.

Then, we obtain the threshold angle θ0 = 18◦ as in eq. (20), corresponding to a 2π phase shift relative to the reflected wave.

We also compute truncation angles for π and 4π phase shifts, obtaining θ0 = 13◦ and θ0 = 26◦, respectively. These truncation

angles are used as upper bounds in the integral of eq. (10). For comparison, we compute the accurate arrival of the reflected

wave using an upper bound of 180◦. The results show: Within a π phase shift, the reconstructed reflected wave and truncation-155

induced spurious wave interfere, causing phase deviation in the reconstructed reflected wave. Within a 2π phase shift, the

two waves align, allowing accurate recovery of the reflected wave’s travel time. Within a 4π phase shift, the waves diverge,

and the reconstructed reflected wave remains unaffected by integration truncation (Fig. 3). This supports the rationality of our

non-interference criterion that uses a 2π phase shift to determine the threshold angle.

Given the small threshold angle in our simulation, we further examine correlation under a non-cosine travel-time difference160

distribution by setting the disturbance term in eq. (13) as

δ(θ,p) =−50θ sin2(4θ). (22)
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Figure 4. The computation of the CCF under a non-cosine distribution of travel time differences. (a) The travel time difference function; (b)

The simulated CCF.

This function and its first derivative satisfy the constraints in eq. (14). Integrating over θ from 0 to π and comparing the recon-

structed wave with that from a cosine travel-time difference distribution, we find nearly identical phase information (Fig. 4).

This demonstrates high reconstruction accuracy for travel times even under non-cosine travel-time difference distributions.165

4 The real-data test

In the analysis of late earthquake coda correlations, when the plane containing the earthquake and the station is oriented at an

angle φ relative to the two-station plane, the following geometric relationship applies:

sinφ=
sinθ
sin i

, (23)

where i represents the incident angle of the wave at the station. Core phases in late coda correlations are characterized by steep170

incident angles. As a result, even a small threshold angle θ0 corresponds to a wide range of azimuthal deviations from the

great-circle plane (see Fig. 5a). For instance, for an ScS wave with an incident angle i= 20.0◦ and a threshold angle θ0 = 18◦,

equation (23) gives φ≈ 65◦. In cases where θ > i, even coda waves propagating in a plane perpendicular to the two-station

plane can contribute to the reconstruction of core phases (Fig. 5b). This result demonstrates the importance of incorporating

earthquakes from all azimuths to ensure accurate reconstruction of core phases.175

We analyze codas from 205 large earthquakes ( ≥ M6.8) recorded by the US network between 2010 and 2020 (Fig. 6). The

correlation process is as described in the work of Bensen et al. (2007), which includes: filter the coda data to 15–50 seconds,

suppress the records by temporal normalization and spectral whitening, and independently compute CCFs for each earthquake.
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Figure 5. Relationship between the threshold angle and azimuth: (a) when the threshold angle is less than the wave incident angle, and (b)

when the threshold angle exceeds it. In both cases, the gray line denotes the extended trajectory of the inter-station ray path, whereas the

shaded region illustrates the area encompassed within the threshold angle.

The computed CCFs are then categorized into bins according to the inter-station distance, with each bin encompassing an

interval of 1.0 degree. Finally, the CCFs are stacked together within each bin.180

In the stacked correlograms, prominent deep phases such as PcP , ScS, and PKIKP 2 waves are clearly distinguishable

(Fig. 7). To assess the travel time accuracy of reconstructed core phases, we stack correlograms for earthquakes occurring

in two distinct periods: 2010–2015 and 2015–2020, which exhibit varying earthquake positions (see Fig. 6a). Despite these

differences, both stacked correlograms show nearly identical emergence times for core phases, indicating stable convergence

of the reconstructed core phases under different source distribution (Fig. 8).185

To investigate the azimuthal dependence of the stacked deep reflections, we compute the deviation angle φ between the

earthquake-station plane and the plane defined by the station pair. Correlograms are then stacked within selected ranges of φ.

Significant disparities in the emergence times of the ScS waves are observed when comparing stacks for a narrow azimuthal

range (φ < 10◦) with those incorporating all earthquakes. In contrast, the emergence times of PKIKP 2 waves remain stable

and consistent (Fig. 9).190

This trend becomes more evident as the φ range is expanded from (0,10◦) to (0,90◦). The emergence time of the ScS wave

progressively decreases (Fig. 10), reflecting the influence of earthquakes from a broad range of azimuths on its reconstruction.

Conversely, the emergence time of the PKIKP 2 wave remains tightly converged, indicating that using earthquakes located

near the great-circle path between station pairs is sufficient to recover its travel time accurately.

5 Discussion195

This study investigates the reconstruction of inter-station waveforms under conditions of localized wavefield uniformity along

the propagation path. A critical angular threshold, defined in eq. (12) as the ratio of seismic wave period to inter-station travel

10
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Figure 7. The stacked correlograms. Some prominent phases are labeled.

time, quantifies the extent of this localized uniformity. Equation (19) further shows that travel time reconstruction accuracy

scales with the cube of this threshold angle. Since core phases are characterized by inherently small threshold angles, high

travel time extraction accuracy is achieved under localized uniformity conditions.200

Seismological observations indicate that incident energy in late coda waves is predominantly concentrated near the plane

between the earthquake and the station (Sens-Schönfelder et al., 2015). A limited number of earthquakes located near this plane

can satisfy the localized uniformity condition around the inter-station ray path in the great-circle direction. Consequently, our

approach relaxes the stringent requirement for full source uniformity along the great circle — necessary in traditional Green’s

function retrieval — making it more applicable to practical coda correlation studies.205
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Figure 10. The convergence of ScS and PKIKP 2-like waves as the deviation angle ranges increase. The bin size for the inter-station

distance is 10◦. The time window for phase calibration is indicated within the dashed box, and the waveform is normalized based on the

wave amplitude within this window.

Equation (23) shows that, due to the steep incidence angles of core phases, the small threshold angle for core phases cor-

responds to a considerable range of azimuthal deviations from the great-circle plane. Therefore, incorporating earthquakes

from all azimuths is recommended to ensure accurate reconstruction. In real-data tests of PKIKP 2 phase reconstruction,

waveforms derived from earthquakes within a narrow angular range aligned closely with those obtained using all available

events. This consistency is likely due to lateral scattering of late coda waves during propagation, which effectively samples210

the required extremely small threshold angle range. These results suggest that PKIKP 2 waves can be reliably reconstructed

using earthquakes located near the great-circle plane connecting the station pair.

To ensure localized wavefield uniformity in our real-data test, we employed a large global dataset of earthquakes. As there

is no direct method to confirm whether reconstructed core phases correspond exactly to true inter-station arrivals, we divided

the earthquake records into two distinct time periods and compared the phase alignment between independently reconstructed215

waveforms. Close agreement between the two subsets indicates successful recovery of the true inter-station core phase. This

convergence-based criterion provides a statistical validation approach to assessing the accuracy of reconstructed core phases.

Equation (19) quantifies the dependence of inter-station body wave reconstruction accuracy on the wave period-to-travel

time ratio. It reveals that travel time deviations arise even under uniform illumination — a finding consistent with surface wave
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dispersion studies in inhomogeneous media (Tsai, 2009). This relationship offers a criterion for assessing travel time deviations220

in reconstructed waves, which is especially valuable when the ratio of wave period to the inter-station travel time ratio is small.

According to eq. (10), the correlation process can generate spurious waves due to uniform truncation of θ across azimuths.

Since such truncation is rarely achieved in practice, spurious contributions are summed over various azimuths. When the

truncation boundary extends beyond the stationary phase zone, destructive interference generally suppresses these spurious

waves. However, near θ = π/2, an inflection point effect inhibits cancellation (Xia et al., 2024) and may introduce spurious225

arrivals near zero time on the CCF if wave incidence intensity is asymmetric with respect to the station pair.

Finally, this study employs a simplified model to conduct a perturbation analysis of travel-time reconstruction accuracy. For

more realistic scenarios — such as multilayered media with smoothly varying wave speeds — the generalized ray method

offers a suitable framework to simulate wave conversion, thereby facilitating the extraction of both inter-station body waves

and the persistent unconventional waves observed in practical coda correlations. However, such models do not readily permit230

a decomposition comparable to that of the perturbation approach, which is why this more complex scenario is not addressed in

the current study.

6 Conclusions

This study presents a perturbation analysis to evaluate the accuracy of travel-time reconstruction for core phases derived from

late earthquake coda correlations under conditions of locally uniform wave incidence along the core-phase propagation path.235

We introduce a dimensionless parameter, defined as the ratio of seismic wave period to inter-station travel time, to quantify

the critical angular threshold for effective reconstruction. Perturbation analysis reveals that the travel time accuracy scales with

the cube of this threshold, indicating that localized uniform incidence ensures high-precision reconstruction of core phases,

which are inherently characterized by low threshold values. Numerical simulations and empirical coda correlation tests sustain

our theoretical findings. Our results demonstrate that accurate travel times of inter-station core phases can be reliably extracted240

using late coda waves from a sufficiently large number of earthquakes distributed across all azimuths. This approach provides

a practical and robust foundation for coda correlation studies, enhancing confidence in using reconstructed core phases as true

empirical arrivals for interferometric imaging of Earth’s deep interior.

Data availability. Seismic data are from the IRIS Data Management Center: https://ds.iris.edu/ds/nodes/dmc/data/types/waveform-data/.
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