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Abstract. Groundwater is a key source of freshwater for drinking water supply and agricultural irrigation on a global scale.
Groundwater in Switzerland (and beyond) is traditionally regarded as a reliable source of freshwater. Recent extreme drought
events (i.e., 2018, 2020, and 2022) have shown, however, that groundwater does respond to these events and can cause prob-
lems in water supply and groundwater availability. With hydrological extremes becoming more frequent, there is a growing
need for early warning systems and improved forecasting. This study develops and tests a scalable ensemble groundwater pre-
diction (EGP) system with a 32-day lead time. The system combines extended-range precipitation and temperature forecasts
from the European Centre for Medium-Range Weather Forecasts (ECMWF) with the lumped-parameter groundwater model
Pastas. Forecasts were evaluated at six monitoring wells across Switzerland, representing diverse hydrogeological settings,
and compared against naive persistence and climatology benchmarks. Results indicate that the EGP system produces skillful
forecasts up to one month ahead, with Spearman correlations exceeding 0.77 for most wells. However, the required model—data
complexity varies: in long-memory aquifers, forecasts driven by recent meteorology and climatology are sufficient, while in
short-memory systems, meteorological forecast data adds clear value. Forecast skill in mountainous regions (e.g., Davos) re-
mains limited due to difficulties in predicting local meteorology. These findings highlight both the potential and the limitations
of short-term groundwater forecasting. Future work should explore larger lead times, particularly in slow-responding aquifers,

and investigate methods to improve forecasts in alpine environments.
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1 Introduction

Groundwater is a key source of freshwater for drinking water supply and agricultural irrigation on a global scale, shaping
ecosystems and landscapes (e.g., Rodell et al., 2018; Scanlon et al., 2023). Its importance is especially evident at regional scales,
where it sustains local communities and economies. In Switzerland, about 80% of drinking water is drawn from groundwater
(BAFU, 2022). Groundwater in Switzerland and beyond is traditionally regarded as a reliable source of freshwater, offering
greater resilience to climate variability than surface water and other sources (Bordes et al., 2011). Recent extreme drought
events (i.e., in 2018, 2020, and 2022) have shown, however, that groundwater does respond to these events and can cause
problems in water supply and groundwater availability.

Switzerland has experienced an increase in extreme meteorological events, including droughts and heavy precipitation (e.g.,
Brunner et al., 2019; Scherrer et al., 2022; Tuel et al., 2022; Bauer and Scherrer, 2024). (Scherrer et al., 2022) showed a
clear tendency towards drier summers in Switzerland over the past four decades (1981-2020). Soil water content and climatic
water balances reveal declining trends from spring to autumn, mainly driven by increasing evaporation and a slight decrease
in precipitation. Future climate change is expected to increase variability in groundwater recharge and availability, including
periods of low or high groundwater levels (Moeck et al., 2016; Epting et al., 2021) and decreased groundwater discharge in
alpine headwater catchments (Halloran et al., 2023).

The rising frequency of hydrological extremes underscores the need for early warning systems and enhanced forecasting
capabilities to better anticipate and manage their impacts on water resources. Hydrological forecasts can help water resource
managers make more informed decisions, and decision makers can attempt to reduce the impact of meteorological extremes
on water resources (e.g., White et al., 2017; Neumann et al., 2018). Possible measures include temporarily reducing pumping,
enhancing managed aquifer recharge, or releasing water to mitigate flooding risks. Seasonal hydrological forecasts predicting
groundwater levels up to a few weeks or months ahead may also be used to better inform groundwater users (e.g., drinking
water suppliers and the agricultural sector) on possible limitations in groundwater extraction in the upcoming period (see, for
example, Cantone et al., 2023).

Hydrological forecasts inherently come with a certain degree of uncertainty. To take uncertainty into account, hydrological
ensemble prediction is a common approach to generate forecasts of hydrological variables of interest (e.g., Duan et al., 2019).
In this approach, a hydrological model is forced by ensembles of meteorological variables such as precipitation and temper-
ature. The ensembles represent the uncertainty in the predicted meteorological forcings, and are themselves the output of a
meteorological model. The forecasts used are typically issued for periods of weeks (short-term forecasts) to several months
ahead (subseasonal forecasts), a time frame that is appropriate for operational water management. This sets this type of fore-
cast apart from long-term climate change projections, which operate on much larger timescales and support the development
of mitigation and adaptation strategies as well as long-term investments in infrastructure, but do not provide timely information
needed for early warning or short-term response to individual extreme events.

A large part of the hydrological ensemble prediction literature and applications are focused on predicting streamflow (e.g.,

Duan et al., 2019; Wanders et al., 2019) and surface water levels in reservoirs (e.g., Viel et al., 2016), with fewer applications
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on forecasting groundwater levels. One of the few examples of hydrological ensemble prediction of groundwater levels can
be found in Mackay et al. (2015). This study found that skillful forecasts (i.e., predictions that perform better than reference
baselines such as climatology or persistence forecasts) up to five months can be made for groundwater levels in the UK
using the lumped-parameter groundwater model AquiMod. This system has also been operationalized (Prudhomme et al.,
2017), showing that it is not merely an academic endeavor. Huang and Shih (2020) produced seasonal forecasts for Taiwan,
concluding that the predicted rainfall is crucial for the groundwater level forecast. In recent work, Robertson et al. (2024)
introduced a new approach to simultaneously forecast streamflow and groundwater levels and successfully tested it in eastern
Australia. A notable part of their approach is the use of an error model to reduce the forecast errors. Despite extensive research
on hydrological ensemble predictions in Switzerland (e.g., Bogner et al., 2018; Monhart et al., 2019; Padrén et al., 2025, and
references therein), no system for the prediction of groundwater levels is available yet.

The goal of this study is to develop and test a scalable methodology to make ensemble groundwater predictions (EGPs)
for alluvial aquifers in Switzerland. This is an initial step towards developing an operational groundwater forecasting system.
Ensemble groundwater predictions are made using forecasts of precipitation and temperature from the extended range fore-
casts from the European Centre for Medium-Range Weather Forecasts (ECMWF) and the lumped-parameter model Pastas to
simulate the groundwater levels (Collenteur et al., 2019). This study focuses particularly on forecast verification to investigate
1) if skillful forecasts of groundwater levels with lead times of up to 32 days can be made and 2) what combination of data and
models is required for this purpose. To achieve this, the groundwater levels at six monitoring wells in Switzerland are modeled,
and the forecasts from the EGP system are compared to three reference forecasts based on persistence and climatology. These
six wells are selected based on their varying aquifer response times and the ability to model them with meteorological data
only. This makes them relevant for addressing the question of what model-data combination is required to provide skillful
forecasts. This study contributes to the research on the hydrological ensemble predictions focused on forecasting groundwater

levels.

2 Methods
2.1 General approach

The general workflow to simulate the groundwater levels and generate the ensemble groundwater predictions for each monitor-
ing well is depicted in Figure 1. The flow path denoted with the blue arrows shows the steps to simulate the groundwater levels
using historic meteorological data. By iterating over this flow path (not shown) and changing the model parameters, the model
is calibrated. The calibrated model is then used in forecasting mode (flow path with green arrows) to generate predictions of

the groundwater levels using ensembles of the input data. Each of these steps is described in more detail below.
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Figure 1. Schematization of the workflow applied in this study to simulate the groundwater levels (blue flow path) and generate the ensemble
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2.2 Groundwater level modeling

Lumped-parameter groundwater models from the Pastas software (Collenteur et al., 2019, version 1.11.0) are used in this
study to simulate and forecast the groundwater levels. A schematic picture of the model is shown in the center of Figure 1. The
groundwater levels are computed from the meteorological input data in a two-stage process. In the first stage, the groundwater
recharge is computed from common daily meteorological input data (precipitation, potential evaporation, and temperature)
using a soil-water balance approach (see Collenteur et al., 2021, for details). The soil-water balance model accounts for the
effect of the limitation of actual evaporation due to soil moisture availability, and the temporary storage of infiltrated water in
the root zone. This makes the groundwater recharge response (and ultimately the groundwater level response) to precipitation
and potential evaporation nonlinear. The effect of snowfall and snowmelt on groundwater recharge is also included in the
model, through a degree-day snow model (Collenteur et al., 2023). In the second stage, impulse response functions are used
to describe the groundwater level response to impulses of recharge (von Asmuth et al., 2002). By convolving the groundwater
recharge with the impulse response, a simulation of the groundwater levels is obtained. For each monitoring well, an individual
model is developed to simulate and forecast the groundwater level at that location.

In Collenteur et al. (2023), the model was successfully applied to simulate the historical groundwater level data and investi-
gate the stresses on the groundwater systems from the same six locations that are also used in this study. A distinct advantage
of the applied model is that it runs fast and has short calibration times (in the order of seconds) even with limited computational
resources. This is especially practical for ensemble predictions (Robertson et al., 2024), where many simulations are made to
generate the forecast and include uncertainty from the model and the meteorological input data. For more detailed descriptions

of the model, refer to Collenteur et al. (2021) and Collenteur et al. (2023).
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2.3 Residual error modeling and post-processing

The lumped-parameter model provides daily simulations of the groundwater levels for each monitoring well. When subtracting
the measurements from the simulation, the residuals are obtained. Residuals from daily or weekly groundwater simulations
typically show strong autocorrelation, which was also observed here. This violates a common assumption about the statistical
properties of the model residuals, namely that the residuals are uncorrelated, normally distributed, and homoscedastic. Violating
these assumptions may result in unreliable quantification of the parameter uncertainties, as, for example, shown in Collenteur
et al. (2023). However, the existence of autocorrelation also indicates that there is still information in the residuals that may be
used to further improve the groundwater level forecast. One strategy to deal with both issues, the one taken here, is to apply a
noise model to model the residual errors. The commonly used autoregressive noise model of order one (AR1) is used in this

study to model the residual errors (r;) (von Asmuth and Bierkens, 2005):

r(t;) = v(t;) +T(ti,1)e*Ati/a .

where v, is assumed to be white noise, At; is the time step between two residuals, and « is the decay parameter describing
the relation between two consecutive residuals. This model adds one parameter («) to the model that needs to be estimated.
During model calibration, the noise model is used to transform the residuals in uncorrelated noise. In forecasting mode, the
noise model is used to assimilate the latest groundwater level measurement, and correct the forecast using this information
in a post-processing step. In a preliminary analysis of this study, it was found that this helped to reduce the forecast errors
substantially. This is in agreement with similar findings from Robertson et al. (2024), who used a comparable approach to

post-process the raw groundwater level forecasts.
2.4 Model calibration

Eight model parameters need to be inferred from the groundwater level data, seven from the lumped-parameter groundwater
model and one from the aforementioned noise model. The parameters of the groundwater model and the noise model are
inferred in a two-step process that was found to improve the estimation of the parameter (Collenteur et al., 2021). First, the
parameters of the groundwater model are calibrated without the noise model. In the second step, these parameters are used
as initial parameters for a second calibration, where the noise model is simultaneously calibrated. The sum of the weighted
squared noise criterion, proposed by von Asmuth and Bierkens (2005), is used as the objective function for this second step. The
objective function is minimized using a nonlinear least-squares approach. The Jacobian matrix computed by the optimization
algorithm is used to estimate the covariance matrix and, ultimately, the standard errors of the parameters. These standard errors
are subsequently incorporated to represent parameter uncertainty in the ensemble groundwater predictions.

Weekly groundwater level measurements from the ten years preceding the start of the forecast period are used for calibration.
This period is preceded by a ten-year warmup period, for which meteorological data is available. Van der Spek and Bakker

(2017) found that a 10-year calibration period yields good results in terms of groundwater level simulation and uncertainty
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quantification. It is noted here, however, that this length was not optimized for the same goal as in this study: short-term predic-
tion of groundwater levels. The model is recalibrated on the groundwater level measurements from the ten years before every
forecast to include the latest available measurements. This ensures that the latest information on the state of the groundwater

is considered when calibrating the model and generating the forecasts.
2.5 Ensemble groundwater predictions

After the model parameters are estimated, the calibrated model is used in forecasting mode to generate the ensemble ground-
water predictions in three steps. In the first step, the model is forced with an ensemble of meteorological input data (with
51 ensemble members) and used to forecast the groundwater levels with a 32-day lead time. Moreover, the forecast for each
ensemble member is computed with 100 different parameter sets for every one of the six monitoring wells to include the effect
of parameter uncertainty. The parameter sets are drawn from a multivariate normal distribution using the covariance matrix
estimated during model calibration. Through this process, a total of 5100 raw groundwater level forecasts for every monitoring
well (100 parameter sets multiplied by 51 ensemble members) are generated.

Afterward, in the second step, each of these raw groundwater level forecasts is corrected using the AR1 noise model and the

last known residual g before the start of the forecast. The correction g(h) at lead time h [T] is computed as:

g(h) =roe ", )

The above correction is added to the forecasted groundwater levels. It decreases with increasing lead times h, as a smaller part
of the residual can be explained from the last residual before the forecast (rg). Correcting the raw forecasts using the noise
model and the last known residual value before the start of the forecast was found to improve the forecast substantially in the
preliminary phase of this study.

In the third and final step, the variance of the forecast error of the 5100 individual forecast members is estimated. Because
the residuals are autocorrelated, the forecast error increases with increasing lead times. Given the fitted AR1 noise model, the

forecast error (e ) for h time steps ahead can be computed as:

21— g%
v 1_¢2

€Ep = 0.

3)

where o2 is the variance of the noise, & is the number of time steps ahead in days, and ¢ is the autoregressive parameter
computed from the noise model parameter v as ¢ = e 2"/ The variance of the forecast error increases with increasing
values of h, and converges to the variance of the residuals (c2) as h goes to infinity.

The above three steps produce 5100 ensemble members and their individual error variances for each simulated well. The
final 95% prediction interval is computed under the assumption that the forecast ensemble follows a normal distribution at all

lead times. The ensemble mean is calculated as the average of all individual members, while the variance is determined using
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the law of total variance. The standard deviation is then derived from this variance and multiplied by the critical value z = 1.96

to obtain the 95% prediction intervals.
2.6 Naive forecasts

To evaluate the performance of the ensemble groundwater prediction (EGP) system described above, the forecasts from the
EGP system are compared to three naive forecasts. It is tested whether the EGP system outperforms other forecasting systems
based on less data or simpler models, and thus provides any additional value over other or existing forecasting systems. The
performance of both the EGP system and the naive forecasts is likely strongly influenced by the response and memory times
of the groundwater systems, i.e., how quickly groundwater levels respond to meteorological inputs and therefore groundwater
recharge and how long the effects of individual pulses are observed. This means that the predictive skill can vary substantially
across aquifers with different response characteristics. Comparisons across different groundwater systems are needed to deter-
mine the conditions under which the EGP system provides added value over simpler approaches. The EGP forecasting system

was compared to the following naive forecasts:

— Persistence: The persistence forecast is computed by extrapolating the last measured groundwater level over the forecast
period, i.e., the last measured groundwater level is assumed to persist throughout the forecasting period. This approach
is assumed particularly effective for aquifers with long response times, where groundwater levels evolve more gradually

and persistence provides a reasonable baseline.

— Autoregressive: This forecast is created by fitting an autoregressive (AR) model on the groundwater level time series
with weekly measurements. This model uses the groundwater level measurements from the past few weeks to predict the
groundwater levels over the next 32 days. Autoregressive models have been extensively used to predict groundwater level
time series and consider the trends from the past weeks when generating the forecast. This approach is assumed effective
for aquifers with relatively short response times, where recent trends in groundwater levels provide useful information

for near-term predictions.

— Climatology: The climatology forecast is created by forcing the Pastas groundwater models with the mean precipitation,
potential evaporation, and temperature for each day in the forecast period from the past 30 years (i.e., the average 30-
year value for the 1st of January). This forecast is used to investigate the value of the meteorological forecast data.
This approach is assumed particularly effective for aquifers with strong seasonal cycles, where long-term averages of

meteorological conditions provide a reliable benchmark for expected groundwater dynamics.

The data-model complexity increases from the persistence forecast to the climatology forecast. The persistence approach
requires only a single groundwater level measurement (the most recent), whereas the autoregressive method relies on the full
groundwater level time series to fit the model. The climatology forecast requires a lumped groundwater model and the average
meteorological conditions over the forecast period. This contrasts with the EGP system, which requires a lumped groundwater

model, the historic meteorological conditions before the forecast period, and the forecasted meteorological variables. With this
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setup it can be tested whether the forecast skill is determined by the model, the historical data, or the forecasted meteorological

input data.
2.7 Groundwater model evaluation

The model performance during the calibration period is evaluated using the mean absolute error (MAE) and the Nash-Sutcliffe
Efficiency (NSE) metrics for goodness-of-fit. For evaluation of the models, the initial models calibrated on the period 2002-
2012 are used. Apart from computing these metrics on all the data in this period, the metrics are also computed on the different
seasons to evaluate how model performances vary seasonally. The information from this evaluation can be used to investigate

the relationship between the model performance during the calibration period and the performance during the forecast period.
2.8 Forecast verification

An important aspect of developing an ensemble prediction system is the assessment of the quality of the generated forecast.
The use of past forecasts from 2012 to 2023 allows for the evaluation of the system. The forecast quality is evaluated using

various verification metrics, as suggested in Duan et al. (2019), outlined below:

— Correlation: The Spearman correlation (R) between the mean of the forecast ensembles and the measured groundwa-
ter levels is computed and visualized to investigate how the mean forecasted heads are associated with the measured

groundwater level in the forecast period.

— Accuracy: The continuous ranked probability score (CRPS) is computed to evaluate the accuracy of the forecasts. The
CRPS is a generalization of the mean absolute error to probabilistic forecasts. The lower the value of the CRPS, the

closer the forecast is to the measured values. A value of zero would indicate a perfect forecast.

— SKkill: The continuous ranked probability skill score (CRPSS) is computed to test if a model has skill (e.g., Hersbach,
2000; Gneiting et al., 2005). The skill scores for the CRPS metric are computed by comparing to the naive forecasts.
The model is said to have skill if it outperforms these naive forecasts (CRPSS > 0) (Jolliffe and Stephenson, 2012). The
scores are computed for each lead time (1-32 days) and over different months to distinguish in which period the forecast

quality is better or worse.

— Uncertainty (1): The spread-to-error ratio is computed to assess the uncertainty estimates of the forecast, similar to
Monbhart et al. (2019). The spread is measured as the mean standard deviation over all ensembles, and the error is the
root mean squared error (RMSE) of the ensemble mean. For a forecast to be reliable, the spread-to-error ratio needs to
be around one, indicating that the spread of the ensembles is approximately equal to the mean error of the forecast (Ho
et al., 2013). If the spread-to-error ratio is below one, the forecast is said to be underconfident, while above one, the

forecast is overconfident.

— Uncertainty (2): The prediction interval coverage probability (PICP) is computed for all lead times and monitoring wells

to further evaluate the quality of the prediction intervals. The PICP has a value between 0 and 1, where zero indicates that
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no measurements are within the prediction interval and 1 indicates that all measurements are in the prediction interval.
The PICP target value is set to 0.95 as the 95% prediction intervals were estimated. Values above 0.95 indicate that the

intervals are too wide, and values below indicate that the values are too narrow.

3 Data
3.1 Groundwater level data

Six monitoring wells from the Swiss national groundwater monitoring network (NAQUA) operated by the Federal Office for the
Environment (FOEN) were selected for this study. These shallow wells are distributed across Switzerland, from north to south,
and span different altitudes. This is reflected in the absolute groundwater level heights as well as in their diverse dynamics and
response times to recharge, including snowmelt-driven processes (e.g., Davos).The locations of the selected monitoring wells
and the measured and simulated groundwater levels are shown in Figure 2. In Collenteur et al. (2023) it was shown that the
groundwater levels at these monitoring wells could be simulated with the lumped-parameter groundwater model Pastas with
high accuracy, using only daily precipitation, potential evaporation, and mean air temperature as stresses. Based on this study
and to the best knowledge of the authors, the groundwater levels at these wells are not influenced by other stresses such as
pumping and surface water fluctuations. This aligns with the focus of the present study on ensemble groundwater predictions
in natural systems, where groundwater level fluctuations are predominantly driven by meteorology.

(1) Davos (2) Gossau
640.0

637.5 - &%
(4) Lamone
307.5 i

305.0 1

o] g kA Wik

(3) Trub
785.0 - l
782.5

(5) Kestenholz (6) Volketswil
430

i 476 4
425 A ; 25 50

2002 2007 2012 2017 2022 Memory [d] 2002 2007 2012 2017 2022

Figure 2. Locations and the hydraulic head time series of the monitoring wells in Switzerland. The color of each dot denotes the memory

time (in days) of the groundwater system.

Table 1 in the appendices provides an overview of the characteristics of each monitoring well. All wells are located in
alluvial, unconfined aquifers. The depth to the water table ranges between 2 and 38.6 meters. The groundwater systems have
a wide range of memory times, meaning that these respond on different time scales to meteorological inputs. In this study, the
memory time is defined as the first time lag (in days) where the autocorrelation in the groundwater level data drops below or
equals 0.9. The wide range in memory times, from 5 to 61 days, allows investigating the relationship between this characteristic

of groundwater systems and the forecast quality and skill.
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index Start DTW Alt.  Prec. Evap. Temp. Snow Memory
ID
1 Davos 1990 20 1703 1057 379 2 94 5
2 Gossau 1990 7.0 645 1331 562 9 26 7
3 Trub 2005 8.0 791 1494 505 7 45 7
4 Lamone 1990 4.7 311 1709 647 12 3 13
5 Kestenholz 1990 19.1 447 1104 575 10 19 45
6 Volketswil 1990 38.6 515 1185 586 10 17 61

Table 1. Overview of some characteristics of the groundwater monitoring wells. DTW = depth to water table, Alt = altitude in meters above
sea level, Prec = average annual precipitation, Evap = average annual potential evaporation, Temp = average air temperature in degrees
Celsius, Snow = the average number of snow days, and Memory is the estimated memory of the groundwater system in days. All the

meteorological characteristics are computed over the period 1993-2023.

The groundwater level data are available since 1990 as part of an active groundwater monitoring network. Only for the
well in Trub the measurements start in 2005. A final important characteristic of these monitoring wells is that the loggers are
connected via telemetry, and the water level data is continuously being transmitted to a database. This allows the forecaster to
enhance the forecasts using the latest groundwater level measurements in a potential operational setting. As mentioned earlier,
assimilating the last groundwater level measurements was found to improve the forecast quality substantially in the preliminary

phase of this study, and monitoring wells connected to telemetry were therefore selected for this study.
3.2 Meteorological data

Historical meteorological data for the period 1990-2023 is obtained from gridded precipitation and air temperature data sets
(RhiresD and TabsD, respectively) provided by MeteoSwiss (MeteoSwiss, 2022). For each monitoring well, the daily values
from the grid cell in which the well is located are used. The grid spacing is approximately one kilometer, but it is noted by
MeteoSwiss that the effective resolution is in the order of 15-20 km. Potential evaporation is computed from the mean daily
air temperature using the Hamon equation as implemented in the Python package PyEt (Vremec et al., 2024). Table 1 in the
appendices also provides summary statistics of the meteorological conditions at each monitoring well. The precipitation ranges
between 1057 and 1709 mm per year in Davos and Lamone, respectively. The potential evaporation between ranges between
379 mm per year in Davos and 647 mm per year in Lamone. Particularly the wells in Trub and Davos experience many snow

days every year, with substantially lower air temperatures.
3.3 Forecast data

Extended-range forecasts of precipitation and temperature between 2012 and 2023 with a lead time of up to 32 days from

the extended-range forecasts from the ECMWF Integrated Forecasting System (IFS) are used in this study. Forecast data

10
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issued once per week are available for the period 2012-2018, and forecasts issued twice per week are available for the period
2018-2023. Each forecast contains ensembles of 51 members for precipitation and temperature. The potential evaporation
is computed using the same methods as for the historic meteorological data, as outlined above. These (raw) meteorological
forecasts are available with a spatial resolution of ~ 30 km and have been downscaled to 2 km using a thin plate spline
regression, a non-parametric surface estimation method (Wahba, 1990). For more details on the meteorological forecast data,
the reader is referred to Monhart et al. (2018). In total, 875 forecasts are available for the period of interest and used to evaluate
the groundwater level forecasting system. The data is available in a gridded format. Similar to the historic meteorological data,

the values from the grid cell in which the monitoring well is located are extracted.

4 Results
4.1 Groundwater model performance

Table 2 shows the model performance metrics for the initial calibration period 2002-2012. The metrics are computed on daily
groundwater level measurements, for all six monitoring wells and four different seasons. A visualization of the measured and
simulated groundwater levels is available in Appendix B. The average MAE ranges between 0.07 and 0.20 meters for Davos
and Kestenholz, respectively. The average NSE values range between 0.71 for Gossau and 0.97 for Kestenholz. Depending
on the monitoring well, model performances may differ substantially between the different seasons. Particularly for the mon-
itoring well in Davos, the model performs better in spring (MAM) and autumn (SON) compared to winter (DJF) and summer
(JJA). Especially the winter is strongly influenced by snow accumulation and melting, and is crucial for the simulation of the
groundwater levels. For the other wells, the groundwater levels measured in the spring (MAM) and summer months (JJA)
are more challenging to simulate compared to the winter months, potentially due to the influence of vegetation growth and
processes important for evapotranspiration rates. Models for wells with long memory times (i.e., Kestenholz and Volketswil)
tend to perform better than models for wells with shorter memory times (i.e., Davos and Gossau). Overall, the models can

accurately simulate the groundwater levels, a prerequisite to using the models for the prediction of the groundwater levels.
4.2 Examples of the ensemble groundwater predictions

Figure 3 shows four examples of the resulting ensemble groundwater predictions for two different start times (one in spring
(left) and one in fall/winter (right)) and two monitoring wells: Gossau (above) and Kestenholz (below). The black dots denote
the measured groundwater levels, and the blue line denotes the mean groundwater level forecast. The actual forecasts start at
the vertical black dashed line. The gray lines indicate the mean of the 100 forecasts with different parameter sets, for each of the
51 ensemble members stemming from the meteorological forecasts. The shaded gray area denotes the 95% prediction interval
over the entire forecast ensemble. This indicates that the majority of the prediction uncertainty stems from the meteorological

forecast data rather than model parameter uncertainty. This trend was consistently observed across all forecasts.
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AVG DJF MAM JJA SON

Davos 0.07 0.06 0.08 0.09 0.05
Gossau 0.21 0.18 0.27 021 0.18
Trub 0.15 0.16 0.22 0.14 0.11
MAE
Lamone 0.15 0.15 0.15 0.16 0.13
Kestenholz  0.20 0.21 0.19 0.19 0.23
Volketswil 0.10 0.13 0.12 0.07 0.08
Davos 0.79 0.34 0.83 045 0.72
Gossau 071 0.74 0.58 0.67 0.80
Trub 0.83 0.80 0.69 090 0.86
NSE
Lamone 0.79 0.78 0.78 0.71 0.85

Kestenholz 097 0.97 097 096 095
Volketswil 091 091 092 093 0.88
Table 2. Goodness-of-fit metrics for the different seasons and the entire year (AVG) of the models calibrated in the period 2002-2012. MAE

is the mean absolute error in meters, and the NSE is the Nash-Sutcliffe efficiency [-]. AVG = average over the year; DJF = December, January,

February; MAM = March, April, May; JJA = June, July, August; SON = September, October, November.

Note that the groundwater system in Gossau has a much shorter memory time compared to Kestenholz (memory time of 7
and 45 days), visible by a more flashy behavior. The prediction intervals for Gossau show a wider range, indicating that the
forecast is more uncertain compared to Kestenholz. The forecast range for Kestenholz is considerably narrower, and almost
negligible during fall/winter.. This is due to the long memory time of the system and the corresponding buffer capacity. For the
well in Kestenholz, the forecasts are less dependent on the meteorological forecasts and depend more on the system memory,
whereas the effect of the meteorological forecast data is much more visible in the forecasts for Gossau. The quality of the
forecast depends more on the input data in the spring and summer when groundwater levels are rising. In fall/winter, when
groundwater levels are dropping, the forecast quality depends more on the memory of the groundwater system and less on the
input to the system. The mean forecasted groundwater levels align well with the observations, a consistency that is also reflected
in numerous individual forecasts. The figures for all the individual forecasts and wells can be found in the data repository (see

the data and code availability section).
4.3 Forecast quality
4.3.1 Predicted versus measured groundwater levels

Figure 4 shows the ensemble mean prediction (y-axes, the blue lines in Figure 3) against the measured groundwater levels
(x-axes) at lead times of one to four weeks (each row is one lead time), for each of the monitoring wells (each column). The

monitoring wells are ordered from short (left) to long (right) memory times. The orange line is the 1:1 line; if all the dots are on
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Figure 3. Two examples of forecasts with two starting dates for the monitoring wells in Gossau and Kestenholz. The black dots denote the
measured groundwater level, the blue line the mean forecast, and the gray lines the ensemble of forecasts. The dark shaded area shows the

95% prediction interval of the entire forecast ensemble.

this line, it would indicate a perfect fit. The ensemble mean and measured groundwater levels generally show a high correlation,
indicated by Spearman correlation coefficients, all exceeding 0.77. The forecasts for Davos, Trub, and Lamone show a small
consistent bias, where the low groundwater levels are overestimated and the high groundwater levels are underestimated. For
the remaining wells, this is not the case. For the well in Davos, the high groundwater levels show a relatively large spread
despite a strong correlation coefficient.

For the well in Trub, forecasts show high accuracy at short lead times (R = 0.95 for one week), but performance steadily
declines with increasing forecast horizon, reaching R = 0.78 at four weeks. At Trub, the forecast—observation relationship
departs from the 1:1 line at the 4-week horizon, with high groundwater levels underestimated and low levels overestimated.
This pattern indicates a damping of the extremes, as errors in the meteorological input accumulate and the ensemble mean
smooths the rapid fluctuations of this dynamic system. For the well in Volketswil, forecast performance remains high across
all lead times, with correlation values close to one and points tightly aligned along the 1:1 line. This stability reflects the long
response time of the aquifer, where groundwater levels change only gradually and are less sensitive to short-term errors in the
meteorological input. As a result, even at longer forecast horizons, the predictions capture both the magnitude and dynamics
of the measured groundwater levels with very little loss of skill.

Overall, the forecast quality (measured as the Spearman correlation R?) decreases with increasing lead times for all wells, as
expected, but remains high even at a lead time of four weeks. The data shows that groundwater systems with larger memory
times (i.e., Volketswil and Kestenholz) generally have a higher forecast quality than faster responding systems (i.e., Davos and

Gossau). This indicates that groundwater levels in systems with longer memory times can be better predicted. In contrast, in
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more dynamic systems, even small errors in the input data can propagate quickly and become visible in the forecasts, leading

to reduced predictive performance.

Davos Gossau Trub Lamone Kestenholz Volketswil
1701.5 {-R=0.94—2 639 | R=0.94 8P R=O.9?Q§ 307 | R=0-96 f@@ R=0.99 478 { rZ10 22
g abo |oo| j,’o 784 - e #® | 128 S
$ 1701.0 { _qgEeo @
Sy 7 .7 " S
= 1700.5 o 7’ v 306 1o 426 476 { A
= 637 7827 [
1701.5 1 R=0.91 © R=0.87 R=0.88 R=0.92 7 R=0.98 478 1 R=0.99 ZF|
% -4 639 \gn&?’ 284 M?O 307 A AQ‘S(& 128 gy
4 @ __& o B o 4
g 1701.0 1 09 | "‘ a@j% f
. 4 638 — 306 4 4
N 17005 {g 7 o 426 1@ 476 1 A4
& | o T | “ T 4 |
1701.5 1 R=0.89 & R=0.82 __2 R=0.82 R=0.91 B R=0.96 478 1 RZ0.98 _#F|
o 630 1 G 307 A }ﬂ
S 170101 9 a0 u’p 784 | gcilbaRs of gB | 428 - ,’
) | o g F it M 4
; r— 306 1&
" 17003 .‘A 637 f'/ 782 4 Iiyp 426 g' e ]_JIV
1701.5 1 R=0.87 R=0.77 o R=0.78 R=0.89 R=0.9 478 1"R=0.98 _#Z}
¥ 0. %o | 6397 4 Mﬁ T84 £ | 3071 i%’ 428 ﬁ’} 4
$ 17010 { o @@ ‘m 1 ¥ | I T r
L e | o S Y| 7 ..l
< 1700.5 S L o 426 476 1 g5
-~ 637 782 >
170057011701.5 637 638 639 782.5  785.0 306 307 426 428 476 478

Measured head [m]

Figure 4. Correlation plots for each monitoring well (each row) of the measured heads (x-axes) against the forecasted heads (y-axes) at lead
times of one, two, three, and four weeks. Each dot represents the mean value from the ensemble prediction. The orange line indicated the 1:1

line.

4.3.2 Continuous ranked probability score

Figure 5 shows the average continuous ranked probability scores (CRPS) over all forecasts for the six monitoring wells (each
subplot) and each forecasting method. Note that the scales of the y-axes differ between the different subplots. For all wells and
forecasting methods, the CRPS increases with increasing lead time. indicating a loss in the forecast quality with increasing
lead times. Overall, the persistence forecast is performing worst, except for small lead times of 1-2 days. This is expected,
as groundwater levels typically change gradually due to the slow response of aquifer systems, making the groundwater level
tomorrow often very similar to today. The climatology and EGP-based forecasts generally show the lowest CRPS values and
therefore the best performance. The EGP system outperforms the naive forecasts for the wells in Gossau, Trub, Lamone, and
Kestenholz (at larger lead times). For the wells in Davos and Volketswil, the EGP and climatology forecasts show similar
performance. For these wells, and Kestenholz for shorter lead times, it can be concluded that the meteorological forecast data
does not add value, whereas for the other wells the data improves the forecast. The use of a lumped-groundwater model and
historic meteorological data is preferred over an autoregressive model, because the latter is outperformed by the former for

most wells and lead times.
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Figure 5. Continuous ranked probability scores (CRPS) for all four forecasting methods and all six wells. An increasing CRPS indicates

declining forecast quality.

340 4.3.3 Continuous ranked probability skill score

Figure 6 shows the skill of the EGP system, measured as the CRPSS, compared to the persistence forecasts (left column),
the autoregressive model (middle column), and the climatology forecasts (right column). The monitoring wells are ordered
from short (top) to long (bottom) memory times. The different rows show the mean CRPSS for different months over all
forecasts. Values above zero (blue colors) indicate that the EGP system performs better, whereas values below zero (red colors)
345 indicate that the EGP system performs worse. Values around zero (yellow colors) indicate that there is no difference between

the systems. The following general trends are observed in Figure 6:

— The positive CRPSS values in the left column indicate that the ensemble predictions (EGP) generally add value compared
to persistence forecasts. For small lead times (i.e., forecasting a few days ahead) the added value is minimal, or the
persistence forecast even performs better. This is particularly evident in winter at the Davos well, where the model

350 struggles to capture the rapid and snowmelt-driven groundwater dynamics, resulting in lower skill.

— The positive CRPSS values in the middle column indicate that the combination of the meteorological input data (ei-
ther historic or forecasted) and the lumped parameter model outperforms the forecasts generated with an autoregressive
model. This indicates that the use of the lumped-parameter model, in combination with meteorological input data, im-
proves the forecast compared to a model solely based on the head data. The only real outlier is the well with the shortest

355 memory time (Davos), where the autoregressive model performs similarly or even slightly better.

— The data shown in the right-hand column shows that the meteorological forecast data do not necessarily elevate the
forecast skill for all lead times and wells. Only for larger lead times and groundwater systems with shorter memories
(except Davos) do the meteorological forecasts add value. For monitoring wells with shorter memory times, the EGP

system outperforms the climatology forecasts for lead times larger than a few days. This indicates that using meteoro-
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logical forecasts to force the models improves the groundwater level forecast for these wells. For the wells in Lamone

and Volketswil, with the longest memory time, no or little value is added by the meteorological forecast data.

Seasonal patterns in forecast skill are clearly visible, indicating that the quality of the predictions depends on the time
of year and cannot be assumed constant. For Davos, the EGP system performs similarly to, or in some cases worse than,
the climatology forecast, especially during winter, which is likely linked to limitations in the meteorological forecast data
(discussed later). In contrast, the data shows more consistent added value of the EGP system for the well in Gossau across
seasons. These examples highlight that the skill of the ensemble groundwater prediction system is strongly site- and season-

dependent, reflecting differences in aquifer response dynamics as well as the reliability of meteorological inputs.
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Figure 6. Forecast skill measured as the CRPSS for all monitoring wells. In the left column, the ensemble forecasts are compared to the
persistence forecast, and in the right column to the forecasts from the models forced with climatology. CRPSS values above zero (blue
colors) indicate that the ensemble forecasts perform better, whereas values below zero (red colors) indicate that the ensemble forecasts

perform worse.
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4.4 Evaluation of prediction intervals

An important aspect of a (probabilistic) forecasting system is the estimated uncertainty of the forecasted groundwater levels.
The use of past forecasts allows for the evaluation of the prediction intervals through investigating these in relation to the
groundwater level measurements. Figure 7 shows the spread to error ratio (upper plot) and the PICP (lower plot) for all six
monitoring wells. For the metrics shown in both plots, the target value is denoted by the dashed black horizontal line. Values
above these lines indicate underconfidence (i.e., the prediction intervals are too wide), while values below the line denote
overconfidence (intervals are too narrow).

Except for the smaller lead times (< ~ 5 days) and the monitoring well Volketswil, the forecasts are generally slightly
overconfident. The prediction intervals (i.e., the dark shaded areas in Figure 3) should thus ideally be slightly wider. Only for
the well in Volketswil the forecasts are underconfident for larger lead times (~ 1 week), as is most clearly visible from the
PICP values for this well in the lower plot. A more in-depth analysis of the changes in PICP values through the seasons (shown
in Figure C in the Appendices) reveals that the quality of the prediction intervals for Davos, Trub and Lamone shows strong
seasonal variations. These could be linked to heteroscedastic errors (i.e,. the error is smaller at low groundwater levels and vice
versa), which is not accounted for in the noise model. These may be caused by seasonal processes such as snowmelt-driven
recharge (i.e., in Davos) and large summer precipitation events (i.e., in Lamone), which introduce variability and more abrupt

groundwater responses that are not fully captured by the model and forecast data.

1.4 4 —— Davos —— Trub —— Kestenholz

Gossau —— Lamone —— Volketswil
—_—————— ]

Spread/error [-]

1 6 11 16 21 26 31
Leadtime [days]

Figure 7. The spread to error ratio (upper plot) and the prediction interval coverage probability (PICP, lower plot) for all six monitoring

wells. The dashed black lines denote the target value, when the uncertainty would be perfectly estimated according to each metric.
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5 Discussion
5.1 Sources of forecast skill and memory time

The results showed that for small lead times (typically less than a few days) and/or groundwater systems with longer memories,
the meteorological forecasts added little to no value over forecasts with climatological input data, for lead times of up 32 days.
Both of the forecasts made with the lumped parameter model and meteorological measurements preceding the forecast period
did perform substantially better than forecasts based on persistence and autoregressive models. This finding is in agreement
with that of Mackay et al. (2015) for a similar study in the UK. Thus, for short lead times and long memory systems, the use of
meteorological forecast data does not add much to the forecast quality compared to a forecast based on climatology. The use
of a model and the meteorological conditions before the forecasting period does (substantially) improve the forecast compared
to methods that only use the preceding groundwater levels as data.

The results also showed that for larger lead times (upwards from a few days) and/or for shorter memory systems, the forecasts
based on meteorology start outperforming the climatological forecasts. In these cases, the use of a model and meteorological
forecast data clearly improves the forecast quality. This finding is significant because it means that depending on the lead time
and characteristics of the groundwater system (i.e., memory time), one can use different levels of model/data complexities to
generate accurate forecasts. For systems with long memory times (i.e., Volketswil) and for lead times up to a few weeks, there
appears to be no need to add the complexity of meteorological forecast data. For shorter memory systems and longer lead times
in winter, however, this data does add value.

Given the lag in groundwater responses to meteorological variables, forecasts with larger lead times than those tested here
might further benefit from meteorological forecast data. Future studies can test if groundwater level forecasts with larger lead
times (up to a few months ahead) are feasible. Robertson et al. (2024) showed the potential for forecasting groundwater levels
several months ahead in Australia, and it would be interesting to investigate if this can also be extended to Switzerland and

other regions where the environmental conditions are different.
5.2 Biases in meteorological forecasts

Part of the low performances in the ensemble groundwater forecasts can be explained by (consistent) biases in the meteo-
rological forecasts. Figure 8 shows bias factors for the temperature and precipitation, respectively. The bias factor for the
temperature was computed by dividing the average forecasted temperature over the average measured temperature for each
forecast period. The bias factor for precipitation was computed by dividing the forecasted cumulative sum over the forecast
period by the measured cumulative sum. Generally, the meteorological forecasts show relatively low or moderate biases for
most of the wells. For the well in Davos, however, clear structural biases appear, probably due to its location in a mountainous
area. In particular, the temperature bias during winter has a substantial impact on the representation of snow accumulation and
snowmelt in the degree-day model. Even small systematic deviations in temperature can shift the timing and magnitude of
snowmelt, leading to errors in recharge estimates and consequently in the simulated groundwater dynamics during winter and

spring. This mechanism likely explains the lower CRPSS values for Davos in these seasons.
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Figure 8. Bias factors for the temperature (left column) and precipitation (right column) forecasts, split out per month (top row) and year

(bottom row). A bias factor below/above one indicates that the temperature precipitation is underestimated/overestimated.

One possible solution to this would be to bias-correct the meteorological forecasts. This was not implemented in this study,
however, because bias correction in an operational setting may not be so straightforward and is outside the scope of this study.
First, a long period of forecasts is required to determine the bias correction parameters. Second, it needs to be assumed that the
(seasonal) errors are structural and do not change between the years. The data shown in 8 indicate that any correction factors,

particularly for precipitation, are not constant through time.
5.3 Recommendations for future research

In this study, groundwater levels were simulated that resulted from changes in precipitation, air temperature, and potential evap-
oration. Many groundwater systems, including in Switzerland, are also impacted by other natural or anthropogenic stresses,
such as surface water interaction and discharge changes, irrigation, and groundwater pumping. An advantage of the lumped-
parameter model used in this study is that such stresses could easily be implemented in the model (von Asmuth et al., 2008).
However, the difficulty in including these stresses may be in obtaining the input time series. This challenge applies to any
model type and approach, as the accuracy of the forecast ultimately depends on the availability and quality of input data.
Anthropogenic stresses, such as pumping, are often incompletely recorded and may need to be reconstructed from historical
data. Alternatively, pumping scenarios may be constructed by the pumping well manager, as is shown, for example, by Brak-
enhoff et al. (2022). In the latter case, well managers may explore the combined effect of meteorological stresses and different

pumping regimes.
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For natural stresses (e.g., river levels), the forecasted input data may be the output of another impact model (e.g., a rainfall-
runoff model), and one possibility is to test chaining different impact models (i.e., force the groundwater model with additional
ensembles of river levels). Alternatively, machine and deep learning approaches may be tried to directly include the effects of
upstream precipitation on the groundwater levels in downstream aquifers. Deep learning models have also been found useful
to generate ensemble predictions of water temperature in Switzerland (Padrén et al., 2025), also influenced by precipitation
higher up in the catchment, and could also be tested to directly provide groundwater level predictions. Another improvement
and avenue for future research is using deep learning techniques in a hybrid approach, for example, to post-process the forecast
from the lumped groundwater model (Slater et al., 2023). This might also help deal with the effects of heteroscedastic errors

on the prediction intervals.

6 Summary and conclusion

In this study, an ensemble groundwater system was developed to forecast groundwater levels 32 days ahead in Switzerland,
using meteorological ensemble predictions and lumped-parameter groundwater models. The system was tested and evaluated
for 12 years using historic forecast data (2012-2023) and measured groundwater levels for the same period. Data from six
monitoring wells in alluvial aquifers in Switzerland were used to test the quality and skill of the forecasts generated by the
system. These wells represent diverse hydrogeological and climatic settings, differing in altitude, groundwater dynamics, and
response times to recharge processes driven by precipitation and snowmelt.

Based on the results, it is concluded that forecasts with high quality can be made for the investigated lead times (32 days)
using the proposed ensemble groundwater prediction (EGP) system. The required level of data—model complexity to produce
reliable forecasts depends on the memory time of the aquifer system, which serves as an indicator of its reactivity and dy-
namics in response to infiltration. The results suggest that, for the investigated monitoring wells and lead times, greater model
complexity is justified for short-memory systems that respond rapidly to recharge, whereas simpler models may suffice for
long-memory systems with slower, more buffered responses. For long memory systems, the use of a lumped groundwater
model and climatology suffices to produce good forecasts at a 32-day lead time. While these results may be expected, the
findings from this study confirm this expectation and provide valuable information for the design and development of future
operational groundwater level prediction systems.

Future research should investigate if the ensemble groundwater prediction system can also be applied to produce fore-
casts with larger lead times, up to a few months, an important time frame for groundwater resources management. Fore-
casting groundwater levels in mountainous regions, such as Davos, remains challenging and might require more advanced

bias-correction and post-processing techniques to produce skillful forecasts.

Code and data availability. All data and code necessary to reproduce the figures and tables from this study are available from the following

Zenodo repository: https://doi.org/10.5281/zenodo.17171933
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Figure A1. Measured and simulated groundwater levels from the autoregressive models fitted to the entire observation period. The estimated
AR model order for each monitoring well is given above each plot, along with the R? computed over the entire period. Note that the metrics

are rounded off to two decimals and never exactly 1.0.

Appendix A: Autoregressive models

Autoregressive (AR) models were constructed for each monitoring well to assess how well a persistence-based forecast might
work for predicting the groundwater levels. The models were developed with the Python package Statsmodels (Seabold and
Perktold, 2010) using weekly groundwater level measurements. The model order was automatically selected using the Bayesian
Information Criterion (BIC) from all possible AR combinations up to order 10 (i.e., using groundwater level fluctuations from
the last 10 weeks). Figure A1 shows the resulting groundwater level simulations for each well. As is clear from the data in the
figure, the model performance increases with increasing memory time, but the AR models are generally capable of simulating

the groundwater levels with high accuracy.
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Figure B1. Measured and simulated groundwater levels for the initial Pastas models calibrated to the data from 2002-2012. The vertical
dashed line denotes the end of the calibration period and the start of the validation period. The reported R? in the figure is computed over the

entire period 2002-2023 and therefore does not match the values in Table 2. The plots on the right show the cumulative frequency distribution.

Appendix B: Simulated groundwater levels
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Figure C1. Values of the prediction interval coverage probability (PICP) for each monitoring well (each subplot) and split by the seasons

(see the caption of Table 2 for the coding of the seasons.

Appendix C: Seasonal PICP values
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