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Abstract. Identifying the driver(s) of a process or phenomenon is central to understanding and predicting its future state.

In complex hydrometeorological systems, a process can have multiple drivers dynamically coupled to the system across

timescales. Thus, a robust method to identify drivers is imperative. In hydrological sciences, methods like multivariate regression

and, more recently, Big Data machine-learning approaches rely on finding a co-relation between variables, rather than identifying

cause-effect relations. This study evaluates cause-effect discovery (Causal Discovery or CD) algorithms in hydrometeorological5

systems. Although earlier studies have made important contributions to exploring CD methods, they have primarily focused

on bivariate methods in simple synthetic environments. Specifically, we evaluate the following four theoretically distinct

multivariate CD algorithms, (i) TCDF (ii) VARLiNGAM, (iii) PCMCI+, and (iv) DYNOTEARS. We evaluate these algorithms

within a large, complex simulated environment of the Global Land Data Assimilation System (GLDAS) where the drivers,

reference truth, are known perfectly. We evaluate the drivers identified by CD methods against this reference truth and also10

contrast its results with the widely used method of co-relation identification, Pearson’s Correlation Coefficient (PCC). The

results show that CD methods identify fewer false drivers compared to PCC, across a range of Köppen-Geiger climate types.

For example, PCC failed to distinguish true drivers from instantaneous and lagged cross-correlations, typically present in

hydrometeorological systems. Whereas, CD methods eliminate a higher number of false instantaneous and lagged drivers.

Thus, though PCC identifies the highest number of true drivers, it suffers from high false drivers. Overall, CD methods perform15

similar to or better than PCC, while PCMCI+ and DYNOTEARS performed the best. Further, we test whether time-series

prediction models perform better when predictors are limited to those identified as causal by CD methods. Evaluation of

surface soil moisture predictions during drought shows that CD-based models outperform PCC-based models and are more

parsimonious. Thus, we demonstrate the effectiveness of using causal discovery to eliminate spurious relations and obtain

a robust set of drivers for prediction and process understanding across different climate conditions. This study overviews,20

demonstrates and tests efficacy of CD methods in studying cause-effect relations in hydrometeorological systems. By exposing

their capabilities and differences in a simulated environment, we hope to encourage their use in the real world and move beyond

co-relation.

1

https://doi.org/10.5194/egusphere-2025-4650
Preprint. Discussion started: 5 November 2025
c© Author(s) 2025. CC BY 4.0 License.



1 Introduction

The Earth’s hydrological system is a complex system of energy, water, and nutrient circulation. It interacts, at various spatial25

and temporal scales, with weather, climate and human interventions. Changes in the system via change in the state of variables

and their interaction patterns cause diverse events such as floods, droughts, heatwaves and changes in streamflow regimes.

To understand, adapt and mitigate such events, or for sustainable use of water resources, a comprehensive understanding of

the processes leading to such phenomena is required. Fundamental to process understanding is a robust method to identify

the true drivers of a process (Christian et al., 2024; Van Oldenborgh et al., 2022; Barriopedro et al., 2023; Mishra et al.,30

2022). Historically, driver identification has been based on correlation, simple regression, and probability-based models such

as multivariate regression, auto-regressive modelling, and combinations thereof (Tasker, 1980; Holder, 1985). These methods

rely on maximising correlation or lagged-correlation, rather than identifying direct causation.

Over time, process understanding has been translated into models of the hydrological system that have grown in complexity

with increasing availability of data and computational resources (Peel and McMahon, 2020). These physically based models35

encode process understanding and drivers into numerical schemes to simulate hydrological variables (Beven et al., 1984;

Beven, 1989; Zhang and Montgomery, 1994; Warszawski et al., 2014; Dutra et al., 2017), with several of these models now

simulating the water cycle of the Earth (Schellekens et al., 2017; Gosling et al., 2023). However, these models are limited by

approximations and parametrisations within their governing equations to represent sub-grid and sub-timestep processes, which

has led research attention towards purely data-driven methods of Machine Learning and Artificial Intelligence (ML) to improve40

model performance (Zhang et al., 2018; Kratzert et al., 2019; Nearing et al., 2021; Feng et al., 2023).

While ML methods can outperform physical models (Kratzert et al., 2019; Xu and Liang, 2021; Nearing et al., 2021), they

replace physically-based process understanding with complex and opaque model architectures. Despite large volumes of data

being required to train these models (Tripathy and Mishra, 2024), methods like Random Forest, Long Short-Term Memory and

Decisions Trees are growing in popularity in hydrology. Although ML methods can provide outstanding results, the relational45

approach at their core, by definition, falls short of identifying causal predictors. This results in a two-fold problem. First, it

prohibits identifying drivers of a process, which is critical to decipher the impact of climate change on the water cycle across

spatio-temporal scales. Second, is the old problem of “getting the right answers for the wrong reasons” (Kirchner, 2006).

This is evident when modellers interpret ML results; they rely on predictor importance methods to explain plausible model

structures, which do not capture cause-effect relations. This task is challenging due to the opaque nature and complexity of ML50

methods (Nearing et al., 2021; Samek et al., 2019; Höge et al., 2022).

An alternative approach to identify drivers is to make use of the considerable progress that has been made in the science of

cause and effect. Causal discovery (CD) is concerned with finding cause-effect (Causal) relations among variables from purely

observational data, while causal inference offers methods to quantify the effect of intervening in a system and quantifying the

influence of certain variables, using CD or actual interventional data (Pearl, 2009; Peters et al., 2017). So far, only a few studies55

have used CD for studying hydrometeorological systems. Following is a short summary of key terms, the Granger Causality

(GC), introduced by Granger (1969), uses statistical measures to find causality between a pair of variables. Specifically, if
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including the past of a variable X, reduces the residuals of a prediction of Y, then X Granger causes Y. The Transfer Entropy

(TE) (Schreiber, 2000), is an information theoretic extension of GC that finds the difference in information contained in a

variable Y, with or without a given variable X, where the measure of information is the Shannon Entropy (Shannon, 1948).60

Convergent Cross Mapping (CCM), introduced by Sugihara et al. (2012), is a method based on time-delay embedding and

reconstruction of deterministic dynamical systems to determine causality between a pair of variables. Finally, Pearl’s Causality

(Pearl, 1998, 2009), uses Graphs (Bayesian Networks) to represent the causal relations of a multivariate system, like PC-alg

(Spirtes and Glymour, 1991). PC-alg uses conditional independence tests to find causal parents (drivers) of each variable in the

system. For a brief history of the development of CD methods we suggest reading Ombadi et al. (2020).65

In hydro-meteorology applications of CD have primarily used Granger Causality based methods, bi-variate methods, approaches

that do not account auto-correlation, or methods based on deterministic dynamical theory. Examples include Ruddell and

Kumar (2009), who used TE to find causality between ecohydrological processes during different seasons. Tuttle and Salvucci

(2017) used GC to understand the effect of precipitation persistence and seasonality in soil-moisture and precipitation feedback.

Rinderer et al. (2018) used GC, TE and various measures of correlation and information flow to understand subsurface70

hydrologic connectivity. Goodwell et al. (2020) used various information theoretic measures to identify different types of

plausible interactions in a multivariate system. Wang et al. (2018) used CCM to explore the effect of soil moisture on

precipitation. Similarly, Bonotto et al. (2022) used CCM to find causality between groundwater and streamflow and reported

weaker causal links during and after a drought period. Delforge et al. (2022) used CCM and graphical modelling based PCMCI

(an extension of PC-alg) to discover hydrologic connectivity in a synthetic and real karstic site. Shi et al. (2022) used CCM to75

eliminate the spurious bi-directional correlation between meteorological and hydrological drought indices, isolate the causality

from meteorological to hydrological drought, and estimate drought propagation times. Chauhan et al. (2023) used PCMCI

to discover the interconnections of hydrologic and thermodynamic fluxes across neighbouring basins. While Wang et al.

(2025) used PCMCI to understand the causal interactions in a complex system comprising ecological, hydrological and human

activities.80

Hydrological time-series are typically stochastic, multivariate, highly interconnected, contain self-causation (via auto-correlation)

and contemporaneous causal relations. CD methods capable of handling such systems are required to unravel the true causality

in Hydrological Sciences. While the adoption of CD methods in Hydrological Sciences is growing, it has been limited

predominantly to GC, TE and CCM. Ombadi et al. (2020) provides an example where four CD methods, GC, TE, CCM,

and PC-alg, were evaluated on the output of a simple bucket hydrological model and reported their results in the context of85

noise, time series length, and sample size. Several of these methods have limitations, particularly in the context of hydrological

sciences. For example, GC, TE, and CCM are bivariate methods and cannot find the correct causation where a third (or

more) variable acts as a confounder (common driver) between two variables (Ombadi et al., 2020; Delforge et al., 2022).

Hydrometeorological systems are typically highly interconnected, across different timescales, with multiple variables responsible

for driving a process. Similarly, many variables show strong state dependence (self-causation via autocorrelation) which cannot90

be handled by GC, TE, CCM or PC-alg (Runge et al., 2019b). Further, certain causal interactions happen at contemporaneous

times. Since GC, TE by definition look for causal relations from past to future values, they cannot handle contemporaneous
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interactions (Granger, 1969; Sugihara et al., 2012), while PC-alg also does not consider contemporaneous interactions (Runge,

2022). Finally, real-world observations of hydrological systems are typically noisy and contain uncertainties. The deterministic

dynamical system assumption of CCM limits its use in such cases (Sugihara et al., 2012; Ombadi et al., 2020).95

In this study, we extend the evaluation of CD methods in a complex hydrometeorological system by evaluating four theoretically

distinct methods of causal discovery. The algorithms overviewed and evaluated use frameworks suitable to find causal relations

in multivariate time-series data. Further, by considering auto-correlation and cross-lagged and contemporaneous relations, these

are suitable to identify self causation and causal relations across multiple time lags. Finally, by not assuming a deterministic

system, these are theoretically well suited to the stochastic nature of hydrometeorological systems. Developed across diverse100

contexts and problems, we evaluate the following CD algorithms: i) Score-based structure learning: DYNOTEARS (Pamfil

et al., 2020), ii) Noise-based: VARLiNGAM (Hyvärinen et al., 2008), iii) Constraint-based method: PCMCI+ (Runge, 2022),

and iv) Granger causality based: Temporal Causal Discovery Framework (Nauta et al., 2019). We evaluate their performance

by their ability to identify known causal drivers within a simulated dynamical system, GLDAS 2.0 (Li et al., 2018). We seek

to answer the following questions:105

a) Can CD methods identify the true drivers in a complex simulated hydrometeorological system?

b) What is their overall performance, in terms of identifying causal relations and eliminating non-causal co-relations?

c) What is the trade off between choosing a correlation-based approach and CD methods?

d) Identifying causal drivers of hydrological variables and time-series predictions.

The primary aim of this paper is to overview, demonstrate and evaluate state-of-the-art methods of Causal Discovery for110

identifying true drivers of a process. By reviewing the causal discovery literature, we select methods better suited for hydrometeorological

systems, and apply them on a large and complex simulated environment to recover the process drivers. Then, we contrast the

results with PCC to expose the redundancies introduced by relying on correlation based methods. Further, to understand the

significance of finding causal drivers in applications, we demonstrate its use to obtain parsimonious models for robust prediction

under changing conditions. Like Ombadi et al. (2020), we hope this work encourages the hydrology community to embrace115

Causal Discovery methods for robust and interpretable understanding and transcend beyond the limitations of co-relation based

approaches.

The paper is organised as follows: Section 2 lays out the approach for evaluating CD methods while describing some representations

of causality and explains the CD methods evaluated here. Section 3 presents the results of overall evaluation across different

climate zones and in particular of causal drivers of surface soil moisture. In Section 4 we evaluate the performance of each120

CD method, provide some perspectives towards applying them, and discuss the limitations of our work. Section 5 summarises

main findings of this work.
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2 Methodology and Methods

We divide this section into two parts: Methodology, which lays out the overall approach for the analysis and Methods, which

explains the CD methods, their assumptions and their evaluation strategy adopted. We begin the Methodology subsection with125

a summary of the overall methodology adopted to evaluate the performance of CD methods. In the Methods sub-sections we

describe some standard concepts and methods to represent cause-effect relations. Then we describe some metrics to evaluate

different methods based on these representations. We present details of our synthetic environment and the resulting reference

truth for evaluating the methods. Next, we describe the CD methods evaluated here, followed by a detailed explanation of each

method and their assumptions. Finally, we describe the strategy adopted to test the efficacy of CD-based time-series prediction130

models.

2.1 Overall Methodology

The evaluation of CD methods was conducted in a simulated environment, since discovering true causal relationships from

real-world observational data is inherently challenging. Several factors can complicate both the application and interpretation

of CD methods: mismatches between the timescales of processes and their observations, the presence of observational or135

process noise, or simply the unavailability of key variables of a process. Even when such difficulties are absent, establishing

causality for well-understood processes remains a non-trivial task (Delforge et al., 2022; Ombadi et al., 2020). Applying CD

methods in a synthetic environment avoids such issues. Although these simulated environments are only abstractions of the

real world, they provide the crucial benefit of knowing the true causal relations via their generating equations.

To evaluate the ability of CD methods to discover true causal relations from data, we applied them on output from a physics-140

based hydro-meteorological Land Surface Model. Based on a literature review of the model structure and its governing

equations (Appendix A) we determined which variables are causally related, which formed the reference truth against which the

causal methods could be compared (Fig. 2a). Then, we applied the CD methods to the simulated data and recorded the estimated

causal relations. These estimated causal relations were then compared to the reference truth to evaluate the performance of each

CD method.145

Detecting the presence of causal links is important to understand the connections between various processes. Similarly,

correctly identifying the absence of causal links is important to eliminate correlated yet causally unrelated variables. This

provides a parsimonious picture and potentially leads to a simpler representation of the overall system. Thus, our evaluation

involves accuracy of CD methods on both aspects, of correctly identifying the causal links and their absence.

Further, to understand the robustness of CD methods in different climatic conditions, we performed the analysis on data from150

nine different locations. These sites span eight distinct Köppen-Geiger climate classes across Tropical, Temperate, Arid, and

Cold zones. We also compare our results with a non-causal method, we conducted the analysis using the Pearson’s Correlation

Coefficient (PCC) method as well. We selected PCC due to its simple interpretation and wide acceptance.

Finally, we demonstrate the application of causal knowledge acquired above to a typical problem in hydrology, that of split-

sample prediction. We apply PCC and CD methods as a predictor selection step to identify the predictors of surface soil155
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moisture. We feed these predictor sets into machine learning models for predicting surface soil moisture time-series and

evaluate their performances under drought period. The next section describes methods to represent causal relations in a

multivariate system.

2.2 DAG and Adjacency Matrix

b)

 = 

 = 

Generating equations Directed Acyclic Graph Adjacency matrix

0 0 0 0

1 0 1 0

1 0 0 1

0 0 0 0

0 1 0 0

0 0 1 0

1 1 0 1

1 0 0 0

Predicted adjacency matrix
 

a) c) d)

Figure 1. Three equivalent methods to describe cause-effect relationship. In a) variables X1
t ,X3

t and X1
t ,X4

t are input variables to generate

X2
t and X3

t respectively. This is represented as a graph in b) with directed edges from nodes X1
t ,X3

t into node X2
t and from nodes X1

t ,X4
t

into node X3
t . The adjacency matrix in c) represents this with binary operators in the corresponding cell of two variables, for example the

directed edge in b) between X4
t and X3

t is shown with ‘1’ in the fourth column (cause) and third row (effect). d) shows an exemplar adjacency

matrix compared and its cells classified, with respect to c).

In a dynamical system, output variables change state through forcing variables applied to the system, and in response to160

coupling amongst variables, boundary conditions, thresholds and process noise. Consider the simple dynamical system in Fig.

1a where the cause-effect (causal) relation among variables is represented by functional relationships. This causal relationship

can be schematised using graphs as well (Fig. 1b). Graphs represent the relations between variables (nodes) using arrows or

links (edges). To represent a causal relation with a graph, it requires two necessary conditions, directed edges and acyclicity.

Since causal relations are direct cause-effect relations, a causal graph requires all the edges to be directed. Further, due to165

temporal ordering of cause-effect relations, a causal graph cannot contain cycles, for example, rainfall and soil moisture are

known to form a positive feedback under certain conditions (Guillod et al., 2015; Bui et al., 2023). However, while rain can

affect current and future soil moisture states, soil moisture can only affect the future state of rain, not the current or past

states. A graph with acyclicity and directed edges is called a Directed Acyclic Graph or DAG (Fig. 1b). DAGs are a common

representation of causal relations (Pearl, 2009; Peters et al., 2017).170

A DAG can also be represented as a matrix, called an Adjacency Matrix (Fig. 1c) (Peters et al., 2017). Representing DAGs as

a mathematical object allows various mathematical operations to be performed on it (see Section 2.3). An adjacency matrix

has its rows (or columns) named after the variables of the system and its columns (or rows) as the transpose of the former. The

existence (or non-existence) of a relation between two variables is represented with a binary operator (1 and 0 or true and false)
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in the corresponding cell of the matrix. To show the directionality of relations, we choose to define the adjacency matrix such175

that the causes reside in the rows and the effects reside in the columns (see Fig. 1c).

We note that the strength of causal relations can be represented by the coefficients of the adjacency matrix, such that the values

lie between (−∞,∞). However, in this paper we are only interested in the presence (and absence) of causal relations, thus we

restrict the adjacency matrices to represent the same via 1′s and 0′s.

An interesting consequence of causality and acyclicity of DAGs is the lower triangular ordering of the coefficients of the180

adjacency matrix (Cunningham and Schrijver, 1998; Park and Klabjan, 2017). It can be shown that by following a simple rule

(1) for reordering the rows ri of an adjacency matrix Aij , it can be converted into a lower triangular form.

aij = 1 if ai→ aj and i < j (1)

where→ represents a causal relation between variables ai and aj

The following section discusses some methods to compare the similarity of two causal graphs.185

2.3 Performance evaluation metrics

To compare two graphs, i.e. adjacency matrices, say where one represents the reference truth and the other an estimate of

truth respectively, we can create a one-to-one correspondence between their coefficients. Thus, with two possible values in

corresponding cells of both the matrices, we have four classes of comparison outcomes. As an example, consider matrices c)

and d) in Fig. 1 as estimated and true adjacency matrices, respectively. Now, if corresponding cells in the true adjacency matrix190

and the estimated adjacency matrix contain 1, then the cell in the estimated adjacency matrix is a class of True Positive or TP.

Similarly if corresponding cells contain 0, the cell is under the True Negative category (TN). If the true and estimated cells

contain 0 and 1 respectively, then the cell is termed a False Positive (FP). Similarly, a False Negative class (FN) implies a 1

in the true adjacency matrix and 0 in the estimated adjacency matrix, see Fig. 1d) as an example. Using these classifications,

various quantifications of adjacency matrix can be calculated (below).195

(a) Recall

The primary aim of any predictor or causal discovery algorithm is to identify the drivers of a system. Thus we choose

Recall (or True Positive Ratio) to evaluate the ability to accurately identify the correct links in the adjacency matrix

(Powers, 2020).

Recall =
TP

TP + FN
, ∈ [0,1] (2)200

(b) Matthews Correlation Coefficient (MCC)

While Recall is a good metric to evaluate performance in identifying the true positives detected by an algorithm, it does

not consider the true negatives and false positives classes. As a result, Recall does not consider the imbalance in different

classes of the confusion matrix. MCC considers all the four classes (TP, TN, FP and FN ) and thus is unaffected by
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imbalance in the dataset (Chicco and Jurman, 2020).205

MCC =
TP ·TN −FP ·FN√

(TP + FP ) · (TP +FN) · (TN + FP ) · (TN + FN)
, ∈ [−1,1] (3)

(c) False positive ratio (FPR)

False positive ratio is defined by the number of False Positives identified as a proportion to True Negatives in the

adjacency matrix (Powers, 2020).

FPR =
FP

FP + TN
, ∈ [0,1] (4)210

2.4 Synthetic model and data

We surveyed various model outputs with the following criteria in mind: a) all data generated by the model are available for

use, b) all model forcing variables are available, and c) all the time-series are available at the same resolution at which they

were generated or used. With these criteria, we surveyed various models (Gosling et al., 2023; Schellekens et al., 2017) and

selected the Global Land Data Assimilation model Version 2.0 (GLDAS) outputs (Li et al., 2018). GLDAS primarily models215

the natural processes of land surface and sub-surface, with no representation of human activities like irrigation, water resources

management practices like dam and canal operations. Other models such as WaterGap, PCRGLOB-WB, H08 etc, simulate

such processes, however, their publicly available datasets, did not meet our above criteria.

The GLDAS dataset is a family of outputs from three Land Surface Models, Catchment Land Surface Model (Koster et al.,

2000; Ducharne et al., 2000) (CLSM), NOAH-Land Surface Model and the Variable Infiltration Capacity model. We choose220

the output from the CLSM model. CLSM is based on the Mosaic Land Surface Model (Koster and Suarez, 1992) and adopts

its energy and canopy interception routines. The model does not have vertical layers and it adopts the TOPMODEL (Beven

and Kirkby, 1979) framework to simulate sub-surface moisture, defined as the average amount of water required to saturate

the catchment. The vertical distribution of soil moisture profile is derived from relations explained in Clapp and Hornberger

(1978). Snow is represented with a three-layer snow model described in Lynch-Stieglitz (1994).225

To create an adjacency matrix from the generating equations of CLSM, we did a literature review of the model structure

and equations (Appendix A), and created the True CLSM adjacency matrix (Fig. 2a), following the definitions of a DAG

and its corresponding adjacency matrix (explained in Section 2.2). While a majority of the variables are generated with

contemporaneous states, some variables, like storage terms (surface soil moisture storage, root-zone soil moisture, etc.), are

dependent on their previous states. These are represented with lagged relations (Fig. 2a). The True CLSM adjacency matrix230

acts as a reference truth for our analysis, representing the cause-effect relations in the generating equations. We extracted data

from eight different Köppen-Geiger Climate zones (Figures 2b-f) to understand the performance of these methods in different

climates. More details regarding the forcing, simulated variables and simulation period are described in Appendix A.
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b)a)

c)

d)

e)

f)

g)

Figure 2. a) The True adjacency matrix representing the causal relationships between the simulated and forcing variables of CLSM-F2.5

model, run under the GLDAS-2.0 dataset. The matrix is created after literature review of the model architecture and generating equations,

and using the definition of adjacency matrix adopted in Section 2.2. There are 82 true positives and 1376 true negatives in the matrix. b) to

f) shows the basins and the grids within, where the time-series data of simulated and forcing variables, were selected for the analysis. We

extracted data from nine grid points from six major river basin of the world across eight distinct Köppen-Geiger Climate Classes. Though

CLSM does not use a river routing scheme, we overlaid the HydroSHEDS (Lehner et al., 2008) river network to avoid choosing a grid over

a stream, and manually selected points without any preference. g) The legend showing the various Köppen-Geiger Climate Classes.
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CD method Modelling Free parameters

PCC Finds statistically significant co-variance of variables -Significance threshold

TCDF Uses Convolutional Neural Networks with attention mechanism to find

causal parents of each variable in time-series.

- Hidden layers - kernel size - number of

epochs - dilation coefficient - significance

- learning rate

VARLiNGAM Fits a SVAR model in two steps. First step uses classic VAR modelling

of lagged causal relations, second step uses ICA to find causal ordering

of contemporaneous causal links

- Maximum lag to model

PCMCI+ Explicitly finds a DAG using conditional independence tests in two

steps. First step uses PC-algorithm to find skeleton of causally linked

variables. Second step uses MCI to eliminate and direct edges in

skeleton.

- Significance threshold, αPC - Maximum

and minimum lag to model - Conditional

independence test

DYNOTEARS Fits a SVAR model in one step. Uses continuous optimization to

reduce error of SVAR model and an acyclicity constraint

- Sparsity penalty terms, λw& λa -

Maximum cyclicity allowed, h(W)

- Coefficient threshold, Wthreshold -

Maximum lag to model
Table 1. Table summarising PCC and Causal Discovery algorithms considered for evaluation.

2.5 Methods: Causal Discovery algorithms

Table 1 summarizes the assumptions, modelling framework and free parameters of the various CD methods evaluated here. As235

mentioned above, each of these methods can be applied to a multivariate time-series dataset to unravel drivers of variables with

multiple confounding, self causation, and contemporaneous and lagged causal relations. These methods adopt theoretically

different modelling frameworks, for example, TCDF uses traditional Neural Networks to model time series datasets and uses

GC to interpret the attention scores to unravel causal relations in the data. In turn, both VARLiNGAM and DYNOTEARS

use traditional Structural Vector Auto-regressive model (SVAR) modelling to find the causal relations in the data. However,240

they implement different strategies to find the coefficients of the SVAR model. PCMCI+, on the other hand, uses a host of

conditional independence testing to find causal drivers of a variable.

For the section below, we consider having time-series data for ‘d’ variables in X = {xk
t }t∈(0,1,...,T ) for {xk

t } ∈ Rd.

2.5.1 Score-based structure learning: DYNOTEARS

Introduced by Pamfil et al. (2020), DYNOTEARS seeks to find causal relations in time-series data by combining classic245

SVAR modelling with the acyclic property of DAGs. It models the relationships among the variables with an SVAR model

and estimates its coefficients by minimizing a loss function. To ensure these coefficients represent only causal relations,

DYNOTEARS considers the coefficient matrix as an adjacency matrix. Since an adjacency matrix has to be acyclic by

definition, it exploits this by introducing a new term in the loss function. This new loss term represents the cyclicity of
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the adjacency matrix. Thus, by simultaneously minimizing the loss of fit of the SVAR model and ensuring its acyclicity,250

DYNOTEARS models the relations in the data and ensures the relations are strictly causal.

Specifically, it finds the coefficients of an SVAR model with p lags:

xk
t = xk

t W +xk
t−1A1 + · · ·+ xk

t−pAp, for t ∈ (p, · · · ,T ) and for all k ∈ (1, · · · ,d) (5)

where W is a d× d matrix containing the coefficients that capture contemporaneous relations among the variables. Thus

it is equivalent to an adjacency matrix with only contemporaneous rows and columns (x1
t ,x

2
t , · · · ,xd

t ). Similarly, the matrices255

A1, · · · ,Ap contain the coefficients that reflect the lagged relationships between variables. Thus, it is equivalent to an adjacency

matrix which represents lagged relations, hence it has both contemporaneous and lagged variables in its rows and columns but

entries only in the lagged variables rows.

Further Eq. (5) can be rewritten as Eq. (6) such that X is an n× d matrix with each row containing xk
t , while Xt−1, . . .

are its lagged versions. This can be further compacted such that all lagged relations are represented by A(= [A1, · · · ,Ap]) and260

contemporaneous relations by W (Eq. (7)). Note that since A contains only lagged relations, it only connects earlier time-steps

to later ones and is inherently acyclic due to time ordering (Fig. 1b).

Xt = XtW +Xt−1A1 + · · ·+Xt−pAp (6)

Xt = XtW +X−A (7)

DYNOTEARS estimates the coefficients of the SVAR model, W and A, using continuous optimization to reduce the error of265

fit. The loss function F (W,A), contains four terms (Eq. (9)). The first term is the sum of square of errors (ℓ2 norm) to reduce

the error of fit. Next, since the causal relations in real world data are expected to be sparse, i.e. only a few variables affect a

particular variable, thus many coefficients in W and A are expected to be zeros. To encourage this sparsity, a penalty term is

added to reduce the number of non-zero coefficients. This penalty is based on the ℓ1 norm - the sum of the absolute coefficients

of a matrix. This penalty term is added for both the matrices and weighted with a tuning parameter to control the degree of270

sparsity: λW ∥W∥1 and λA ∥A∥1. Finally, to represent causal relations, the matrices W and A must be acyclic. As discussed

earlier, A is inherently acyclic. To enforce acyclicity of W, a term is introduced in the loss function to penalize cyclicity in

W. Here the cyclicity of a matrix W is expressed as a mathematical function as:

h(W) = tr
(
expW◦W)

− d (8)

where:275

– tr is the trace of a matrix (the sum of its diagonal entries),

– ◦ denotes the Hadamard product (element-wise matrix multiplication),

– and d is the number of variables.
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This function equals zero if and only if W is acyclic. Intuitively it provides a mathematical formulation of cyclicity, as a

continuous function, which can be minimized by an optimization scheme. As suggested by Zheng et al. (2018), the equality in280

Eq. (8) can be solved using the augmented Lagrangian method. The resulting loss function takes the form as:

F (W,A) =
1

2d(T +1− p)

∥∥X−XW−X−A
∥∥2

F
+ λW ∥W∥1 + λA ∥A∥1 + αh(W) +

ρh(W)2

2
, (9)

which can be solved using standard optimization solvers like L-BFGS-B (Limited-memory Broyden, Fletcher, Goldfarb, and

Shannon optimization method with bound constraints, Byrd et al. (1995)). Finally, since the causal relations are represented

by coefficients of the SVAR model, some coefficients can be very small. To ignore such coefficients, the algorithm allows285

a user defined threshold, Wthreshold, so that only coefficients greater than this threshold represent a causal relation. Thus,

DYNOTEARS offers five free parameters to control the algorithm. The two sparsity penalty terms λw, λa, the maximum

cyclicity allowed h(W), the threshold of SVAR coefficients Wthreshold, and the maximum lag to search for.

2.5.2 Vector Auto-regressive modelling using Non-Gaussian noise: VARLiNGAM

Similar to DYNOTEARS, VARLiNGAM, introduced by Hyvärinen et al. (2008), seeks to model the causal relations in time290

series data with an SVAR model. To find the model coefficients, it uses a classic least squares solution and exploits the lower

triangular ordering of the adjacency matrix. Similar to DYNOTEARS, it considers the coefficients matrix as composed of a

contemporaneous adjacency matrix and a lagged adjacency matrix. It starts by calculating an initial estimate of the lagged

adjacency matrix, this captures the lagged relations in the data. The estimated lagged effects are then subtracted from the

original data to get the residuals. Now these residuals are assumed to contain only contemporaneous relations. To find the295

contemporaneous causal relations in the residuals, it searches for an ordering of the variables such that the resulting matrix is

lower triangular, thus representing a DAG. Finally, it uses the contemporaneous adjacency matrix to get the final estimate of

the lagged adjacency matrix. Specifically it seeks to model the data with an SVAR model of p lags as:

Xt =
p∑

τ=0

BkXt−k + η̂t, (10)

where Xt is a d×n matrix containing the time series data for all d variables. Bk is a d× d matrix of the causal relations at300

lag k. η̂t is a vector of errors obtained from model inaccuracy. To estimate the coefficients of Bk, it breaks down the matrix

into a contemporaneous matrix B0, which contains the instantaneous relations. While Bk for k = 1, . . . ,p, contains the lagged

relations. It begins by calculating an initial estimate, M̂k, of the lagged relations Bk, k>0, using an ordinary least squares

solution. Then it removes the effect of lagged relations from the data to get the residuals as:

ût = Xt−
p∑

k=1

M̂kXt−k, (11)305

these residuals are assumed to contain only contemporaneous relations. To unravel these relationships it uses LiNGAM

analysis.

The Linear Non-Gaussian Structural Equation Model or LiNGAM analysis was introduced by Shimizu et al. (2006).

LiNGAM allows modelling of causal relations in a vector regressive model (i.e. a SVAR model with no time delays). To

12

https://doi.org/10.5194/egusphere-2025-4650
Preprint. Discussion started: 5 November 2025
c© Author(s) 2025. CC BY 4.0 License.



find the coefficients matrix, it searches for an ordering in the columns of the matrix such that the resulting matrix is lower310

triangular and hence equivalent to a DAG representing causal relations. Note that for a small number of variables this can

be done by following the steps in Eq. (1). However, for a large number of variables this becomes computationally expensive.

LiNGAM finds this ordering by posing the problem as a classic Independent Component Analysis (ICA) problem (Hyvärinen

et al., 2001). Consider Eq. (11) written as:

û = B0û+ e (12)315

û = Qe, where Q = (I−B0)−1 = W−1, (13)

Here we drop the time subscript since all relations are at the same time-step. The aim is to find a permutation of the matrix W

such that it has ones on its diagonals. So that W = I - B yields a matrix with zeros on its diagonals, which is a requirement of

an adjacency matrix representing a DAG. To do this, it decomposes the W using ICA into W = PDW where D is a diagonal

matrix and P is the particular permutation matrix which yields ones on the diagonals of DW. Thus we obtain the estimate for320

the contemporaneous matrix B, which is used to update the estimates of the lagged adjacencies using Eq. (14).

B̂k = (I−B0)M̂k for k = 1, . . . ,p (14)

Thus VARLiNGAM has one free parameter, the maximum lag parameter, to control the application of the algorithm.

2.5.3 Constraint-based causal discovery: PCMCI+

The constraint based PCMCI+ algorithm (Runge, 2022) uses conditional independence (CI) tests to find causal parents (drivers)325

of variables in multi-variate time-series data. It achieves this in two steps, i) skeleton identification phase using a modified form

of PC-alg (PC1), to model lagged relations, and ii) full skeleton phase using Momentary Conditional Independence tests, to

discover contemporaneous relations.

In the first phase PCMCI+ creates a skeleton, i.e. an undirected graph, of all plausible lagged relations. Thus a graph G is

initialized with all possible edges between pairs of contemporaneous and lagged variables. Then to remove the non-causal330

relations (edges) it uses CI testing. It uses the PC1 algorithm to reduce the number of CI tests required. Thus it ends with a

partially directed graph representing lagged causal relations.

The second phase is designed to identify contemporaneous and self causation. It begins by re-initializing the graph G obtained

at the end of the first phase. Once again CI tests are used to remove non-causal edges. Here it uses Momentary Conditional

Independence tests, which unlike PC1, also considers contemporaneous and self causation (Runge et al., 2019a). Additionally,335

collider orientation and rule orientation phase are used to orient any un-oriented contemporaneous or ambiguous links. Thus,

it ends with a DAG likely representing the underlying causal relations in the data. We briefly explain the algorithm below.

The skeleton identification phase begins by creating a skeleton of all possible lagged relations. Here it starts with a fully

connected undirected graph, G, with edges between all pairs of contemporaneous variables and their lagged versions (up-to the

maximum anticipated lag, p). Such that for a particular variable Xj
t , all possible (lagged) parents are considered. Let the set of340

plausible parents for Xj
t be P̂ a(Xj

t ) = X−t \Xj
t , where X−t = {Xk

t−1,X
k
t−2...,X

k
t−p} ∀ k ∈ (1,2, . . . ,d).

13

https://doi.org/10.5194/egusphere-2025-4650
Preprint. Discussion started: 5 November 2025
c© Author(s) 2025. CC BY 4.0 License.



Now, it tests for CI between Xj
t and one of its plausible parents from P̂ a(Xj

t ), say Xi
t−τ , by conditioning them against the

remaining parents, if the hypothesis, Eq. (15), is not rejected at a desired significance level αPC , then the variable is removed

from the set of plausible parents P̂ a(Xj
t ) (consequently the edge is removed from G).

Xj
t ⊥⊥Xi

t−τ | S where S ⊆ P̂ a(Xj
t ) \ {Xi

t−τ} and |S|= τ for τ = 0,1, . . . ,p (15)345

For a given size of parent set, say L, a high number of combinations for the conditioning set S can be generated (2L), which

is also the problem faced by TE (Runge et al., 2012). This makes the task of pruning edges with CI tests computationally

expensive, while a large conditioning set reduces the strength of the CI tests (Runge et al., 2019b). As mentioned earlier,

PCMCI+ uses a modified form of the PC-alg, PC1, to reduce the number of CI tests required. The algorithm starts with

the smallest possible conditioning set (τ = 0, where |S|= τ ) and iteratively increases its size until the parents in Pa(Xj
t )350

are exhausted in the conditioning set, i.e. all possible parents of Xj
t form the conditioning set S (S = P̂ a(Xj

t )). Thus by

prioritizing smaller conditioning sets in the CI tests, it reduces the size of Pa(Xj
t ) and also preserves the strength of CI tests

with smaller size of the conditioning set S (Runge et al., 2012).

Now, within each p-th iteration, the conditioning set can have different variables and their combinations as the conditioning

set. This can quickly lead to an extremely high number of CI tests to be performed. For example, if |Pa(Xj
t )|= 8 and τ = 3,355

the number of CI tests performed would be 8C3. To avoid this, the algorithm tests only against the strongest p combinations

of the conditional set. Therefore for τ = 0, the conditioning set is empty and the CI test is equivalent to a correlation analysis.

The algorithm sorts the parent set P̂ a(Xj
t ) according to the strength of correlation in the previous step. For τ = 1, the CI test

is equivalent to a partial correlation analysis, and so on. Where it tests for CI using only the first (strongest correlated) variable

from P̂ a(Xj
t ) in the conditioning set S.360

To deal with auto-correlation in the time series and find the contemporaneous links, authors use the Momentary Conditional

Information test (MCI) (Runge, 2022). The main difference between PC1 CI test and MCI test is that the latter considers the

causal parents of the variables undergoing the CI test in the conditioning set itself (Eq. 16) (Runge et al., 2019a). Thus in

the second step, the graph G is re-initialised by adding all the contemporaneous links Â(Xj
t ) possible. Now, similar to PC1,

pruning and orientation of edges follows using the MCI test (Eq. 17).365

Xj
t ⊥⊥Xi

t−τ | P (Xj
t ) \ {Xi

t−τ}, P (Xi
t−τ ) (16)

Xj
t ⊥⊥Xi

t−τ | S, B−t (Xj
t ) \ {Xi

t−τ}, B−t−τ (Xi
t−τ ), where S ⊆ Â(Xj

t ) \ {Xi
t−τ} and |S|= τ for τ = 0,1, . . . ,p (17)

B−t (Xj
t ) and B−t−τ (Xi

t−τ ) are the causal parents of Xj
t and Xi

t−τ respectively, identified at the end of PC1. S is a subset

of contemporaneous adjacencies of Xj
t . Finally, any undirected contemporaneous edges in G are oriented using PC-alg’s

orientation rules (Spirtes and Glymour, 1991). Amongst the CD methods discussed here, PCMCI+ offers the highest flexibility370

to adapt the algorithm for discovery in linear and non-linear time-series datasets. Thus it has several free parameters, starting

with the significance level of the CI tests in both the PC1 and MCI tests (αPC), second it allows the use of any linear or

non-linear (user defined) test for independence in both the stages (PC1 and MCI). Third, the maximum and minimum lag up-to

which the lagged relations are anticipated.
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2.5.4 Granger causality based: Temporal Causal Discovery Framework375

Introduced by Nauta et al. (2019), Temporal Causal Discovery Framework or TCDF identifies causal drivers of variables by

combining deep neural network based modelling with a GC-inspired interpretation of model weights. TCDF can be divided

into two broad steps, the first step involves identifying the potential causes of each variable by training deep neural networks.

The second step uses the structure of the trained model to determine when a discovered causal driver has its effect (lagged

and/or instantaneous).380

The first step forms the major analysis of TCDF, it can be broadly divided into three parts, where for each variable in the

data it begins by a) training a deep neural network model–a Convolutional Neural Network (CNN) to predict it, b) it uses the

attention of the trained model to identify the potential causes. The attention mechanism of a CNN model helps it to focus on

certain variables when predicting a target variable, and c) to verify the potential causes as true causes, it conducts a feature

importance step by randomly permuting the values of a potential cause and predicting the target variable. Thus the first step385

ends by identifying the (likely) true causes of a variable and its corresponding trained CNN model.

In the second step, TCDF determines the temporal order of relation between the identified causes and the target variable. To

do this TCDF simply interprets the kernel weights of the trained CNN model. Where TCDF traverses from the output layer

(target variable) to the input layer (discovered cause), taking the path with the highest kernel weights. The position where it

meets the input layer is decided as the order of the lagged relation. Both steps are repeated for the remaining variables in the390

system to identify all causal relations in the system. We describe the algorithm below, for a detailed description we suggest

reading Nauta et al. (2019).

TCDF begins by training an independent CNN model for each variable. Thus, for each (target) variable Xj( for j = 1, . . . ,d),

it uses an independent CNN, Nj , to model the patterns in its time-series. This network uses all the other variables and their

lags and past values of Xj . Thus network Nj is responsible for modelling Xj and its causes. Inside Nj , channels ni (for395

i = 1, . . . , j, . . . ,d), exist, which are responsible for modelling the relation from a variable Xi to Xj . Note that nj models self

causation. Next, to identify potential causes of Xj it uses a GC-inspired approach. TCDF considers a variable Xi as a potential

cause if it improves the prediction in Nj by reducing the model loss. To identify which variables the Nj considers important,

TCDF uses the attention mechanism (attention vector aj Eq. 18) associated with it. These attention vectors are 1×N and their

coefficients tell how much attention was paid by Nj , to a certain time-series when predicting Xj .400

aj = [a1,j , . . . ,aj,j , . . . ,aN,j ] (18)

where ai,j ∈ aj is called an attention score, which represents the attention given to Xi by Nj when predicting Xj .

The more attention a variable receives, the more likely it is to be considered a causal influence. Since attention scores take

continuous values between [0,1], TCDF applies a threshold to convert them into binary decisions (causal or non-causal)

attention. Thus, if ai,j exceeds a certain threshold, Xi is considered a potential cause (Pj) of the j-th variable. Finally, to verify405

if the identified causes are indeed true causes it uses a feature importance method called Permutation Importance Validation

Method, we briefly define below.
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For each potential cause Xi ∈ Pj , a new dataset is created by intervening into the system. This is done by randomly permuting

the values of Xi to destroy their chronological ordering while keeping the values of other variables the same. The trained CNN

model in the previous step is run again using the intervened data and the model loss is compared to the previous scenario where410

no intervention (via permutation) was done. If the loss is significantly higher after disturbing the values of the potential cause,

it is considered to be a true cause (Nauta et al., 2019).

The final step involves determining the temporal order of causal relations between the identified causes in Pj and Xj . For

this TCDF simply uses the kernel of the trained CNN model. The kernel is a convolution operator between Xi (the input layer)

and its effect Xj (the output layer). Specifically, the kernel is a weight matrix of size N×K, where K is the kernel size. These415

K weights represent the influence of respective delays on the output. Thus by following the path from the Xj to Xi via the

highest weights (coefficients) in the kernel matrix, the position in Xi can be identified which has the maximum influence on

Xj . This position is considered to be the lag in the cause-effect relation between Xi→Xj . As mentioned earlier, this entire

process is repeated for all the variables in the data to identify causal relations in the system.

As with any deep learning method, TCDF has several hyper-parameters. It requires tuning of a number of hidden layers,420

kernel size, number of epochs, learning rate, dilation coefficient and significance (Nauta et al., 2019; Assaad et al., 2022).

2.5.5 Other methods for Causal Discovery

We note that other distinct methods of discovering causal relations do exist for example, based on difference equations, which

represents all causal relations by means of difference equations driving changes in the system (Voortman et al., 2010). Further,

based on non-linear state space reconstruction–CCM (Sugihara et al., 2012), etc. For a comprehensive review we suggest425

reading Assaad et al. (2022); Gong et al. (2024); Ali et al. (2024). As mentioned earlier, CCM has been successfully applied to

discover causal relations in hydrological systems. However, we did not select it for evaluation due to two major issues. First,

being a bi-variate method, it allows to determine causality only between a pair of variables, thus it is highly susceptible to

identify incorrect causal relations in multi-variate system as discussed earlier (Ombadi et al., 2020). Second, more importantly

it assumes a deterministic system in order to create the high dimensional manifold which represents the dynamical and thus430

consistent (causal) relations in the data (Sugihara et al., 2012). In hydrology, observational and process noise are typical in

observations. As shown by Ombadi et al. (2020), applying CCM in such systems can lead to reduced power of detecting causal

relations. Despite these, it remains a strong candidate for discovering causal relations, when the assumptions are satisfied.

The choice of free parameters for the four CD methods described above was based on the suggestions from their respective

papers. Details of these settings, along with those for the PCC method, are provided in Appendix B. In the next section we435

discuss the set of assumptions adopted by CD methods in order to discover causal relations.

2.5.6 Assumptions

The ability of CD methods to discern causality from correlation lies in the statistical measures used by them and the definition

of dependence adopted by them – via DAGs. These rely on two sets of assumptions: one about the nature of the data and the

other on the recoverability of the underlying DAG. Thus, assumptions of Gaussian distribution of variables and stationarity of440
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time-series are common to each method, except VARLiNGAM. Assumptions related to the recovery of the underlying DAG

are (a) Causal Sufficiency, (b) Markov Assumption, and (c) Faithfulness, (Assaad et al., 2022). Below we briefly define these

DAG related assumptions, while Table 2 lists the algorithms which adopt them.

Method Causal Sufficiency Markov Assumption Faithfulness

PCC

TCDF

VARLiNGAM ✓ ✓
PCMCI+ ✓ ✓ ✓

DYNOTEARS ✓
Table 2. Causal discovery assumptions. An empty cell indicates the assumption is not needed.

Causal Sufficiency, requires that all the variables which are anticipated to affect the system be included in the analysis.

For example, if root zone soil moisture acts as a causal driver of surface soil moisture and transpiration, but it is unobserved,445

a causal analysis would wrongly yield a causal link between the latter two. Such cases of unobserved variables also result in

discovery of incorrect lagged links (Runge, 2018).

Markov assumption implies that a DAG is supported by the conditional independencies present in it. More formally, for

the joint distribution of variables in X with Graph G, the causal structure in G is supported by corresponding conditional

independence tests. For example, the structure in graph G, Eq. (19), with only two links into Transpiration. The Markov450

assumption implies that this graph is supported by the conditional independence tests in Eq. (20).

G≡ Total-Precipitationt → Transpirationt← Root Zone-Soil moisturet (19)

X \ Pa(Transpirationt)⊥⊥ Transpirationt | Pa(Transpirationt) (20)

where Pa(Transpirationt) is the Causal parent set of Transpirationt and consists of Total-Precipitationt and Root Zone-Soil moisturet.

In contrast to the Markov assumption, the Faithfulness assumption implies that all conditional independencies of various455

disjoint sets in X are represented in the graph G. Thus if we are to find the conditional independence in Eq. (20) to be true, the

Faithfulness assumption necessitates it to be represented in the structure G, Eq. (19).

2.5.7 Time-series prediction model

To understand the effect of identifying various drivers (causal and non-causal) of a variable, we evaluated the difference in

predicted surface soil moisture time-series when using drivers identified by PCC and the CD methods. In recent times causal460

discovery has been used in four different ways for time-series predictions. First, Yuan et al. (2022), used the difference in cross

entropy amongst observed and simulated variables as a loss function in addition to the sum of square of errors, to train a deep

learning model for predicting wetland methane emissions. Second, Li et al. (2022) used the adjacency matrix both, as a feature

selection step and to modify the gates of their LSTM cell for soil moisture prediction. Third, Wu et al. (2025) used the adjacency
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matrix to introduce a causal inference unit alongside the LSTM cell, in their spatiotemporal soil moisture estimation model.465

Fourth, Vázquez-Patiño et al. (2022) used causal discovery to identify robust features for spatial downscaling of precipitation.

Similarly, Zou et al. (2023) used causal discovery to identify the drivers of irrigation water use, to build a prediction model.

Similarly, we use PCC and CD methods to identify the predictors of surface soil moisture in the Ganga basin. Then, we train a

machine learning model, based on the sets of predictors. Using the CLSM data, we train the models from 01 January 2000 to 31

December 2003. While we evaluate their performances during the drought period from 01 January 2004 to 31 December 2005.470

Furthermore, we conducted a similar exercise for storm surface runoff prediction in Ganga basin and transpiration prediction

in the Murray basin, and obtained similar results (Appendix C).

Since model training and evaluation is done using the CLSM data, the models will achieve a near perfect fit irrespective of

the number of causal and non-causal predictors identified, or the model structure (Appendix C). This is a result of the perfect

model environment, without observational or process noise in the simulated data. Thus, to understand the effect of observational475

noise, typically present in hydro-meteorological data and conduct this exercise in a more realistic scenario, we added randomly

generated gaussian noise to the data. To ensure robustness against the distribution of randomly generated noise, we conducted

Monte Carlo simulations for different noise levels (Appendix C).

3 Results

To evaluate the performance of the CD methods relative to PCC, we adopt two broad approaches. First, we see the performance480

at the macro scale by evaluating the adjacency matrices. Second, we zoom into the analysis by focusing on the drivers of surface

soil moisture identified by different methods across all the grid points. Finally, to understand the consequence of finding causal

and non-causal drivers in terms of applications, we use machine learning models to predict the surface soil moisture time-series.

These models are trained separately with predictors identified by PCC and CD methods.

3.1 Can CD methods identify the true drivers in a complex simulated hydro-meteorological system?485

The primary aim of any predictor discovery algorithm is to identify the true drivers of the target variable. To evaluate this, we

consider the Recall (or True Positive Ratio, TPR) of all algorithms across the Köppen-Geiger climate classes in Fig. 3a.

Overall, across the Köppen-Geiger climate classes, PCC identifies the highest number of links present in the true adjacency

matrix (Fig. 2a). While DYNOTEARS shows lower Recall than PCC, the other CD algorithms identify half or fewer causal

links. The cumulative plot indicates that PCC exhibits the largest inter-quartile range (IQR). While CD methods show a490

narrower IQR, in the order PCMCI+ < VARLiNGAM < TCDF < DYNOTEARS. Interestingly, TCDF, VARLiNGAM and

PCMCI+, have Recall scores strongly bound between (0.2− 0.5). This is not expected as all three algorithms have different

assumptions and adopt different methods to find true drivers.

Amongst the climate types, the temperate climate type exhibited the highest variability in results across methods. For

example, PCC shows highest variance within the Ganga basin. Similarly, TCDF shows the highest variability in Mississippi495
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basin, VARLiNGAM in Danube basin and DYNOTEARS in Ganga basin. While PCMCI+ remains relatively stable across all

climate types. Overall, CD methods show a relatively stable Recall across climate types.

a)

c) d)

b)

Figure 3. Recall (or true positive ratio) (a) and Matthews Correlation Coefficient (b) for all the algorithms, across different Köppen-Geiger

climate classes and in different river basins. The right most boxplots show the cumulative distributions with the median values annotated on

the y axis. Note that both the top and bottom labels are common to a) and b). The legend is common to a), b). Recall is simply the ratio of

true positives identified to the actual number of true positives in the reference truth, Recall = TP
TP+FN

, ∈ [−1,1]. MCC consider the class

imbalance by using all four classes, MCC = TP ·TN−FP ·FN√
(TP+FP )·(TP+FN)·(TN+FP )·(TN+FN)

, ∈ [−1,1]

3.2 What is the overall performance, in terms of identifying causal relations and eliminating non-causal co-relations?

As mentioned in Methods, Recall does not consider the other classes of (mis)identification, such as false positives, nor the

imbalance in their size. This is especially relevant to our analysis since the True adjacency Matrix is negatively imbalanced with500

19

https://doi.org/10.5194/egusphere-2025-4650
Preprint. Discussion started: 5 November 2025
c© Author(s) 2025. CC BY 4.0 License.



90% negatives (1376 negatives and 82 positives). Thus, we use Matthew’s correlation coefficient (MCC) score to get a balanced

understanding of performances. After considering the class imbalance, we observe a change in the relative performance of all

the algorithms (Fig. 3b). We explore these differences below.

The cumulative plot indicates that PCC has the lowest MCC scores, with median MCC 0.14. While CD methods score a

median MCC greater than or equal to 0.19. Although PCC has the highest Recall, it has very high false positives, resulting505

in a lower MCC. Among CD methods, TCDF and VARLiNGAM yield comparable median MCC values, but TCDF achieves

higher MCC within the IQR. Similar to Recall results, PCMCI+ achieves the most stable MCC scores, while DYNOTEARS

shows the largest IQR amongst all the CD methods. The variability of IQR among CD methods follows the order PCMCI+ <

VARLiNGAM < TCDF < DYNOTEARS.

Across the climate types, the temperate climate type produces the highest IQR for all the methods. Specifically, this occurs510

in the Ganga basin for PCC, TCDF, and DYNOTEARS, and in the Danube basin for VARLiNGAM and PCMCI+. In contrast,

the two Arid climate types in the Murray basin produce the only climate where some clustering of MCC values is present

across all methods. Overall, for all methods we observe a very high variance in MCC values, both across climate types and

within the same climate class or even within the same basin.

Figure 4. Scatter plot of True Positive Ratio and False Positive Ratio in all the grids. The size of the points shows the absolute number of

false positives categorically via the False Positives legend. The red dotted line represents a case where TPR=FPR, the top left ‘Ideal’ point

denotes a perfect scenario where no False positives are detected and all true positives are identified. The angles in-set show the angle between

an imaginary line from the origin to the median of each point cloud and the FPR axes (arctan( TPRmedian
FPRmedian

)).
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3.3 What is the trade off between choosing a correlation-based approach and CD methods?515

To better understand the balance between True Positive discovery (Recall) and False Positive discovery we plot them in Fig. 4

for each method. As seen in the plot, the cost of identifying causal links is the accumulation of false positives. Overall, all the

algorithms achieve a higher TPR compared to FPR (they sit above the red dotted line, which represents TPR=FPR). Amongst

the CD methods, DYNOTEARS achieves the highest TPR, but also suffers from the highest FPR. Further, CD methods show

variance along the TPR axis but less variance along the FPR axis. This demonstrates their robustness towards eliminating520

false positives. PCC shows high variance along both axes, lacking robustness in identifying true positives and avoiding false

positives. In terms of absolute number of false positives, CD methods identify less than 200 links incorrectly, whereas PCC

identifies between 600 to 1000 incorrect links as true positives. Overall, across the methods, we observe a higher TPR entails

a higher False Positive discovery. Since the range of TPR and FPR is significantly different across the methods, we calculated

the ratio of TPR to FPR for each method. That is the angle between an imaginary line connecting the origin to the median point525

of each point cloud, and the FPR axes (Fig. 4). It can be clearly observed that the CD methods, compared to PCC, achieve a

higher TPR gain for a unit increase in FPR and a larger deviation from the TPR=FPR line.

3.4 Identifying causal drivers of hydrological variables and time-series predictions.

The previous results sections reported results across all causal relationships within the CLSM model. However, to better

understand what the variance in FPR and TPR means in practice, we extract all the drivers of an individual variable, surface530

soil moisture, identified by the algorithms across all the grids in each climate and plot them in Figures 5 and 6. Surface

soil moisture is an important hydro-meteorological variable as it links the atmosphere with terrestrial hydrology (Seneviratne

et al., 2010). In nature, the soil surface stores moisture from the atmosphere and provides moisture back to the atmosphere

via evaporation. Active research is ongoing to understand the causality and timescales of this feedback system (Tuttle and

Salvucci, 2017; Chauhan et al., 2023; Devanand et al., 2018).535

In the CLSM model, surface soil moisture is modelled by combining various modelling routines. We define it explicitly in

Appendix A. Essentially, it is modelled as a reservoir of moisture. The initial value of surface soil moisture is based on the

catchment deficit (from full saturation), profile soil moisture. It receives input flux from above ground as excess precipitation

and from below the ground as excess root zone soil moisture. While outgoing fluxes are direct evaporation from soil and

infiltration into the root zone. To update its state at a time instant, the CLSM model takes the summation of these fluxes540

and adds (or subtracts) from the storage at the previous time-step. Thus, eight variables form the causal parents of surface

soil moisture. These are (i) profile soil moisture, (ii) canopy interception and (iii) total precipitation (iv) precipitation as rain

(v) total evaporation (vi) evaporation from bare soil (vii) root zone soil moisture, and (viii) surface soil moisture at the previous

time step. Below we evaluate the ability of the algorithms to identify the causal parent of surface soil moisture in each grid of

the different climates.545

21

https://doi.org/10.5194/egusphere-2025-4650
Preprint. Discussion started: 5 November 2025
c© Author(s) 2025. CC BY 4.0 License.



b)

d)

a)

c)

Figure 5. Panels (a-d) shows the various causal drivers of Surface soil moisture as identified by the algorithms in each grid across different

climates. The variables left of the solid red line are the causal parents, of surface soil moisture, extracted from the True adjacency matrix, Fig.

2a. Whereas the variables to the right are all the remaining variables of the system and their lags. A blue coloured cell indicates the algorithm

has identified a causal link to surface soil moisture from the corresponding variable (column) in the given climate grid (row). Similarly, a

grey coloured cell indicates no causal link detected. Note: the legend in Fig. 6c is common to both, Figures 5 and 6
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– Causal link detected

– No causal link detected

a) b)

– Line dividing causal (left side of the line)
and non-causal (right side of the line) 
drivers of surface soil moisture

c) Legend

Figure 6. Panel a) same as Fig. 5 but for DYNOTEARS. Panel b) summarizes the previous panels across all climates and grids for each causal

parent individually and collectively for the True and False Positives, for each algorithm. Panel c) is the legend common to both, Figures 5

and 6.

3.4.1 PCC

Figure 5a shows the drivers of surface soil moisture as identified by PCC across the different climate classes. PCC identifies

all eight causal parents in the tropical and arid climates and only misses the direct evaporation from soil in a single grid of the

temperate climate in the Ganga basin. Direct evaporation from soil is also the variable PCC is most likely to miss in the other

climates as well (Fig. 6b). Overall, PCC identifies all eight causal parents in each climate at least once or more.550

However, PCC also classifies a very large number of non-causal variables as drivers, resulting in large false positives. For

example, variables such as latent net heat flux, downward short-wave radiation are closely related to surface soil moisture and

part of the surface energy budget and are also identified as causal drivers in a majority of the grids. Similarly, water budget

variables like storm surface runoff, groundwater storage, are also classified as causal drivers. Though such variables may have

a direct impact on surface soil moisture in the natural environment, these variables are absent in the generating equations of555

the CLSM model. Hence do not form the causal parents. Thus, PCC showed a systemic error by identifying many variables as

drivers, consistently across different climate classed.
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A striking feature of CD methods is their ability to correctly eliminate lagged variables as false positives. Whereas PCC

classifies each lagged relation of the causal parent as a causal driver, the CD methods eliminated these demonstrating their

ability to handle auto-correlated variables.560

Interestingly, PCC was able to identify canopy surface water as a causal driver. Since the canopy water acts as a reservoir

above the surface and allows rainfall to reach the surface only if it is full to its capacity, it adds some non-linearity to the

generation of surface soil moisture. Among CD methods, only VARLiNGAM and DYNOTEARS were able to identify this

driver in at least half of the grids (Fig. 6b).

3.4.2 TCDF565

TCDF misses the canopy surface water and evapotranspiration as a causal driver in most of the climates (Fig. 5b). While it also

struggles to identify evaporation from bare soil and profile soil moisture as well. However, it shows consistency in identifying

rain precipitation rate, root zone soil moisture and the lagged self-causation of surface soil moisture.

Further, it shows a systematic error by falsely identifying the latent net heat flux as a possible driver in the Arid climates and

lagged relation from baseflow in Tropical climates incorrectly. Apart from these, no other variable is consistently misidentified.570

Overall, TCDF achieves the fewest false positives across all climates (false positives = 0.03), making it the most conservative

in terms of spurious detection.

3.4.3 VARLiNGAM

VARLiNGAM shows contrasting results in terms of identifying the causal parents. It was able to identify six out of the

eight causal drivers correctly in at least half of the grids (Fig. 6b). While it failed to identify evaporation from bare soil575

and evapotranspiration in most of the grids. Interestingly, it was able to correctly identify the non-linear link from canopy

surface water in numerous grids across all climate classes, whereas TCDF and PCMCI+ missed this link.

In terms of false positives, VARLiNGAM also showed systemic bias, by incorrectly identifying canopy water evaporation

as a causal driver. Further it falsely identified canopy water evaporation in most of the grids. Similarly, it failed to eliminate

terrestrial water storage in all climates except arid, and ground heat flux and specific humidity in arid climates.580

Interestingly, it attributed a lagged causal link between surface soil moisture and root zone soil moisture instead of the true

contemporaneous causality. Overall, VARLiNGAM identified a higher number of causal drivers while maintaining a lower

false positive count (false positives = 0.14), though it showed systemic error against some variables.

3.4.4 PCMCI+

The PCMCI+ method, similar to TCDF, fails to identify the canopy surface water and evaporation from bare soil. However,585

it identifies the remaining six drivers consistently in each climate class. PCMCI+ also shows a systemic error by falsely

identifying canopy water evaporation, storm surface runoff and terrestrial water storage as causal drivers. Compared to VARLiNGAM

and DYNOTEARS, PCMCI+ has a very sparse false positive detection, similar to TCDF (false positives = 0.07).
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3.4.5 DYNOTEARS

DYNOTEARS, in strong contrast to the other CD methods, both in terms of true positive and false positives, identifies seven590

causal drivers in at least half of the grid points, across all the climates. Interestingly, it could identify the lagged self causation

of surface soil moisture in less than half the grids. Compared to other CD methods and PCC, this is very low, given the strong

autocorrelation usually present in storage variables. While it failed to identify plant canopy surface water, evaporation from

bare soil and evapotranspiration in the tropical climates.

It also showed systemic error, failing to eliminate net long wave radiation flux, average surface skin temperature, baseflow,595

terrestrial water storage and wind speed. Interestingly, it identified the fewest lagged variables as causal drivers. Overall,

DYNOTEARS identified more causal drivers of surface soil moisture than the other CD methods while only identifying a few

more false positives (= 0.19).

3.4.6 Summary of identifying causal drivers

Overall, PCC identified nearly all of the causal drivers, across all the climates. However, it also identified a large number of600

false positives. Comparatively, CD methods were able to reduce the false positive count by orders of magnitude, while showing

much fewer systemic errors. However, they showed less consistency in identifying all the causal drivers. To understand the

effect of missing a few causal drivers and identifying non-causal ones, we compare the difference by creating prediction

models. In the next section, we train machine learning models based on the predictors of surface soil moisture identified by

PCC and CD methods, and evaluate their performance.605

3.5 Predicting time-series using causal knowledge

Below we discuss surface soil moisture predictions under a noise level of 0.5 standard deviation, using a feedforward neural

network model.

In the training period, PCC identified 47 drivers of surface soil moisture, of these 8 were the causal drivers discussed earlier,

while 39 were non-causal variables. Similarly, TCDF, VARLiNGAM, PCMCI+ and DYNOTEARS identified 4 causal (4 non-610

causal), 3 causal (12 non-causal), 6 causal (3 non-causal) and 4 causal (5 non-causal) drivers, respectively. Figures 7a and 7c

show the performance and error metrics respectively during this period. The PCC-based model achieves the highest accuracy

relative to its training data, with median R2, NSE > 0.8. However, it suffers a sharp decline in performance and gain in error

when predicting out of sample during drought conditions. This may be a result of the high number of false positives identified

as causal drivers. In contrast, the CD-based models obtain satisfactory performance metrics during the training period with615

median R2, NSE > 0.75, while they show a smaller drop in performance testing out of sample during drought conditions,

with median ∆R2 ≈−0.15 and median ∆NSE <−0.15. Both PCC and CD-based models show consistency in performance

during the training period with small IQRs. However, during the testing period, CD-based models show higher consistency

compared to PCC-based models, with narrower ∆ IQRs.
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a) b) c) d)

e)

Figure 7. Performance and error metrics of the machine learning models created for surface soil moisture prediction. Panels a) and c) show

the performance and error metrics during the training period. While panels b) and d) show the difference in performance and error metrics

between the testing and training, eg: ∆R2 = R2
testing−R2

training. Panel e) shows the predicted and actual time-series in the testing period, based

on PCC and CD-based models. For each method, the plot shows the mean prediction of the 100 Monte Carlo simulations, while the shading

shows the minimum and maximum range. (A ∆(·) < 0 for performance metrics means a drop in performance during the testing period

compared to the training period. While a ∆(·) > 0 for error metrics means a drop in performance during the testing period compared to the

training period.)
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Overall, PCC-based models identify a large number of predictors and perform better in the training period, but suffered620

larger performance losses when tested under changing conditions. CD-based models obtain a parsimonious predictor set. This

leads to smaller variance in performance during the testing period. More significantly, CD-based models show smaller drop in

performance compared to PCC based models, when tested during changing conditions like droughts.

4 Discussion

Below we discuss the capabilities of the different algorithms, discuss some caveats to applying Causal Discovery in general and625

in particular for Hydrology. We close the section with some perspectives on implementing CD methods and discuss limitations

of our work.

As discussed in the introduction, Hydro-meteorological systems have highly interconnected variables with strong feedback

mechanism and closely related processes. This introduces numerous contemporaneous and lagged correlations in the system.

Thus identifying the true causal drivers of a process becomes a challenging task. Thus, a multivariate and cause-effect driven630

approach is needed to unravel the causal causal drivers of processes.

By applying multivariate and stochastic framework based causal discovery algorithms, we were able to recover about half

of the causal drivers in the system. Further, by considering the possibility of lagged relations in the data CD methods were able

to eliminate large numbers of contemporaneous and lagged spurious correlations. This provided a parsimonious set of drivers

for different variables, which can potentially lead to better process understanding and identifying the causes of change like635

streamflow change, droughts etc. However, it also meant CD methods could not detect many causal links in the system.

While Ombadi et al. (2020) applied their CD methods on a simple model forced with stochastically generated rainfall, we

evaluated our CD methods on a large, complex model forced with realistic forcings, and evaluated the results across diverse

climates and basins of the world. We observed the consistency of CD methods to identify cause-effect relations across these

regions. This suggests their viability to be applied in diverse hydrological systems.640

Further by focusing on the drivers of surface soil moisture, we found PCC systematically identified large number of

correlations with many closely related variables of the energy and water budget, of which a small subset were the causal

drivers. This misidentification was consistent as a systemic error, across the different climate regions considered. Whereas CD

methods showed such systemic error against far fewer variables, however they missed identifying certain causal drivers of

surface soil moisture.645

To understand the effect of finding causal and non-causal drivers of a variable in terms of time-series prediction, we applied

machine learning models to predict surface soil moisture time-series in drought periods. In this regard, we saw (i) CD-based

models are more parsimonious compared to PCC-based models, (ii) Both PCC and CD-based models perform good under the

training period, (iii) importantly, CD-based models suffer a smaller drop in performance during the evaluation period. This

highlights the importance of identifying causal drivers of a process, both for process understanding and predictions, especially650

under changing conditions like drought and possibly climate change.
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4.1 Method specific outcomes

4.1.1 PCC

As we expected, PCC found a high number of co-varying variable pairs. Choosing low threshold of correlation allowed it

to discover most of the causal links (median Recall = 0.83 ). However, the definition of PCC lacks a causal interpretation,655

thus the variables identified can be called predictors and not causal drivers. This is the reason why any statistical test like

PCC, Spearman’s rho, Kendall’s τ , or measures of Information Flow like Transfer Entropy, Mutual Information etc., are called

Variable Selection or Predictor importance step. Overall, and in particular for drivers of surface soil moisture, PCC identifies

very high false positives. This creates an illusion of model complexity by including redundant variables and their lags, which

are statistically significant but causally unrelated. This makes understanding the process harder, while it necessitates the need660

of many variables for creating a prediction model that inherently has high computation cost in terms of time and memory.

4.1.2 TCDF

TCDF identified the fewest causal links across all the climates, however it was able to keep false positives to the lowest.

As mentioned earlier, for each variable in the system, it uses CNN’s to predict it and interprets the attention scores in a

Granger-Causality sense to find causal drivers of the variable. The Granger-Causality method was evaluated in Ombadi et al.665

(2020), though a one-to-one comparison with results from TCDF is unfair, we comment on the similarities and differences we

found with the former. Using Granger-Causality Ombadi et al. (2020) reported a high False Positive Rate, even with the small

number of variables in their system. This highlights the problem with bivariate methods like PCC, Granger-Causality, etc.,

in a multivariate system. Where confounding (common cause) and autocorrelation severely affect the false positive discovery

(Tuttle and Salvucci, 2017; Ombadi et al., 2020; Delforge et al., 2022). Comparatively, by adopting a multivariate approach and670

accounting for autocorrelation in its CNN architecture, TCDF was able to reduce the false positive discovery and performed

the best (in FPR score) across all algorithms. However, TCDF failed to identify true positives, with the lowest Recall values

(median Recall = 0.28 ). This may result from our inability to sufficiently train the CNN’s, since the author’s report F1 scores

similar to the predecessor of PCMCI+, PCMCI (Nauta et al., 2019). We struggled to improve the Recall of TCDF by tuning

its hyper-parameters. The process was particularly difficult owing to its high number of hyper-parameters, typical to any CNN675

architecture. This maybe since CNN’s are better suited to predict spatial patterns and a different deep learning model like

LSTM may yield better results (Kratzert et al., 2019).

4.1.3 VARLiNGAM

VARLiNGAM produced one of the most contrasting results amongst the CD methods. It consistently had varying MCC scores

in all climate classes. Though it scored Recall values similar to PCMCI+ (median Recall = 0.40 ), as reported previously680

(Assaad et al., 2022; Hasan et al., 2024; Runge, 2022). However, it was able to retrieve the non-linear link from plant canopy

surface water into surface soil moisture which TCDF and PCMCI+ struggled to retrieve in any climate class. As suggested by
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Hyvärinen et al. (2008), this may be a result of non-Gaussian errors obtained when VARLiNGAM uses linear models to fit the

data.

4.1.4 PCMCI+685

PCMCI+ provided the most stable results across all climates in both Recall and MCC scores. Though, on average it could

only identify 40 % of all the causal links (medain Recall = 0.41 ), which is a little lower than reported by Runge (2022).

Further, the majority of the causal links in our adjacency matrix (Fig. 2b) are contemporaneous, thus the algorithm was able

to retrieve these contemporaneous links, as suggested by Delforge et al. (2022). Ombadi et al. (2020) reported a similar Recall

for the base algorithm, PC-alg, for similar lengths of data. This is expected since the dimensionality of our test was higher690

(4 in former, 27 in ours) and the lag relation up-to which the search was done (lag-1 in former, lag-1 and contemporaneous

in ours). However, we obtained similar levels of false positives (FPR<0.2) as Ombadi et al. (2020). This is expected as well,

since both the modifications to PC-alg, the skeleton discovery and MCI phase have been designed to handle autocorrelation

and contemporaneous edges.

4.1.5 DYNOTEARS695

DYNOTEARS retrieved the highest causal links amongst all the CD methods (median Recall = 0.54 ). It showed that true

positives can be discovered from the data as high as PCC, while keeping the False Discovery lower (Fig. 4). The Recall values

are comparable to those in Pamfil et al. (2020), however, we obtained a higher False Positive Ratio.

4.2 Caveats

It is evident that CD methods are able to identify many correct causal links while eliminating correlated but causally unrelated700

links. Although useful, satisfying the assumptions of CD methods in the real world can be difficult. For example, certain

variables in a hydrological system may not be observed, like soil moisture below the surface, Baseflow, etc. This violates the

assumption of causal sufficiency and can lead to spurious links between variables. In such cases, we suggest the identified links

should be carefully interpreted in a Granger-Causality sense.

Another consequence of the strict assumptions of CD methods is the need to observe variables at the timescales of their causal705

interaction. This is especially relevant to hydrological applications since many variables are observed at different temporal

resolutions. In such cases, the causal analysis is conducted on temporally aggregated data. Some research suggests partial

recovery of the underlying causal interactions while other suggests occurrence of contemporaneous links instead of the lagged

interactions (Gong et al., 2017; Runge, 2018).

4.3 Perspectives710

In essence, the Causal Discovery methods discussed here are algorithms. Though they provide parameters to tweak their

applications, their true potential lies in the fact that they’re algorithms and hence parts of their structure can be swapped with
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alternative modules better suited in the context of their application. For example, as Runge et al. (2019b) and Runge (2022)

suggested, if non-linear dependencies between variables are anticipated then the conditional independence tests of PCMCI+

can be done using various linear and non-linear methods. Similarly, if fewer lagged relations are expected in a system, then the715

initial estimate of the lagged adjacency matrix in VARLiNGAM can be calculated using a sparsity penalty (L1-norm of errors)

instead of using a Ordinary Least Squares approach (L2-norm of errors).

Further, as mentioned by the authors of VARLiNGAM, the assumption of non-Gaussian errors makes it a unique tool in

the family of Causal Discovery methods. We believe this makes it a valuable tool for CD in climate change scenarios, where

non-stationarity in the distribution of hydro-meteorological variables is expected, which yields non-Gaussian model errors.720

Although the objective of DYNOTEARS is to find a DAG, its theoretical implementation to find it as coefficients of a

SVAR model allows for familiar interpretation. As SVAR models have long been used in Hydrology, particularly in forecasting

models as ARMA, ARIMA and similar models. In the case of TCDF, by adopting the Granger-Causality framework, it avoids

the fulfilment of the strong assumptions of Causal Sufficiency, Causal Markov assumption and Faithfulness on the data. This

theoretically allows it to be applied in systems where the above assumptions cannot be satisfied.725

4.4 Limitations

There are several limitations to our work. First, as mentioned by Ombadi et al. (2020), causal interactions can evolve in time

and different mechanisms can drive a process in different time period’s. For example, they found wind speed as a causal driver

of evapotranspiration during the summer season but no causal link was not identified in the winter season. This phenomenon

of time-evolution of causal relations has been recognized in the literature and classified as an issue to be addressed when730

identifying causality in a time window or over the entire time-series (summary causal graph) (Ombadi et al., 2020; Assaad

et al., 2022). To this end, we applied causal analysis over the entire time-series, thus focusing on causal interactions over the

entire time-period. Second, we assumed stationarity of the time-series data, which is necessary for many statistical tools like

Linear Regression, which forms the backbone of most of the methods discussed here. Third, by performing the analysis in a

simulated environment we ensured Causal Sufficiency. As discussed above, this may not be possible in real-world applications.735

This leads to the fourth issue, where the number of variables in the system increases to very high numbers. This creates a

problem for algorithms in terms of i) expanding the number of possible causal links that need to be evaluated (and eliminated

if necessary), ii) convergence of methods and iii) computational time required. One could argue, for example, in the case of

identifying the causal parents of surface soil moisture, that certain variables, like ground water storage, etc, could be excluded

from the CD analysis as a direct cause-effect relationship is not expected between the variables. Thus, increasing the detection740

power of CD methods.

5 Conclusion

The science of cause-effect analysis has seen rapid development over recent years (Assaad et al., 2022; Gong et al., 2024).

Inspired by Ombadi et al. (2020) and the premise of finding causally-related variables, we evaluated state-of-the-art methods
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of Causal Discovery. While the former evaluated simpler methods of causal discovery in a simple lumped model, in the context745

of varying length of time-series, process and observational noise, here we evaluated strictly causal methods on output of a large,

complex model. This allowed us to test the algorithms over a real-world like system while allowing the generating equations

to be used as a benchmark of true causal relationships. We evaluated four theoretically distinct causal discovery methods

(TCDF, VARLiNGAM, PCMCI+ and DYNOTEARS) that traverse the broad spectrum of causal discovery methods. We also

overviewed some methods of representing causal relations via a graph and an adjacency matrix. By contrasting our results with750

PCC we exposed how bivariate and non-causal methods lead to inflated drivers.

We found the correlation based method PCC, identified the highest number of causal links, followed by DYNOTEARS.

While other CD methods were able to Recall half or fewer causal links. However, CD methods were more effective at

eliminating highly correlated but non-causal variables across climate types. By adopting multivariate frameworks with contemporaneous

and lagged relations, CD methods were able to identify the correct order of lag relations amongst variables while eliminating755

multiple spurious correlations. This provided a parsimonious set of causal drivers of a process, potentially leading to a better

process understanding and time-series prediction. To test the latter we identified drivers of surface soil moisture during normal

conditions with PCC and CD methods, for time-series prediction. Evaluation during drought period showed CD-based machine

learning models performed better, with higher performance scores and smaller variability, compared to correlation based

models, highlighting the importance of finding causal drivers of a process. Finally, we discussed some caveats to applying760

CD methods in the real world and discussed how their assumptions and algorithms can be exploited to further retrieve causes

of variables in hydrometeorological systems.

6 Code and Data Availability

All the data used in the analysis was downloaded from NASA Earth Data and can be publicly accessed at Li et al. (2018).

All the analysis and plots created were done using publicly available python libraries. The analysis was done using standard765

python libraries like numpy (Harris et al., 2020), scipy (Virtanen et al., 2020), jupyter notebooks (Project Jupyter et al., 2018)

and plots were created using matplotlib (Hunter, 2007) and seaborn (Waskom, 2021). The code for the CD algorithms are

publicly available. For TCDF, the code is available on GitHub TCDF https://github.com/M-Nauta/TCDF. For VARLiNGAM

the lingam python package was used: https://github.com/cdt15/lingam, (Ikeuchi et al., 2023). For PCMCI+ the tigramite

python package was used: https://github.com/jakobrunge/tigramite. For DYNOTEARS the causalnex python package was770

used: https://causalnex.readthedocs.io/en/latest/. The code to do the analysis and recreate the plots in this study are in https:

//github.com/lsmvivek/project_ci_eval.

31

https://doi.org/10.5194/egusphere-2025-4650
Preprint. Discussion started: 5 November 2025
c© Author(s) 2025. CC BY 4.0 License.



Appendix A: CLSM model: Description, modelling schemes and generating equations

A1 Model description

The CLSM model is composed of various routines to model different processes on the land surface. These routines are adopted775

or based on other works, Koster et al. (2000); Ducharne et al. (2000). The energy balance and canopy interception schemes are

based on the MOSAIC LSM model, Koster and Suarez (1992); Koster et al. (1996 - 03??). The sub-surface moisture distribution

is based on Clapp and Hornberger (1978). Using this distribution, the calculation of sub-surface storages and surface runoff

generation is based on TOPMODEL from Beven and Kirkby (1979). Finally, the snow related simulations are based on Lynch-

Stieglitz (1994). Since none of the grids selected in our analysis contained any snow variables (time-series was zeros), we do780

not discuss their governing equations.

The model is forced with nine meteorological forcings from a General Circulation Model. Precipitation, rainfall as fraction

of precipitation, downward short-wave radiation flux, downward long-wave radiation, specific humidity, snow precipitation

rate, air temperature, surface pressure and wind speed. Since these act as forcing to the model and are not affected by any

feedback from it to the GCM, we consider these as independent variables and hence they do not have any causal drivers.785

Rather, these only act as causal drivers of other variables.

The model simulates various prognostic and internal variables, and outputs 33 hydro-meteorological variables. By ignoring

the snow related variables we are left with 27 variables listed in Table A1. As mentioned above, eight of these are forcing

variables (ignoring snow precipitation rate). Thus, we have a total of 20 dynamically simulated variables in our analysis that

have causal drivers.790

We found certain differences in the variables described in the original paper and the current version of model outputs. For

example the papers describe how a TOPMODEL based bulk variable called Catchment-Deficit is used for sub-surface moisture

distribution. However, the current output variables do not contain the same, rather a variable called Profile Soil Moisture is

provided. Using visual inspection and literature review we consider Profile Soil Moisture to be the Catchment-Deficit term.

Thus we make certain assumptions to overcome such issues wherever necessary to obtain all the governing equations and/or795

relations.

Further, apart from the forcing variables and dynamically generated variables, the model uses a host of static parameters

which characterize the local distribution of vegetation and topography. These parameters affect the simulation of various

variables, like vegetation indices affect the scaling of transpiration in zones between completely saturated and wilting zones.

Thus in favour of simplicity, we do not mention the full complexity of the model and only mention model equations and/or800

describe the simulation routine, with the functional forms used to describe the causal relations amongst the variables, which

form the reference truth in Fig. 2a.

A2 Modelling schemes and generating equations

Canopy Interception
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The canopy interception reservoir has one incoming flux of precipitation and one outgoing flux of evaporation from it. Thus,805

it has the functional form:

CanopIntt = f(Rainft,Rainf-ft,ECanopt) (A1)

Surface Runoff

If the canopy interception reservoir is full after a precipitation event, the excess precipitation falls onto the land surface as

through-fall precipitation. The model divides each spatial unit tile into three types based on the concurrent surface soil moisture.810

These are: completely saturated region, region at wilting point and the region between these two. The through-fall precipitation

falling on the saturated region is immediately converted into storm surface runoff. While the through-fall precipitation on the

latter two regions is scaled according to the surface soil moisture capacity. Thus, storm surface runoff is generated as:

Qst =





PTt ·Asaturated if Mset < 0

PTt

(
Asaturated + Atranspiration area ·

Mset

Mse-maxt

)
if Mset > 0

where Mse is the surface excess given by surface soil moisture. This gives the functional form for Storm surface runoff as:815

Qst = f(CanopIntt,SoilMoist-St,Rainft,Rainf-ft,) (A2)

Surface and sub-surface storages

In the CLSM model, surface and sub-surface soil moistures are simulated in two steps combining different modelling

techniques. First a bulk catchment term called Catchment Deficit is calculated following Beven and Kirkby (1979). Second,

this deficit is distributed across the layers of soil using the formulation in Clapp and Hornberger (1978). Then the local values820

of these storages are based on the antecedent conditions and the transfer of moisture between the vertical levels. The transfer of

moisture from surface to atmosphere follows the equations in Koster and Suarez (1992) and sub-surface transfers are simulated

using the TOPMODEL scheme from Beven and Kirkby (1979).

Surface soil moisture825

The surface soil moisture is modelled as a reservoir of moisture with incoming flux as precipitation (through-fall or direct)

and outgoing flux as infiltration into root-zone soil moisture and evaporation from soil. At each time-step the model reduces the

excess (or deficit) in this storage by percolating (or gained via capillary action) a fraction of the storage into the reservoir below.

The amount percolated (or gained via capillary action) is proportional to the absolute storage, this adds a auto-correlation type

relation in the variable. Thus its functional form is given as:830

SoilMoist-St = f(Rainft,Rainf-ft,SoilMoist-RZt,SoilMoist-Pt,CanopIntt,ESoilt,Evapt,SoilMoist-St−1) (A3)

Root-zone soil moisture

The Root-zone soil moisture is modelled as a reservoir of moisture with incoming flux as moisture from Surface soil moisture

and outgoing flux as percolation into groundwater and evaporation from soil. Root-zone soil moisture excess (or deficit) is also
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reduced as proportional to the absolute value of storage. Thus its functional form is given as:835

SoilMoist-RZt = f(SoilMoist-St,SoilMoist-Pt,GWSt,ESoilt,Evapt,SoilMoist-RZt−1) (A4)

Profile soil moisture

The Profile soil moisture term was assumed to be related to the Catchment Moisture Deficit term in Koster et al. (2000).

Catchment moisture deficit is the moisture required to completely saturate the sub-surface and bring the water table to near the

surface. Thus it is updated according to the moisture storages in various sub-surface levels locally and summed over the entire840

catchment. Thus, its functional form is given as:

SoilMoist-Pt = f(SoilMoist-RZt,GWSt,SoilMoist-Pt−1) (A5)

Groundwater storage

Finally, the root zone moisture transfers the moisture to the water table in the groundwater. The groundwater acts as a

reservoir for groundwater baseflow. Thus it has one incoming flux as percolation from Root-zone soil moisture and outgoing845

flux as baseflow discharge. Thus its functional form is given as:

GWSt = f(SoilMoist-RZt,Qsbt,GWSt−1) (A6)

Baseflow-groundwater runoff

The discharge from the groundwater storage is modelled as a non-linear function of the bulk catchment moisture deficit, the

local water table depth and the mean water table depth of the catchment.850

Qsbt =
Ks(surface)

ν
· exp(−x̄− νd̄)

where d̄ and x̄ are the mean water table depth of the catchment and the local topography, Ks(surface) and ν is the surface-

saturated hydraulic conductivity and describes the exponential decay of the saturated hydraulic conductivity with depth. Thus,

its functional form is given as:

Qsbt = f(SoilMoist-Pt,GWSt) (A7)855

Terrestrial water storage

Terrestrial water storage was not found to be mentioned in the original or supporting papers. Perhaps it was introduced

much later in light of the GRACE mission. However, it has been defined in the product README document. Thus the TWS is

defined following the same, with the functional form as:

Twst = f(CanopIntt,GWSt,SoilMoist-Pt,) (A8)860

Evaporative Fluxes

The total evaporation from the surface is modelled using a bulk effective resistance term, reff . It captures the effect of

canopy resistance, aerodynamic resistance and bare soil resistance. Thus the total evaporation is given as:

Evapt =
ρϵ

Psurf-ft
· es(Tc)t− eat

refft
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Therefore, its functional form is given as:865

Evapt = f(Tct,Tairt,Qair-ft,Psurf-ft,ACondt,WindSpeed-ft,CanopIntt,SoilMoist-St,SoilMoist-Pt) (A9)

Similar to the total evaporation the other evaporative fluxes are calculated as below:

ECanopt = min(
CanopIntt

∆t
,Evapt ·

CanopIntt
CanopInt-maxt

· ra + rTbs

ra + CanopIntt
CanopInt-maxt

· rTbs

)

Tvegt = (Evapt−ECanopt) · (
rc

rc + rbs
)

ESoilt = (Evapt−ECanopt) · (
rbs

rc + rbs
)870

where rbs is the bare soil resistance to evaporation and rc is the canopy resistance to transpiration, function of CanopIntt and

WindSpeed-ft. Thus, we obtain the functional relationships as:

ECanopt = f(Evapt,CanopIntt,SoilMoist-St,Wind-ft) (A10)

ESoilt = f(Evapt,ECanopt,CanopIntt,SoilMoist-St,SoilMoist-RZt,Wind-ft)) (A11)

Tvegt = f(Evapt,ECanopt,CanopIntt,SoilMoist-St,Wind-ft)) (A12)875

Aerodynamic Conductance

Aerodynamic conductance is defined on the data product website, as the measure of how effectively vapour flows through

stomata openings, total leaf area and soil surface. It is the inverse of aerodynamic resistance. In the papers the effective

aerodynamic resistance is defined as the summation of

ACondt = f(Qair-ft,Tair-ft,Psurf-ft,Wind-ft) (A13)880

Energy Balance equations and Vapour flux equation

The above two equations are simultaneously solved using a first order linearization of terms to get the δTc and ea terms.

Rsw−net + Rlw =
CHδTc

∆t
+ Rlw + H +λE +GD

Esurface =
ρE

ps
(es(Tc)− ea)

These are then used to update the values ground heat flux, sensible heat flux and upward long-wave radiation fluxes as:885

Rt
lw = Rt−1

lw +
∆Rlw

∆t
|t · δT t

c

Ht = Ht +
∆Ht−1

∆T t−1
c

|t− 1 · δT t
c +

∆Ht

∆et
a

|t− 1 · δet
a

Gt = Gt−1 +
∆Gt−1

∆T t−1
c

|t− 1 · δT t
c
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This gives a functional form for the temperature of the surface/canopy system and the energy budget terms as:

Tct = f(Lt
lw−f ,St

sw−f ,Ht,Et,Gt
D,Qair-ft,Tair-ft,Psurf-ft,T t−1

c ) (A14)890

Ht = f(Ht−1,T
t
c ) (A15)

Gt = f(Gt−1,T t
c ) (A16)

Qlet = f(ECanopt,T vegt,ESoilt) (A17)

Rt
lw = f(Rt

lw−f ,T t
c ) (A18)

Lt
lw = f(Lt

lw−f ,T t
c ) (A19)895

A3 Model forcings and simulation period

As described above, the model is forced with global meteorological forcing dataset from Princeton University Sheffield et al.

(2006). The model simulations were initialized on simulation date January 1, 1948 using soil moisture and other state fields set

at climatology. The total simulation period spans January 1, 1948 to 31 December, 2014. The models simulates the variables at

3-hourly intervals and provides the output at 3-hourly, daily and monthly temporal resolution. The data used in this study was900

from 1 January, 2002 till 31 December, 2014 at daily timescale resolution.

Appendix B: Algorithm settings

Below we describe the algorithm parameters used and modifications applied for this study. Before running the analysis we

standardized the data by subtracting its mean and dividing it by the standard deviation. Since the maximum lag in causal

relations was set to be 1, we conducted the analysis by fixing the maximum lag parameters accordingly for testing.905

PCC

For identifying the drivers of a target variable, we found its Pearson’s correlation coefficient with all the remaining variables

in the system, both at contemporaneous time step and by creating their one-step-lagged time-series. Then, we selected only

those variables as drivers where the p-value was smaller than 0.05 and absolute correlation coefficient greater than 0.2 (Wu

and Chau, 2011). We chose a low correlation threshold to maximize the inclusion of potential causal drivers, while reducing910

the likelihood of retaining purely spurious associations via the significance threshold.

TCDF

As summarized in Table 1, TCDF has six parameters. By reviewing the method paper, we chose the following parameters:

maximum lag = 1, hidden layers = 0, kernel size = 4, dilation coefficient = 4, number of epochs = 1000, significance = 1 and

learning rate = 0.005.915

PCMCI+

The parameters for PCMCI+ were minimum lag = 0 and maximum lag = 1. In addition, at the significance threshold

αpc = 0.95, the conditional independence test was the partial correlation (ParCorr) from the tigramite package itself (see

Code availability). Since the analysis data was from a perfect environment with no observational or process noise, this could

36

https://doi.org/10.5194/egusphere-2025-4650
Preprint. Discussion started: 5 November 2025
c© Author(s) 2025. CC BY 4.0 License.



potentially lead to “perfect fitting” of various variables during the conditional independence tests. This leads to variables920

negating each other’s effects, where in fact, both may be causal drivers (Ombadi et al., 2020). This is a case of violation of

causal faithfulness, wherein the causal relations exist, however they cannot be recovered by conditional independence tests

(Runge, 2022). Thus, to avoid such issues, we added randomly generated noise to the data before conducting the analysis.

The noise was generated using a Gaussian random noise of N
(
0,(0.2σ)2

)
where σ is the sample standard deviation of the

time-series. We tested the algorithm in range of noise levels, 0.1σ−0.5σ and found the results to be qualitatively robust, giving925

confidence that the results are not an artifact from the level of noise. While this does not guarantee causal faithfulness, it allows

us to create a non-deterministic system which is a condition for causal faithfulness. Further, it also makes the evaluation more

comparable to realistic world scenarios where observational is present.

Further, since PCMCI+ models causal relations using a graph (the Directed Acyclic Graph), it allows prior knowledge to be

injected into the graph. This allows the benefit of expert knowledge of the system (if any) to be utilised to find causal relations,930

instead of just relying on the algorithm. Thus, we explicitly removed incoming causal links into the eight forcing variables.

VARLiNGAM

VARLiNGAM offers a single parameter to modify the algorithm, the maximum lag parameter which was selected as 1. A key

assumption of VARLiNGAM is that error terms are non-Gaussian and mutually independent. However, majority of variables

in our analysis showed Gaussian distribution. Thus, similar to PCMCI+, to satisfy this assumption and stabilize estimation, we935

added randomly generated noise sampled from a gamma distribution with scale factor = 0.1 and shape = 1. This introduces

mild skewness while maintaining overall variance of the original time-series. We tested for varying levels of noise ranging

between 0.1 to 0.3 scale factor and obtained qualitatively similar results. Thus, giving us confidence towards the robustness of

the results towards the addition of noise.

Finally, the algorithm provides the modelled relations as the coefficients of a SVAR model (the adjacency matrix). Since940

these coefficients can take very small values, we applied a simple threshold of 0.1 for the contemporaneous adjacency matrix

and 0.01 for the lagged adjacency matrix. The coefficients above these thresholds were considered to represent causal relations.

We selected 0.1 for the contemporaneous adjacency matrix because we anticipated most links to be contemporaneous and hence

have a larger coefficient in the SVAR model. Similarly, we expected fewer causal links in the lagged adjacency matrix, thus,

selected a lower threshold of 0.01 for it.945

DYNOTEARS

For DYNOTEARS, we selected the sparsity penalty terms as λw = 0.001 and λa = 0.01, while the maximum cyclicity

allowed was h(W = 0.01), instead of 0 to allow for any converge errors issues. Then, similar to VARLiNGAM, the causal

relations in DYNOTEARS are represented by coefficients of the SVAR model. We select the Wthreshold = 0.01 for the

existence of a causal relation. Further, similar to PCMCI+, DYNOTEARS allows including the posterior probability of known950

causal relations to be included in the system, accordingly we restrict the causal relations incoming into the forcing variables.
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Appendix C: Machine learning model for time-series predictions

We used two machine learning models for prediction of variable time-series, support vector regression model and a feedforward

neural network.

We implemented a Support Vector Regression (SVR) model with a radial basis function (RBF) kernel using the scikit-learn955

library (Pedregosa et al., 2011). Model hyperparameters were optimized using a grid search with three-fold cross-validation.

The hyperparameter search space included the regularization parameter C ∈ {0.1,1,10}, the epsilon parameter ϵ ∈ {10−6,10−4,10−2},
and the kernel coefficient γ ∈ {scale,auto}. Model performance was evaluated using the coefficient of determination (R2)

as the scoring metric.

We implemented a feedforward neural network (FNN) using the Keras library (Chollet et al., 2015). The network consisted960

of three hidden layers with 32, 16, and 8 neurons, respectively. Rectified Linear Unit (ReLU) activation functions were used for

the hidden layers, while the output layer employed a linear activation suitable for regression tasks. Light dropout regularization

was applied to mitigate overfitting. The model was trained using the Adam optimizer with a learning rate of 0.001, minimizing

the mean squared error (MSE) loss function.

The figures below show the performance and error metrics for the prediction of different variables, across increasing noise965

levels. The subplots show the scores in the training period and the difference in testing and training periods.
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a) b) c) d)

e) f) g) h)

i) j) k) l)

Figure A1. Performance and error metrics for surface soil moisture predictions over a grid in Ganga basin. Similar to 7 a)–c) and b)–d), the

figures show the performance (and error metrics) during the training period and the difference in performance during the testing and training

periods. Further, figures show the results across different levels of noise in the system. The machine learning model used for prediction is

support vector regression model.

39

https://doi.org/10.5194/egusphere-2025-4650
Preprint. Discussion started: 5 November 2025
c© Author(s) 2025. CC BY 4.0 License.



a) b) c) d)

e) f) g) h)

i) j) k) l)

Figure A2. Similar to A1 but with a feedforward neural network model.
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a) b) c) d)

e) f) g) h)

i) j) k) l)

Figure A3. Similar to A1 but scores for prediction of surface storm runoff in the Ganga basin. Training period: 2000-01-01 to 2003-12-31,

Testing period: 2004-01-01 to 2005-12-31.
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a) b) c) d)

e) f) g) h)

i) j) k) l)

Figure A4. Same as A3 but predicted using a feedforward neural network.
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a) b) c) d)

e) f) g) h)

i) j) k) l)

Figure A5. Similar to A1 but scores for prediction of transpiration in the Murray basin. Training period: 2007-01-01 to 2012-12-31, Testing

period: 2005-01-01 to 2006-12-31.
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a) b) c) d)

e) f) g) h)

i) j) k) l)

Figure A6. Same as A5 but predicted using a feedforward neural network.
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Short Name Long Name Unit

ACond_tavg Aerodynamic conductance m s-1

AvgSurfT_tavg Average surface skin temperature K

Qsb_tavg Baseflow-groundwater runoff kg m-2 s-1

ECanop_tavg Canopy water evaporation kg m-2 s-1

ESoil_tavg Direct evaporation from bare soil kg m-2 s-1

Evap_tavg Evapotranspiration kg m-2 s-1

Qg_tavg Ground heat flux W m-2

GWS_tavg Ground water storage mm

Qle_tavg Latent heat net flux W m-2

Lwnet_tavg Net long-wave radiation flux W m-2

Swnet_tavg Net short wave radiation flux W m-2

CanopInt_tavg Plant canopy surface water kg m-2

SoilMoist_P_tavg Profile soil moisture kg m-2

Rainf_tavg* Rain precipitation rate kg m-2 s-1

SoilMoist_RZ_tavg Root zone soil moisture kg m-2

Qh_tavg Sensible heat net flux W m-2

SnowDepth_tavg Snow depth m

SWE_tavg Snow depth water equivalent kg m-2

EvapSnow_tavg Snow evaporation kg m-2 s-1

Qsm_tavg Snow melt kg m-2 s-1

Snowf_tavg* Snow precipitation rate kg m-2 s-1

SnowT_tavg Snow surface temperature K

Qs_tavg Storm surface runoff kg m-2 s-1

SoilMoist_S_tavg Surface soil moisture kg m-2

TWS_tavg Terrestrial water storage mm

TVeg_tavg Transpiration kg m-2 s-1

LWdown_f_tavg* Downward long-wave radiation flux W m-2

SWdown_f_tavg* Downward short-wave radiation flux W m-2

Rainf_f_tavg* Total precipitation rate kg m-2 s-1

Wind_f_tavg* Wind speed m s-1

Tair_f_tavg* Temperature K

Psurf_f_tavg* Surface pressure Pa

Qair_f_tavg* Specific humidity kg kg-1
Table A1. Table describing the short and long names and units of simulated and forcing variables. * marked variables are forcing variables.

Obtained from the GLDAS model documentation Li et al. (2018).
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