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Abstract. Vegetation plays a vital role in modulating climate and the carbon cycle on land through processes like photosyn-

thesis, also known as gross primary production (GPP). The significant presence of vegetation in Hong Kong, covering over

70 % of the land area, highlights the potential for terrestrial carbon sink to contribute to achieving carbon neutrality in such

a metropolitan city. Meanwhile, the terrestrial ecosystem is also influenced by climatic and environmental factors. This study

investigates the historical spatiotemporal dynamics of GPP in the subtropical forests of Hong Kong and the key drivers be-5

hind its trend and interannual variability between 2002 and 2018. We used the Terrestrial Ecosystem Model in R-Hong Kong

(TEMIR-HK), a localized process-based ecophysiological model, to evaluate the changes in GPP induced by changing CO2

concentration, temperature, ozone (O3) concentration, and changing leaf area index (LAI) shaped by these factors as well as

land use. Simulation results indicate an increasing trend of GPP, with an average annual GPP of 1.75 TgC yr−1, which is around

15 % of the annual total anthropogenic carbon emission from Hong Kong, suggesting a limited but indispensable potential of10

forestry to achieve city-level carbon neutrality. Model simulations of GPP show satisfactory results when spatially comparing

with satellite-based GPP dataset (R = 0.89), with slight difference of +8.7 % on average. Factorial simulations reveal LAI

changes dominate both trend (+0.0134 TgC yr−2) and interannual variability (standard deviation: 2.77×10−2 TgC m−2 yr−1)

of GPP in Hong Kong. This result highlights that local-scale reforestation could influence GPP trend over the whole city and

emphasizes the importance on the accuracy of LAI input in ecosystem-scale photosynthesis modelling. This work contributes15

to improving the scientific understanding on subtropical forest ecosystems, and highlights the potential, though limited, of

Hong Kong forests to play their parts in working toward carbon neutrality targets.
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1 Introduction

The exchange of energy, water, carbon and other climatically relevant elements are vastly regulated by plants through photo-

synthesis, which provides the largest sink for atmospheric carbon and represents the largest carbon flux in the terrestrial carbon20

cycle. Gross primary productivity (GPP), defined as the total amount of energy captured by autotrophs through photosynthesis,

is a key regulator of climate, and provides the basis for the functioning of matter and energy transfer in ecosystems. It is also

a proxy for studying terrestrial carbon sequestration. It is estimated that the terrestrial carbon sink could offset 31 % of global

total anthropogenic CO2 emissions during 2013–2022 (Friedlingstein et al., 2023). Not only does GPP reflect the productivity

of an ecosystem, but it also affects the carbon stocks of biomass and regional climate through altering transpiration and evapo-25

rative cooling. Meanwhile, the terrestrial biosphere is also continuously transformed by the changing climate and environment.

More accurately quantifying GPP, its variability and driving factors is hence pivotal in understanding the terrestrial carbon

cycle and its effects on climate change (Ryu et al., 2019).

GPP responds to meteorological and environmental factors in both direct and indirect ways. Enzymatically, photosynthesis

increases with increasing atmospheric CO2 concentration ([CO2]) following a Michaelis-Menton curve. Elevated [CO2] from30

366 to 567 ppm was reported to stimulate light-saturated photosynthesis for C3 plants by an average of 31 % in free-air CO2

enrichment (FACE) experiments (Ainsworth and Rogers, 2007). By partitioning the net carbon sink into different regions

and comparing process-based and atmospheric inverse model outputs, Schimel et al. (2015) showed that the CO2 fertilization

feedback contributes to 2.5 PgC yr−1 of terrestrial carbon uptake, which is 60 % of the total present-day land sink.

Temperature has been shown to be a dominant factor controlling photosynthetic activity (e.g., Berry and Bjorkman, 1980;35

Fernández-Martínez et al., 2018; Hikosaka et al., 2006; Li et al., 2015, 2016; Wu et al., 2011). It is well established that

the temperature response curve of leaf photosynthesis follows a parabolic shape: photosynthesis rate increases with temper-

ature until an optimum temperature is reached, and then declines with even higher temperature (Berry and Bjorkman, 1980;

Lloyd and Farquhar, 2008). Above the optimum temperature, net photosynthesis rate is co-limited by Rubisco deactivation and

chloroplast electron transport rates (Scafaro et al., 2023). At the ecosystem level, elevated air temperature further influences40

photosynthesis through controlling vapour pressure deficit (Park Williams et al., 2012). Twine and Kucharik (2009) suggested

that in the US, 19 % of corn and 11 % of soybean net primary productivity (NPP) trends could be attributable to temperature

trends. Global warming in general stimulates ecosystem photosynthesis by an average of 20 %, and ecosystem photosynthesis

shows significantly positive sensitivity to warming in a meta-analysis (Wu et al., 2011). In China, 1–2 °C increment in tem-

perature has stimulated an accelerating trend in net productivity, while >2 °C warming decreases the positive trend (Gu et al.,45

2017).

Tropospheric ozone (O3) induces substantial damage to vegetation via stomatal uptake. High O3 exposure causes rapid

transient reduction in stomatal conductance, which could be recovered within a short period of time (Vahisalu et al., 2010).

Chronic O3 exposure has been shown to reduce stomatal conductance and thus photosynthesis and transpiration irreversibly,

altering the carbon and water cycles (Lombardozzi et al., 2015). The indirect climate forcing of reduced carbon sink by O350

deposition could be larger than the direct radiative forcing of O3 as a greenhouse gas (GHG) (Sitch et al., 2007). Collecting
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observations over 1900 trees worldwide, Wittig et al. (2007) estimated the elevated O3 concentration ([O3]) since industrial

revolution has hindered tree photosynthesis by 11 %. A mechanistic model projected a 14–23 % reduction in GPP over the

period 1901–2100 due to rising O3 pollution (Sitch et al., 2007).

There are interplays between [CO2], temperature and [O3] that may provide synergistic or counteractive effects on photo-55

synthesis, mainly through modulating the stomata. Elevated [CO2] would lead to reduction in stomatal conductance, which

in turn reduces O3 dry deposition and alleviates O3 damage, constituting a protective effect. On the other hand, reduced O3

deposition may result in higher ambient [O3]. FACE experiments have shown that elevated [CO2] might not be able to offset

the O3 damage entirely (Uddling et al., 2010). In order to balance the conflicting needs of vegetation between carbon gain and

water loss prevention, increasing stomatal closure can happen under elevated [CO2] as well as increasing water stress induced60

by warming (Lloyd and Farquhar, 2008; Medlyn et al., 2011).

The indirect impacts on photosynthesis induced by climatic and environmental factors and direct human factors also manifest

through alterations in canopy structure. The total indirect environmental effects on GPP through altering canopy structure

could be comparable to the direct effect (Chen et al., 2023b). One of the indicators of canopy structure, leaf area index (LAI),

has been widely adopted in the studies of vegetation productivity and vegetation responses to climate change (Chen et al.,65

2023a, b; Winkler et al., 2021; Zhu et al., 2016). The said CO2 fertilization effects on GPP can result in an expansion in leaf

area (Donohue et al., 2013) and drive the globally observed greening trends (Zhu et al., 2016). Warming is also suggested

to promote earlier spring phenology (higher LAI in spring) and induce an increase in carbon uptake (Gu et al., 2022), while

vegetation management and disturbances influence regional greening. Forests and croplands exhibit significant greening trends

and human land-use management accounts for at least one-third of the observed net increase in leaf area predominantly in70

China and India (Chen et al., 2019). Meanwhile, insect outbreaks and diseases associated with the warming trends could also

contribute to the browning trend in North American boreal forests (Verbyla, 2011).

Subtropical forests that lie within the transition zone between tropical and temperate forests, such as those in the city of

Hong Kong in South China, are less well studied than tropical or temperate ones. Similar to tropical forests, subtropical forests

are mostly composed of evergreen species, with underlying canopies of shrubs and grasses. Subtropical forests could maintain75

high level of photosynthetic activity throughout the year, even in cold winters (Requena Suarez et al., 2019; Tan et al., 2012).

Leaf photosynthesis generally increases with temperature in subtropical vegetation without reaching the high temperature

threshold, despite variation in species-specific responses (Li et al., 2016). In the context of forest dynamics, a subtropical

large-scale biodiversity experiment showed that an accumulation of carbon in a 16-species mixture is twice the amount found

in average monocultures in an 8-year period (Huang et al., 2018). Subtropical forests have their unique behaviours and large80

photosynthetic potential that are worthwhile for further studies.

The uniqueness of Hong Kong as a subtropical city provides important reference for city-scale land carbon sink. Despite

the fact that it is a highly developed coastal city, more than 70 % of the land is covered by vegetation. There are ~700,000

urban trees and ~550 species, and 24 country parks covering ~40 % of total land area (Agriculture, Fisheries and Conservation

Department, 2023). Hong Kong’s flora is generically tropical, but less so when compared with places near the equator (Dudgeon85

and Corlett, 1994). The extensive and diverse vegetation in Hong Kong has provided the potential of significant contribution
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of terrestrial carbon sink in achieving carbon neutrality for the city. Studying ecosystem GPP is the cornerstone in studying

ecosystem services provided by Hong Kong vegetation.

Different approaches have been applied to study the terrestrial ecosystem productivity in Hong Kong. Site-level carbon

sequestration of mangrove wetlands and urban turfgrasses was studied in Hong Kong (Kong et al., 2014; Liu and Lai, 2019).90

A process-based biochemical model for mangrove was developed and calibrated with site observations whereby one out of the

two eddy covariance flux measurement sites is located in the mangrove ecosystem in Hong Kong (Tang et al., 2023). Chan et al.

(2021) estimated aboveground biomass at various plot sizes using regression models based on data from the Light Detection

and Ranging (LiDAR) instrument. Using global terrestrial biosphere models (TBMs), Cui et al. (2019) simulated an ensemble

mean gross GPP of 1280 ±422 gC m−2 yr−1 during 1901–2010 in the East Asian Monsoon region, of which Hong Kong is95

a part, and subtropical evergreen forests and croplands show greater intermodel disagreement in GPP. To date, there is no

study specifically focusing on the long-term GPP dynamics of Hong Kong forests. Local studies relying on emission factor,

allometric methods and flux tower observations were either limited to a plot scale (Kong et al., 2014; Liu and Lai, 2019) or

a specific plant type (Lee et al., 2021; Tang et al., 2023). TBMs could produce regional gridded results (Cui et al., 2019), but

global models have a very coarse spatial resolution (0.5°×0.5°) that does not enable fine-scale characterization of Hong Kong’s100

forests.

Here we thus aim to estimate the total gross carbon uptake by vegetation in the whole city of Hong Kong, and investigate

the major drivers of GPP under the combination of subtropical climate and forest management. This is the first comprehensive

study on the temporal dynamics of GPP in Hong Kong and the climatic and environmental factors controlling its changes. It

is also the first process-based modelling study on vegetation productivity over the entire Hong Kong region at a fine spatial105

resolution across different existing vegetation types, allowing computational factorial experiments to decipher the driving

factors. By understanding the contribution of subtropical forest ecosystems to local terrestrial carbon sink, and its climatic and

environmental driving factors, our results provide decision support for tree planting strategies and management, especially as

the city aims to achieve carbon neutrality by multiple means.

2 Methodology110

This study consists of two major components. First, we examined the observed GPP trend and interannual variability (IAV)

and investigated how well the model simulations reproduce the observations. Second, we conducted and analysed the factorial

simulations to disentangle the effects of the aforementioned drivers and determined their relative roles (Pan et al., 2014).

2.1 Study area

Located at 22.3964° N, 114.1095° E in the coastal area, Hong Kong can be divided into three major geographical regions:115

Hong Kong Island, Kowloon and the New Territories (comprising the Lantau Island and other outlying islands). In this study,

we separated the New Territories and the Lantau Island to avoid ambiguity. In between the varying topography composed

of numerous islands and mountains with a land area of 1104 km2 lives a human population of more than 7 millions (Lands
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Department, 2024). Hong Kong has a subtropical monsoon climate. In winter, cool and dry air is brought by the northerly

or northeasterly winds, while in summer, warmer and moister air is brought from the tropical oceans (Dudgeon and Corlett,120

1994). Hong Kong exhibits large temperature seasonality, ranging from a daily mean of 17 °C in January to 32 °C in July

(https://www.hko.gov.hk/en/cis/climahk.htm, last access: 4 January 2025). The mean daily temperature (1994–2023) is 23.7

°C, and the annual total rainfall is 2452 mm. The existing vegetation is mainly secondary forests planted in the latter half of

the 20th century after the Second World War. In the early years, exotic species were planted to prevent soil erosion and restore

vegetation cover destroyed by fires. These species have been gradually removed and replanted with native tree seedlings to125

enhance ecological values under the Country Parks Plantation Enrichment Programme (PEP) initiated by the Agriculture,

Fisheries and Conservation Department (AFCD) in recent years (Agriculture, Fisheries and Conservation Department, 2023).

The major types of vegetation are woodlands, shrublands and grasslands.

2.2 Process-based model description

TEMIR-HK computes ecophysiological processes including photosynthesis, stomatal conductance and dry deposition in in-130

stantaneous response to changing weather, atmospheric composition and land environment. Originated from the Terrestrial

Ecosystem Model in R version 1.0 (TEMIR v1.0) (Tai et al., 2024), TEMIR-HK adopts the same schemes as TEMIR, but

allows finer spatial resolution (0.005°×0.005°) and localized inputs (Tao, 2021). TEMIR-HK simulates hourly gridded gross

canopy photosynthesis for 24 plant functional types (PFTs). Figure 1 describes a simplified model simulation workflow in

TEMIR-HK. In the radiative transfer model, direct and diffuse radiation are used to calculate the absorbed photosynthetically135

active radiation (PAR) by sunlit and shaded leaves, following a single “big-leaf” approach. Leaf photosynthesis then follows

the well-established enzyme kinetic formulations, which consider the three limiting regimes of photosynthesis that require

PFT-specific physiological parameters and intercellular CO2 concentration (see Table S2 from (Tai et al., 2024)). Using leaf

photosynthesis and atmospheric conditions such as water vapour pressure, the stomatal conductance of water can be calculated.

Subsequently, O3 damages on leaf photosynthesis and stomatal conductance are represented by an O3 damage factor that relies140

on leaf boundary layer conductance, aerodynamic conductance and ambient O3 concentration. Sunlit and shaded leaf area in-

dices obtained in the radiative transfer model are then multiplied to the leaf photosynthesis to upscale to canopy level outputs.

Detailed description of the model can be found in Tai et al. (2024).

2.3 Data sources

2.3.1 Plant functional types145

We adopted the 30-m resolution Global Land Cover 2015 dataset in the Finer Resolution Observation System and Moni-

toring of Global Land Cover (FROM-GLC) land classification system (hereafter “FROM-GLC 2015”) (Gong et al., 2012;

Li et al., 2017) as the default land cover type. The data product was trained using Random Forest algorithm and validated

with Landsat-8 data (Li et al., 2017). FROM-GLC 2015 is the only land cover type dataset with a high resolution of 30 m,

which enables the computation of PFT fractions for each of our model grid cells of 500 m. PFTs are aggregated plant species150
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Figure 1. Methodological workflow of this study. TEMIR-HK computes canopy gross primary productivity (GPP) driven by meteorological

and environmental factors. The gridded GPP is further decomposed into trend and variability by linear regression.

categories based on biophysical properties and functions. They enable a parameterization that represents each model grid

cell as a mosaic of vegetation, and do not necessarily correspond to genetic categorization. The 24 Level-2 classes of land

cover types abundant in Hong Kong were translated into PFT fractions using a cross-walking table (Table S1) modified from

Reinhart et al. (2022). The cross-walking table is based on Holdridge Life Zones—biotemperature and precipitation. We de-

termined the Holdridge Life Zone in Hong Kong using temperature and precipitation data from the Hong Kong Observatory155

(https://www.hko.gov.hk/en/wxinfo/pastwx/mws/mws.htm, last access: 11 June 2025), and modified the PFTs according to our

understanding to local plant species. The translated PFT map was rescaled to 500 m resolution and parameterized into PFT

fractions for model simulation as illustrated in Fig. 2. There are six abundant PFTs in Hong Kong. The relative abundances of

PFTs are listed here in descending order: broadleaf evergreen tropical tree (BETT), 34.0 %; broadleaf evergreen shrub (BES),

6
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Figure 2. Rescaled 500 m resolution plant functional type (PFT) fractions derived from 30 m resolution Global Land Cover 2015 dataset

in the Finer Resolution Observation System and Monitoring of Global Land Cover (FROM-GLC) for (a) broadleaf evergreen tropical tree

(BETT), (b) broadleaf evergreen shrub (BES), (c) C3 grass (C3 G), (d) needleleaf evergreen tropical tree (NETT), (e) broadleaf deciduous

temperate tree (BDTT) and (f) broadleaf deciduous temperate shrub (BDTS) in Hong Kong.

23.5 %; C3 non-arctic grass (C3 G), 17.2 %, needleleaf evergreen temperate tree (NETT), 16.9 %; broadleaf deciduous tropical160

tree (BDTT), 7.2 %; broadleaf deciduous temperate shrub (BDTS), 1.2 %.

2.3.2 Leaf area index

We adopted MODIS MCD15A3H v006 4-day composite LAI data product with 500 m resolution. Daily LAI values were

linearly interpolated from the dataset. As TEMIR-HK requires PFT-specific LAI for each model grid cell, the dataset was

further processed to be PFT-specific using current day PFT fraction (PFT frac) and a PFT-specific LAI from a base year165

(LAIbase,PFT) (Figure 1). This approach allocates the current day total LAI of the grid cells to different PFTs based on the PFT

fractions. A scaling factor for each grid, Z, is calculated as:

Z =
LAI

Σ(LAIbase,PFT×PFT frac)
(1)

The current-day PFT-specific LAI is thus

LAIPFT = Z ×LAIbase,PFT (2)170
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Table 1. Factorial case setup for the simulations. “Full” refers to temporally fully changing, and “Fixed” refers to the fixed mean of 2010–

2012. The fixed cases are fixing atmospheric [CO2], temperature, ambient [O3] and leaf area index (LAI) respectively.

Variable

Case [CO2] Temperature [O3] LAI

〈Full〉 Full Full Full Full

〈CO2_fixed〉 Fixed Full Full Full

〈Temp_fixed〉 Full Fixed Full Full

〈O3_fixed〉 Full Full Fixed Full

〈LAI_fixed〉 Full Full Full Fixed

2.3.3 Meteorological and environmental data

We used eight locally measured meteorological variables, namely surface air temperature, wind speed, precipitation, relative

humidity, sea level pressure, and diffuse, direct and global solar radiation. We adopted hourly meteorological data measured at

over 78 ground monitoring stations of the Hong Kong Observatory (HKO) and hourly ozone concentration ([O3]) from eight

air quality monitoring stations of the Hong Kong Environmental Protection Department (HKEPD). These observed variables175

were extrapolated to gridded data by inverse distance weighting interpolation approach with a power parameter of 2 (Lu

and Wong, 2008). For missing data and other required meteorological variables such as surface energy fluxes, we used the

reanalysis products of Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) within the

designated study period. For land surface information and soil parameters, including soil moisture and vertical root fraction,

we represented them by a surface data map from the Community Land Model 2 (CLM2). Yearly ambient [CO2] in Hong Kong180

was extracted from global monthly gridded atmospheric [CO2] data produced by Cheng et al. (2022). The data was spatially

reconstructed based on Climate Model Intercomparison Project 6 (CMIP6) outputs and emission data. We adopted the SSP2-

4.5 scenario for 2015–2018 in this study. For the gap year 2014 in the dataset that separates the historical [CO2] and the future

projection, we linearly interpolated the concentration using the available data in 2004–2013 and 2015–2018.

2.3.4 Satellite-based GPP data185

We used Moderate Resolution Imaging Spectroradiometer (MODIS) MOD17A2HGF Version 6.1 GPP product (hereafter

“MODIS GPP”) as the proxy dataset for observation-model comparison. The data product is a cumulative 8-day composite of

values with a resolution of 500 m, based on the radiation use efficiency concept that utilizes photosynthetically active radiation

and climate variables. The GPP data for 2004–2018 were remapped to be consistent with the spatial extent of TEMIR-HK and

aggregated to annual mean for comparison.190
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2.4 Experimental setup

Five factorial simulations were conducted with TEMIR-HK with various combinations of meteorological and environmental

factors. The proposed key drivers of GPP: [CO2], temperature, [O3] and LAI (hereafter “proposed drivers”), were fixed specif-

ically for the fixed-factor simulations (see Table 1). We acknowledge that LAI is inherently shaped by the climatic and envi-

ronmental factors as mentioned in the introduction; however, since the model considers prescribed LAI input, here it is treated195

as a quasi-independent factor for the purpose of factorial experiments. We therefore essentially aimed to explore whether using

transient LAI would bring significant changes to the model results. For the fixed variables, we used the yearly/daily/hourly

mean (depending on the model requirement) of the middle three years of the study period, i.e., 2010–2012. Here we define the

first simulation as the one with all the proposed drivers remain temporally changing (hereafter “full case”). The remaining 4

simulations are the “fixed cases” in which one of the proposed drivers is fixed for each case (Table 1). The effect on simulated200

GPP by an individual proposed driver could be isolated by the subtraction of the fixed case from the full case, assuming the

effects by the proposed drivers are additive (Franz and Zaehle, 2021). There are two choices of O3 damage scheme: “Sitch

scheme” that follows Sitch et al. (2007) and “Lombardozzi scheme” that follows Lombardozzi et al. (2012, 2015). We used the

“Sitch scheme” with “high” O3 sensitivity that does not require model spin-up for all simulations. Under “high” O3 sensitivity,

plants especially C3 grasses, tend to be more vulnerable to O3 damage when compared to “low” O3 sensitivity.205

2.5 Model output processing and analysis

We used the output gridded PFT-specific GPP (per unit area) and PFT fractions to calculate regional total GPP in Hong Kong.

GPPtotal =
m∑

1

[
n∑

1

(GPPm,n×PFT fracm,n)×Aream] (3)

where GPPtotal is the regional total GPP, GPPm,n is the gridded PFT-specific GPP, PFT fracm,n is the gridded PFT fraction,

Aream is the area for each grid, and m, n are the total number of grids and PFTs respectively.210

For trend analysis, we used non-parametric Mann-Kendall trend test (hereafter “M-K test”) to test whether a temporal trend

is statistically significant for a quantity. We applied linear regression to gridded yearly GPP and total GPP to obtain the trends

to examine their time evolution. At the same time the interannual variability of GPP could also be obtained by removing the

trend. Here we used annual standard deviations of the detrended GPP to indicate the interannual variability (hereafter “IAV”)

of GPP.215

3 Results and discussion

3.1 Spatiotemporal dynamics of GPP

We first describe the spatiotemporal dynamics of GPP in Hong Kong with the observed MODIS GPP. Mean annual GPP during

2004–2018 over Hong Kong is 1.46 ±0.06 TgC yr−1. Figure 3a shows the spatial GPP distribution in Hong Kong. High levels

of GPP (2.4–3.0 kgC m−2 yr−1) are located in the south of the Lantau Island, south of Hong Kong Island, and middle, east220
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Figure 3. Spatial pattern of mean gross primary productivity (GPP) of Hong Kong from (a) observed MOD17A2HGFv6.1 product and (b)

simulated Terrestrial Ecosystem Model in R (TEMIR-HK) for 2004–2018. (c) Spatial correlation between the observed and simulated GPP.

Red solid line indicates the linear regression line, blue dashed line indicates 1:1 line. The coloured contours show the density of the points.

The statistical metrics and the equation of the linear regression are annotated in the top-left corner of the plots.

and northeast of the New Territories. These regions are mainly dominated by broadleaf evergreen tropical trees (Figure 2) and

are regarded as the country park areas in Hong Kong with dense vegetation. Meanwhile, lower GPP levels (0.8–1.8 kgC m−2

yr−1) are located in the northwest of the New Territories where the land cover is sparsely composed of grasses and needleleaf

evergreen tropical trees (Figure 2). A spatial gradient is not observed as latitudinal variation is minimal over the study region.

The magnitude of GPP in the broadleaf evergreen tree-dominated region is comparable to the average GPP at low latitudes225

(0–20° N) as estimated in Yu et al. (2014), whereas the average GPP over the entire Hong Kong is 1.51 kgC m−2 yr−1, which is

also comparable to the estimated value in the East Asian monsoon region.

Over the course of the 15-year period, Hong Kong’s total GPP increased by 6.8 %, from 1.46 TgC yr−1 in 2004, to 1.56

TgC yr−1 in 2018. The annual mean total GPP estimated by TEMIR-HK is 1.75 TgC yr−1. Similar to the spatial patterns, the

annual mean total GPP from TEMIR-HK is 8.7 % higher than MODIS GPP that is 1.61 TgC yr−1. M-K test result shows a230

significant temporal trend in GPP (t = 0.562,p < 0.05) of 0.0115 ±0.0028 TgC yr−2. For the proposed drivers, [CO2], LAI

as well as temperature show statistically significant trends ([CO2]: t = 1,p < 0.05; LAI: t = 0.657,p < 0.05; Temperature:

t = 0.524,p < 0.05) of 2.3 ppm yr−1, 0.0095 m2 m−2 yr−1 and 0.054 °C yr−1 respectively. Whereas for [O3], the trend is

statistically insignificant at a rate of 0.39 ppb yr−1.

The GPP trend in Hong Kong exhibits a heterogeneous spatial pattern as depicted in Fig. 4. The pattern is distinct from the235

spatial GPP distribution presented above. In general, the magnitude of GPP trend of 80 % vegetated area lies within the range

of 0.6–26.2 gC m−2 yr−2. Large clusters of high GPP trend (>45 gC m−2 yr−2) are spotted in west New Territories and north

Lantau Island. Some scattered 9 % of the vegetated area experiences a negative trend up to −25 gC m−2 yr−2, yet none of these

trends are statistically significant. Despite the fact that total GPP manifests a significant trend, only 39.6 % of vegetated area

experience significant GPP increment (p < 0.05). Yet, the vegetation therein contributes to 69.2 % of the total GPP trend. We240
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Figure 4. Spatial pattern of mean gross primary productivity (GPP) trends of Hong Kong from (a) observed MOD17A2HGFv6.1 product

and (b) simulated Terrestrial Ecosystem Model in R (TEMIR-HK) for 2004-2018. (c) Spatial correlation between the observed and simulated

GPP trends. Red solid line indicates the linear regression line, blue dashed line indicates 1:1 line. The coloured contours show the density of

the points. The statistical metrics and the equation of the linear regression are annotated at the top-left corner of the plot.

further calculated the standard deviation of the linearly detrended annual GPP. Large IAV (>0.2 kgC m−2 yr−1) happen at east

New Territories, south Hong Kong Island and north and west Lantau Island. Large area of the northwest New Territories shows

smaller IAV (<0.1 kgC m−2 yr−2) (Figure S2).

3.2 Model evaluation

We further investigated whether the model simulations capture the same spatiotemporal characteristics as the observations.245

Some grid cells, depicted as grey areas in Figure 4b, mainly urban areas, were not simulated due to unavailable LAI data or

low vegetation coverage (PFT fraction < 1 %). Here we assume that urban vegetation is negligible in contributing to the total

GPP over the whole region given the extensive forests in the countryside. Overall, TEMIR-HK could reproduce a consistent

spatial pattern on a par with the observations: high and low GPP regions are clearly distinguished (Fig. 3b). Spatial correlation

between MODIS GPP and TEMIR-HK GPP shows a satisfactory correlation coefficient of 0.89 (Fig. 3c). However, TEMIR-250

HK slightly overestimates GPP over the whole region. The correlation shows a slight overestimation for simulated GPP on

lower GPP levels, and the discrepancy widens at higher levels. Particularly, observed low-level GPP regions in the west Lantau

Island are estimated to produce high GPP. Simulated time series of total GPP over Hong Kong shows a consistent pattern with

satellite observations, with a correlation coefficient of 0.85. We also assessed the spatial pattern of GPP trend and IAV simulated

by TEMIR-HK. The spatial correlation between the simulated and observed GPP trends demonstrates a good correlation255

coefficient of 0.61, although an overestimation of the rising trend by TEMIR-HK is evident (Fig. 4c). The two clusters of

outstandingly strong GPP trends were also captured by the simulation. The correlation coefficient in the case of IAV is 0.34,

implicating the model performs only fairly in estimated IAV (Fig. S3).
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Figure 5. Time series of annual total gross primary production (GPP) for all factorial simulations described in Table 1. (b) Spatial mean GPP

trends attributed to climatic and environmental factors, along with the additive trend resulting from the combined effect of these factors. The

isolated black-coloured bar is the observed GPP trend calculated from MOD17A2HGFv6.1 product.

3.3 Total GPP trend responses to climatic and environmental factors

Here we show the attribution analysis results from the factorial simulations. Figure 5a shows the time series of annual total260

GPP from all factorial simulations. All cases show increasing yet interannually varying pattern. The GPP time series for 〈LAI

_fixed〉 has notable difference in the pattern comparing with other cases. We applied M-K test to the total annual GPP time

series to evaluate the level of significance. All of the simulations show significant trends with p-value smaller than 0.005. As

Fig. 5b shows, GPP increases steadily with a positive trend of +0.0159 kgC m−2 yr−2. The trend of MODIS GPP is 11.0 %

less than that of 〈Full〉 GPP. We decomposed the trend with factorial simulations by subtracting 〈fixed〉 GPP from 〈Full〉 GPP,265

followed by linear regression. The statistical metrics are shown in Table S1. LAI dominates the trend by +0.0134 TgC yr−2,

alongside with temperature and [CO2] that also contribute to the increasing GPP. [O3] is the only variable that is attributed to

a negative trend. The additive (CO2 + LAI + Temperature + O3 effects) trend is slightly higher (+12.4 %) than the full trend,

indicating some interactive effects might have offset part of the joint positive trend.

We conducted a simple sensitivity analysis by dividing the GPP trends induced by the proposed drivers by their own trends270

(Table 2). Rising [CO2], LAI and temperature have positive effects on GPP; mildly rising [O3] has a weak negative effect on

GPP. In the period of 2004–2018, for every 10 ppm of [CO2], 0.1 m2 m−2 of LAI, 1 °C of temperature and 1 ppb of [O3], GPP

changes for 23.8, 111, 37.8 and −1.41 gC m−2 yr−1 respectively. The increase in [CO2], LAI, temperature and O3 from 2004 to

2018 results in the increment of GPP by 0.091, 0.174, 0.034 and −0.009 TgC yr−1 respectively.
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Table 2. Annual trends (unit per year) and the gross primary productivity (GPP) trends (gC m−2 yr−2) induced by atmospheric CO2 concen-

tration ([CO2]), leaf area index (LAI), surface air temperature (Temp), ambient O3 concentration ([O3]). Sensitivities (gC m−2 yr−1 per unit)

are the changes in GPP per unit change of the environmental variables. Single asterisk (*) indicates that the trend is significant under the

non-parametric Mann-Kendall trend test (p < 0.05).

Trend Induced GPP trend Sensitivity

[CO2] (10 ppm) 0.23 * 5.48 * 23.8

LAI (0.1 m2 m−2) 0.095 * 10.5 * 110

Temp (1 °C) 0.0540 * 2.04 * 37.8

[O3] (1 ppb) 0.39 −0.548 * −1.41

3.4 Total GPP IAV responses to climatic and environmental factors275

The IAV of GPP in response to the proposed drivers are depicted in Fig. 6. We analysed the influence of the proposed drivers on

IAV of GPP at two dimensions: magnitude through variance and linearity through correlation. Quantitatively, the SD of GPP

induced by [CO2], LAI, temperature and [O3] are 2.45×10−3, 2.77×10−2, 8.44×10−3 and 6.74×10−3 TgC yr−1 respectively. LAI

induced the largest IAV on GPP by a magnitude of 1 compared to [CO2], temperature and [O3]. We also conducted Pearson

correlation test between IAV of GPP (solid lines in Fig. 6) and the normalized IAV of the proposed drivers (dashed lines). While280

TEMIR-HK is a process-based model simulating instantaneous vegetation responses, the correlation coefficients do not imply

the relationships between the environmental factors and GPP, as they are already supported by the well-established ecophysio-

logical processes included in the model. Instead, they serve as indicators of the degree of linearity to which the environmental

factors influence GPP. A higher magnitude in the Pearson coefficient indicates a more linear influence between the IAV of

environmental factor and IAV of GPP, vice versa. [CO2] has almost negligible influence on IAV of GPP in comparison with285

other drivers, which could be explained by the linearity of the time evolution of [CO2] over the study period. The correlation

coefficient is 0.94 with a high level of significance, suggesting that the [CO2] has minimal yet linear influence on IAV of GPP.

LAI dominates the variance among the other factors, and the correlation coefficient is 0.98 with a high level of significance,

which suggests a strong and linear influence on IAV of GPP. Temperature has a moderate influence on IAV of GPP in the

context of variance, and the relationship is more nonlinear compared to the former two drivers as the correlation is insignificant290

(p > 0.05) and the coefficient is 0.48. [O3] has a similar magnitude of influence on IAV of GPP, however, the relationship is

nonlinear as the correlation coefficient is only −0.33.

3.5 Leaf area index dominates GPP trend and interannual variability

CO2 fertilization effect is said to be the dominant driver of increasing global GPP from model simulations and satellite-based

products, albeit having the largest uncertainty in the magnitude of effect (Walker et al., 2021; Yang et al., 2022). A recent295

study focusing on Yangtsz River Delta in China suggests that in the regions with significant greening, the joint effect of CO2

fertilization effect on LAI and land management could result in the LAI variations, and in turn dominate the variations of
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Figure 6. Interannual variability of gross primary production (GPP) influenced by environmental factors, as depicted by the solid lines. The

corresponding normalized interannual variability of the environmental factors are depicted as dashed lines. Statistical metrics of Pearson

correlation between the GPP interannual variability and environmental factor variability are presented on the top-left corner of the plots.

GPP (Chen et al., 2023a). Sensitivity analysis in that study showed that LAI increment of 0.1 would lead to a higher GPP

increase than that of atmospheric [CO2] increment of 10 ppm. From our results, LAI explains the majority of the annual trend

of GPP and IAV of GPP, and it is also the largest contributing factor to IAV of GPP in terms of magnitude and directness. Our300

sensitivity analysis also shows that the effect on GPP for every LAI increment of 0.1 m2 m−2 is almost five times that for every

[CO2] increment of 10 ppm. This aligns with Chen et al. (2023a) that the effect of LAI variations determines the variations

of GPP. Lower contribution from the climatic and environmental factors from our results only reflects their direct roles on

leaf-level GPP.

Indeed, LAI is a composite result integrating indirect climatic and environmental effects and direct human-induced effects305

on canopy structure via forest management. Rising [CO2] is suggested to be the dominant driver of growing-season integrated

LAI trend in South China (Zhu et al., 2016). Study by Chen et al. (2023b) reported that the indirect effect of increased [CO2]

accounts for 18.4 % of the total environmental effects on GPP. At the same time, rising temperatures have resulted in advanced

leaf phenology in spring over the recent decades (Gu et al., 2022; Piao et al., 2015). Here we propose two more factors that

could have possibly contributed to LAI-associated GPP trend. First, there is a significant growth in LAI in winter (December310
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to February) over the years (Figure S3). There are overall increments in LAI for all seasons, but the winter increments are

much more significant. The winter increases in LAI promote a smaller yet noteworthy level of photosynthesis compared to

summertime ones. The observational study of Tan et al. (2012) reported that even in cold winters, subtropical evergreen forests

could maintain continuously high levels of photosynthesis. Second, there has been a rapid growth of forests in some particular

regions via active tree replanting. Both observations and model simulations show two clusters of large GPP trend, and LAI of315

the two clusters also shows more than 90 % increment during the 15-year period (Figure S1). Although the magnitude of LAI

remains at a moderate level (<3 m2 m−2), the percentage increase in LAI is large enough to support the total GPP trend, as

mentioned in Sect. 3.1 that 39.6 % of vegetated area experiencing significant GPP increment contribute to 69.2 % of the total

GPP trend, and that includes the two clusters of strong GPP trends. The one cluster in west New Territories (part of the Tai

Lam Country Park) experienced a massive wildfire in 2006, burning more than 66000 plants. Aggressive tree planting exercises320

were carried out to rehabilitate the areas damaged by the wildfire (Agriculture, Fisheries and Conservation Department, 2007).

By using canopy height model, Zhang et al. (2024) showed evidence of recovery in 44.9 % of Hong Kong’s vegetated area.

The study highlighted the superior benefits of active restoration over natural regeneration. The above suggests that small-scale

forest management supplemented by fertilization could play a vital role in forest regrowth, even influencing the total GPP trend

for the entire region.325

On the ecosystem scale, there could be substantial and more rapid changes in LAI as it could also be influenced by fertility,

management treatment and wildfire disturbances, on top of climatic and PFT categorization on regional scale. Hong Kong

government initiated the PEP programme in 2009, which includes thinning of ageing exotic tree species, predominantly Acacia

species, and replanting of native tree seedlings. In 2022, about 2700 exotic trees were removed and more than 27000 native tree

seedlings were replanted under the PEP. These Acacia species are suggested to limit plant growth through soil constraint and330

reduce ecosystem services (Lee et al., 2021). The replantation of vegetation under PEP could contribute to increasing LAI and

consequently GPP, although the extent is uncertain. Rising LAI generally first result in an almost linear increase in GPP, but as

LAI increases further, the dense leaves would attenuate more solar radiation, which would later become saturated at a certain

LAI threshold. The growth rate of GPP would thus decline when LAI surpasses that threshold (Zhao et al., 2021). The highly

linear relationship between IAV of GPP and LAI illustrated in Sect. 1.3.5 also suggests that the annual LAI has not yet reach335

the saturation threshold proposed by Zhao et al. (2021), who described the relation as a power function, although seasonally

high LAI might have surpassed the threshold.

At the same time, studies have also showed that large inconsistencies between LAI from models and from satellite products

could lead to significant uncertainties in GPP estimates (Chen et al., 2023a; Yang et al., 2022). Winkler et al. (2021) sug-

gested that CO2 fertilization effect on greening is only dominant in temperate forests, cool arid grasslands and the Australian340

shrublands, and in the tropical forests the effect is compensated by the browning caused by CO2-induced climate change. It is

therefore important to ensure the quality of LAI used as model input since that LAI is both a determinant and a consequence

of important processes in canopy dynamics (Parker, 2020).
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4 Conclusions and Implications

We examined forest GPP and its changes in Hong Kong within a recent 15-year period. We found that high GPP regions are345

broadleaf evergreen tree-dominated country park areas, where GPP is comparable to the level in tropical zones. Total GPP

has been increasing with a significant trend, whereby the increases are the most concentrated in only around two-fifth of the

vegetated areas that show significant increase in GPP. One of the two clusters showing large GPP trends experienced wildfire

disturbances and aggressive tree replanting afterward, suggesting that small-scale forest management strategies can influence

the GPP trend of the entire metropolitan city. Despite the dominance of broadleaf evergreen trees in Hong Kong, needleleaf350

evergreen temperate trees are actually the largest contributor to the GPP trend as a large fraction of their abundance is located

in that cluster. We further explored the issues with attribution analysis utilizing our process-based model. Model simulations

showed satisfactory results in reproducing the spatial GPP and its trend, albeit with very minor overestimation in general.

The attribution analysis showed that LAI and [CO2] contribute to the majority of the positive GPP trend in Hong Kong, while

positive surface temperature effect is almost compensated by the negative O3 and interactive effects. The interannual variability355

of GPP is also dominated by LAI, as it induces large and direct effect on GPP. On the other hand, the temperature and O3 effects

are much more nonlinear, and have moderate influence on GPP.

In our study we forced the model with prescribed satellite-based LAI dataset, which was model limitation but also in

effect simplified the representation of land cover and land use change. The downside is the inability to decipher whether

the overall increases in LAI in Hong Kong (Figure S1) are attributable to biophysical factors such as CO2 fertilization and/or360

anthropogenic factors such as the active replacement of old forests as an ecological restoration strategy by the Hong Kong

Government. Currently, there is no research on the effectiveness of the PEP, e.g., by quantifying the number of successfully

replanted trees, or the changes in vegetation dynamics including the growth of understory canopies. This limits our research

from examining the changes in potential productivity of vegetation induced by forest management. More attention should be

paid to the effects of forest management and land cover change on the time evolution of LAI at such a limited spatial scale365

of the study. Future research may also focus on whole ecosystem modelling in Hong Kong, in order to disentangle the direct

human effects and indirect climatic and environmental effects on leaf phenology, canopy structure, vegetation distribution, and

the resulting integrated GPP.

Most land models including TEMIR-HK classify vegetation into a reduced set of similarly "behaving" plant types in terms

of their ecosystem functions. However, subtropical tree species were observed to exhibit species-specific responses to rising370

temperature. The study from Li et al. (2016) showed certain species demonstrate a positive relationship between photosynthesis

and variations in leaf temperature, whereas one particular species displays a decreased net photosynthetic rate in a warmer

environment. Three species in the same study experienced increases in the proxies of leaf photosynthesis, namely maximum

rate of Rubisco carboxylation (Vcmax) and the maximum rate of photosynthetic electron transport (Jmax), which aligns with

the model proposed by Farquhar et al. (1980). However, contradicting results were also observed in the other two species. It375

remains uncertain whether the current parameterization of broadleaf evergreen tropical trees could accurately represent the

temperature responses and acclimation of the biodiverse subtropical forest ecosystems in Hong Kong.
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To have a better representation of vegetation functionalities in a specific ecosystem, it is essential to incorporate local

measurements of plant traits into models. The current version of TEMIR-HK calculates Vcmax at 25 °C in relation to prescribed

PFT-specific leaf nitrogen concentration, fraction of leaf nitrogen in Rubisco and specific leaf area. Leaf-level Vcmax25 can be380

derived from leaf-level gas exchange measurements and this approach has been widely adopted as the primary method Vcmax25

estimation (Stinziano et al., 2017). A recent study (Liu et al., 2023) proposed an alternative and rapid method for estimating

Vcmax25 using canopy-level imaging spectroscopy to address challenges in sampling and measuring this trait in tall trees within

natural forest ecosystems and remote regions including subtropical forests. This opens up an opportunity to collect mass Vcmax25

data samples and obtain locally measured representative plant traits for ecosystem modelling in Hong Kong in the future.385

Land cover change is not comprehensively represented in this study. A more complete representation of land cover change

should include changes in both LAI, which represents canopy structure, and PFT fraction, which represents vegetation distri-

bution. Currently, a dynamic vegetation or land cover change map is lacking in Hong Kong, and thus a constant land cover map

was adopted. The high resolution 30 m FROM-GLC map is only available for 2015 and the effect of land cover change is only

implicitly represented by the change in LAI in the case where deforestation and reforestation take place. Future developments390

in land cover change maps in Hong Kong would benefit our model simulation to take the effect fully into account.

Being one of the most populated city in the world, Hong Kong has announced targets for the city to attain carbon neutrality

by 2050, with an interim goal of cutting carbon emissions by 50 % before 2035 relative to 2005 levels (The Government of the

Hong Kong Special Administrative Region, 2021). In October 2021, the government unveiled Hong Kong’s Climate Action

Plan 2050, detailing four key decarbonization strategies: “net-zero electricity generation”, “energy efficiency and sustainable395

buildings”, “environmentally friendly transportation”, and “waste minimization”. These strategies, along with interim targets,

are designed to pave the way for Hong Kong to achieve carbon neutrality by 2050. In addition to cutting carbon emissions,

utilizing land carbon sink has been heralded as a complementary approach to achieve the goal.

According to governmental data, within the study period, the CO2-equivalent annual mean of the total GHG emissions in

Hong Kong was around 11.72 TgC yr−1 (https://cnsd.gov.hk/wp-content/uploads/2025/04/Data-Tables_2023_AR5_per-capita_400

intensity-r2_clean.pdf, last access: 6 June 2025). Our estimated GPP of 1.75 TgC yr−1 is about 15.0 % than that of the total

GHG emissions from production sectors, indicating that productivity of Hong Kong’s terrestrial ecosystems play a small yet

indispensable role in achieving carbon neutrality. Noting that GPP is only a proxy of the actual carbon uptake for the ecosystem

(net ecosystem productivity, NEP), the net uptake that contributes as carbon sink is even smaller than this 15 %. Given the ex-

tensive existing vegetation coverage in Hong Kong (~70 %), reforestation measures would not be beneficial toward neutrality405

targets as it is difficult to further increase the greening area. Instead, the focus should be on preserving existing ecosystems—

any further loss in land carbon sink is another burden to the mitigation strategies. Most importantly, it highlights that both the

public and the government need to act more progressively to cut anthropogenic carbon emissions, as the terrestrial ecosystems

only have a limited potential to contribute to carbon neutrality in Hong Kong.

We emphasize the importance of the combined effect of indirect climatic and environmental conditions and direct forest410

management as reflected by LAI, since it dominates both the trend and interannual variability of our studies, alongside pre-

vious literature stating that discrepancies in LAI datasets cause diverse GPP estimation. There are needs for future work in
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quantitative description on land cover change in Hong Kong, full ecosystem modelling and localized vegetative behaviour

parameterization.

Code and data availability. Model output data used for analysis and plotting will be provided upon request. The vanilla Terrestrial Ecosystem415

Model in R (version 1.0) source code is licensed and publicly available in the following repository: https://doi.org/10.5281/zenodo.8215332

(Tai and Yung, 2023); as well as on GitHub: https://github.com/amospktai/TEMIR (last access: 1 Aug 2025). The modified model source

code for Hong Kong will be provided upon request.
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