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Key Points: 30 

• An explainable deep transfer learning framework was developed to predict 31 

isoprene concentrations and their variations. 32 

• Different drivers accounted for historical trends of isoprene concentrations in 33 

Hong Kong and London from 1990 to 2023. 34 

• Reducing nitrogen oxides would alleviate ozone pollution driven by rising 35 

temperatures and isoprene levels in the warming climate. 36 
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Abstract 38 

Isoprene, the globally most abundant volatile organic compound, significantly impacts 39 

air quality. Determining isoprene concentration variations and their drivers is a 40 

persistent challenge. Here, we developed a robust machine learning framework to 41 

simulate isoprene concentrations, without requiring localized emission inventories and 42 

explicit chemistry. Temperature, radiation, and surface pressure were the primary 43 

drivers of short-term isoprene variations across Chinese cities. On climatic timescales, 44 

urban greenspace expansion and climate warming drove isoprene increases by 341 pptv 45 

in Hong Kong during 1990–2023, but traffic emission reductions in London 46 

counteracted the isoprene rise that climate warming would have otherwise caused (-755 47 

pptv vs. +31 pptv). Driven by rising temperatures and isoprene levels, ozone would 48 

increase by up to 1.7-fold by 2100 under the high-emission scenario. However, 49 

ambitious reduction in nitrogen oxides would alleviate this growth to 1.2-fold. The 50 

study has the potential to inform air quality management in a warming climate. 51 
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1 Introduction 53 

Isoprene is the most abundant non-methane volatile organic compound (VOC) globally, 54 

with the total emissions reaching approximately 500 TgC per year, exceeding those of 55 

the total anthropogenic VOCs (Guenther et al., 2012; Huang et al., 2017). The high 56 

atmospheric reactivity makes it a key precursor for tropospheric ozone (O3) and 57 

secondary organic aerosol, both of which significantly impact air quality and climate 58 

(Paulot et al., 2012; Lin et al., 2013). In particular, the effect is pronounced in urban 59 

environments due to the interactions between isoprene and anthropogenic emissions 60 

(Xu et al., 2015). 61 

Terrestrial vegetation is the primary source of atmospheric isoprene, and the emissions 62 

are influenced by plant species, geographical locations, and environmental conditions 63 

(Guenther et al., 1994; Guenther et al., 1993). Urban landscapes show remarkable 64 

diversity in isoprene production, exemplified by stark differences between tree species. 65 

While urban greenspace offers numerous benefits, it also emerges as a notable 66 

contributor to urban isoprene (Ma et al., 2022). The emissions are highly sensitive to 67 

meteorological conditions (Wang et al., 2024a). The combination of climate warming 68 

and urbanization lead to intensified urban heat, which in turn boosts isoprene emissions 69 

from greenspace (Li et al., 2024; Pfannerstill et al., 2024). In addition, studies have 70 

shown that a portion of urban isoprene may stem from motor vehicles, the contribution 71 

of which varies by location and season (Borbon et al., 2001). However, vehicle 72 

emissions of isoprene do not necessarily increase with growing vehicle population, due 73 

to stringent emission controls in many cities. This further complicates the task of 74 

accurately simulating the concentrations and trends of urban isoprene. While isoprene 75 

may also be emitted from other anthropogenic sources, such as petrochemical activities 76 

and coal combustion, the amounts are generally small compared to biogenic emissions, 77 

especially in warm seasons (Peron et al., 2024). 78 

Modeling and measurement deficiencies remain a serious concern in isoprene research 79 

across multiple disciplines. For example, the Model of Emissions of Gases and 80 

Aerosols from Nature (MEGAN) estimates vegetation emissions based on theoretical 81 

https://doi.org/10.5194/egusphere-2025-4644
Preprint. Discussion started: 14 October 2025
c© Author(s) 2025. CC BY 4.0 License.



 

5 

 

relationships with meteorology and vegetation dynamics. This model significantly 82 

underestimates isoprene emissions from urban greenspace when it is driven by coarse 83 

resolution (e.g., >30 m) satellite-derived vegetation data (Ma et al., 2019; Ma et al., 84 

2022). It is also difficult for current chemical transport models to accurately simulate 85 

isoprene concentrations, mainly resulting from the grid resolution and uncertainties in 86 

isoprene emissions, vertical dispersion rates and oxidation parameterization schemes 87 

(Arneth et al., 2011; Guenther et al., 2012). Local vegetation surveys and emission 88 

factor measurements can be made to improve model performance. However, the work 89 

is challenging and the outcomes often point out additional uncertainties (Seco et al., 90 

2022; Wang et al., 2024b). While isoprene measurements have demonstrated reliability 91 

in atmospheric chemistry research, the temporal and spatial coverage remains 92 

suboptimal. Given these constraints, there are insufficient robust isoprene data available 93 

over climatic timescales (e.g., several decades) to reveal the drivers of long-term trends. 94 

To confront this dilemma, we developed a generalized physics-informed neural 95 

network based on a residual Multi-Layer Perceptron with a transfer training strategy to 96 

reproduce/predict ambient isoprene concentrations. The model was trained by a 97 

comprehensive set of isoprene data observed at ten sites in China (a total of ~65,000 98 

hourly data) and validated by a total of ~8,500 hourly and daily data at six overseas 99 

sites (Table S1). The model was verified for its ability to predict isoprene with limited 100 

sizes of observational data and understand intricate relationships between isoprene and 101 

influencing factors. The model was then used to predict future trends of isoprene and 102 

the resulting O3 variations in different climate scenarios. This study enhances our 103 

understanding of the responses of ambient isoprene concentrations to emissions and 104 

meteorology, and has the potential to inform urban planning and air quality policies in 105 

the warming climate. 106 
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2 Data and Models 108 

2.1 Isoprene Data and Deep Learning Model 109 

A total of over 72,000 hourly (and a small fraction of daily) data of isoprene 110 

concentrations in the daytime (06:00–20:00 local time) of warm seasons (May–October) 111 

were compiled from 16 sites worldwide. Around 88% the data was from different parts 112 

of China, and the remainder was from North America, Amazonia, India, and the UK 113 

(see Table S1). To ensure comparability, we included only online measurements, 114 

excluding offline sampling and analysis methods. While inter-instrument bias might 115 

exist, the isoprene variability within each site was expected to be much larger than any 116 

plausible inter-instrument bias. Moreover, this will not influence the analysis of 117 

isoprene variations at individual sites. 118 

The residual multi-layer perceptron architecture (ResMLP) was employed to 119 

approximate the complicated responses of isoprene concentrations to input features, 120 

which was coupled with a physics-informed neural network, thereby PINN-ResMLP. 121 

This approach integrated domain knowledge by enforcing monotonicity constraints 122 

between isoprene and its major sources (e.g., vegetation and traffic emissions), thus 123 

ensuring physically consistent predictions. These constraints were implemented 124 

directly in the model’s loss function, which combined terms for data fitting, 125 

monotonicity regularization, and network structure penalties. As a fully data-driven 126 

model, ResMLP may learn patterns that are inconsistent with physical laws. 127 

Incorporating expert knowledge and physical constraints into the model can guide the 128 

learning processes. In this study, we stipulated that isoprene concentrations were 129 

positively correlated with the biogenic and traffic emission sources. This relationship 130 

therefore can be expressed as: 131 

𝜕 𝐼𝑆𝑂𝑃

𝜕 𝑉𝐼
> 0 (1) 132 

𝜕 𝐼𝑆𝑂𝑃

𝜕 𝐵𝐶𝑡𝑟𝑎𝑓𝑓𝑖𝑐
> 0 (2) 133 
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where ISOP represents isoprene concentrations; VI is vegetation index derived from 134 

Leaf Area Index (LAI) and Normalized Difference Vegetation Index (NDVI) (see Text 135 

S1); and BCtraffic is traffic emissions of black carbon. To satisfy this priori knowledge, 136 

we developed PINN-ResMLP to constrain the model. The optimization objective of 137 

PINN-ResMLP included data item loss ( ℒ𝑑𝑎𝑡𝑎 ), physical inconsistency loss 138 

(ℒ𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑖𝑡𝑦), and additional structural loss (ℒ𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒). Meanwhile, the L2 norm of 139 

the network parameters, namely adding the sum of the squares of all network weights 140 

(parameters) to the loss function, could effectively regularize and prevent overfitting in 141 

PINN-ResMLP. Finally, the total function was formulated as: 142 

ℒ = ℒ𝑑𝑎𝑡𝑎 + 𝛼 ∙ ℒ𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑖𝑡𝑦 + 𝛽 ∙ ℒ𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 (3) 143 

ℒ𝑑𝑎𝑡𝑎 =
1

2𝑁
∑ [(𝐼𝑆𝑂𝑃𝑜𝑏𝑠,𝑖 − 𝐼𝑆𝑂𝑃𝑝𝑟𝑒𝑑,𝑖)

2
+ |𝐼𝑆𝑂𝑃𝑜𝑏𝑠,𝑖 − 𝐼𝑆𝑂𝑃𝑝𝑟𝑒𝑑,𝑖|]

𝑁

𝑖=1

(4) 144 

ℒ𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑖𝑡𝑦 =
1

𝑁
∑ [1 −

𝑠𝑖𝑔𝑛 (
𝜕𝐼𝑆𝑂𝑃

𝜕𝑉𝐼
) + 𝑠𝑖𝑔𝑛 (

𝜕𝐼𝑆𝑂𝑃
𝜕𝐵𝐶𝑡𝑟𝑎𝑓𝑓𝑖𝑐

)

2
]

𝑁

𝑖=1

(5) 145 

𝑠𝑖𝑔𝑛(𝜃) = {
−1, 𝜃 < 0

1, 𝜃 ≥ 0
(6) 146 

ℒ𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 = ∑(𝑊𝑖
2 + 𝑏𝑖

2)

𝑀

𝑖=1

(7) 147 

where the α and β are trade-off parameters; N is the number of training samples; i 148 

represents a certain sample; 𝐼𝑆𝑂𝑃𝑜𝑏𝑠  and 𝐼𝑆𝑂𝑃𝑝𝑟𝑒𝑑  are observed and predicted 149 

isoprene concentrations, respectively; M is the number of layers in PINN-ResMLP. 150 

Predictor variables were selected to capture key sources and sinks of isoprene, including 151 

VI (see Text S1), meteorological parameters (e.g., temperature, solar radiation), and 152 

black carbon emitted from traffic (BCtraffic) as a proxy for anthropogenic emissions. Full 153 

variable definitions and sources are provided in Table S2. 154 

To address data scarcity at some sites, we implemented a supervised transfer learning 155 

strategy. The PINN-ResMLP was pre-trained on data-rich sites and fine-tuned with 156 

limited data from target sites (see Table S3). Three training strategies were adopted: (1) 157 

transfer learning (T), where models were pre-trained on data from other sites and fine-158 

https://doi.org/10.5194/egusphere-2025-4644
Preprint. Discussion started: 14 October 2025
c© Author(s) 2025. CC BY 4.0 License.



 

8 

 

tuned on the target site; (2) no-transfer (NT), where models were trained solely on target 159 

site data; and (3) mixed training (MIX) using combined data from all sites. Model 160 

performance was evaluated using four-fold cross-validation (Table S3) and metrics 161 

including normalized mean absolute error (NMAE) and R2. Comparisons were made 162 

against standard machine learning algorithms, such as Random Forest (RF), extreme 163 

gradient boosting (XGB), and support vector machine (SVM). All algorithms were 164 

optimized using extensive grid search (see hyperparameters in Table S4). 165 

2.2 Attribution of Long-term Isoprene Trends and O3 Projections 166 

The PINN-ResMLP model was also used to quantify the contributions of different 167 

factors to the long-term trends of isoprene concentrations at three sites in Hong Kong 168 

and London using a scenario-based approach. Using the historical data of 169 

meteorological parameters, VI and BCtraffic as the input of the PINN-ResMLPT model, 170 

we predicted the summertime (June to August) isoprene concentrations in Hong Kong 171 

and London for the period of 1990–2023 (base scenario). In order to reveal the impacts 172 

of the major drivers on the isoprene variations, we also predicted the isoprene 173 

concentrations by fixing the temperature, VI and BCtraffic as their averages over the 174 

above period one by one (controlled scenarios). The differences in the predicted 175 

isoprene (isoprenediff) between the base and controlled scenarios depicted the isoprene 176 

trends induced by the individual factors. The isoprenediff was then compared between 177 

different time periods, e.g., the first and last 17 years and the first, middle and last 178 

decades. Besides, the coefficient of variation (CV) was calculated for the predicted 179 

isoprene concentrations in all the scenarios over the period of 1990–2023. The CV 180 

differences between the base and controlled scenarios indicate how the changes in 181 

temperature, VI and traffic emissions (represented by BCtraffic) increased or decreased 182 

the variations in isoprene concentrations. 183 

Additionally, future isoprene concentrations at the Hong Kong site were projected for 184 

2030–2100 based on temperature changes under different climate scenarios developed 185 

by the Coupled Model Intercomparison Project Phase 6 (CMIP6), while keeping other 186 

influencing factors constant. Briefly, we used the temperature data from four Shared 187 
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Socioeconomic Pathways (SSPs), including SSP126 (low forcing), SSP245 188 

(intermediate forcing), SSP370 (medium-high forcing), and SSP585 (high forcing), and 189 

held the other influencing factors constant. The averages of outputs from four Coupled 190 

Model Intercomparison Project Phase 6 (CMIP6) models (ACCESS-CM2, CMCC-191 

ESM2, MPI-ESM1-2-HR, and GFDL-ESM4) were adopted (Xu et al., 2024). 192 

Using the future profiles of temperature and isoprene as constraints, we simulated O3 193 

concentrations as a function of isoprene and temperature using a zero-dimensional box 194 

model under different NOₓ reduction scenarios. The Framework for 0-D Atmospheric 195 

Modeling (F0AM) incorporating Master Chemical Mechanism v3.3.1 was used to 196 

simulate O3 under different sets of temperatures and isoprene concentrations (Lyu et al., 197 

2024). The model was constrained by the average diurnal profiles of air pollutants 198 

(excluding O3) and meteorological parameters observed in the summer of 2023 at the 199 

Hong Kong_TC site, except that the daytime average temperature changed from 22 °C 200 

to 38 °C in 2 °C intervals and the daytime average isoprene concentrations varied in the 201 

range of 0.15–1.8 ppbv in intervals of 0.15 ppbv. The O3 isopleths were depicted using 202 

the simulation results for 108 temperature-isoprene settings. Additionally, the above 203 

simulations were repeated in different scenarios of NOx reduction, i.e., 49.7% and 82.6% 204 

under the SSP370 and SSP126, respectively. It is worth noting that the diurnal profiles 205 

of other O3 precursors, such as VOCs and carbon monoxide, were kept unchanged 206 

throughout all the simulations. 207 

  208 
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3 Results and Discussion 209 

3.1 Simulating Isoprene Concentrations Using PINN-ResMLPT Model 210 

The isoprene concentrations averaged over the respective observation periods varied 211 

significantly from 0.15 ppbv in Wuhan to 2.79 ppbv in New Delhi (Figure 1 and Figure 212 

S1), due to the differences in sampling periods, climatic conditions, and vegetation type 213 

and density. We noticed that most cities have experienced an increase in greenspace in 214 

the last 20 years, and there existed significant differences in greenspace coverage and 215 

its recent trends between the cities (e.g., Hong Kong versus London). The high 216 

vegetation cover appeared to explain the elevated levels of isoprene in South China and 217 

Amazonia. Temperature also had a strong effect on isoprene concentrations, as 218 

indicated by the Pearson correlation coefficient (R) between hourly isoprene and 219 

temperature at individual sites, i.e., 0.41–0.72. The temperature and temperature 220 

variation were spatially non-uniform, implying its inconsistent roles in affecting 221 

biogenic isoprene emissions. Additionally, anthropogenic emissions might have made 222 

significant contributions to isoprene in New Delhi, given the high nocturnal levels and 223 

the peak in evening rush hours (Figure S2). This was also mentioned in a previous study 224 

(Tripathi et al., 2022). The Weather Research and Forecasting model with Chemistry, 225 

which theoretically takes these factors into account, was used to simulate the isoprene 226 

concentrations. However, substantial divergences were noted between the simulated 227 

and observed values at hourly or even daily resolution (Figure S3), demonstrating the 228 

challenge for chemical transport models in accurately simulating isoprene (Morichetti 229 

et al., 2022; Wang et al., 2024b). 230 

https://doi.org/10.5194/egusphere-2025-4644
Preprint. Discussion started: 14 October 2025
c© Author(s) 2025. CC BY 4.0 License.



 

11 

 

 231 

Figure 1. Geographical distribution of the isoprene sampling sites. (a-e) Locations of isoprene 232 

measurement sites in China (a), North America (b), Amazonia (c), United Kingdom (d), and 233 

India (e). The direction of arrows represents the trend of temperature from 1990 to 2023, and 234 

the size of the circle is proportional to isoprene concentration. (f) Trends of LAI and NDVI 235 

from 2001 to 2021 in major cities around the world.  236 

We then examined the isoprene prediction ability of various machine learning 237 

algorithms with three training strategies: T, NT, and MIX (see Section 2.3). Overall, 238 

the model utilizing the NT training strategy exhibited higher fitting accuracy than the 239 

one employing the MIX training strategy (Figure 2). This suggests that training with 240 

data from different sites might introduce additional noises, due to the differences in 241 

isoprene emission dynamics. Particularly, isoprene emissions are highly sensitive to 242 

local vegetation profiles. While the ResMLP model with the NT training strategy 243 

(ResMLPNT) performed moderately among all the algorithms, the performance was 244 

improved by incorporating the T strategy. Specifically, the ResMLPT outperformed the 245 

other algorithms at 8 out of 10 sites, with the decrease in NMAE of 1%–5% and increase 246 

in R2 of 0.01–0.07. The results indicated that the ResMLPT model effectively exploited 247 

the implicit prior knowledge from the pre-training data to guide isoprene prediction at 248 

the target sites. Importantly, the pre-trained parameters were fine-tuned using limited 249 
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sizes of local data, which adapted the model to local isoprene emission dynamics 250 

without requiring region-specific vegetation profiles, such as vegetation types and 251 

corresponding emission factors. It is worth noting that the size of the retraining data at 252 

the validation sites was ~30% of all the data. Thus, the model’s good performance at 253 

the validation sites demonstrated its utility in data-scarce regions. Furthermore, with 254 

the incorporation of PINN, the PINN-ResMLPT showed a better understanding of the 255 

real target-feature relationships with more interpretable prediction results. The model 256 

performance was further improved, as indicated by the highest R2 values across all the 257 

sites (Figure 2). 258 

Next, we also validated the PINN-ResMLPT model by applying it to predict isoprene 259 

concentrations at the overseas sites (Figure 1). The model was pre-trained with the 260 

complete dataset from all the sites in China, which was further fine-tuned with 70% of 261 

the data at the individual target sites and validated with the remaining data. Compared 262 

to the suboptimal model, the PINN-ResMLPT model significantly improved the 263 

prediction of isoprene, especially at New Delhi and Manaus, with the increase in R2 264 

(decrease by NMAE) by 0.07 (25%) and 0.08 (13%), respectively (Figure 2). This 265 

demonstrated the model’s broad applicability. Moreover, the model outperforms many 266 

other methods in predicting isoprene. For instance, the root mean square error of the 267 

PINN-ResMLPT at Manaus was 0.17 ppbv, compared to 0.95 ppbv for the early attempt 268 

in Cross-track Infrared Sounder retrieval (Fu et al., 2019). This superior performance 269 

establishes the PINN-ResMLPT as our best choice. In fact, we would expect more 270 

accurate predictions if the model were pre-trained by a wider range of field 271 

measurement data from various regions. 272 
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 273 

Figure 2. Schematic of the machine learning framework for predicting isoprene concentration. 274 

(a) A sketch of the training strategy. (b) The improvement of the machine learning framework. 275 

(c) Comparisons of statistical performance across different algorithms in individual sites. See 276 

methods for the full names of the algorithms. 277 

  278 
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3.2 Main Factors Influencing Urban Isoprene Concentrations 279 

Further, a feature importance method based on the the SHapley Additive exPlanations 280 

(SHAP) values was employed to explore the prediction results (Figure 3). While we 281 

prefer to present it for individual sites, the feature importance of VI and BCtraffic was 282 

not calculated for the Chinese sites except a suburban site in Hong Kong (HK_TC), due 283 

to the low temporal resolutions of VI and BCtraffic data and the short isoprene 284 

observation periods. Here, we discuss the drivers of short-term (2-4 years) and long-285 

term (over 10 years) isoprene concentration variations, separately. 286 

With the VI and BCtraffic remaining relatively stable in the short term, the model 287 

indicated that temperature, radiation, surface pressure, and soil water vapor were the 288 

most significant drivers of short-term isoprene variations, and their average relative 289 

importance was 18.8%, 11.9%, 11.3%, and 8.1% across the all the Mainland China sites, 290 

respectively. In addition, evaporation from vegetation transpiration and relative 291 

humidity also played significant roles in affecting isoprene concentrations at the Wuhan 292 

suburban site and Beijing urban site, respectively. The model also effectively captured 293 

the target-feature relationships. In China, the predicted isoprene concentrations 294 

increased with temperature below ~35 °C, above which a decline occurred at some sites. 295 

A typical example was the response in Chongqing with frequent occurrence of high 296 

temperature extremes (Figure S4). High temperatures suppress vegetation emissions 297 

due to a reduction in enzyme activity and substrate availability while accelerating the 298 

photochemical oxidation loss of isoprene. A similar pattern was observed in the 299 

response of isoprene concentrations to radiation in China, especially at extremely high 300 

levels. Such nonlinear responses are critical to the parameterization of isoprene 301 

emissions in numerical models. Notably, recent studies have revealed substantial 302 

uncertainties in the MEGAN model’s performance under extreme heat conditions 303 

(Wang et al., 2024a). In contrast, our data-driven machine learning approach effectively 304 

captures these complex, nonlinear relationships between isoprene concentrations and 305 

environmental predictors, offering a promising pathway to refine and optimize 306 

parameterization schemes in chemical transport models. In addition to the close 307 
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relationships with temperature, solar radiation affects the hydroxyl radical 308 

concentrations and therefore can significantly increase chemical loss of isoprene. In 309 

contrast, these phenomena were not observed in London, because of lower temperatures 310 

and weaker solar radiations. Overall, our transfer learning model reasonably reflected 311 

the isoprene-meteorology relationships. 312 

 313 

Figure 3. Modeling explainable results at each site based on SHAP value. (a) Feature 314 

importance for isoprene concentrations at individual sites. (b-i) The SHAP dependence plots of 315 

major influencing variables averaged at the Chinese sites (b-e) and London sites (f-i). 316 

Further, the long-term isoprene observations in London and Hong Kong offer an 317 

opportunity to examine how the evolutions of VI and BCtraffic affected isoprene 318 

variations on a climatic scale. As two prominent international cities, London and Hong 319 

Kong are characterized by distinct climatic zones: London experiences a mid-latitude 320 

temperate maritime climate, whereas Hong Kong is influenced by a low-latitude 321 

subtropical monsoon climate. This climatic differentiation is reflected in their 322 

predominant vegetation types, with temperate deciduous trees being prevalent in 323 
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London and evergreen broad-leaved trees dominating the landscape in Hong Kong. 324 

Furthermore, the trajectories of urbanization and air pollution management have 325 

evolved differently in each city, shaped by their unique environmental and socio-326 

economic contexts. Here, we focus on the results at two London sites and a Hong Kong 327 

site, where long term data was available. Radiation, VI and temperature were the most 328 

predominant influencing factors at the suburban site in Hong Kong. In contrast, the 329 

relative importance of VI was low at the two London sites. Over the period of 2000–330 

2021, Hong Kong has experienced a notable increase in NDVI (2.1×10⁻³ year⁻¹) and 331 

LAI (2.8×10⁻² year⁻¹), while the rate was much lower in London, i.e., 0.9×10⁻³ year⁻¹ 332 

for NDVI and 0.9×10⁻² year⁻¹ for LAI. Additionally, the significant difference in VI 333 

importance between Hong Kong and London might also be attributed to the different 334 

strength of vegetation emissions across latitudes (Guenther et al., 2006; Guenther et al., 335 

2012). Instead, BCtraffic (temperature) ranked the first at the traffic (suburban) site in 336 

London, followed by other meteorological factors (Figure 3). While the meteorological 337 

impacts were not surprising, isoprene correlated well with the BCtraffic emissions and 338 

observed benzene at the London traffic site (Figure S5), thereby the high relative 339 

importance of BCtraffic. This is consistent with the previous studies on traffic emissions 340 

of isoprene in London (Borbon et al., 2001; Von Schneidemesser et al., 2011). As 341 

constrained using the PINN, the SHAP values for isoprene concentrations of VI and 342 

BCtraffic showed a monotonic increasing trend. 343 

  344 
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3.3 Factors Driving Long-term Trends of Isoprene 345 

The model was also used to build the time series data of daytime isoprene 346 

concentrations at a daily resolution over a climatically relevant period (1990–2023) at 347 

the three sites with long-term but incomplete isoprene data. The comparison between 348 

the geographically distinctive London and Hong Kong offers a rare opportunity to 349 

examine the different drivers of isoprene trends. As shown in Figure 4, the predicted 350 

isoprene concentrations were in good agreement with the observations, with the R2 of 351 

0.68–0.83 and NMAE of 21%–27%. It’s worth noting that the observational data was 352 

missing for 50%–67% of the dates at the three sites. This underscored the model's 353 

effectiveness in retrieving historical isoprene concentrations from limited observation 354 

data.  355 

Over the past 34 years, the isoprene concentrations at the Hong Kong site have shown 356 

an increasing trend with the rate of 18.1 pptv year-1, as have the temperature and VI. In 357 

contrast, traffic emissions have been significantly reduced since 1998, due to the 358 

effective human interventions. The trend of the predicted isoprene correlated strongly 359 

with the SHAP values of VI (R = 0.95) and moderately with that of temperature (R = 360 

0.63). By fixing the variables one by one, we determined the variations in factor 361 

contributions to isoprene concentrations, which were then compared between different 362 

time periods. It was found that urban greenspace emerged as the dominant factor 363 

impacting Hong Kong’s isoprene levels, causing a rise in isoprene concentrations of 364 

290 pptv between the last 17 years and the first 17 years. Meanwhile, the contribution 365 

of climate warming was 51 pptv, while the traffic contribution was minor. Moreover, 366 

without changes in urban greenspace, the coefficient of variation (CV) of annual 367 

average isoprene concentrations would decrease by 70.5%, in comparison to the 368 

decrease of 12.0% and 6.0% in absence of changes in climate warming and traffic 369 

emissions, respectively. This reiterated the significant impacts of urban greenspace on 370 

the variations and trends of isoprene concentrations. 371 
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 372 

Figure 4. Long-term trends of the summertime isoprene and the drivers. (a-c) Variations of 373 

isoprene concentrations (blue lines for simulated, blue dots for observed), temperature (T), 374 

urban greenspace (VI) and traffic emissions (BCtraffic) in Hong Kong (a) and London (b and c). 375 

The red dots and red line represent temperature and the fitted trend for the mean temperature, 376 

respectively. The bands represent 95% confidence intervals. (d-f) Changes in isoprene 377 

concentrations caused by climate warming, urban greenspace and traffic emissions in Hong 378 

Kong (d) and London (e and f) during different periods. 379 
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In contrast, the isoprene concentrations in London were lower in the last 17 years. 380 

Climate warming would have increased the isoprene concentrations by 31 pptv 381 

compared to those in the first 17 years at the traffic site, while the impact at the suburban 382 

site and the effects of urban greenspace at both sites were negligible. Interestingly, 383 

traffic emissions accounted for 87 pptv and 755 pptv of isoprene reduction at the 384 

suburban site and the traffic site, respectively. This was likely attributed to stringent 385 

traffic emission controls, as indicated by the significant downward trend of BCtraffic. 386 

The effect was more pronounced during the first two thirds of the study period (1990–387 

2011). Specifically, the traffic-related isoprene reduction was 85 pptv from the first 388 

(1990–2000) to the second decade (2001–2011) at the suburban site, in comparison to 389 

the 29 pptv between the second and the last decade (2012–2023). Actually, the observed 390 

isoprene concentration correlated moderately (R = 0.60) with BCtraffic from 1990 to 391 

2011 based on their annual averages. This suggests that traffic emission controls also 392 

affected isoprene concentrations even in non-urban areas. Despite the higher VI in 393 

London, the increasing rate (1.2 year-1 at the suburban site and 0.7 year-1 at the traffic 394 

site) was lower than that in Hong Kong (1.6 year-1). Additionally, the weak effects of 395 

urban greenspace might be also due to the relatively low emission strengths of high-396 

latitude vegetation (Guenther et al., 2006). Moreover, the impact of climate warming 397 

became evident in the last decade (2012–2023) at the suburban site in London and, 398 

together with urban greenspace, reversed the isoprene reduction that would otherwise 399 

have been achieved by traffic emission controls. This aligned with the accelerated 400 

temperature rise from 2011 onwards (Figure S6), which was also reported elsewhere 401 

(Cao et al., 2021). From the perspective of variations in annual isoprene concentrations, 402 

the CV at the traffic site primarily resulted from changes in traffic emissions. At the 403 

suburban site, it would decrease by 32.4% and 14.0% if temperature and traffic 404 

emissions did not change. 405 

Overall, our results demonstrate a tale of two cities: similarities and differences in 406 

drivers of long-term isoprene trends. Temperature-driven increases in isoprene 407 

concentrations were revealed in both cities, especially in the last decade, underscoring 408 
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the universal impacts of climate warming on vegetation emissions. However, the 409 

disparities in green space changes and probably different biogenic isoprene emission 410 

strengths between the two cities led to the different effects of VI on isoprene variations. 411 

Additionally, the isoprene variations over the 34 years have been more influenced by 412 

traffic emissions in London, although both cities have implemented stringent vehicle 413 

emission controls. While the reasons remain to be explored, we did not identify any 414 

correlation between the observed isoprene and BCtraffic (or benzene) in Hong Kong, 415 

even at a traffic site (Figure S5). 416 

  417 
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3.4 Future Projections for Isoprene and O3 418 

A significant issue associated with increasing isoprene levels in a warming climate is 419 

the potential for elevated ground-level O3 pollution. We used the temperature from the 420 

latest CMIP6 multi-model ensemble forecasts to predict isoprene concentrations from 421 

2030 to 2100 in Hong Kong under four IPCC’s shared socio-economic pathway (SSP) 422 

scenarios, while the other factors were kept constant. As shown in Figure 5a, the 423 

temperature is expected to increase by 0.71–3.60 ℃ from 2030 to 2100. The model 424 

indicated that the daytime average concentration of isoprene would increase by 87–530 425 

pptv (15%–87%) by 2100 (Figure 5b). The changes are on the same magnitude as the 426 

previous estimates that isoprene emissions will increase by 21%–57% by the end of this 427 

century relative to the 1990–2010 levels (Cao et al., 2021; Sanderson et al., 2003). 428 

Further, we simulated the O3-isoprene-temperature relationships in Hong Kong (as an 429 

example) using future temperatures and isoprene concentrations while fixing the other 430 

air pollutants and meteorological conditions at present levels. The simulated O3 431 

increased markedly with the rise in temperature and isoprene concentrations (Figure 432 

5c-5f). The O3 concentration would increase by up to 1.7 folds by 2100 under the 433 

SSP585 scenario of temperatures and isoprene. An increase in the combined risk of heat 434 

and O3 exposure could be expected. To explore the approach of alleviating the adverse 435 

impact of O3-isoprene-temperature synergy, we proposed additional scenarios by 436 

cutting anthropogenic NOx emissions. With the NOx reduction from the current to 437 

different SSPs levels, the O3 concentrations would increase and decrease under low and 438 

high isoprene-temperature conditions, respectively (Figure 5d-5f). This inconsistent 439 

variation is due to the evolution of O3 formation regime with the rising temperatures 440 

and isoprene. It is worth noting that more ambitious NOx reduction would result in 441 

greater O3 benefits. For example, O3 would decrease in a much wider range of 442 

temperature and isoprene when NOx is reduced under SSP126. The O3 growth by 2100 443 

would be only 1.2 folds in the SSP585 scenario of temperatures and isoprene. Therefore, 444 

substantial reduction in anthropogenic NOx would effectively address the synergy 445 

between temperature, isoprene and O3. 446 
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 447 

Figure 5. Projected temperature, isoprene and O3-isoprene-temperature relationships under 448 

different climate scenarios. (a-b) Projections of the summertime daytime air temperature (a) 449 

and isoprene concentrations (b) during 2030-2100 in Hong Kong. The shaded areas represent 450 

the 25th to 75th percentile of the estimated isoprene concentration and temperature for each 451 

SSP. (c-f) Responses of simulated O3 concentrations to temperature and isoprene under 452 

abundant-NOx (c) and reduced-NOx (d-f) conditions. The squares represent the projected O3 453 

concentrations at specific temperatures and isoprene levels, with error bars indicating the 454 

standard deviation of isoprene concentrations and temperatures. 455 

  456 
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4 Conclusions 457 

As one of the most reactive and abundant VOC, isoprene plays a significant role in 458 

shaping urban air quality. We developed an explainable deep transfer learning 459 

framework to predict isoprene concentrations and elucidate the underlying drivers of 460 

their variability. Our model outperformed conventional approaches, effectively 461 

capturing the spatial heterogeneity of isoprene concentrations through localized fine-462 

tuning. Leveraging this framework, we quantified the relative importance of factors 463 

influencing isoprene concentrations across numerous sites in China and internationally. 464 

The contrasting cases of Hong Kong and London highlight how isoprene dynamics 465 

were shaped by distinct local drivers, underscoring the need to tailor air quality 466 

management strategies to specific urban contexts. Despite the anticipated increase in 467 

biogenic emissions in a warming climate, our findings caution against reducing urban 468 

greenspace solely based on isoprene-related concerns. Instead, mitigating global 469 

warming emerges as a crucial strategy for managing isoprene’s air quality impacts, as 470 

evidenced by the strong isoprene–temperature relationships observed. For O3 471 

abatement, coordinated control of NOx emissions appears effective in reducing the 472 

contribution of isoprene to O3 formation. Moreover, the differing responses of isoprene 473 

to VI between Hong Kong and London suggest that informed tree species selection can 474 

serve as an alternative urban planning measure. Traffic emissions may also remain a 475 

significant source of urban isoprene in cities lacking stringent vehicle emission controls 476 

and should be addressed accordingly. Overall, this study provides novel insights into 477 

isoprene emissions and chemistry, air quality impacts, and practical mitigation 478 

strategies. Nonetheless, limitations persist, particularly regarding the comprehensive 479 

representation of emissions and chemical loss processes, which are discussed in Text 480 

S2. 481 

  482 
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