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Key Points: 30 

• An explainable deep transfer learning framework was developed to predict 31 

isoprene concentrations and their variations. 32 

• Different drivers accounted for historical trends of isoprene concentrations in 33 

Hong Kong and London from 1990 to 2023. 34 

• Reducing nitrogen oxides would alleviate ozone pollution driven by rising 35 

temperatures and isoprene levels in the warming climate. 36 

  37 
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Abstract 38 

Isoprene, the globally most abundant volatile organic compound, significantly impacts 39 

air quality. Determining isoprene concentration variations and their drivers is a 40 

persistent challenge. Here, we developed a robust machine learning framework to 41 

simulate isoprene concentrations, without requiring localized emission inventories and 42 

explicit chemistry. Temperature, radiation, and surface pressure were the primary 43 

drivers of short-term isoprene variations across Chinese cities. On climatic timescales, 44 

urban greenspace expansion and climate warming drove isoprene increases by 341 pptv 45 

in Hong Kong during 1990–2023, but traffic emission reductions in London 46 

counteracted the isoprene rise that climate warming would have otherwise caused (-755 47 

pptv vs. +31 pptv). Driven by rising temperatures and isoprene levels, ozone would 48 

increase by up to 1.7-fold by 2100 under the high-emission scenario. However, 49 

ambitious reduction in nitrogen oxides would alleviate this growth to 1.2-fold. The 50 

study has the potential to inform air quality management in a warming climate. 51 

  52 
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1 Introduction 53 

Isoprene is the most abundant non-methane volatile organic compound (VOC) globally, 54 

with the total emissions reaching approximately 500 TgC per year, exceeding those of 55 

the total anthropogenic VOCs (Guenther et al., 2012; Huang et al., 2017). The high 56 

atmospheric reactivity makes it a key precursor for tropospheric ozone (O3) and 57 

secondary organic aerosol, both of which significantly impact air quality and climate 58 

(Paulot et al., 2012; Lin et al., 2013; Xi et al., 2025a). In particular, the effect is 59 

pronounced in urban environments due to the interactions between isoprene and 60 

anthropogenic emissions (Xu et al., 2015). 61 

Terrestrial vegetation is the primary source of atmospheric isoprene, and the emissions 62 

are influenced by plant species, geographical locations, and environmental conditions 63 

(Guenther et al., 1994; Guenther et al., 1993). Urban landscapes show remarkable 64 

diversity in isoprene production, exemplified by stark differences between tree species. 65 

While urban greenspace offers numerous benefits, it also emerges as a notable 66 

contributor to urban isoprene (Ma et al., 2022). The emissions are highly sensitive to 67 

meteorological conditions (Wang et al., 2024a). The combination of climate warming 68 

and urbanization lead to intensified urban heat, which in turn boosts isoprene emissions 69 

from greenspace (Li et al., 2024; Pfannerstill et al., 2024). In addition, studies have 70 

shown that a portion of urban isoprene may stem from motor vehicles, the contribution 71 

of which varies by location and season (Borbon et al., 2001). However, vehicle 72 

emissions of isoprene do not necessarily increase with growing vehicle population, due 73 

to stringent emission controls in many cities. This further complicates the task of 74 

accurately simulating the concentrations and trends of urban isoprene. While isoprene 75 

may also be emitted from other anthropogenic sources, such as petrochemical activities 76 

and coal combustion, the amounts are generally small compared to biogenic emissions, 77 

especially in warm seasons (Peron et al., 2024). 78 

Modeling and measurement deficiencies remain a serious concern in isoprene research 79 

across multiple disciplines. For example, the Model of Emissions of Gases and 80 

Aerosols from Nature (MEGAN) estimates vegetation emissions based on theoretical 81 
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relationships with meteorology and vegetation dynamics. This model significantly 82 

underestimates isoprene emissions from urban greenspace when it is driven by coarse 83 

resolution (e.g., >30 m) satellite-derived vegetation data (Ma et al., 2019; Ma et al., 84 

2022). It is also difficult for current chemical transport models to accurately simulate 85 

isoprene concentrations, mainly resulting from the grid resolution and uncertainties in 86 

isoprene emissions, vertical dispersion rates and oxidation parameterization schemes 87 

(Arneth et al., 2011; Guenther et al., 2012). Local vegetation surveys and emission 88 

factor measurements can be made to improve model performance. However, the work 89 

is challenging and the outcomes often point out additional uncertainties (Seco et al., 90 

2022; Wang et al., 2024b). While isoprene measurements have demonstrated reliability 91 

in atmospheric chemistry research, the temporal and spatial coverage remains 92 

suboptimal. Given these constraints, there are insufficient robust isoprene data available 93 

over climatic timescales (e.g., several decades) to reveal the drivers of long-term trends. 94 

To confront this dilemma, we developed a generalized physics-informed neural 95 

network based on a residual Multi-Layer Perceptron with a transfer training strategy to 96 

reproduce/predict ambient isoprene concentrations. The model was trained by a 97 

comprehensive set of isoprene data observed at ten sites in China (a total of ~65,000 98 

hourly data) and validated by a total of ~8,500 hourly and daily data at six overseas 99 

sites (Table S1). The model was verified for its ability to predict isoprene with limited 100 

sizes of observational data and understand intricate relationships between isoprene and 101 

influencing factors. The model was then used to predict future trends of isoprene and 102 

the resulting O3 variations in different climate scenarios. This study enhances our 103 

understanding of the responses of ambient isoprene concentrations to emissions and 104 

meteorology, and has the potential to inform urban planning and air quality policies in 105 

the warming climate. 106 

  107 
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2 Data and Models 108 

2.1 Isoprene Data and Deep Learning Model 109 

A total of over 72,000 hourly (and a small fraction of daily) data of isoprene 110 

concentrations in the daytime (06:00–20:00 local time) of warm seasons (May–October) 111 

were compiled from 16 sites worldwide. Around 88% the data was from different parts 112 

of China, and the remainder was from North America, Amazonia, India, and the UK 113 

(see Table S1). To ensure comparability, we included only online measurements, 114 

excluding offline sampling and analysis methods. While inter-instrument bias might 115 

exist, the isoprene variability within each site was expected to be much larger than any 116 

plausible inter-instrument bias. Moreover, this will not influence the analysis of 117 

isoprene variations at individual sites. 118 

The residual multi-layer perceptron architecture (ResMLP) was employed to 119 

approximate the complicated responses of isoprene concentrations to input features, 120 

which was coupled with a physics-informed neural network, thereby PINN-ResMLP. 121 

This approach integrated domain knowledge by enforcing monotonicity constraints 122 

between isoprene and its major sources (e.g., vegetation and traffic emissions), thus 123 

ensuring physically consistent predictions. These constraints were implemented 124 

directly in the model’s loss function, which combined terms for data fitting, 125 

monotonicity regularization, and network structure penalties. As a fully data-driven 126 

model, ResMLP may learn patterns that are inconsistent with physical laws (Feng et al., 127 

2025). Incorporating expert knowledge and physical constraints into the model can 128 

guide the learning processes (Zhu et al., 2024). In this study, we stipulated that isoprene 129 

concentrations were positively correlated with the biogenic and traffic emission sources. 130 

This relationship therefore can be expressed as: 131 

𝜕 𝐼𝑆𝑂𝑃

𝜕 𝑉𝐼
> 0 (1) 132 

𝜕 𝐼𝑆𝑂𝑃

𝜕 𝐵𝐶𝑡𝑟𝑎𝑓𝑓𝑖𝑐
> 0 (2) 133 
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where ISOP represents isoprene concentrations; VI is vegetation index derived from 134 

Leaf Area Index (LAI) and Normalized Difference Vegetation Index (NDVI) (see Text 135 

S1); and BCtraffic is traffic emissions of black carbon. To satisfy this priori knowledge, 136 

we developed PINN-ResMLP to constrain the model. The optimization objective of 137 

PINN-ResMLP included data item loss ( ℒ𝑑𝑎𝑡𝑎 ), physical inconsistency loss 138 

(ℒ𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑖𝑡𝑦), and additional structural loss (ℒ𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒). Meanwhile, the L2 norm of 139 

the network parameters, namely adding the sum of the squares of all network weights 140 

(parameters) to the loss function, could effectively regularize and prevent overfitting in 141 

PINN-ResMLP. Finally, the total function was formulated as: 142 

ℒ = ℒ𝑑𝑎𝑡𝑎 + 𝛼 ∙ ℒ𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑖𝑡𝑦 + 𝛽 ∙ ℒ𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 (3) 143 

ℒ𝑑𝑎𝑡𝑎 =
1

2𝑁
∑ [(𝐼𝑆𝑂𝑃𝑜𝑏𝑠,𝑖 − 𝐼𝑆𝑂𝑃𝑝𝑟𝑒𝑑,𝑖)

2
+ |𝐼𝑆𝑂𝑃𝑜𝑏𝑠,𝑖 − 𝐼𝑆𝑂𝑃𝑝𝑟𝑒𝑑,𝑖|]

𝑁

𝑖=1

(4) 144 

ℒ𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑖𝑡𝑦 =
1

𝑁
∑ [1 −

𝑠𝑖𝑔𝑛 (
𝜕𝐼𝑆𝑂𝑃

𝜕𝑉𝐼
) + 𝑠𝑖𝑔𝑛 (

𝜕𝐼𝑆𝑂𝑃
𝜕𝐵𝐶𝑡𝑟𝑎𝑓𝑓𝑖𝑐

)

2
]

𝑁

𝑖=1

(5) 145 

𝑠𝑖𝑔𝑛(𝜃) = {
−1, 𝜃 < 0
01, 𝜃 ≥ 0

(6) 146 

ℒ𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 = ∑(𝑊𝑖
2 + 𝑏𝑖

2)

𝑀

𝑖=1

(7) 147 

where the α and β are trade-off parameters; N is the number of training samples; i 148 

represents a certain sample; 𝐼𝑆𝑂𝑃𝑜𝑏𝑠  and 𝐼𝑆𝑂𝑃𝑝𝑟𝑒𝑑  are observed and predicted 149 

isoprene concentrations, respectively; M is the number of layers in PINN-ResMLP. 150 

Predictor variables were selected to capture key sources and sinks of isoprene, including 151 

VI (see Text S1), meteorological parameters (e.g., temperature, solar radiation), and 152 

black carbon emitted from traffic (BCtraffic) as a proxy for anthropogenic emissions. To 153 

ensure consistency among all variables, datasets with different spatial resolutions (e.g., 154 

0.1° and 0.25°) were resampled to achieve a uniform resolution of 0.1° using bilinear 155 

interpolation. Full variable definitions and sources are provided in Table S2. 156 

To address data scarcity at some sites, we implemented a supervised transfer learning 157 

strategy. The PINN-ResMLP was pre-trained on data-rich sites and fine-tuned with 158 
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limited data from target sites (see Table S3). Three training strategies were adopted: (1) 159 

transfer learning (T), where models were pre-trained on data from other sites and fine-160 

tuned on the target site; (2) no-transfer (NT), where models were trained solely on target 161 

site data; and (3) mixed training (MIX) using combined data from all sites. Model 162 

performance was evaluated using four-fold cross-validation (Table S3) and metrics 163 

including normalized mean absolute error (NMAE) and coefficient of determination 164 

(R2). Comparisons were made against standard machine learning algorithms, such as 165 

Random Forest (RF), extreme gradient boosting (XGB), and support vector machine 166 

(SVM). All algorithms were optimized using extensive grid search (see 167 

hyperparameters in Table S4). NMAE and R2 are calculated as follows: 168 

𝑁𝑀𝐴𝐸 =

1
𝑁

∑ |𝐼𝑆𝑂𝑃𝑜𝑏𝑠,𝑖 − 𝐼𝑆𝑂𝑃𝑝𝑟𝑒𝑑,𝑖|
𝑁
𝑖=1

𝐼𝑆𝑂𝑃̅̅ ̅̅ ̅̅
𝑜̅𝑏𝑠

(8) 169 

𝑅2 = 1 −
∑ (𝐼𝑆𝑂𝑃𝑜𝑏𝑠,𝑖 − 𝐼𝑆𝑂𝑃𝑝𝑟𝑒𝑑,𝑖)

2𝑁
𝑖=1

∑ (𝐼𝑆𝑂𝑃𝑜𝑏𝑠,𝑖 − 𝐼𝑆𝑂𝑃̅̅ ̅̅ ̅̅
𝑜̅𝑏𝑠)

2𝑁
𝑖=1

(9) 170 

where 𝐼𝑆𝑂𝑃̅̅ ̅̅ ̅̅
𝑜̅𝑏𝑠 represents the mean value of 𝐼𝑆𝑂𝑃𝑜𝑏𝑠. 171 

Finally, the Shapley Additive Explanations (SHAP) approach (Lundberg et al., 2020) 172 

was used to quantify the contributions of input variables to model predictions. SHAP 173 

values allow us to assess the impact of each factor on isoprene concentrations. The 174 

calculation is defined as follows: 175 

𝜑𝑖 = ∑
|𝑆|! (𝐾 − |𝑆| − 1)!

|𝐾|!
[𝑓(𝑆⋃{𝑖}) − 𝑓(𝑆)]

𝑆⊆𝐾\{𝑖}

(10) 176 

where K represents the set of all features, 𝑆 ⊆ 𝐾\{𝑖} denotes a feature subset that 177 

excludes feature i, |𝑆| is the size of subset S, 𝑓(𝑆) is the model’s prediction under 178 

feature subset S, and 𝑓(𝑆⋃{𝑖}) − 𝑓(𝑆) is the marginal contribution of feature i. 179 

2.2 Attribution of Long-term Isoprene Trends and O3 Projections 180 

The PINN-ResMLP model was also used to quantify the contributions of different 181 

factors to the long-term trends of isoprene concentrations at three sites in Hong Kong 182 

and London using a scenario-based approach. Using the historical data of 183 
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meteorological parameters, VI and BCtraffic as the input of the PINN-ResMLPT model, 184 

we predicted the summertime (June to August) isoprene concentrations in Hong Kong 185 

and London for the period of 1990–2023 (base scenario). In order to reveal the impacts 186 

of the major drivers on the isoprene variations, we also predicted the isoprene 187 

concentrations by fixing the temperature, VI and BCtraffic as their averages over the 188 

above period one by one (controlled scenarios). The differences in the predicted 189 

isoprene (isoprenediff) between the base and controlled scenarios depicted the isoprene 190 

trends induced by the individual factors. The isoprenediff was then compared between 191 

different time periods, e.g., the first and last 17 years and the first, middle and last 192 

decades. Besides, the coefficient of variation (CV) was calculated for the predicted 193 

isoprene concentrations in all the scenarios over the period of 1990–2023. The CV 194 

differences between the base and controlled scenarios indicate how the changes in 195 

temperature, VI and traffic emissions (represented by BCtraffic) increased or decreased 196 

the variations in isoprene concentrations. 197 

Additionally, future isoprene concentrations at the Hong Kong site were projected for 198 

2030–2100 based on temperature changes under different climate scenarios developed 199 

by the Coupled Model Intercomparison Project Phase 6 (CMIP6), while keeping other 200 

influencing factors constant. Briefly, we used the temperature data from four Shared 201 

Socioeconomic Pathways (SSPs), including SSP126 (low forcing), SSP245 202 

(intermediate forcing), SSP370 (medium-high forcing), and SSP585 (high forcing), and 203 

held the other influencing factors constant. The averages of outputs from four Coupled 204 

Model Intercomparison Project Phase 6 (CMIP6) models (ACCESS-CM2, CMCC-205 

ESM2, MPI-ESM1-2-HR, and GFDL-ESM4) were adopted (Xu et al., 2024). 206 

Using the future profiles of temperature and isoprene as constraints, we simulated O3 207 

concentrations as a function of isoprene and temperature using a zero-dimensional box 208 

model under different NOₓ reduction scenarios. The Framework for 0-D Atmospheric 209 

Modeling (F0AM) incorporating Master Chemical Mechanism v3.3.1 was used to 210 

simulate O3 under different sets of temperatures and isoprene concentrations (Lyu et al., 211 

2024). The model was constrained by the average diurnal profiles of air pollutants 212 
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(excluding O3) and meteorological parameters observed in the summer of 2023 at the 213 

Hong Kong_TC site, except that the daytime average temperature changed from 22 °C 214 

to 38 °C in 2 °C intervals and the daytime average isoprene concentrations varied in the 215 

range of 0.15–1.8 ppbv in intervals of 0.15 ppbv. The O3 isopleths were depicted using 216 

the simulation results for 108 temperature-isoprene settings. Additionally, the above 217 

simulations were repeated in different scenarios of NOx reduction, i.e., 49.7% and 82.6% 218 

under the SSP370 and SSP126, respectively (Lou et al., 2023; Rogelj et al., 2018). It is 219 

worth noting that the diurnal profiles of other O3 precursors, such as VOCs and carbon 220 

monoxide, were kept unchanged throughout all the simulations. Meanwhile, our future 221 

projections are designed to isolate the chemical response of O3 to changes in 222 

temperature and isoprene and do not explicitly incorporate potential future changes in 223 

greenspace, urban morphology, or other anthropogenic emissions. Although these 224 

factors are expected to evolve under urban development and climate mitigation 225 

pathways, the present analysis focuses on quantifying the impacts of climate warming 226 

on isoprene emissions and the consequent O3 responses.  227 

  228 
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3 Results and Discussion 229 

3.1 Simulating Isoprene Concentrations Using PINN-ResMLPT Model 230 

The isoprene concentrations averaged over the respective observation periods varied 231 

significantly from 0.15 ppbv in Wuhan to 2.79 ppbv in New Delhi (Figure 1 and Figure 232 

S1), due to the differences in sampling periods, climatic conditions, and vegetation type 233 

and density. We noticed that most cities have experienced an increase in greenspace in 234 

the last 20 years, and there existed significant differences in greenspace coverage and 235 

its recent trends between the cities (e.g., Hong Kong versus London). The high 236 

vegetation cover appeared to explain the elevated levels of isoprene in South China and 237 

Amazonia. Temperature also had a strong effect on isoprene concentrations, as 238 

indicated by the Pearson correlation coefficient (R) between hourly isoprene and 239 

temperature at individual sites, i.e., 0.41–0.72. The temperature and temperature 240 

variation were spatially non-uniform, implying its inconsistent roles in affecting 241 

biogenic isoprene emissions. Additionally, anthropogenic emissions might have made 242 

significant contributions to isoprene in New Delhi, given the high nocturnal levels and 243 

the peak in evening rush hours (Figure S2). This was also mentioned in a previous study 244 

(Tripathi et al., 2022). The Weather Research and Forecasting model with Chemistry, 245 

which theoretically takes these factors into account, was used to simulate the isoprene 246 

concentrations. However, substantial divergences were noted between the simulated 247 

and observed values at hourly or even daily resolution (Figure S3), demonstrating the 248 

challenge for chemical transport models in accurately simulating isoprene (Morichetti 249 

et al., 2022; Wang et al., 2024b). 250 
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 251 

Figure 1. Geographical distribution of the isoprene sampling sites. (a-e) Locations of isoprene 252 

measurement sites in China (a), North America (b), Amazonia (c), United Kingdom (d), and 253 

India (e). The direction of arrows represents the trend of temperature from 1990 to 2023, and 254 

the size of the circle is proportional to isoprene concentration. (f) Trends of LAI (Leaf Area 255 

Index) and NDVI (Normalized Difference Vegetation Index) from 2001 to 2021 in major cities 256 

around the world.  257 

We then examined the isoprene prediction ability of various machine learning 258 

algorithms with three training strategies: T, NT, and MIX (see Section 2.3). Overall, 259 

the model utilizing the NT training strategy exhibited higher fitting accuracy than the 260 

one employing the MIX training strategy (Figure 2). This suggests that training with 261 

data from different sites might introduce additional noises, due to the differences in 262 

isoprene emission dynamics. Particularly, isoprene emissions are highly sensitive to 263 

local vegetation profiles. While the ResMLP model with the NT training strategy 264 

(ResMLPNT) performed moderately among all the algorithms, the performance was 265 

improved by incorporating the T strategy. Specifically, the ResMLPT outperformed the 266 

other algorithms at 8 out of 10 sites, with the decrease in NMAE of 1%–5% and increase 267 

in R2 of 0.01–0.07. The results indicated that the ResMLPT model effectively exploited 268 

the implicit prior knowledge from the pre-training data to guide isoprene prediction at 269 
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the target sites. Importantly, the pre-trained parameters were fine-tuned using limited 270 

sizes of local data, which adapted the model to local isoprene emission dynamics 271 

without requiring region-specific vegetation profiles, such as vegetation types and 272 

corresponding emission factors. It is worth noting that the size of the retraining data at 273 

the validation sites was ~30% of all the data. Thus, the model’s good performance at 274 

the validation sites demonstrated its utility in data-scarce regions. Furthermore, with 275 

the incorporation of PINN, the PINN-ResMLPT showed a better understanding of the 276 

real target-feature relationships with more interpretable prediction results. The model 277 

performance was further improved, as indicated by the highest R2 values across all the 278 

sites (Figure 2). 279 

Next, we also validated the PINN-ResMLPT model by applying it to predict isoprene 280 

concentrations at the overseas sites (Figure 1). The model was pre-trained with the 281 

complete dataset from all the sites in China, which was further fine-tuned with 70% of 282 

the data at the individual target sites and validated with the remaining data. Compared 283 

to the suboptimal model, the PINN-ResMLPT model significantly improved the 284 

prediction of isoprene, especially at New Delhi and Manaus, with the increase in R2 285 

(decrease by NMAE) by 0.07 (25%) and 0.08 (13%), respectively (Figure 2). This 286 

demonstrated the model’s broad applicability. Moreover, the model outperforms many 287 

other methods in predicting isoprene. For instance, the root mean square error of the 288 

PINN-ResMLPT at Manaus was 0.17 ppbv, compared to 0.95 ppbv for the early attempt 289 

in Cross-track Infrared Sounder retrieval (Fu et al., 2019). This superior performance 290 

establishes the PINN-ResMLPT as our best choice. In fact, we would expect more 291 

accurate predictions if the model were pre-trained by a wider range of field 292 

measurement data from various regions. 293 
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 294 

Figure 2. Schematic of the machine learning framework for predicting isoprene concentration. 295 

(a) A sketch of the training strategy. (b) The improvement of the machine learning framework. 296 

(c) Comparisons of statistical performance across different algorithms in individual sites. RF, 297 

XGB, GBDT, SVM, and LR represent Random Forest, eXtreme Gradient Boosting, 298 

Gradient Boosting Decision Tree, Support Vector Machine, and Linear Regression, 299 

respectively.  300 

  301 
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3.2 Main Factors Influencing Urban Isoprene Concentrations 302 

Further, a feature importance method based on the the SHapley Additive exPlanations 303 

(SHAP) values was employed to explore the prediction results (Figure 3). While we 304 

prefer to present it for individual sites, the feature importance of VI and BCtraffic was 305 

not calculated for the Chinese sites except a suburban site in Hong Kong (HK_TC), due 306 

to the low temporal resolutions of VI and BCtraffic data and the short isoprene 307 

observation periods. Here, we discuss the drivers of short-term (2-4 years) and long-308 

term (over 10 years) isoprene concentration variations, separately. 309 

With the VI and BCtraffic remaining relatively stable in the short term, the model 310 

indicated that temperature, radiation, surface pressure, and soil water vapor were the 311 

most significant drivers of short-term isoprene variations, and their average relative 312 

importance was 18.8%, 11.9%, 11.3%, and 8.1% across the all the Mainland China sites, 313 

respectively. In addition, evaporation from vegetation transpiration and relative 314 

humidity also played significant roles in affecting isoprene concentrations at the Wuhan 315 

suburban site and Beijing urban site, respectively. The model also effectively captured 316 

the target-feature relationships. In China, the predicted isoprene concentrations 317 

increased with temperature below ~35 °C, above which a decline occurred at some sites. 318 

A typical example was the response in Chongqing with frequent occurrence of high 319 

temperature extremes (Figure S4). High temperatures suppress vegetation emissions 320 

due to a reduction in enzyme activity and substrate availability while accelerating the 321 

photochemical oxidation loss of isoprene. A similar pattern was observed in the 322 

response of isoprene concentrations to radiation in China, especially at extremely high 323 

levels. Such nonlinear responses are critical to the parameterization of isoprene 324 

emissions in numerical models. Notably, recent studies have revealed substantial 325 

uncertainties in the MEGAN model’s performance under extreme heat conditions 326 

(Wang et al., 2024a). In contrast, our data-driven machine learning approach effectively 327 

captures these complex, nonlinear relationships between isoprene concentrations and 328 

environmental predictors, offering a promising pathway to refine and optimize 329 

parameterization schemes in chemical transport models. In addition to the close 330 
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relationships with temperature, solar radiation affects the hydroxyl radical 331 

concentrations and therefore can significantly increase chemical loss of isoprene. In 332 

contrast, these phenomena were not observed in London, because of lower temperatures 333 

and weaker solar radiations. Overall, our transfer learning model reasonably reflected 334 

the isoprene-meteorology relationships. 335 

 336 

Figure 3. Modeling explainable results at each site based on SHAP value. (a) Feature 337 

importance for isoprene concentrations at individual sites. (b-i) The SHAP dependence plots of 338 

major influencing variables averaged at the Chinese sites (b-e) and London sites (f-i). 339 

Further, the long-term isoprene observations in London and Hong Kong offer an 340 

opportunity to examine how the evolutions of VI and BCtraffic affected isoprene 341 

variations on a climatic scale. As two prominent international cities, London and Hong 342 

Kong are characterized by distinct climatic zones: London experiences a mid-latitude 343 

temperate maritime climate, whereas Hong Kong is influenced by a low-latitude 344 

subtropical monsoon climate. This climatic differentiation is reflected in their 345 

predominant vegetation types, with temperate deciduous trees being prevalent in 346 
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London and evergreen broad-leaved trees dominating the landscape in Hong Kong. 347 

Furthermore, the trajectories of urbanization and air pollution management have 348 

evolved differently in each city, shaped by their unique environmental and socio-349 

economic contexts. Here, we focus on the results at two London sites and a Hong Kong 350 

site, where long term data was available. Radiation, VI and temperature were the most 351 

predominant influencing factors at the suburban site in Hong Kong. In contrast, the 352 

relative importance of VI was low at the two London sites. Over the period of 2000–353 

2021, Hong Kong has experienced a notable increase in NDVI (2.1×10⁻³ year⁻¹) and 354 

LAI (2.8×10⁻² year⁻¹), while the rate was much lower in London, i.e., 0.9×10⁻³ year⁻¹ 355 

for NDVI and 0.9×10⁻² year⁻¹ for LAI. Additionally, the significant difference in VI 356 

importance between Hong Kong and London might also be attributed to the different 357 

strength of vegetation emissions across latitudes (Guenther et al., 2006; Guenther et al., 358 

2012). Instead, BCtraffic (temperature) ranked the first at the traffic (suburban) site in 359 

London, followed by other meteorological factors (Figure 3). While the meteorological 360 

impacts were not surprising, isoprene correlated well with the BCtraffic emissions and 361 

observed benzene at the London traffic site (Figure S5), thereby the high relative 362 

importance of BCtraffic. This is consistent with the previous studies on traffic emissions 363 

of isoprene in London (Borbon et al., 2001; Von Schneidemesser et al., 2011). As 364 

constrained using the PINN, the SHAP values for isoprene concentrations of VI and 365 

BCtraffic showed a monotonic increasing trend. 366 

  367 
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3.3 Factors Driving Long-term Trends of Isoprene 368 

The model was also used to build the time series data of daytime isoprene 369 

concentrations at a daily resolution over a climatically relevant period (1990–2023) at 370 

the three sites with long-term but incomplete isoprene data. The comparison between 371 

the geographically distinctive London and Hong Kong offers a rare opportunity to 372 

examine the different drivers of isoprene trends. As shown in Figure 4, the predicted 373 

isoprene concentrations were in good agreement with the observations, with the R2 of 374 

0.68–0.83 and NMAE of 21%–27%. It’s worth noting that the observational data was 375 

missing for 50%–67% of the dates at the three sites. This underscored the model's 376 

effectiveness in retrieving historical isoprene concentrations from limited observation 377 

data.  378 

Over the past 34 years, the isoprene concentrations at the Hong Kong site have shown 379 

an increasing trend with the rate of 18.1 pptv year-1, as have the temperature and VI. In 380 

contrast, traffic emissions have been significantly reduced since 1998, due to the 381 

effective human interventions. The trend of the predicted isoprene correlated strongly 382 

with the SHAP values of VI (R = 0.95) and moderately with that of temperature (R = 383 

0.63). By fixing the variables one by one, we determined the variations in factor 384 

contributions to isoprene concentrations, which were then compared between different 385 

time periods. It was found that urban greenspace emerged as the dominant factor 386 

impacting Hong Kong’s isoprene levels, causing a rise in isoprene concentrations of 387 

290 pptv between the last 17 years and the first 17 years. Meanwhile, the contribution 388 

of climate warming was 51 pptv, while the traffic contribution was minor. Moreover, 389 

without changes in urban greenspace, the coefficient of variation (CV) of annual 390 

average isoprene concentrations would decrease by 70.5%, in comparison to the 391 

decrease of 12.0% and 6.0% in absence of changes in climate warming and traffic 392 

emissions, respectively. This reiterated the significant impacts of urban greenspace on 393 

the variations and trends of isoprene concentrations. 394 
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 395 

Figure 4. Long-term trends of the summertime isoprene and the drivers. (a-c) Variations of 396 

isoprene concentrations (blue lines for simulated, blue dots for observed), temperature (T), 397 

urban greenspace (VI) and traffic emissions (BCtraffic) in Hong Kong (a) and London (b and c). 398 

The red dots and red line represent temperature and the fitted trend for the mean temperature, 399 

respectively. The bands represent 95% confidence intervals. (d-f) Changes in isoprene 400 

concentrations caused by climate warming, urban greenspace and traffic emissions in Hong 401 

Kong (d) and London (e and f) during different periods. 402 
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In contrast, the isoprene concentrations in London were lower in the last 17 years. 403 

Climate warming would have increased the isoprene concentrations by 31 pptv 404 

compared to those in the first 17 years at the traffic site, while the impact at the suburban 405 

site and the effects of urban greenspace at both sites were negligible. Interestingly, 406 

traffic emissions accounted for 87 pptv and 755 pptv of isoprene reduction at the 407 

suburban site and the traffic site, respectively. This was likely attributed to stringent 408 

traffic emission controls, as indicated by the significant downward trend of BCtraffic. 409 

The effect was more pronounced during the first two thirds of the study period (1990–410 

2011). Specifically, the traffic-related isoprene reduction was 85 pptv from the first 411 

(1990–2000) to the second decade (2001–2011) at the suburban site, in comparison to 412 

the 29 pptv between the second and the last decade (2012–2023). Actually, the observed 413 

isoprene concentration correlated moderately (R = 0.60) with BCtraffic from 1990 to 414 

2011 based on their annual averages. This suggests that traffic emission controls also 415 

affected isoprene concentrations even in non-urban areas. Despite the higher VI in 416 

London, the increasing rate (1.2 year-1 at the suburban site and 0.7 year-1 at the traffic 417 

site) was lower than that in Hong Kong (1.6 year-1). Additionally, the weak effects of 418 

urban greenspace might be also due to the relatively low emission strengths of high-419 

latitude vegetation (Guenther et al., 2006). Moreover, the impact of climate warming 420 

became evident in the last decade (2012–2023) at the suburban site in London and, 421 

together with urban greenspace, reversed the isoprene reduction that would otherwise 422 

have been achieved by traffic emission controls. This aligned with the accelerated 423 

temperature rise from 2011 onwards (Figure S6), which was also reported elsewhere 424 

(Cao et al., 2021). From the perspective of variations in annual isoprene concentrations, 425 

the CV at the traffic site primarily resulted from changes in traffic emissions. At the 426 

suburban site, it would decrease by 32.4% and 14.0% if temperature and traffic 427 

emissions did not change. 428 

Overall, our results demonstrate a tale of two cities: similarities and differences in 429 

drivers of long-term isoprene trends. Temperature-driven increases in isoprene 430 

concentrations were revealed in both cities, especially in the last decade, underscoring 431 
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the universal impacts of climate warming on vegetation emissions. However, the 432 

disparities in green space changes and probably different biogenic isoprene emission 433 

strengths between the two cities led to the different effects of VI on isoprene variations. 434 

Additionally, the isoprene variations over the 34 years have been more influenced by 435 

traffic emissions in London, although both cities have implemented stringent vehicle 436 

emission controls. While the reasons remain to be explored, we did not identify any 437 

correlation between the observed isoprene and BCtraffic (or benzene) in Hong Kong, 438 

even at a traffic site (Figure S5). 439 

  440 
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3.4 Future Projections for Isoprene and O3 in Hong Kong 441 

A significant issue associated with increasing isoprene levels in a warming climate is 442 

the potential for elevated ground-level O3 pollution (Xi et al., 2025b; Wang et al., 443 

2024c). We used the temperature from the latest CMIP6 multi-model ensemble 444 

forecasts to predict isoprene concentrations from 2030 to 2100 in Hong Kong under 445 

four IPCC’s shared socio-economic pathway (SSP) scenarios, while the other factors 446 

were kept constant. As shown in Figure 5a, the temperature is expected to increase by 447 

0.71–3.60 ℃ from 2030 to 2100. The model indicated that the daytime average 448 

concentration of isoprene would increase by 87–530 pptv (15%–87%) by 2100 (Figure 449 

5b). The changes are on the same magnitude as the previous estimates that isoprene 450 

emissions will increase by 21%–57% by the end of this century relative to the 1990–451 

2010 levels (Cao et al., 2021; Sanderson et al., 2003). 452 

Further, we simulated the O3-isoprene-temperature relationships in Hong Kong (as an 453 

example) using future temperatures and isoprene concentrations while fixing the other 454 

air pollutants and meteorological conditions at present levels. The simulated O3 455 

increased markedly with the rise in temperature and isoprene concentrations (Figure 456 

5c-5f). The O3 concentration would increase by up to 1.7 folds by 2100 under the 457 

SSP585 scenario of temperatures and isoprene. An increase in the combined risk of heat 458 

and O3 exposure could be expected. To explore the approach of alleviating the adverse 459 

impact of O3-isoprene-temperature synergy, we proposed additional scenarios by 460 

cutting anthropogenic NOx emissions. With the NOx reduction from the current to 461 

different SSPs levels, the O3 concentrations would increase and decrease under low and 462 

high isoprene-temperature conditions, respectively (Figure 5d-5f). This inconsistent 463 

variation is due to the evolution of O3 formation regime with the rising temperatures 464 

and isoprene. It is worth noting that more ambitious NOx reduction would result in 465 

greater O3 benefits. For example, O3 would decrease in a much wider range of 466 

temperature and isoprene when NOx is reduced under SSP126. The O3 growth by 2100 467 

would be only 1.2 folds in the SSP585 scenario of temperatures and isoprene. Therefore, 468 
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substantial reduction in anthropogenic NOx would effectively address the synergy 469 

between temperature, isoprene and O3. 470 

 471 

Figure 5. Projected temperature, isoprene and O3-isoprene-temperature relationships under 472 

different climate scenarios. (a-b) Projections of the summertime daytime air temperature (a) 473 

and isoprene concentrations (b) during 2030-2100 in Hong Kong. The shaded areas represent 474 

the 25th to 75th percentile of the estimated isoprene concentration and temperature for each 475 

SSP. (c-f) Responses of simulated O3 concentrations to temperature and isoprene under 476 

abundant-NOx (c) and reduced-NOx (d-f) conditions. The squares represent the projected O3 477 

concentrations at specific temperatures and isoprene levels, with error bars indicating the 478 

standard deviation of isoprene concentrations and temperatures. 479 

  480 



 

24 

 

4 Conclusions 481 

As one of the most reactive and abundant VOC, isoprene plays a significant role in 482 

shaping urban air quality. We developed an explainable deep transfer learning 483 

framework to predict isoprene concentrations and elucidate the underlying drivers of 484 

their variability. Our model outperformed conventional approaches, effectively 485 

capturing the spatial heterogeneity of isoprene concentrations through localized fine-486 

tuning. Leveraging this framework, we quantified the relative importance of factors 487 

influencing isoprene concentrations across numerous sites in China and internationally. 488 

The contrasting cases of Hong Kong and London highlight how isoprene dynamics 489 

were shaped by distinct local drivers, underscoring the need to tailor air quality 490 

management strategies to specific urban contexts. Despite the anticipated increase in 491 

biogenic emissions in a warming climate, our findings caution against reducing urban 492 

greenspace solely based on isoprene-related concerns. Instead, mitigating global 493 

warming emerges as a crucial strategy for managing isoprene’s air quality impacts, as 494 

evidenced by the strong isoprene–temperature relationships observed. For O3 495 

abatement, coordinated control of NOx emissions appears effective in reducing the 496 

contribution of isoprene to O3 formation. Moreover, the differing responses of isoprene 497 

to VI between Hong Kong and London suggest that informed tree species selection can 498 

serve as an alternative urban planning measure. Traffic emissions may also remain a 499 

significant source of urban isoprene in cities lacking stringent vehicle emission controls 500 

and should be addressed accordingly. Overall, this study provides novel insights into 501 

isoprene emissions and chemistry, air quality impacts, and practical mitigation 502 

strategies. Nonetheless, limitations persist, particularly regarding the comprehensive 503 

representation of emissions and chemical loss processes, which are discussed in Text 504 

S2. 505 

  506 
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