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Key Points:

e An explainable deep transfer learning framework was developed to predict

isoprene concentrations and their variations.

e Different drivers accounted for historical trends of isoprene concentrations in

Hong Kong and London from 1990 to 2023.

e Reducing nitrogen oxides would alleviate ozone pollution driven by rising

temperatures and isoprene levels in the warming climate.
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Abstract

Isoprene, the globally most abundant volatile organic compound, significantly impacts
air quality. Determining isoprene concentration variations and their drivers is a
persistent challenge. Here, we developed a robust machine learning framework to
simulate isoprene concentrations, without requiring localized emission inventories and
explicit chemistry. Temperature, radiation, and surface pressure were the primary
drivers of short-term isoprene variations across Chinese cities. On climatic timescales,
urban greenspace expansion and climate warming drove isoprene increases by 341 pptv
in Hong Kong during 1990-2023, but traffic emission reductions in London
counteracted the isoprene rise that climate warming would have otherwise caused (-755
pptv vs. +31 pptv). Driven by rising temperatures and isoprene levels, ozone would
increase by up to 1.7-fold by 2100 under the high-emission scenario. However,
ambitious reduction in nitrogen oxides would alleviate this growth to 1.2-fold. The

study has the potential to inform air quality management in a warming climate.
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1 Introduction

Isoprene is the most abundant non-methane volatile organic compound (VOC) globally,
with the total emissions reaching approximately 500 TgC per year, exceeding those of
the total anthropogenic VOCs (Guenther et al., 2012; Huang et al., 2017). The high
atmospheric reactivity makes it a key precursor for tropospheric ozone (O3) and
secondary organic aerosol, both of which significantly impact air quality and climate
(Paulot et al., 2012; Lin et al., 2013; Xi et al., 2025a). In particular, the effect is
pronounced in urban environments due to the interactions between isoprene and

anthropogenic emissions (Xu et al., 2015).

Terrestrial vegetation is the primary source of atmospheric isoprene, and the emissions
are influenced by plant species, geographical locations, and environmental conditions
(Guenther et al., 1994; Guenther et al., 1993). Urban landscapes show remarkable
diversity in isoprene production, exemplified by stark differences between tree species.
While urban greenspace offers numerous benefits, it also emerges as a notable
contributor to urban isoprene (Ma et al., 2022). The emissions are highly sensitive to
meteorological conditions (Wang et al., 2024a). The combination of climate warming
and urbanization lead to intensified urban heat, which in turn boosts isoprene emissions
from greenspace (Li et al., 2024; Pfannerstill et al., 2024). In addition, studies have
shown that a portion of urban isoprene may stem from motor vehicles, the contribution
of which varies by location and season (Borbon et al., 2001). However, vehicle
emissions of isoprene do not necessarily increase with growing vehicle population, due
to stringent emission controls in many cities. This further complicates the task of
accurately simulating the concentrations and trends of urban isoprene. While isoprene
may also be emitted from other anthropogenic sources, such as petrochemical activities
and coal combustion, the amounts are generally small compared to biogenic emissions,

especially in warm seasons (Peron et al., 2024).

Modeling and measurement deficiencies remain a serious concern in isoprene research
across multiple disciplines. For example, the Model of Emissions of Gases and

Aerosols from Nature (MEGAN) estimates vegetation emissions based on theoretical
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relationships with meteorology and vegetation dynamics. This model significantly
underestimates isoprene emissions from urban greenspace when it is driven by coarse
resolution (e.g., >30 m) satellite-derived vegetation data (Ma et al., 2019; Ma et al.,
2022). It is also difficult for current chemical transport models to accurately simulate
isoprene concentrations, mainly resulting from the grid resolution and uncertainties in
isoprene emissions, vertical dispersion rates and oxidation parameterization schemes
(Arneth et al., 2011; Guenther et al., 2012). Local vegetation surveys and emission
factor measurements can be made to improve model performance. However, the work
is challenging and the outcomes often point out additional uncertainties (Seco et al.,
2022; Wang et al., 2024b). While isoprene measurements have demonstrated reliability
in atmospheric chemistry research, the temporal and spatial coverage remains
suboptimal. Given these constraints, there are insufficient robust isoprene data available

over climatic timescales (e.g., several decades) to reveal the drivers of long-term trends.

To confront this dilemma, we developed a generalized physics-informed neural
network based on a residual Multi-Layer Perceptron with a transfer training strategy to
reproduce/predict ambient isoprene concentrations. The model was trained by a
comprehensive set of isoprene data observed at ten sites in China (a total of ~65,000
hourly data) and validated by a total of ~8,500 hourly and daily data at six overseas
sites (Table S1). The model was verified for its ability to predict isoprene with limited
sizes of observational data and understand intricate relationships between isoprene and
influencing factors. The model was then used to predict future trends of isoprene and
the resulting O3 variations in different climate scenarios. This study enhances our
understanding of the responses of ambient isoprene concentrations to emissions and
meteorology, and has the potential to inform urban planning and air quality policies in

the warming climate.



108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

2 Data and Models

2.1 Isoprene Data and Deep Learning Model

A total of over 72,000 hourly (and a small fraction of daily) data of isoprene
concentrations in the daytime (06:00-20:00 local time) of warm seasons (May—October)
were compiled from 16 sites worldwide. Around 88% the data was from different parts
of China, and the remainder was from North America, Amazonia, India, and the UK
(see Table S1). To ensure comparability, we included only online measurements,
excluding offline sampling and analysis methods. While inter-instrument bias might
exist, the isoprene variability within each site was expected to be much larger than any
plausible inter-instrument bias. Moreover, this will not influence the analysis of

isoprene variations at individual sites.

The residual multi-layer perceptron architecture (ResMLP) was employed to
approximate the complicated responses of isoprene concentrations to input features,
which was coupled with a physics-informed neural network, thereby PINN-ResMLP.
This approach integrated domain knowledge by enforcing monotonicity constraints
between isoprene and its major sources (e.g., vegetation and traffic emissions), thus
ensuring physically consistent predictions. These constraints were implemented
directly in the model’s loss function, which combined terms for data fitting,
monotonicity regularization, and network structure penalties. As a fully data-driven
model, ResMLP may learn patterns that are inconsistent with physical laws (Feng et al.,
2025). Incorporating expert knowledge and physical constraints into the model can
guide the learning processes (Zhu et al., 2024). In this study, we stipulated that isoprene
concentrations were positively correlated with the biogenic and traffic emission sources.

This relationship therefore can be expressed as:

d ISOP
VI (1)

9 ISOP
(2)

0 BCtraffic
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where ISOP represents isoprene concentrations; VI is vegetation index derived from
Leaf Area Index (LAI) and Normalized Difference Vegetation Index (NDVI) (see Text
S1); and BClrafsic 1s traffic emissions of black carbon. To satisfy this priori knowledge,
we developed PINN-ResMLP to constrain the model. The optimization objective of
PINN-ResMLP included data item loss ( Lgqtq ), physical inconsistency loss
(Lmonotonicity)> and additional structural 108s (Lgtyycrure)- Meanwhile, the L2 norm of
the network parameters, namely adding the sum of the squares of all network weights
(parameters) to the loss function, could effectively regularize and prevent overfitting in
PINN-ResMLP. Finally, the total function was formulated as:

L=Ljgta +a- Lmonotonicity + .B * Lstructure (3)

N
1
Laara = ﬁz |(1S0Pybs; — 1S0Pyreq)” + [1SOPops; — ISOPyreqil | (4)
i=1

N . (aISOP) L ( dISOP )
1 S TavT ) TS M B8BCrarsie
Lmonotonicity = Nz - 2 (5)
i=1
, -1, 6<0
sign(0) = {04 6=>0 ©)
M
Lstructure = Z(Wiz + blz) (7)
i=1

where the a and f are trade-off parameters; N is the number of training samples; i
represents a certain sample; ISOP,ps and ISOPy,.., are observed and predicted

isoprene concentrations, respectively; M is the number of layers in PINN-ResMLP.

Predictor variables were selected to capture key sources and sinks of isoprene, including
VI (see Text S1), meteorological parameters (e.g., temperature, solar radiation), and
black carbon emitted from traffic (BCuattic) as a proxy for anthropogenic emissions. To
ensure consistency among all variables, datasets with different spatial resolutions (e.g.,
0.1° and 0.25°) were resampled to achieve a uniform resolution of 0.1° using bilinear

interpolation. Full variable definitions and sources are provided in Table S2.

To address data scarcity at some sites, we implemented a supervised transfer learning

strategy. The PINN-ResMLP was pre-trained on data-rich sites and fine-tuned with
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limited data from target sites (see Table S3). Three training strategies were adopted: (1)
transfer learning (T), where models were pre-trained on data from other sites and fine-
tuned on the target site; (2) no-transfer (NT), where models were trained solely on target
site data; and (3) mixed training (MIX) using combined data from all sites. Model
performance was evaluated using four-fold cross-validation (Table S3) and metrics
including normalized mean absolute error (NMAE) and coefficient of determination
(R?). Comparisons were made against standard machine learning algorithms, such as
Random Forest (RF), extreme gradient boosting (XGB), and support vector machine
(SVM). All algorithms were optimized using extensive grid search (see

hyperparameters in Table S4). NMAE and R? are calculated as follows:

1
NZ?:llISOPObS,i - ISOPpred,il

NMAE = —
ISOP,

(8)

2
§V=1(ISOP0bs,i - ISOPpred,i)

R?=1- >
N (ISOP,ys; — TSOP, )

9)

where ISOP,,. represents the mean value of ISOP,;.
Finally, the Shapley Additive Explanations (SHAP) approach (Lundberg et al., 2020)
was used to quantify the contributions of input variables to model predictions. SHAP
values allow us to assess the impact of each factor on isoprene concentrations. The
calculation is defined as follows:

S|t (K =S| = D!

0= ) T U~ £S)] (10)
Sck\{i}

where K represents the set of all features, S € K\{i} denotes a feature subset that
excludes feature i, |S| is the size of subset S, f(S) is the model’s prediction under

feature subset S, and f(SU{i}) — f(S) is the marginal contribution of feature i.

2.2 Attribution of Long-term Isoprene Trends and O3 Projections

The PINN-ResMLP model was also used to quantify the contributions of different
factors to the long-term trends of isoprene concentrations at three sites in Hong Kong

and London using a scenario-based approach. Using the historical data of
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meteorological parameters, VI and BCatfic as the input of the PINN-ResMLPt model,
we predicted the summertime (June to August) isoprene concentrations in Hong Kong
and London for the period of 1990-2023 (base scenario). In order to reveal the impacts
of the major drivers on the isoprene variations, we also predicted the isoprene
concentrations by fixing the temperature, VI and BCiafmic as their averages over the
above period one by one (controlled scenarios). The differences in the predicted
isoprene (isoprenedifr) between the base and controlled scenarios depicted the isoprene
trends induced by the individual factors. The isopreneqisr was then compared between
different time periods, e.g., the first and last 17 years and the first, middle and last
decades. Besides, the coefficient of variation (CV) was calculated for the predicted
isoprene concentrations in all the scenarios over the period of 1990-2023. The CV
differences between the base and controlled scenarios indicate how the changes in
temperature, VI and traffic emissions (represented by BCuafric) increased or decreased

the variations in isoprene concentrations.

Additionally, future isoprene concentrations at the Hong Kong site were projected for
2030-2100 based on temperature changes under different climate scenarios developed
by the Coupled Model Intercomparison Project Phase 6 (CMIP6), while keeping other
influencing factors constant. Briefly, we used the temperature data from four Shared
Socioeconomic Pathways (SSPs), including SSP126 (low forcing), SSP245
(intermediate forcing), SSP370 (medium-high forcing), and SSP585 (high forcing), and
held the other influencing factors constant. The averages of outputs from four Coupled
Model Intercomparison Project Phase 6 (CMIP6) models (ACCESS-CM2, CMCC-
ESM2, MPI-ESM1-2-HR, and GFDL-ESM4) were adopted (Xu et al., 2024).

Using the future profiles of temperature and isoprene as constraints, we simulated O3
concentrations as a function of isoprene and temperature using a zero-dimensional box
model under different NO, reduction scenarios. The Framework for 0-D Atmospheric
Modeling (FOAM) incorporating Master Chemical Mechanism v3.3.1 was used to
simulate O3 under different sets of temperatures and isoprene concentrations (Lyu et al.,

2024). The model was constrained by the average diurnal profiles of air pollutants

9



213 (excluding Os3) and meteorological parameters observed in the summer of 2023 at the
214  Hong Kong_TC site, except that the daytime average temperature changed from 22 °C
215 to 38 °Cin 2 °C intervals and the daytime average isoprene concentrations varied in the
216  range of 0.15—1.8 ppbv in intervals of 0.15 ppbv. The Os isopleths were depicted using
217  the simulation results for 108 temperature-isoprene settings. Additionally, the above
218 simulations were repeated in different scenarios of NOy reduction, i.e., 49.7% and 82.6%
219 under the SSP370 and SSP126, respectively (Lou et al., 2023; Rogelj et al., 2018). It is
220  worth noting that the diurnal profiles of other O3 precursors, such as VOCs and carbon
221  monoxide, were kept unchanged throughout all the simulations. Meanwhile, our future
222 projections are designed to isolate the chemical response of Oz to changes in
223 temperature and isoprene and do not explicitly incorporate potential future changes in
224 greenspace, urban morphology, or other anthropogenic emissions. Although these
225  factors are expected to evolve under urban development and climate mitigation
226  pathways, the present analysis focuses on quantifying the impacts of climate warming
227  on isoprene emissions and the consequent O3 responses.
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3 Results and Discussion

3.1 Simulating Isoprene Concentrations Using PINN-ResMLPt Model

The isoprene concentrations averaged over the respective observation periods varied
significantly from 0.15 ppbv in Wuhan to 2.79 ppbv in New Delhi (Figure 1 and Figure
S1), due to the differences in sampling periods, climatic conditions, and vegetation type
and density. We noticed that most cities have experienced an increase in greenspace in
the last 20 years, and there existed significant differences in greenspace coverage and
its recent trends between the cities (e.g., Hong Kong versus London). The high
vegetation cover appeared to explain the elevated levels of isoprene in South China and
Amazonia. Temperature also had a strong effect on isoprene concentrations, as
indicated by the Pearson correlation coefficient (R) between hourly isoprene and
temperature at individual sites, i.e., 0.41-0.72. The temperature and temperature
variation were spatially non-uniform, implying its inconsistent roles in affecting
biogenic isoprene emissions. Additionally, anthropogenic emissions might have made
significant contributions to isoprene in New Delhi, given the high nocturnal levels and
the peak in evening rush hours (Figure S2). This was also mentioned in a previous study
(Tripathi et al., 2022). The Weather Research and Forecasting model with Chemistry,
which theoretically takes these factors into account, was used to simulate the isoprene
concentrations. However, substantial divergences were noted between the simulated
and observed values at hourly or even daily resolution (Figure S3), demonstrating the
challenge for chemical transport models in accurately simulating isoprene (Morichetti

et al., 2022; Wang et al., 2024b).
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252 Figure 1. Geographical distribution of the isoprene sampling sites. (a-e) Locations of isoprene
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257 around the world.

258  We then examined the isoprene prediction ability of various machine learning
259  algorithms with three training strategies: T, NT, and MIX (see Section 2.3). Overall,
260  the model utilizing the NT training strategy exhibited higher fitting accuracy than the
261  one employing the MIX training strategy (Figure 2). This suggests that training with
262 data from different sites might introduce additional noises, due to the differences in
263 isoprene emission dynamics. Particularly, isoprene emissions are highly sensitive to
264 local vegetation profiles. While the ResMLP model with the NT training strategy
265  (ResMLPnr) performed moderately among all the algorithms, the performance was
266  improved by incorporating the T strategy. Specifically, the ResMLPt outperformed the
267  other algorithms at 8 out of 10 sites, with the decrease in NMAE of 1%—5% and increase
268 in R? 0f 0.01-0.07. The results indicated that the ResMLPt model effectively exploited

269  the implicit prior knowledge from the pre-training data to guide isoprene prediction at
12
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the target sites. Importantly, the pre-trained parameters were fine-tuned using limited
sizes of local data, which adapted the model to local isoprene emission dynamics
without requiring region-specific vegetation profiles, such as vegetation types and
corresponding emission factors. It is worth noting that the size of the retraining data at
the validation sites was ~30% of all the data. Thus, the model’s good performance at
the validation sites demonstrated its utility in data-scarce regions. Furthermore, with
the incorporation of PINN, the PINN-ResMLPt showed a better understanding of the
real target-feature relationships with more interpretable prediction results. The model
performance was further improved, as indicated by the highest R? values across all the

sites (Figure 2).

Next, we also validated the PINN-ResMLPt model by applying it to predict isoprene
concentrations at the overseas sites (Figure 1). The model was pre-trained with the
complete dataset from all the sites in China, which was further fine-tuned with 70% of
the data at the individual target sites and validated with the remaining data. Compared
to the suboptimal model, the PINN-ResMLPt model significantly improved the
prediction of isoprene, especially at New Delhi and Manaus, with the increase in R?
(decrease by NMAE) by 0.07 (25%) and 0.08 (13%), respectively (Figure 2). This
demonstrated the model’s broad applicability. Moreover, the model outperforms many
other methods in predicting isoprene. For instance, the root mean square error of the
PINN-ResMLPt at Manaus was 0.17 ppbv, compared to 0.95 ppbv for the early attempt
in Cross-track Infrared Sounder retrieval (Fu et al., 2019). This superior performance
establishes the PINN-ResMLPr as our best choice. In fact, we would expect more
accurate predictions if the model were pre-trained by a wider range of field

measurement data from various regions.
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Figure 2. Schematic of the machine learning framework for predicting isoprene concentration.

(a) A sketch of the training strategy. (b) The improvement of the machine learning framework.

(¢) Comparisons of statistical performance across different algorithms in individual sites. RF,

XGB, GBDT, SVM, and LR represent Random Forest, eXtreme Gradient Boosting,

Gradient Boosting Decision Tree, Support Vector Machine, and Linear Regression,

respectively. Seemethodsfor-the fullnames-of the algorithms.
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3.2 Main Factors Influencing Urban Isoprene Concentrations

Further, a feature importance method based on the-the SHapley-Additive-exPlanations
¢SHAP} values was employed to explore the prediction results (Figure 3). While we

prefer to present it for individual sites, the feature importance of VI and BCyuafric was
not calculated for the Chinese sites except a suburban site in Hong Kong (HK TC), due
to the low temporal resolutions of VI and BCyamc data and the short isoprene
observation periods. Here, we discuss the drivers of short-term (2-4 years) and long-

term (over 10 years) isoprene concentration variations, separately.

With the VI and BCiafic remaining relatively stable in the short term, the model
indicated that temperature, radiation, surface pressure, and soil water vapor were the
most significant drivers of short-term isoprene variations, and their average relative
importance was 18.8%, 11.9%, 11.3%, and 8.1% across the all the Mainland China sites,
respectively. In addition, evaporation from vegetation transpiration and relative
humidity also played significant roles in affecting isoprene concentrations at the Wuhan
suburban site and Beijing urban site, respectively. The model also effectively captured
the target-feature relationships. In China, the predicted isoprene concentrations
increased with temperature below ~35 °C, above which a decline occurred at some sites.
A typical example was the response in Chongqing with frequent occurrence of high
temperature extremes (Figure S4). High temperatures suppress vegetation emissions
due to a reduction in enzyme activity and substrate availability while accelerating the
photochemical oxidation loss of isoprene. A similar pattern was observed in the
response of isoprene concentrations to radiation in China, especially at extremely high
levels. Such nonlinear responses are critical to the parameterization of isoprene
emissions in numerical models. Notably, recent studies have revealed substantial
uncertainties in the MEGAN model’s performance under extreme heat conditions
(Wang et al., 2024a). In contrast, our data-driven machine learning approach effectively
captures these complex, nonlinear relationships between isoprene concentrations and
environmental predictors, offering a promising pathway to refine and optimize
parameterization schemes in chemical transport models. In addition to the close
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relationships with temperature,

solar radiation affects the hydroxyl radical

concentrations and therefore can significantly increase chemical loss of isoprene. In

contrast, these phenomena were not observed in London, because of lower temperatures

and weaker solar radiations. Overall, our transfer learning model reasonably reflected

the isoprene-meteorology relationships.
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Figure 3. Modeling explainable results at each site based on SHAP value. (a) Feature

importance for isoprene concentrations at individual sites. (b-i) The SHAP dependence plots of

major influencing variables averaged at the Chinese sites (b-e) and London sites (f-i).

Further, the long-term isoprene observations in London and Hong Kong offer an

opportunity to examine how the evolutions of VI and BCuasric affected isoprene

variations on a climatic scale. As two prominent international cities, London and Hong

Kong are characterized by distinct climatic zones: London experiences a mid-latitude

temperate maritime climate, whereas Hong Kong is influenced by a low-latitude

subtropical monsoon climate. This climatic differentiation is reflected in their

predominant vegetation types, with temperate deciduous trees being prevalent in
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London and evergreen broad-leaved trees dominating the landscape in Hong Kong.
Furthermore, the trajectories of urbanization and air pollution management have
evolved differently in each city, shaped by their unique environmental and socio-
economic contexts. Here, we focus on the results at two London sites and a Hong Kong
site, where long term data was available. Radiation, VI and temperature were the most
predominant influencing factors at the suburban site in Hong Kong. In contrast, the
relative importance of VI was low at the two London sites. Over the period of 2000—
2021, Hong Kong has experienced a notable increase in NDVI (2.1x1073 year') and
LAI (2.8x1072 year™), while the rate was much lower in London, i.e., 0.9x1073 year™!
for NDVI and 0.9x1072 year' for LAI. Additionally, the significant difference in VI
importance between Hong Kong and London might also be attributed to the different
strength of vegetation emissions across latitudes (Guenther et al., 2006; Guenther et al.,
2012). Instead, BCafsic (temperature) ranked the first at the traffic (suburban) site in
London, followed by other meteorological factors (Figure 3). While the meteorological
impacts were not surprising, isoprene correlated well with the BCyariic emissions and
observed benzene at the London traffic site (Figure S5), thereby the high relative
importance of BCuafiic. This is consistent with the previous studies on traffic emissions
of isoprene in London (Borbon et al., 2001; Von Schneidemesser et al., 2011). As
constrained using the PINN, the SHAP values for isoprene concentrations of VI and

BClafic showed a monotonic increasing trend.
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3.3 Factors Driving Long-term Trends of Isoprene

The model was also used to build the time series data of daytime isoprene
concentrations at a daily resolution over a climatically relevant period (1990-2023) at
the three sites with long-term but incomplete isoprene data. The comparison between
the geographically distinctive London and Hong Kong offers a rare opportunity to
examine the different drivers of isoprene trends. As shown in Figure 4, the predicted
isoprene concentrations were in good agreement with the observations, with the R? of
0.68-0.83 and NMAE of 21%-27%. It’s worth noting that the observational data was
missing for 50%—-67% of the dates at the three sites. This underscored the model's
effectiveness in retrieving historical isoprene concentrations from limited observation

data.

Over the past 34 years, the isoprene concentrations at the Hong Kong site have shown
an increasing trend with the rate of 18.1 pptv year™, as have the temperature and VI. In
contrast, traffic emissions have been significantly reduced since 1998, due to the
effective human interventions. The trend of the predicted isoprene correlated strongly
with the SHAP values of VI (R = 0.95) and moderately with that of temperature (R =
0.63). By fixing the variables one by one, we determined the variations in factor
contributions to isoprene concentrations, which were then compared between different
time periods. It was found that urban greenspace emerged as the dominant factor
impacting Hong Kong’s isoprene levels, causing a rise in isoprene concentrations of
290 pptv between the last 17 years and the first 17 years. Meanwhile, the contribution
of climate warming was 51 pptv, while the traffic contribution was minor. Moreover,
without changes in urban greenspace, the coefficient of variation (CV) of annual
average isoprene concentrations would decrease by 70.5%, in comparison to the
decrease of 12.0% and 6.0% in absence of changes in climate warming and traffic
emissions, respectively. This reiterated the significant impacts of urban greenspace on

the variations and trends of isoprene concentrations.
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Figure 4. Long-term trends of the summertime isoprene and the drivers. (a-¢) Variations of
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concentrations caused by climate warming, urban greenspace and traffic emissions in Hong

Kong (d) and London (e and f) during different periods.
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In contrast, the isoprene concentrations in London were lower in the last 17 years.
Climate warming would have increased the isoprene concentrations by 31 pptv
compared to those in the first 17 years at the traffic site, while the impact at the suburban
site and the effects of urban greenspace at both sites were negligible. Interestingly,
traffic emissions accounted for 87 pptv and 755 pptv of isoprene reduction at the
suburban site and the traffic site, respectively. This was likely attributed to stringent
traffic emission controls, as indicated by the significant downward trend of BCuaffic.
The effect was more pronounced during the first two thirds of the study period (1990—
2011). Specifically, the traffic-related isoprene reduction was 85 pptv from the first
(1990-2000) to the second decade (2001-2011) at the suburban site, in comparison to
the 29 pptv between the second and the last decade (2012—2023). Actually, the observed
isoprene concentration correlated moderately (R = 0.60) with BCyuafic from 1990 to
2011 based on their annual averages. This suggests that traffic emission controls also
affected isoprene concentrations even in non-urban areas. Despite the higher VI in
London, the increasing rate (1.2 year at the suburban site and 0.7 year™ at the traffic
site) was lower than that in Hong Kong (1.6 year!). Additionally, the weak effects of
urban greenspace might be also due to the relatively low emission strengths of high-
latitude vegetation (Guenther et al., 2006). Moreover, the impact of climate warming
became evident in the last decade (2012-2023) at the suburban site in London and,
together with urban greenspace, reversed the isoprene reduction that would otherwise
have been achieved by traffic emission controls. This aligned with the accelerated
temperature rise from 2011 onwards (Figure S6), which was also reported elsewhere
(Cao et al., 2021). From the perspective of variations in annual isoprene concentrations,
the CV at the traffic site primarily resulted from changes in traffic emissions. At the
suburban site, it would decrease by 32.4% and 14.0% if temperature and traffic

emissions did not change.

Overall, our results demonstrate a tale of two cities: similarities and differences in
drivers of long-term isoprene trends. Temperature-driven increases in isoprene

concentrations were revealed in both cities, especially in the last decade, underscoring

20



432

433

434

435

436

437

438

439

440

the universal impacts of climate warming on vegetation emissions. However, the
disparities in green space changes and probably different biogenic isoprene emission
strengths between the two cities led to the different effects of VI on isoprene variations.
Additionally, the isoprene variations over the 34 years have been more influenced by
traffic emissions in London, although both cities have implemented stringent vehicle
emission controls. While the reasons remain to be explored, we did not identify any
correlation between the observed isoprene and BCuafiic (or benzene) in Hong Kong,

even at a traffic site (Figure S5).
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3.4 Future Projections for Isoprene and O3 in Hong Kong

A significant issue associated with increasing isoprene levels in a warming climate is
the potential for elevated ground-level O3 pollution (Xi et al., 2025b; Wang et al.,
2024c). We used the temperature from the latest CMIP6 multi-model ensemble
forecasts to predict isoprene concentrations from 2030 to 2100 in Hong Kong under
four IPCC’s shared socio-economic pathway (SSP) scenarios, while the other factors
were kept constant. As shown in Figure 5a, the temperature is expected to increase by
0.71-3.60 °C from 2030 to 2100. The model indicated that the daytime average
concentration of isoprene would increase by 87-530 pptv (15%—87%) by 2100 (Figure
5b). The changes are on the same magnitude as the previous estimates that isoprene
emissions will increase by 21%—57% by the end of this century relative to the 1990—
2010 levels (Cao et al., 2021; Sanderson et al., 2003).

Further, we simulated the Os-isoprene-temperature relationships in Hong Kong (as an
example) using future temperatures and isoprene concentrations while fixing the other
air pollutants and meteorological conditions at present levels. The simulated O3
increased markedly with the rise in temperature and isoprene concentrations (Figure
5¢-5f). The O3 concentration would increase by up to 1.7 folds by 2100 under the
SSP585 scenario of temperatures and isoprene. An increase in the combined risk of heat
and O3 exposure could be expected. To explore the approach of alleviating the adverse
impact of Os-isoprene-temperature synergy, we proposed additional scenarios by
cutting anthropogenic NOx emissions. With the NOy reduction from the current to
different SSPs levels, the O3 concentrations would increase and decrease under low and
high isoprene-temperature conditions, respectively (Figure 5d-5f). This inconsistent
variation is due to the evolution of O3 formation regime with the rising temperatures
and isoprene. It is worth noting that more ambitious NOy reduction would result in
greater O3 benefits. For example, O3 would decrease in a much wider range of
temperature and isoprene when NOx is reduced under SSP126. The O3 growth by 2100

would be only 1.2 folds in the SSP585 scenario of temperatures and isoprene. Therefore,
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substantial reduction in anthropogenic NOx would effectively address the synergy

between temperature, isoprene and Os.
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Figure 5. Projected temperature, isoprene and Os-isoprene-temperature relationships under
different climate scenarios. (a-b) Projections of the summertime daytime air temperature (a)
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the 25th to 75th percentile of the estimated isoprene concentration and temperature for each
SSP. (c-f) Responses of simulated Os concentrations to temperature and isoprene under
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4 Conclusions

As one of the most reactive and abundant VOC, isoprene plays a significant role in
shaping urban air quality. We developed an explainable deep transfer learning
framework to predict isoprene concentrations and elucidate the underlying drivers of
their variability. Our model outperformed conventional approaches, effectively
capturing the spatial heterogeneity of isoprene concentrations through localized fine-
tuning. Leveraging this framework, we quantified the relative importance of factors
influencing isoprene concentrations across numerous sites in China and internationally.
The contrasting cases of Hong Kong and London highlight how isoprene dynamics
were shaped by distinct local drivers, underscoring the need to tailor air quality
management strategies to specific urban contexts. Despite the anticipated increase in
biogenic emissions in a warming climate, our findings caution against reducing urban
greenspace solely based on isoprene-related concerns. Instead, mitigating global
warming emerges as a crucial strategy for managing isoprene’s air quality impacts, as
evidenced by the strong isoprene—temperature relationships observed. For O3
abatement, coordinated control of NOx emissions appears effective in reducing the
contribution of isoprene to O3 formation. Moreover, the differing responses of isoprene
to VI between Hong Kong and London suggest that informed tree species selection can
serve as an alternative urban planning measure. Traffic emissions may also remain a
significant source of urban isoprene in cities lacking stringent vehicle emission controls
and should be addressed accordingly. Overall, this study provides novel insights into
isoprene emissions and chemistry, air quality impacts, and practical mitigation
strategies. Nonetheless, limitations persist, particularly regarding the comprehensive

representation of emissions and chemical loss processes, which are discussed in Text

S2.
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