
Reviewer #1 

General comments: 

This study employs machine learning techniques to investigate the patterns and driving 

factors underlying the fluctuations in isoprene levels — a crucial precursor to surface 

ozone — using extensive historical datasets. The analysis demonstrates good agreement 

with previous short-term modeling results, while also emphasizing that vegetation 

expansion and temperature increases linked to climate change are key drivers of long-

term variability. Moreover, by extending the model projections to the year 2100 and 

integrating them with a detailed chemical box model, the researchers estimated future 

surface ozone levels. Their results indicate a significant rise in ozone concentrations if 

NOx emissions are not effectively controlled. Importantly, these conclusions were 

obtained using a data-driven approach that differs from conventional atmospheric 

chemical transport models, highlighting the robustness and novelty of the findings. I 

recommend acceptance for publication in ACP after minor revisions. 

Response: We sincerely thank the reviewer for the positive and encouraging evaluation 

of our work. We appreciate the recognition of the study’s novelty, the robustness of the 

data-driven framework, and the relevance of our findings regarding long-term isoprene 

variability and its impactions for ozone (O3). We have carefully addressed all issues 

raised by the reviewer and revised the manuscript accordingly. We believe that these 

changes have further improved the clarity and quality of the paper. Below, we provide 

the point-by-point responses to each comment, with our replies highlighted in blue and 

the corresponding revisions marked in red. 

 

Specific comments: 

1. The superior performance of T-training suggests that reliable simulations can be 

achieved for grid cells or cities with existing isoprene observations. Furthermore, could 

this method also be applied to regions lacking monitoring data? 

Response: We thank the reviewer for this insightful question. T-training performs best 

in regions with existing isoprene observations, as these provide the necessary 



information to train the model effectively (Gupta et al., 2021; Theodoris et al., 2023). 

For regions lacking monitoring data, the model could still be applied using a transfer-

learning or domain-adaptation approach, leveraging patterns learned from 

observationally constrained regions. However, we note that predictions in such regions 

may carry higher uncertainties due to the absence of local measurements, and this 

should be taken into account when interpreting the results (Wells et al., 2020). 

Reference: 

Gupta, V., Choudhary, K., Tavazza, F., et al.: Cross-property deep transfer learning 

framework for enhanced predictive analytics on small materials data, Nat. Commun., 

12, 6595, 10.1038/s41467-021-26921-5, 2021. 

Theodoris, C. V., Xiao, L., Chopra, A., et al.: Transfer learning enables predictions in 

network biology, Nature, 618, 616-624, 10.1038/s41586-023-06139-9, 2023. 

Wells, K. C., Millet, D. B., Payne, V. H., et al.: Satellite isoprene retrievals constrain 

emissions and atmospheric oxidation, Nature, 585, 225-233, 10.1038/s41586-020-

2664-3, 2020. 

 

2. The decrease in vehicle emissions seems to significantly influence isoprene 

concentrations at traffic sites in London, as further supported by the comparison with 

benzene. Have prior studies presented similar evidence or discussed this effect? 

Response: Our analysis indicates that traffic emissions have had a stronger influence 

on long-term isoprene variations at the London traffic site. To further support this 

finding, we examined the correlation between benzene and BCtraffic. As shown in the 

Figure R1, BCtraffic exhibits a strong correlation with both benzene (R = 0.85) and 

isoprene (R = 0.79), which further confirms the role of traffic emissions in shaping 

long-term isoprene variations in London_T site.  

Evidence from previous studies is consistent with our findings. Khan et al. (2018) 

demonstrated that anthropogenic emissions from traffic in London can contribute 

substantially to ambient isoprene, in some cases even exceeding biogenic contributions 

during daytime. Similar observations have been reported across Western Europe cities 

(including London and Paris), where traffic-related isoprene has been identified as a 



non-negligible component of urban VOC budgets (Borbon et al., 2023). These earlier 

results corroborate our interpretation of the traffic influence on isoprene trends in 

London. 

 

Figure R1. Correlation analysis of monthly isoprene concentrations with benzene and 

BCtraffic at London traffic site. 

Reference:  

Borbon, A., Dominutti, P., Panopoulou, A., et al.: Ubiquity of Anthropogenic 

Terpenoids in Cities Worldwide: Emission Ratios, Emission Quantification and 

Implications for Urban Atmospheric Chemistry, J. Geophys. Res.-Atmos., 128, 

10.1029/2022jd037566, 2023. 

Khan, M. A. H., Schlich, B. L., Jenkin, M. E., et al.: A Two-Decade Anthropogenic and 

Biogenic Isoprene Emissions Study in a London Urban Background and a London 

Urban Traffic Site, Atmosphere, 9, 10.3390/atmos9100387, 2018. 

 

3. Please include the calculation formulas for R2 and NMAE. 

Response: We have added the calculation formulas for the coefficient of determination 

(R2) and the normalized mean absolute error (NMAE) in the Methods section to 

improve clarity and reproducibility. 



Please see the revisions in Line 168-171 of the manuscript: “NMAE and R2 are 

calculated as follows: 

𝑁𝑀𝐴𝐸 =

1
𝑁
∑ |𝐼𝑆𝑂𝑃𝑜𝑏𝑠,𝑖 − 𝐼𝑆𝑂𝑃𝑝𝑟𝑒𝑑,𝑖|
𝑁
𝑖=1

𝐼𝑆𝑂𝑃̅̅ ̅̅ ̅̅
𝑜̅𝑏𝑠

(8) 

𝑅2 = 1 −
∑ (𝐼𝑆𝑂𝑃𝑜𝑏𝑠,𝑖 − 𝐼𝑆𝑂𝑃𝑝𝑟𝑒𝑑,𝑖)

2𝑁
𝑖=1

∑ (𝐼𝑆𝑂𝑃𝑜𝑏𝑠,𝑖 − 𝐼𝑆𝑂𝑃̅̅ ̅̅ ̅̅
𝑜̅𝑏𝑠)

2𝑁
𝑖=1

(9) 

where 𝐼𝑆𝑂𝑃̅̅ ̅̅ ̅̅
𝑜̅𝑏𝑠 represents the mean value of 𝐼𝑆𝑂𝑃𝑜𝑏𝑠.” 

4. Some input variables have varying spatial resolutions. How were these differences 

addressed, and what were the primary criteria for selecting these variables? 

Response: Input variables were selected based on the MEGAN framework to represent 

the primary sources, sinks, and atmospheric processes affecting isoprene. Biogenic 

emissions were captured through vegetation-related factors summarized as a vegetation 

index (VI) derived from LAI and NDVI. Meteorological variables that influence 

isoprene emission activity and chemical reactivity, such as temperature, solar radiation, 

humidity, wind, and boundary layer height, were included. Traffic emissions, identified 

as the most important anthropogenic source, were also selected as an input variable. To 

ensure consistency among all variables, datasets with different spatial resolutions (e.g., 

0.1° and 0.25°) were resampled to a uniform resolution of 0.1° using bilinear 

interpolation. 

Please see the revisions in Line 151-156 of the manuscript: “Predictor variables were 

selected to capture key sources and sinks of isoprene, including VI (see Text S1), 

meteorological parameters (e.g., temperature, solar radiation), and black carbon emitted 

from traffic (BCtraffic) as a proxy for anthropogenic emissions. To ensure consistency 

among all variables, datasets with different spatial resolutions (e.g., 0.1° and 0.25°) 

were resampled to achieve a uniform resolution of 0.1° using bilinear interpolation. Full 

variable definitions and sources are provided in Table S2.” 

 

5. In the PINN-ResMLP model, an additional loss term was incorporated into the 

training process. Was the training stable across different sites, and how did the model 



loss change accordingly? 

Response: The PINN-ResMLP model training was stable across all sites. During 

training, the total loss and each individual loss component (including the additional 

term) consistently decreased and converged within the expected number of epochs 

(Figure R2). Minor fluctuations were observed early in training due to differences in 

site-specific data distributions, but these quickly stabilized (Figure R2). Overall, the 

incorporation of the additional loss term did not compromise training stability and 

effectively guided the model to capture the prior knowledge. 

 

Figure R2. Training curves of the PINN-ResMLP model showing the total loss and 

individual loss components, including reconstruction loss, monotonicity loss, and 

structure loss. 

 

6. Please ensure that the use of abbreviations is consistent between the main text and 

the appendix tables, such as Radiation vs. SSRD and U10 vs. u10. 

Response: Thank you for pointing this out. We have carefully checked all abbreviations 

in the main text, figures, and appendix tables, and have revised them to ensure 

consistency throughout the manuscript. 

 



7. Please supply additional details regarding the isoprene measurement instruments 

used at each site. 

Response: Additional details about the isoprene measurement instruments used at each 

site have been added to the Supporting Information (Table S5). 

Please see the revisions of the Supporting Information: 

Table S5. Summary of site characteristics and instrumentation for isoprene 

measurements. 

Site Latitude Longitude Instrument  Reference 

Beijing 40.05° 116.42° GC–FID/MS 
Zhang et al., 

(2024) 

Chengdu 30.66° 104.04° Synspec GC955-611/811 
Song et al., 

(2018) 

Chongqing 29.62° 106.51° Synspec GC955-611/811 
Wang et al., 

(2024) 

Guangzhou 23.08° 113.37° AC-GCMS1000 
Tong et al., 

(2024) 

Hong 

Kong_TC 
22.29° 113.94° GC-PID 

Wang et al., 

2017) 

Hong 

Kong_HT 
22.22° 114.26° GC-PID 

Wang et al., 

(2017) 

Nanjing 32.12° 118.96° GC-MS/FID Li et al., (2024) 

Shanghai  31.17° 121.43° GC-FID 
Wang et al., 

(2020) 

Wuhan_U 30.53° 114.37° GC-FID/MS 
Wang et al., 

(2014) 

Wuhan_S 30.60° 114.28° GC-FID/MS 
Wang et al., 

(2014) 

London_T 51.45° 0.07° 
Perkin Elmer Ozone 

Precursor Analysers 

Derwent et al., 

(2014) 



London_B 51.52° 0.16° 
Perkin Elmer Ozone 

Precursor Analysers 

Derwent et al., 

(2014) 

Oklahoma 36.60° -97.49° PTR-MS Liu et al., (2021) 

Manaus -3.10° -59.99° PTR-MS 
Nascimento et 

al., (2021) 

Oxfordshire 51.46° -1.20° GC‐PID 
Ferracci et al., 

(2020) 

New Delhi 28.45° 77.28° PTR-TOF-MS 8000 
Tripathi et al., 

(2022) 

 

8. Please include a definition of SHAP in the Methods section. 

Response: We have added a detailed description of SHAP (Shapley Additive 

Explanations) in the Methods section, including its calculation principle. 

Please see the revisions in lines 172-179 of the manuscript: “Finally, the Shapley 

Additive Explanations (SHAP) approach (Lundberg et al., 2020) was used to quantify 

the contributions of input variables to model predictions. SHAP values allow us to 

assess the impact of each factor on isoprene concentrations. The calculation is defined 

as follows: 

𝜑𝑖 = ∑
|𝑆|! (𝐾 − |𝑆| − 1)!

|𝐾|!
[𝑓(𝑆⋃{𝑖}) − 𝑓(𝑆)]

𝑆⊆𝐾{𝑖}

(10) 

where K represents the set of all features, 𝑆 ⊆ 𝐾\{𝑖} denotes a feature subset that 

excludes feature i, |𝑆| is the size of subset S, 𝑓(𝑆) is the model’s prediction under 

feature subset S, and 𝑓(𝑆⋃{𝑖}) − 𝑓(𝑆) is the marginal contribution of feature i. 

Reference: 

Lundberg, S. M., Erion, G., Chen, H., et al.: From local explanations to global 

understanding with explainable AI for trees, Nat. Mach. Intell., 2, 56-67, 

10.1038/s42256-019-0138-9, 2020. 

 

9. In the simulation of future scenarios with NOx reduction, please specify the basis or 



reference for the assumed reductions of 49.7% and 89.2%. 

Response: In this study, the assumed NOx reductions of 49.7% and 89.2% are derived 

from the emission trajectories in the Shared Socioeconomic Pathways (SSPs), as 

quantified by the Global Change Assessment Model (GCAM). GCAM provides future 

anthropogenic emission projections under different SSP narratives, reflecting varying 

strengths of air pollution control policies—strong controls in SSP1 and SSP5, medium 

controls in SSP2, and weak controls in SSP3 and SSP4 (Lou et al., 2023). The reduction 

ratios used in our simulations were calculated directly from GCAM-based SSP 

emission datasets, which include sector-resolved NOx emissions from energy supply 

and demand, industry, transportation, land use, waste, and solvent use (Rogelj et al., 

2018). These GCAM-derived NOx trajectories form the basis for the reduction 

scenarios adopted in the box-model simulations. 

Reference: 

Lou, S., Shrivastava, M., Ding, A., et al.: Shift in Peaks of PAH-Associated Health 

Risks From East Asia to South Asia and Africa in the Future, Earth Future, 11, 

e2022EF003185, https://doi.org/10.1029/2022EF003185, 2023. 

Rogelj, J., Popp, A., Calvin, K. V., et al.: Scenarios towards limiting global mean 

temperature increase below 1.5 °C, Nat. Clim. Change, 8, 325-332, 10.1038/s41558-

018-0091-3, 2018. 

 

10. Please add the full names of LAI and NDVI in the caption of Figure 1.  

Response: We have added the full names of LAI (Leaf Area Index) and NDVI 

(Normalized Difference Vegetation Index) to the caption of Figure 1. 

Please see our revisions in lines 255-257 of the manuscript: “Trends of LAI (Leaf 

Area Index) and NDVI (Normalized Difference Vegetation Index) from 2001 to 2021 

in major cities around the world.” 

 

11. Additionally, since Figure 2 includes multiple algorithm abbreviations, it would be 

beneficial to define them in the caption for improved clarity.  

Response: Thank you for the suggestion. All algorithm abbreviations appearing in 



Figure 2 have now been defined in the figure caption to enhance clarity for readers. 

Please see our revisions in lines 297-300 of the manuscript: “RF, XGB, GBDT, SVM, 

and LR represent Random Forest, eXtreme Gradient Boosting, Gradient Boosting 

Decision Tree, Support Vector Machine, and Linear Regression, respectively.” 

 

12. Line 162: provide the full term for R2.  

Response: We have replaced “R2” with its full term, “coefficient of determination (R2),” 

at the first occurrence in the manuscript. 

Please see our revisions in lines 162-165 of the manuscript: “Model performance 

was evaluated using four-fold cross-validation (Table S3) and metrics including 

normalized mean absolute error (NMAE) and coefficient of determination (R2).” 

 

13. Line 129: add a reference 

Response: A relevant reference has been added at Line 129 to support the statement. 

Please see the revisions in lines 128-129 of the manuscript: “Incorporating expert 

knowledge and physical constraints into the model can guide the learning processes 

(Zhu et al., 2024).” 

Reference: 

Zhu, B., Ren, S., Weng, Q., et al.: A physics-informed neural network that considers 

monotonic relationships for predicting NOx emissions from coal-fired boilers, Fuel, 

364, 131026, https://doi.org/10.1016/j.fuel.2024.131026, 2024. 

 

  



Reviewer #2 

General comments: 

The manuscript presents an explainable deep transfer learning framework (PINN-

ResMLP) to predict urban isoprene concentrations and attribute their variability across 

Chinese and international cities. It further explores long-term drivers in Hong Kong and 

London (1990–2023) and projects future isoprene and ozone responses under 

CMIP6/SSP scenarios, including NOx-control sensitivity. The study fills an important 

gap: robust isoprene prediction without detailed local emission inventories or explicit 

chemistry, and interpretable attribution that links meteorology, greenspace, and traffic 

to observed and modeled trends. The approach is timely and impactful for urban air 

quality management in a warming climate. The integration of physics-informed 

constraints with transfer learning is a notable strength, as is the explicit discuss ability 

(SHAP-based) of model predictions. The Hong Kong–London contrast is compelling 

and policy-relevant. 

Response: We sincerely thank Reviewer #2 for the thorough and positive evaluation of 

our work. We greatly appreciate the recognition of the novelty and impact of our study, 

particularly the explainable deep transfer learning framework (PINN-ResMLP), its 

ability to predict isoprene concentrations without detailed local emission inventories, 

and the interpretability provided by SHAP analysis. We also thank the reviewer for 

emphasizing the relevance of the Hong Kong–London comparison and the importance 

of integrating physics-informed constraints with transfer learning. The constructive 

feedback and supportive comments are highly encouraging and have helped us further 

clarify and refine the manuscript. Below, we provide our point-by-point responses to 

each comment, with our replies highlighted in blue and the corresponding revisions 

marked in red. 

 

Specific comments: 

1. Equations (5–6) use sign functions over partial derivatives. Please clarify how the 

gradients with respect to inputs are computed for monotonicity (e.g., via automatic 



differentiation), and whether local monotonicity is enforced pointwise or globally. Also 

specify α and β values and sensitivity. 

Response: We thank the reviewer for this comment. In our PINN-ResMLP model, the 

gradients with respect to input features (VI and BCtraffic) are computed using PyTorch’s 

automatic differentiation (autograd). Monotonicity is enforced pointwise, ensuring that 

the derivative of the model output with respect to each input at each data point satisfies 

the expected monotonicity constraint. During training, we experimented with different 

values for the loss weight coefficients α and β in the multi-loss function. Specifically, 

α was tested in [0.01, 0.1, 1] and β in [0.0001, 0.001, 0.01, 0.1]. We found that α = 1 

and β = 0.0001 yielded the best performance in terms of capturing monotonicity without 

degrading predictive accuracy. Additionally, we corrected the implementation of the 

sign function in Equations (5) and (6). The corrected form is: 

ℒ𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑖𝑡𝑦 =
1

𝑁
∑[−

𝑠𝑖𝑔𝑛 (
𝜕𝐼𝑆𝑂𝑃
𝜕𝑉𝐼

) + 𝑠𝑖𝑔𝑛 (
𝜕𝐼𝑆𝑂𝑃

𝜕𝐵𝐶𝑡𝑟𝑎𝑓𝑓𝑖𝑐
)

2
]

𝑁

𝑖=1

(5) 

𝑠𝑖𝑔𝑛(𝜃) = {
−1, 𝜃 < 0
0, 𝜃 ≥ 0

(6) 

 

2. ℒ𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 is defined as sum of squared weights per layer (𝑊𝑖
2 + 𝑏𝑖

2). Are there any 

architectural constraints (e.g., skip connections in ResMLP, layer widths) chosen to 

improve stability? Include a small ablation (ResMLP vs. ResMLP+PINN vs. PINN 

alone) if possible. 

Response: To improve training stability, our ResMLP architecture incorporates residual 

(skip) connections and carefully chosen layer widths. These design choices help 

mitigate vanishing/exploding gradient issues and ensure robust convergence. The 

model is trained using the Adam optimizer with a weight decay term to further 

regularize the network and stabilize training. While we did not perform a formal 

ablation study, our results show that incorporating the PINN framework improves 

predictive accuracy and enforces physical constraints (Figure 2), highlighting the 

effectiveness of combining ResMLP with physics-informed constraints. 

 



3. For overseas sites, you fine-tune on 70% and validate on 30%. Clarify whether the 

split preserves temporal ordering (to reduce leakage) and whether performance is 

robust to different splits (report variance across splits). 

Response: For the overseas validation experiments, due to the limited data size (~1,000 

samples), the data split did not preserve temporal ordering. Instead, we performed 

cross-validation to assess model robustness. The results consistently show that the 

PINN-ResMLPT framework improves predictive accuracy across different sites, 

demonstrating the stable performance of the model. 

 

4. The authors showed that WRF-Chem performed poorly in isoprene simulations. 

Provide configuration details (chemistry mechanism, emissions, resolution, boundary 

conditions) and whether the MEGAN parameterization and land-use were tuned to 

urban greenspace. This contextualizes the performance gap and its causes (e.g., grid 

dilution, canopy-scale processes). 

Response: In this study, we used the Weather Research and Forecasting model with 

Chemistry (WRF-Chem, version 3.7) to simulate urban isoprene concentrations. 

Meteorological initial and lateral boundary conditions were provided by the NCEP FNL 

dataset at 1° × 1° resolution, and Four-Dimensional Data Assimilation (FDDA) was 

applied to improve the meteorological fields. The Noah land surface model and the 

MM5 Monin–Obukhov surface layer scheme were used to represent land–atmosphere 

exchange processes, while the planetary boundary layer was simulated using the YSU 

scheme. Gas-phase chemistry and aerosol processes were represented using the CBMZ 

mechanism and the MOSAIC module, respectively. Biogenic VOC emissions were 

calculated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN 

v2.1; Guenther et al., 2012). The vegetation-related static inputs were updated using 

MODIS PFT (MCD12Q1) and LAI (MCD15A2H) products. Anthropogenic emissions 

were obtained from the updated 2020-based MEIC inventory for regions within China 

and the MIX inventory (Li et al., 2017) for regions outside China, both at 0.25° × 0.25° 

resolution and including major emission sectors (transportation, industry, power plants, 

residential, and agriculture). These configurations of WRF-Chem have been 



successfully applied in our previous studies (Huang et al., 2020; Huang et al., 2021; 

Wang et al., 2021), indicating a reliable performance across China.  

We note that the MEGAN and land-use datasets used in this study could not capture 

BVOC emissions from urban greenspace (which requires high-resolution data, e.g., 10 

m × 10 m) or canopy-scale processes, as the MODIS satellite product is limited to 500 

m × 500 m. Combined with the relatively coarse model resolution (WRF-Chem grid 

resolution: 25 km × 25 km), these limitations may lead to grid dilution of urban 

vegetation signals and underestimation of peak isoprene emissions, helping to explain 

the performance gap observed between WRF-Chem and our PINN-ResMLP framework. 

Reference: 

Huang, X., Ding, A., Wang, Z., et al.: Amplified transboundary transport of haze by 

aerosol– boundary layer interaction in China, Nature Geoscience, 13, 428-434, 

10.1038/s41561-020-0583-4, 2020. 

Huang, X., Ding, A. J., Gao, J., et al.: Enhanced secondary pollution offset reduction of 

primary emissions during COVID-19 lockdown in China, National Science Review, 8, 

10.1093/nsr/nwaa137, 2021. 

Wang, N., Xu, J., Pei, C., et al.: Air Quality During COVID-19 Lockdown in the 

Yangtze River Delta and the Pearl River Delta: Two Different Responsive Mechanisms 

to Emission Reductions in China, Environ. Sci. Technol., 55, 5721-5730, 

10.1021/acs.est.0c08383, 2021. 

 

5. State whether SHAP is computed on the fine-tuned model per site, the background 

dataset used, and whether interaction SHAP was explored (temperature × radiation) to 

reflect coupled sensitivities. 

Response: Thank you for the valuable suggestion. In our study, SHAP values for the 

Chinese sites were computed based on the pre-trained model, while for Hong Kong and 

London, SHAP values were computed on the fine-tuned neural network model for each 

site, using the corresponding site’s training dataset as the background dataset. 

Regarding interaction SHAP values (e.g., temperature × radiation), we did not calculate 

them in the current manuscript. The widely used DeepSHAP implementation in the 



official “shap” package (v0.46.0, based on DeepExplainer) only computes marginal 

(main-effect) SHAP values and does not provide exact pairwise or higher-order 

interaction terms. Exact SHAP interaction values, as implemented in TreeSHAP for 

tree-based models, are currently not available for deep neural networks in any mature, 

computationally tractable form. The fundamental reason is that tree models have 

discrete decision paths that allow precise attribution of output changes to arbitrary 

feature coalitions, whereas neural networks exhibit highly nonlinear, continuous 

interactions across all features simultaneously (Janzing et al., 2020; Zern et al., 2023). 

Although some existing approximation approaches (e.g., Integrated Hessians) can 

estimate interactions between paired features in neural networks (Janizek et al., 2021), 

in this study we focused on the main SHAP effects to identify the key drivers of isoprene 

variability. We agree that exploring feature interactions is important and plan to 

investigate this in future work using alternative methods. 

Reference: 

Janizek, J. D., Sturmfels, P., and Lee, S.-I.: Explaining explanations: axiomatic feature 

interactions for deep networks, 22, Article 104, 2021. 

Janzing, D., Minorics, L., and Bloebaum, P.: Feature relevance quantification in 

explainable AI: A causal problem, Proceedings of the Twenty Third International 

Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning 

Research 2020. 

Zern, A., Broelemann, K., and Kasneci, G.: Interventional SHAP Values and Interaction 

Values for Piecewise Linear Regression Trees, Proceedings of the AAAI Conference on 

Artificial Intelligence, 37, 11164-11173, 10.1609/aaai.v37i9.26322, 2023. 

 

6. For future projections, please explicitly acknowledge that future greenspace, urban 

form, and anthropogenic emissions will also evolve. 

Response: We thank the reviewer for this comment. In this work, we adopt a pseudo-

global-warming (PGW)–based approach to isolate the effect of climate warming on 

isoprene emissions and the consequent O₃ responses. PGW directly impose selected 

changes (e.g. temperature changes) in the climate system onto a historical regional 



climate simulation by modifying the initial and boundary conditions (Brogli et al., 

2023). Following this framework, our future simulations were designed to vary only 

temperature while holding other precursors and environmental drivers fixed, thereby 

quantifying the chemical sensitivity of isoprene and O₃ to warming alone. Accordingly, 

the future projections do not account for potential changes in greenspace, urban form, 

or other anthropogenic emissions. We acknowledge that these factors may evolve over 

time and that incorporating them could further refine future predictions. We have added 

a note in the revised manuscript to explicitly clarify this limitation. 

Please see our revisions in lines 219-227 of the manuscript: “It is worth noting that 

the diurnal profiles of other O3 precursors, such as VOCs and carbon monoxide, were 

kept unchanged throughout all the simulations. Meanwhile, our future projections are 

designed to isolate the chemical response of O3 to changes in temperature and isoprene 

and do not explicitly incorporate potential future changes in greenspace, urban 

morphology, or other anthropogenic emissions. Although these factors are expected to 

evolve under urban development and climate mitigation pathways, the present analysis 

focuses on quantifying the impacts of climate warming on isoprene emissions and the 

consequent O3 responses.” 

Reference: 

Brogli, R., Heim, C., Mensch, J., et al.: The pseudo-global-warming (PGW) approach: 

methodology, software package PGW4ERA5 v1.1, validation, and sensitivity analyses, 

Geosci. Model Dev., 16, 907-926, 10.5194/gmd-16-907-2023, 2023. 

 

7. There are two “the” in line 280. 

Response: The redundant “the” in line 280 has been removed in the revised manuscript. 

 


