Reviewer #1

General comments:

This study employs machine learning techniques to investigate the patterns and driving
factors underlying the fluctuations in isoprene levels — a crucial precursor to surface
ozone — using extensive historical datasets. The analysis demonstrates good agreement
with previous short-term modeling results, while also emphasizing that vegetation
expansion and temperature increases linked to climate change are key drivers of long-
term variability. Moreover, by extending the model projections to the year 2100 and
integrating them with a detailed chemical box model, the researchers estimated future
surface ozone levels. Their results indicate a significant rise in ozone concentrations if
NOx emissions are not effectively controlled. Importantly, these conclusions were
obtained using a data-driven approach that differs from conventional atmospheric
chemical transport models, highlighting the robustness and novelty of the findings. |
recommend acceptance for publication in ACP after minor revisions.

Response: We sincerely thank the reviewer for the positive and encouraging evaluation
of our work. We appreciate the recognition of the study’s novelty, the robustness of the
data-driven framework, and the relevance of our findings regarding long-term isoprene
variability and its impactions for ozone (O3). We have carefully addressed all issues
raised by the reviewer and revised the manuscript accordingly. We believe that these
changes have further improved the clarity and quality of the paper. Below, we provide
the point-by-point responses to each comment, with our replies highlighted in blue and

the corresponding revisions marked in red.

Specific comments:

1. The superior performance of T-training suggests that reliable simulations can be
achieved for grid cells or cities with existing isoprene observations. Furthermore, could
this method also be applied to regions lacking monitoring data?

Response: We thank the reviewer for this insightful question. T-training performs best

in regions with existing isoprene observations, as these provide the necessary



information to train the model effectively (Gupta et al., 2021; Theodoris et al., 2023).
For regions lacking monitoring data, the model could still be applied using a transfer-
learning or domain-adaptation approach, leveraging patterns learned from
observationally constrained regions. However, we note that predictions in such regions
may carry higher uncertainties due to the absence of local measurements, and this
should be taken into account when interpreting the results (Wells et al., 2020).
Reference:

Gupta, V., Choudhary, K., Tavazza, F., et al.: Cross-property deep transfer learning
framework for enhanced predictive analytics on small materials data, Nat. Commun.,
12, 6595, 10.1038/s41467-021-26921-5, 2021.

Theodoris, C. V., Xiao, L., Chopra, A., et al.: Transfer learning enables predictions in
network biology, Nature, 618, 616-624, 10.1038/541586-023-06139-9, 2023.

Wells, K. C., Millet, D. B., Payne, V. H., et al.: Satellite isoprene retrievals constrain
emissions and atmospheric oxidation, Nature, 585, 225-233, 10.1038/s41586-020-
2664-3, 2020.

2. The decrease in vehicle emissions seems to significantly influence isoprene
concentrations at traffic sites in London, as further supported by the comparison with
benzene. Have prior studies presented similar evidence or discussed this effect?
Response: Our analysis indicates that traffic emissions have had a stronger influence
on long-term isoprene variations at the London traffic site. To further support this
finding, we examined the correlation between benzene and BCafric. As shown in the
Figure R1, BCuafic exhibits a strong correlation with both benzene (R = 0.85) and
isoprene (R = 0.79), which further confirms the role of traffic emissions in shaping
long-term isoprene variations in London_T site.

Evidence from previous studies is consistent with our findings. Khan et al. (2018)
demonstrated that anthropogenic emissions from traffic in London can contribute
substantially to ambient isoprene, in some cases even exceeding biogenic contributions
during daytime. Similar observations have been reported across Western Europe cities

(including London and Paris), where traffic-related isoprene has been identified as a



non-negligible component of urban VOC budgets (Borbon et al., 2023). These earlier

results corroborate our interpretation of the traffic influence on isoprene trends in

London.
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Figure R1. Correlation analysis of monthly isoprene concentrations with benzene and
BClafiic at London traffic site.

Reference:

Borbon, A., Dominutti, P., Panopoulou, A., et al.. Ubiquity of Anthropogenic
Terpenoids in Cities Worldwide: Emission Ratios, Emission Quantification and
Implications for Urban Atmospheric Chemistry, J. Geophys. Res.-Atmos., 128,
10.1029/2022jd037566, 2023.

Khan, M. A. H., Schlich, B. L., Jenkin, M. E., et al.: A Two-Decade Anthropogenic and
Biogenic Isoprene Emissions Study in a London Urban Background and a London

Urban Traffic Site, Atmosphere, 9, 10.3390/atmos9100387, 2018.

3. Please include the calculation formulas for R> and NMAE.
Response: We have added the calculation formulas for the coefficient of determination
(R?) and the normalized mean absolute error (NMAE) in the Methods section to

improve clarity and reproducibility.



Please see the revisions in Line 168-171 of the manuscript: “NMAE and R? are

calculated as follows:

1
NZé\LllISOPObS,i - ISOPpred,il
NMAE = — (8)
ISOP,,
2
R2 —1— §V=1(150pobs,i - ISOPpred,i) (9)

N (ISOPyps; — Wobs)z
where ISOP,,. represents the mean value of ISOP,;.”
4. Some input variables have varying spatial resolutions. How were these differences
addressed, and what were the primary criteria for selecting these variables?
Response: Input variables were selected based on the MEGAN framework to represent
the primary sources, sinks, and atmospheric processes affecting isoprene. Biogenic
emissions were captured through vegetation-related factors summarized as a vegetation
index (VI) derived from LAI and NDVI. Meteorological variables that influence
isoprene emission activity and chemical reactivity, such as temperature, solar radiation,
humidity, wind, and boundary layer height, were included. Traffic emissions, identified
as the most important anthropogenic source, were also selected as an input variable. To
ensure consistency among all variables, datasets with different spatial resolutions (e.g.,
0.1° and 0.25°) were resampled to a uniform resolution of 0.1° using bilinear
interpolation.
Please see the revisions in Line 151-156 of the manuscript: “Predictor variables were
selected to capture key sources and sinks of isoprene, including VI (see Text S1),
meteorological parameters (e.g., temperature, solar radiation), and black carbon emitted
from traffic (BCiaffic) as a proxy for anthropogenic emissions. To ensure consistency
among all variables, datasets with different spatial resolutions (e.g., 0.1° and 0.25°)
were resampled to achieve a uniform resolution of 0.1° using bilinear interpolation. Full

variable definitions and sources are provided in Table S2.”

5. In the PINN-ResMLP model, an additional loss term was incorporated into the

training process. Was the training stable across different sites, and how did the model



loss change accordingly?

Response: The PINN-ResMLP model training was stable across all sites. During
training, the total loss and each individual loss component (including the additional
term) consistently decreased and converged within the expected number of epochs
(Figure R2). Minor fluctuations were observed early in training due to differences in
site-specific data distributions, but these quickly stabilized (Figure R2). Overall, the
incorporation of the additional loss term did not compromise training stability and

effectively guided the model to capture the prior knowledge.
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Figure R2. Training curves of the PINN-ResMLP model showing the total loss and
individual loss components, including reconstruction loss, monotonicity loss, and

structure loss.

6. Please ensure that the use of abbreviations is consistent between the main text and
the appendix tables, such as Radiation vs. SSRD and U10 vs. ul0.

Response: Thank you for pointing this out. We have carefully checked all abbreviations
in the main text, figures, and appendix tables, and have revised them to ensure

consistency throughout the manuscript.



7. Please supply additional details regarding the isoprene measurement instruments
used at each site.

Response: Additional details about the isoprene measurement instruments used at each
site have been added to the Supporting Information (Table S5).

Please see the revisions of the Supporting Information:

Table S5. Summary of site characteristics and instrumentation for isoprene

measurements.
Site Latitude Longitude Instrument Reference
Zhang et al.,
Beijing 40.05° 116.42° GC-FID/MS
(2024)
Song et al.,
Chengdu 30.66° 104.04° Synspec GC955-611/811
(2018)
Wang et al.,
Chongqing 29.62° 106.51° Synspec GC955-611/811
(2024)
Tong et al.,
Guangzhou 23.08° 113.37° AC-GCMS1000
(2024)
Hong Wang et al.,
22.29° 113.94° GC-PID
Kong TC 2017)
Hong Wang et al.,
22.22° 114.26° GC-PID
Kong HT (2017)
Nanjing 32.12° 118.96° GC-MS/FID Lietal., (2024)
Wang et al.,
Shanghai 31.17° 121.43° GC-FID
(2020)
Wang et al.,
Wuhan_U 30.53° 114.37° GC-FID/MS
(2014)
Wang et al.,
Wuhan_S 30.60° 114.28° GC-FID/MS
(2014)
Perkin Elmer Ozone Derwent et al.,
London T 51.45° 0.07°

Precursor Analysers

(2014)



Perkin Elmer Ozone Derwent et al.,
London B 51.52° 0.16°

Precursor Analysers (2014)
Oklahoma 36.60° -97.49° PTR-MS Liu et al., (2021)
Nascimento et
Manaus -3.10° -59.99° PTR-MS
al., (2021)
Ferracci et al.,
Oxfordshire  51.46° -1.20° GC-PID
(2020)
Tripathi et al.,
New Delhi 28.45° 77.28° PTR-TOF-MS 8000

(2022)

8. Please include a definition of SHAP in the Methods section.

Response: We have added a detailed description of SHAP (Shapley Additive
Explanations) in the Methods section, including its calculation principle.

Please see the revisions in lines 172-179 of the manuscript: “Finally, the Shapley
Additive Explanations (SHAP) approach (Lundberg et al., 2020) was used to quantify
the contributions of input variables to model predictions. SHAP values allow us to
assess the impact of each factor on isoprene concentrations. The calculation is defined

as follows:

IS|' (K —|S| — D!

Ssckii}

[F(SULD) — £(S)] (10)

where K represents the set of all features, S € K\{i} denotes a feature subset that
excludes feature i, |S| is the size of subset S, f(S) is the model’s prediction under
feature subset S, and f(SU{i}) — f(S) is the marginal contribution of feature i.
Reference:

Lundberg, S. M., Erion, G., Chen, H., et al.: From local explanations to global
understanding with explainable Al for trees, Nat. Mach. Intell., 2, 56-67,
10.1038/s42256-019-0138-9, 2020.

9. In the simulation of future scenarios with NO, reduction, please specify the basis or



reference for the assumed reductions of 49.7% and 89.2%.

Response: In this study, the assumed NOx reductions of 49.7% and 89.2% are derived
from the emission trajectories in the Shared Socioeconomic Pathways (SSPs), as
quantified by the Global Change Assessment Model (GCAM). GCAM provides future
anthropogenic emission projections under different SSP narratives, reflecting varying
strengths of air pollution control policies—strong controls in SSP1 and SSP5, medium
controls in SSP2, and weak controls in SSP3 and SSP4 (Lou et al., 2023). The reduction
ratios used in our simulations were calculated directly from GCAM-based SSP
emission datasets, which include sector-resolved NOx emissions from energy supply
and demand, industry, transportation, land use, waste, and solvent use (Rogelj et al.,
2018). These GCAM-derived NOx trajectories form the basis for the reduction
scenarios adopted in the box-model simulations.

Reference:

Lou, S., Shrivastava, M., Ding, A., et al.: Shift in Peaks of PAH-Associated Health
Risks From East Asia to South Asia and Africa in the Future, Earth Future, 11,
€2022EF003185, https://doi.org/10.1029/2022EF003185, 2023.

Rogelj, J., Popp, A., Calvin, K. V., et al.: Scenarios towards limiting global mean
temperature increase below 1.5 °C, Nat. Clim. Change, 8, 325-332, 10.1038/s41558-
018-0091-3, 2018.

10. Please add the full names of LAI and NDVI in the caption of Figure 1.

Response: We have added the full names of LAI (Leaf Area Index) and NDVI
(Normalized Difference Vegetation Index) to the caption of Figure 1.

Please see our revisions in lines 255-257 of the manuscript: “Trends of LAI (Leaf
Area Index) and NDVI (Normalized Difference Vegetation Index) from 2001 to 2021

in major cities around the world.”

11. Additionally, since Figure 2 includes multiple algorithm abbreviations, it would be
beneficial to define them in the caption for improved clarity.

Response: Thank you for the suggestion. All algorithm abbreviations appearing in



Figure 2 have now been defined in the figure caption to enhance clarity for readers.
Please see our revisions in lines 297-300 of the manuscript: “RF, XGB, GBDT, SVM,
and LR represent Random Forest, eXtreme Gradient Boosting, Gradient Boosting

Decision Tree, Support Vector Machine, and Linear Regression, respectively.”

12. Line 162: provide the full term for R°.

Response: We have replaced “R?” with its full term, “coefficient of determination (R?),”
at the first occurrence in the manuscript.

Please see our revisions in lines 162-165 of the manuscript: “Model performance
was evaluated using four-fold cross-validation (Table S3) and metrics including

normalized mean absolute error (NMAE) and coefficient of determination (R?).”

13. Line 129: add a reference

Response: A relevant reference has been added at Line 129 to support the statement.
Please see the revisions in lines 128-129 of the manuscript: “Incorporating expert
knowledge and physical constraints into the model can guide the learning processes
(Zhu et al., 2024).”

Reference:

Zhu, B., Ren, S., Weng, Q., et al.: A physics-informed neural network that considers
monotonic relationships for predicting NOx emissions from coal-fired boilers, Fuel,

364, 131026, https://doi.org/10.1016/j.fuel.2024.131026, 2024.



Reviewer #2

General comments:

The manuscript presents an explainable deep transfer learning framework (PINN-
ResMLP) to predict urban isoprene concentrations and attribute their variability across
Chinese and international cities. It further explores long-term drivers in Hong Kong and
London (1990-2023) and projects future isoprene and ozone responses under
CMIP6/SSP scenarios, including NOx-control sensitivity. The study fills an important
gap: robust isoprene prediction without detailed local emission inventories or explicit
chemistry, and interpretable attribution that links meteorology, greenspace, and traffic
to observed and modeled trends. The approach is timely and impactful for urban air
quality management in a warming climate. The integration of physics-informed
constraints with transfer learning is a notable strength, as is the explicit discuss ability
(SHAP-based) of model predictions. The Hong Kong—London contrast is compelling
and policy-relevant.

Response: We sincerely thank Reviewer #2 for the thorough and positive evaluation of
our work. We greatly appreciate the recognition of the novelty and impact of our study,
particularly the explainable deep transfer learning framework (PINN-ResMLP), its
ability to predict isoprene concentrations without detailed local emission inventories,
and the interpretability provided by SHAP analysis. We also thank the reviewer for
emphasizing the relevance of the Hong Kong—London comparison and the importance
of integrating physics-informed constraints with transfer learning. The constructive
feedback and supportive comments are highly encouraging and have helped us further
clarify and refine the manuscript. Below, we provide our point-by-point responses to
each comment, with our replies highlighted in blue and the corresponding revisions

marked in red.

Specific comments:
1. Equations (5—6) use sign functions over partial derivatives. Please clarify how the

gradients with respect to inputs are computed for monotonicity (e.g., via automatic



differentiation), and whether local monotonicity is enforced pointwise or globally. Also
specify o. and f values and sensitivity.

Response: We thank the reviewer for this comment. In our PINN-ResMLP model, the
gradients with respect to input features (VI and BCafiic) are computed using PyTorch’s
automatic differentiation (autograd). Monotonicity is enforced pointwise, ensuring that
the derivative of the model output with respect to each input at each data point satisfies
the expected monotonicity constraint. During training, we experimented with different
values for the loss weight coefficients a and B in the multi-loss function. Specifically,
a was tested in [0.01, 0.1, 1] and B in [0.0001, 0.001, 0.01, 0.1]. We found that o = 1
and B =0.0001 yielded the best performance in terms of capturing monotonicity without
degrading predictive accuracy. Additionally, we corrected the implementation of the

sign function in Equations (5) and (6). The corrected form is:

N sign (6150P)+Sl.gn< dISOP )

1 ovi J0BC; ffi
Lmonotonicity = N . - 2 e (5)
=1
. -1, 6<0
sign(8) = { 0 0> 0 (6)

2. Lotructure 1S defined as sum of squared weights per layer (Wi + b?). Are there any
architectural constraints (e.g., skip connections in ResMLP, layer widths) chosen to
improve stability? Include a small ablation (ResMLP vs. ResMLP+PINN vs. PINN
alone) if possible.

Response: To improve training stability, our ResMLP architecture incorporates residual
(skip) connections and carefully chosen layer widths. These design choices help
mitigate vanishing/exploding gradient issues and ensure robust convergence. The
model is trained using the Adam optimizer with a weight decay term to further
regularize the network and stabilize training. While we did not perform a formal
ablation study, our results show that incorporating the PINN framework improves
predictive accuracy and enforces physical constraints (Figure 2), highlighting the

effectiveness of combining ResMLP with physics-informed constraints.



3. For overseas sites, you fine-tune on 70% and validate on 30%. Clarify whether the
split preserves temporal ordering (to reduce leakage) and whether performance is
robust to different splits (report variance across splits).

Response: For the overseas validation experiments, due to the limited data size (~1,000
samples), the data split did not preserve temporal ordering. Instead, we performed
cross-validation to assess model robustness. The results consistently show that the
PINN-ResMLPt framework improves predictive accuracy across different sites,

demonstrating the stable performance of the model.

4. The authors showed that WRF-Chem performed poorly in isoprene simulations.
Provide configuration details (chemistry mechanism, emissions, resolution, boundary
conditions) and whether the MEGAN parameterization and land-use were tuned to
urban greenspace. This contextualizes the performance gap and its causes (e.g., grid
dilution, canopy-scale processes).

Response: In this study, we used the Weather Research and Forecasting model with
Chemistry (WRF-Chem, version 3.7) to simulate urban isoprene concentrations.
Meteorological initial and lateral boundary conditions were provided by the NCEP FNL
dataset at 1° x 1° resolution, and Four-Dimensional Data Assimilation (FDDA) was
applied to improve the meteorological fields. The Noah land surface model and the
MMS5 Monin—Obukhov surface layer scheme were used to represent land—atmosphere
exchange processes, while the planetary boundary layer was simulated using the YSU
scheme. Gas-phase chemistry and aerosol processes were represented using the CBMZ
mechanism and the MOSAIC module, respectively. Biogenic VOC emissions were
calculated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN
v2.1; Guenther et al., 2012). The vegetation-related static inputs were updated using
MODIS PFT (MCD12Q1) and LAI (MCD15A2H) products. Anthropogenic emissions
were obtained from the updated 2020-based MEIC inventory for regions within China
and the MIX inventory (Li et al., 2017) for regions outside China, both at 0.25° x 0.25°
resolution and including major emission sectors (transportation, industry, power plants,

residential, and agriculture). These configurations of WRF-Chem have been



successfully applied in our previous studies (Huang et al., 2020; Huang et al., 2021;
Wang et al., 2021), indicating a reliable performance across China.

We note that the MEGAN and land-use datasets used in this study could not capture
BVOC emissions from urban greenspace (which requires high-resolution data, e.g., 10
m X% 10 m) or canopy-scale processes, as the MODIS satellite product is limited to 500
m % 500 m. Combined with the relatively coarse model resolution (WRF-Chem grid
resolution: 25 km X 25 km), these limitations may lead to grid dilution of urban
vegetation signals and underestimation of peak isoprene emissions, helping to explain
the performance gap observed between WRF-Chem and our PINN-ResMLP framework.
Reference:

Huang, X., Ding, A., Wang, Z., et al.: Amplified transboundary transport of haze by
aerosol - boundary layer interaction in China, Nature Geoscience, 13, 428-434,
10.1038/s41561-020-0583-4, 2020.

Huang, X., Ding, A. J., Gao, J., et al.: Enhanced secondary pollution offset reduction of
primary emissions during COVID-19 lockdown in China, National Science Review, 8,
10.1093/nsr/nwaal37, 2021.

Wang, N., Xu, J., Pei, C., et al.: Air Quality During COVID-19 Lockdown in the
Yangtze River Delta and the Pearl River Delta: Two Different Responsive Mechanisms
to Emission Reductions in China, Environ. Sci. Technol., 55, 5721-5730,

10.1021/acs.est.0c08383, 2021.

5. State whether SHAP is computed on the fine-tuned model per site, the background
dataset used, and whether interaction SHAP was explored (temperature x radiation) to
reflect coupled sensitivities.

Response: Thank you for the valuable suggestion. In our study, SHAP values for the
Chinese sites were computed based on the pre-trained model, while for Hong Kong and
London, SHAP values were computed on the fine-tuned neural network model for each
site, using the corresponding site’s training dataset as the background dataset.
Regarding interaction SHAP values (e.g., temperature X radiation), we did not calculate

them in the current manuscript. The widely used DeepSHAP implementation in the



official “shap” package (v0.46.0, based on DeepExplainer) only computes marginal
(main-effect) SHAP values and does not provide exact pairwise or higher-order
interaction terms. Exact SHAP interaction values, as implemented in TreeSHAP for
tree-based models, are currently not available for deep neural networks in any mature,
computationally tractable form. The fundamental reason is that tree models have
discrete decision paths that allow precise attribution of output changes to arbitrary
feature coalitions, whereas neural networks exhibit highly nonlinear, continuous
interactions across all features simultaneously (Janzing et al., 2020; Zern et al., 2023).
Although some existing approximation approaches (e.g., Integrated Hessians) can
estimate interactions between paired features in neural networks (Janizek et al., 2021),
in this study we focused on the main SHAP effects to identify the key drivers of isoprene
variability. We agree that exploring feature interactions is important and plan to
investigate this in future work using alternative methods.

Reference:

Janizek, J. D., Sturmfels, P., and Lee, S.-1.: Explaining explanations: axiomatic feature
interactions for deep networks, 22, Article 104, 2021.

Janzing, D., Minorics, L., and Bloebaum, P.: Feature relevance quantification in
explainable Al: A causal problem, Proceedings of the Twenty Third International
Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning
Research 2020.

Zern, A., Broelemann, K., and Kasneci, G.: Interventional SHAP Values and Interaction
Values for Piecewise Linear Regression Trees, Proceedings of the AAAI Conference on

Artificial Intelligence, 37, 11164-11173, 10.1609/aaai.v3719.26322, 2023.

6. For future projections, please explicitly acknowledge that future greenspace, urban
form, and anthropogenic emissions will also evolve.

Response: We thank the reviewer for this comment. In this work, we adopt a pseudo-
global-warming (PGW)-based approach to isolate the effect of climate warming on
isoprene emissions and the consequent Os responses. PGW directly impose selected

changes (e.g. temperature changes) in the climate system onto a historical regional



climate simulation by modifying the initial and boundary conditions (Brogli et al.,
2023). Following this framework, our future simulations were designed to vary only
temperature while holding other precursors and environmental drivers fixed, thereby
quantifying the chemical sensitivity of isoprene and Os to warming alone. Accordingly,
the future projections do not account for potential changes in greenspace, urban form,
or other anthropogenic emissions. We acknowledge that these factors may evolve over
time and that incorporating them could further refine future predictions. We have added
a note in the revised manuscript to explicitly clarify this limitation.

Please see our revisions in lines 219-227 of the manuscript: “It is worth noting that
the diurnal profiles of other O3 precursors, such as VOCs and carbon monoxide, were
kept unchanged throughout all the simulations. Meanwhile, our future projections are
designed to isolate the chemical response of O3 to changes in temperature and isoprene
and do not explicitly incorporate potential future changes in greenspace, urban
morphology, or other anthropogenic emissions. Although these factors are expected to
evolve under urban development and climate mitigation pathways, the present analysis
focuses on quantifying the impacts of climate warming on isoprene emissions and the
consequent O3 responses.”

Reference:

Brogli, R., Heim, C., Mensch, J., et al.: The pseudo-global-warming (PGW) approach:
methodology, software package PGW4ERAS v1.1, validation, and sensitivity analyses,
Geosci. Model Dev., 16, 907-926, 10.5194/gmd-16-907-2023, 2023.

7. There are two “the’ in line 280.

Response: The redundant “the” in line 280 has been removed in the revised manuscript.



