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Abstract. Although the Singular Value Decomposition-three Dimensional Ensemble Variational (SVD-3DEnVar) data 

assimilation scheme has achieved successful application in real case simulations with comprehensive numerical weather 

prediction models, its computational efficiency still cannot meet the demands of actual operational numerical forecasting. 

The main limitations lie in the generation of three-dimensional perturbations and the implementation of parallel calculations. 15 

This paper constructed a three-dimensional perturbation field generation scheme that supports multi-process parallelism and 

can directly generate any specified number of grid points in both horizontal and vertical directions. At the same time, an 

efficient parallel implementation scheme has been developed according to the characteristics of local patch assimilation in 

the SVD-3DEnVar scheme. The Observing System Simulation Experiment (OSSE) test results based on the Tropical 

Regional Atmospheric Model System (TRAMS) show that after computational efficiency optimization, the time required to 20 

generate a 3D perturbation field has been reduced from 22 minutes to 2.2 seconds, while the runtime of the assimilation 

process has decreased from 1,700 minutes under serial execution to less than 15 minutes (using 150 nodes in parallel). 

Finally, we conducted an assimilation experiment using actual observational data of sea surface wind fields to preliminarily 

validate the reasonableness of the assimilation results from the optimized SVD-3DEnVar scheme. 

1 Introduction 25 

The accuracy of typhoon numerical forecasting is highly sensitive to the quality of the initial conditions. The accuracy of the 

large-scale environmental flow surrounding a typhoon largely determines its subsequent track; meanwhile, initial errors in 

the mesoscale and convective systems within the typhoon core can rapidly amplify and affect the predictability of typhoon 

intensity (Wang and Wu, 2004; Weng and Zhang, 2012; Xu et al., 2025a). Data assimilation, by effectively integrating 

observations from multiple platforms such as satellites, radars, and dropwindsondes with the background field (short-range 30 
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forecasts) of numerical models, can produce an initial state that is physically consistent and closer to the true atmosphere, 

including a realistic typhoon vortex structure and its surrounding environment (e.g., steering flow), thereby enhancing the 

ability of numerical models to forecast typhoon track and intensity (Bauer et al., 2015; Wu et al., 2007). With the continuous 

increase in satellite observations in recent years, the importance of assimilating these data to improve typhoon forecasts has 

become increasingly evident (Li et al., 2019; Xiao et al., 2023; Yang et al., 2018; Zhang et al., 2022b). 35 

Typhoon observations over the ocean primarily rely on satellite data. The nonlinear nature of the observation operators and 

the high temporal and spatial resolution characteristics of these observations place high demands on the performance of data 

assimilation schemes. Therefore, the continuous improvement of data assimilation techniques is one of the key factors 

driving the enhancement of typhoon numerical forecasting accuracy. In early operational typhoon forecasting, 3-

Dimensional Variational (3DVAR) scheme was commonly used for data assimilation. The main limitation of this method is 40 

that it uses static, climatological background error covariance to propagate observation information (Lorenc, 2003; Bannister, 

2008). This poses significant limitations when dealing with strong nonlinear and rapidly evolving weather systems like 

typhoons. For instance, it may erroneously propagate information from high-level clouds to clear lower-level areas, resulting 

in spurious structures in the analysis field, which in turn affects the improvement of typhoon forecasts through data 

assimilation. To overcome the limitation of 3DVar, which cannot account for the flow-dependent nature of background error 45 

covariance, several improvements were proposed, including four-dimensional variational assimilation and ensemble-

variational hybrid assimilation methods, leading to the development of many related schemes (e.g., Qiu et al., 2007; Tian and 

Feng, 2015; Tian et al., 2008; Tian et al., 2011; Wang et al., 2010; Wang et al., 2008; Wang et al., 2013; Zhang et al., 2022a; 

Zhang et al., 2019). These schemes have gradually become mainstream choices in both research and operational applications 

(Lorenc and Jardak, 2018). 50 

Compared to traditional ensemble-variational hybrid assimilation schemes, the Singular Value Decomposition-three 

Dimensional Ensemble Variational (SVD-3DEnVar) method (Qiu et al., 2007) is characterized by using singular value 

decomposition to implicitly represent the covariance relationship between observation increments and background errors, 

thereby avoiding the computational and storage burdens associated with directly updating the background error covariance 

matrix. In early implementations of SVD-3DEnVar (e.g., Shao et al., 2009; Zhang et al., 2009), the method directly 55 

performed eigenvector decomposition on the entire background field, which caused observations to also adjust distant parts 

of the background field. For real weather forecasting models with higher dimensions and fewer ensemble samples, such 

distant correlations are often unreliable and need to be removed using localization techniques. Xu et al. (2011a, b, 2012) 

localized the SVD-3DEnVar method by employing a local patch assimilation approach and introduced a Gaussian function 

to further process the observational data. Although this localization strategy enabled successful assimilation of radar data in 60 

WRF (Weather Research and Forecasting)-based experiments, applying it to operational systems still faces challenges in 

computational efficiency. 

The main factors limiting the computational efficiency of the SVD-3DEnVar scheme lie in the initial perturbation generation 

and parallel implementation. Since each assimilation cycle of the SVD-3DEnVar method only assimilates the background 
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field once, new ensemble members must be generated by perturbing the background field before each new cycle (refer to 65 

Section 3.1). The original ensemble perturbation generation scheme (Evensen, 1994) adopted in SVD-3DEnVar could only 

support square two-dimensional data, with the constraint that the number of grid points in a single direction must be odd, 

necessitating additional transformation to overlay with the model background field. This extra processing increased the time 

consumed in each assimilation cycle. Regarding the assimilation operation, the use of a serial approach to sequentially 

assimilate each local patch resulted in extremely low efficiency for the SVD-3DEnVar scheme.  70 

To address these issues, this paper aims to optimize the SVD-3DEnVar scheme and improve its efficiency. The performance 

of the optimized SVD-3DEnVar is then tested by applying to the Tropical Regional Atmosphere Model System (TRAMS), 

aiming to explore its potential application value in operational typhoon numerical forecasting system. This paper is 

organized as follows: Section 2 introduces the models and data used in the study; Section 3 presents the SVD-3DEnVar 

scheme and related technical improvements; Section 4 discusses idealized and real-case experimental results based on the 75 

TRAMS model; and Section 5 provides conclusions and discussions. 

2 Model and data 

The TRAMS version 3.0 (Xu et al., 2020) is used for data assimilation and numerical simulation experiments in this study. 

The model employs a semi-implicit, semi-Lagrangian method for time integration. The model prognostic variables include 

the three-dimensional wind field (u, v, w), potential temperature (θ), water vapor mixing ratio (q), and dimensionless 80 

pressure (π), which are distributed on the horizontal and vertical axes using Arakawa C grids and Charney-Phillips grids, 

respectively. The physics schemes include the scale-aware New Simplified Arakawa-Schubert (NSAS) cumulus 

parameterization scheme (Han and Pan, 2011), the WRF single-moment 6-class (WSM6) microphysical schem (Hong et al., 

2004), the NCEP (National Centers for Environmental Prediction) Medium-Range Forecast (NMRF) planetary boundary 

layer scheme (Han and Pan, 2006), the RRTMG long-wave and short-wave radiation scheme (Iacono et al., 2008), and the 85 

Slab land-surface model (Dudhia, 1996). 

The simulation region is selected based on the area used for operational forecasting (as shown in Figure 1), with a horizontal 

resolution of 0.09°. The vertical layering consists of 65 layers, using terrain-following coordinates, with the model top at 

approximately 31 km. 

 90 
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Figure 1: Domain of the TRAMS model, with shaded areas representing terrain height (unit: km). 

 

ERA5 reanalysis data (Hersbach et al., 2020) is used to construct the initial and boundary conditions for the TRAMS model. 

For the real-data assimilation experiment (Section 4.2), sea surface wind field products are derived from multi-source 95 

satellite data, including FY3E-WRAD, HY-2B/C/D-SCAT, AMSR2, SMAP, and MWRI. The product has a resolution of 

0.25° and a time interval of 6 hours. It can effectively capture winds above 30 m/s, with a root mean square error of 

approximately 1.5 m/s when compared with in-situ ocean observations. Since August 2024, it has been displayed in real time 

on the operational website of the Guangdong Meteorological Bureau, providing valuable reference for typhoon monitoring 

and early warning. The typhoon track and intensity observations used for evaluation come from the best-track dataset 100 

provided by the China Meteorological Administration’s Tropical Cyclone Data Center (Lu et al., 2021; Ying et al., 2014). 

3 Method 

The operational process of the SVD-3DEnVar assimilation scheme includes three main steps: (1) Initialization step (Figure 

3a): The model is initialized to generate the initial field (input) and boundary conditions (bdy). Based on this, the 

background forecast required for the assimilation process is obtained through direct forecasting. (2) Ensemble perturbation 105 

step (Figure 3b): Perturbations are added to the initial field (the perturbed initial field is denoted as input*) and combined 

with the boundary conditions (bdy), resulting in a set of ensemble forecast products (ensemble forecast). (3) Assimilation 

step (Figure 3c): The observational data (observation) undergo a preprocessing procedure, and valid data are selected 

according to program input requirements after quality control. Using the preprocessed observation data, ensemble forecast 

results, and background field, the data assimilation calculation is executed to produce a new analysis field (input_da). This 110 
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analysis field is used as the initial field for the next forecast cycle. Since the model's start time has changed, the boundary 

data file (bdy_up) must be updated synchronously before integration begins. 

 

 

Figure 2: Flowchart of the SVD-3DEnVar assimilation scheme: (a) Step1: Initialization; (b) Step 2: Ensemble perturbation; (c) 115 
Step 3: Assimilation. The pink parallelograms represent the computational steps included in the assimilation scheme, while the 

yellow squares represent the corresponding data files. 

 

The basic principle of the SVD-3DEnVar scheme is introduced below, followed by an explanation of the optimizations in 

perturbation construction and parallel operation in this study. 120 

3.1 Overview of SVD-3DEnVar 

The assimilation process is set at time 𝑡0, where M initial perturbation fields are added to the background field at 𝑡0 − 𝜏 to 

generate M forecast samples, denoted as ensemble 𝑢𝑖  (𝑖 = 1, 2, … , 𝑀) , where 𝜏  is the integration time length. These 

forecast samples are integrated to the 𝑡0 time. At 𝑡0, a background field without any perturbation, denoted as 𝑢𝑏, is also 

provided. The forecast perturbation fields Δ𝑢𝑖 (𝑖 = 1, 2, … , 𝑀) are obtained by subtracting the background field from the 125 

forecast samples:  

Δ𝑢𝑖 = 𝑢𝑖 − 𝑢𝑏 , 𝑖 = 1, 2, … , 𝑀,          (1) 

Then, the observation perturbation fields Δ𝑑𝑖  (𝑖 = 1, 2, … , 𝑀) are calculated using the observation operator 𝐻. The m-th 

forecast perturbation field and the observation perturbation field are combined into a column vector: 

𝑎𝑚 = (Δ𝑢𝑚
𝑇 , Δ𝑑𝑚

𝑇 )𝑇,           (2) 130 

These column vectors are assembled into a matrix, denoted as A: 

𝐴 = (𝑎1, 𝑎2, … , 𝑎𝑀) ,           (3) 

Matrix A is subjected to singular value decomposition: 
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𝐴 = 𝐵Λ𝑉𝑇 ,            (4) 

where Λ  is a diagonal matrix consisting of eigenvalues of A ( 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑀 ≥ 0) arranged in descending order. 135 

According to Equation (2), matrix B of left eigenvalues of A is portioned into two parts, corresponding to the non-zero 

eigenvalues: 

𝑏𝑚 = (𝑏𝑚
𝑢 𝑇 , 𝑏𝑚

𝑑 𝑇
)

𝑇

,           (5) 

where 𝑏𝑚
𝑢  and 𝑏𝑚

𝑑  belong to the model variable space and the observation variable space, respectively. 

Let 𝑥 = (Δ𝑢𝑇 , Δ𝑑𝑇)𝑇be the vector to be expanded in terms of the eigenvectors: 140 

𝑥 = ∑ 𝛼𝑟𝑏𝑟
𝐾
𝑟=1 = 𝑏𝛼 ,           (6) 

where K is the truncation order. From this, the following relations can be derived: 

Δ𝑢 = ∑ 𝛼𝑟𝑏𝑟
𝑢𝐾

𝑟=1 = 𝑏𝑢𝛼 ,           (7) 

and 

Δ𝑑 = ∑ 𝛼𝑟𝑏𝑟
𝑑𝐾

𝑟=1 = 𝑏𝑑𝛼 ,           (8) 145 

The incremental form of the 3DVar objective function is as follows: 

𝐽(Δ𝑢) = Δ𝑢𝑇𝑃−1Δ𝑢 + (𝐻Δ𝑢 − Δ𝑦)𝑇𝑂−1(𝐻Δ𝑢 − Δ𝑦) ,       (9) 

where P is the background error covariance matrix, which, similar to ensemble-based assimilation methods, can be 

approximated as 𝑃 ≈ 𝑏𝑢Λ𝑃
2 (𝑏𝑢)𝑇/(𝑀 − 1); O is the forecast error covariance, assumed to be a diagonal matrix in this study; 

y is the observation, with Δ𝑦 = 𝑦 − 𝐻𝑢𝑏. Based on Equations (7) and (8), the objective function (9) can be rewritten as: 150 

𝐽(𝛼) = (𝑀 − 1)𝛼𝑇Λ𝑃
−2α + ∑ (𝛼𝑟𝑏𝑟

𝑑 − Δ𝑦)𝑇𝑂−1(𝛼𝑟𝑏𝑟
𝑑 − Δ𝑦)𝐾

𝑟=1  ,      (10) 

By minimizing the objective function (10), the coefficients α  are obtained, and the required analysis increment Δ𝑢  is 

computed using Equation (7). 

To prevent any observation point from influencing the global analysis increment, SVD-3DEnVar uses a local patch scheme 

(Xu et al., 2011a, b, 2012). Specifically, a local block is centered at any model grid point, and a local block with horizontal 155 

and vertical radius 𝑙ℎ and 𝑙𝑣 is selected. SVD-3DEnVar assimilation is then performed within this local block to obtain the 

analysis field at that grid point. Additionally, a Gaussian weight function is introduced to limit the observational influence 

within the local block: 

w(𝜎ℎ, 𝜎𝑣) = {
𝑒𝑥𝑝 ((−

𝑟ℎ
2

𝜎ℎ
2) + (−

𝑟𝑣
2

𝜎𝑣
2)) , (𝑟ℎ ≤ 𝑙ℎ 𝑎𝑛𝑑 𝑟𝑣 ≤ 𝑙𝑣)

0, (𝑟ℎ > 𝑙ℎ 𝑜𝑟 𝑟𝑣 ≥ 𝑙𝑣)

,      (11) 
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where 𝑟ℎ and 𝑟𝑣  represent the horizontal and vertical distances between the local block center and the observation point, and 160 

𝜎ℎ and 𝜎𝑣 are the horizontal and vertical localization scale parameters for observations. 

3.2 Revision of Perturbation Construction Techniques 

To address the limitations of the original random perturbation field generation method (such as only supporting square two-

dimensional data, requiring odd grid points in a single direction, and the inefficiency of storing 2D data before constructing 

3D perturbations), multi-dimensional optimizations have been implemented. These improvements primarily include: 165 

breaking the restrictions on grid shape and number to allow direct generation of perturbation fields that match any model 

grid; optimizing memory usage and efficiency by designing 3D perturbation construction logic that eliminates the need for 

2D data read/write steps; and introducing multi-process parallel computing. This section will provide a detailed introduction 

to these improvements. 

The SVD-3DEnVar method uses a Gaussian distribution-based random perturbation field generation approach (Evensen, 170 

1994) when producing ensemble samples. The perturbation field generation process consists of three main steps (Figure 3a): 

first, a data pool satisfying the specified Gaussian distribution is generated and divided into intervals; second, sampling is 

conducted from the data pool intervals using spiral enumeration and neighborhood statistical relationships; third, to ensure 

the perturbation field has spatial scale characteristics, a five-point smoothing is applied to the generated 2D perturbation field, 

and a vertical weighting combination is used to construct the 3D perturbation field. 175 

In the first step, the original scheme pre-generates a sample data pool by specifying the number of sample intervals and the 

total number of samples (usually a very large quantity). This approach not only occupies an enormous amount of memory 

but also results in relatively low efficiency in subsequent sampling. In the second step, the original scheme is limited to 

square grids and odd grid points, which often do not match the grids used in the model. Additionally, the original method 

first generates a sufficient number of 2D perturbation fields and stores them locally before constructing the 3D perturbation 180 

field. Prior to the 3D perturbation field construction, the 2D perturbation fields are read sequentially from local storage. 

Since the grids typically do not match, the perturbation fields require 2D interpolation to match the model grid. This 

approach has several drawbacks: on the one hand, the generation of 2D perturbation fields is indirect, and the interpolation 

may distort the original statistical characteristics of the perturbations; on the other hand, the additional read/write steps not 

only impact efficiency but also occupy local storage space. 185 
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Figure 3: (a) Schematic of the optimization process for random perturbation generation in the SVD-3DEnVar scheme; (b) shows 

the horizontal distribution of the generated perturbation field; (c) shows the vertical cross-section taken along the black dashed 

line in (b). 190 

 

In light of this, optimizations are made as following: First, the grid limitation issue is addressed. As shown in the blue box of 

Figure 3a, given any grid, the relative center point is selected, and spiral sampling begins. If the current point is invalid, it is 

skipped, and sampling continues until all points are sampled. Meanwhile, it is found that the practice of pre-allocating a 

sample pool in the first step leads to low efficiency in disturbance field generation. To address this issue, we consider 195 

eliminating this step; instead, in the alternative scheme, during sampling, the truncated normal distribution is calculated 

directly based on neighborhood statistical information, thereby quickly obtaining values that meet the requirements at a 

relatively low cost. Furthermore, to overcome the inefficiency of the original program—where 2D perturbation fields are 

first generated, stored locally, and later read and interpolated to form 3D fields—the process is streamlined. Now, the 

required number of 3D perturbation fields, along with the number of grid points in the horizontal, and vertical directions, are 200 

directly specified. The 2D data is immediately used in 3D construction, and once completed, the 3D perturbation file is 

output in one step. This optimization significantly improves efficiency by eliminating redundant read/write operations, 

storage and sampling of large sample arrays. 

Furthermore, to further enhance computational efficiency, the sample generation process supports multi-process 

parallelization. The specific strategy is as follows: for each 3D field, the corresponding number of 2D perturbation fields is 205 
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generated in parallel according to the number of layers. These are then merged and output as the 3D field file, and the same 

process is repeated for the next 3D field. This approach limits memory usage by controlling the parallelization scope to avoid 

overflow, and it allows flexible adjustment of the parallelization scale for the 2D data within each 3D field to accommodate 

different computing resources. Ultimately, this improves performance while maintaining memory stability and resource 

utilization efficiency. 210 

According to the original scheme, generating a 3D perturbation field with a grid dimension of 101×101×67 took 

approximately 1340 seconds (over 22 minutes). Note that this time is already close to the duration required for running the 

SVD-3DEnVar assimilation step (refer to Figure 5a), making it clearly unacceptable in operational applications. Without 

enabling 2D field parallel computing, the optimized scheme completes the same task in just 2.2 seconds, achieving a 

computational efficiency improvement of approximately 600 times. For the TRAMS model with a grid dimension of 215 

883×553×67, further efficiency gains can be achieved by activating parallel computing for the 2D fields. Figures 3b and 3c 

show the horizontal and vertical distributions of a randomly selected 3D perturbation field, with characteristics that are 

consistent with the results of Xu et al. (2011b). 

3.3 Parallel implementation 

The original SVD-3DEnVar data assimilation program performs calculations serially for each local patch corresponding to 220 

each grid, and the computation time is insufficient to meet the demands of large-domain model assimilation operations in 

practical applications. Therefore, a parallelization scheme is required. This study draws inspiration from the LETKF scheme 

(Miyoshi and Yamane, 2007) and combines patch parallel computing with load balancing strategies. A "grid partitioning - 

global marking - dimensionality reduction assignment" strategy is adopted to achieve high operational efficiency. At the 

same time, "node root process pointer sharing" and "local data processing" techniques are employed to optimize data I/O 225 

speed and memory management, reducing redundant computations and storage usage. 

The specific process is shown in Figure 4. First, the model grid is partitioned into multiple parallel regions according to the 

number of processes (marked as red boxes). Each process checks each grid point within its assigned region to determine 

whether it satisfies the assimilation trigger conditions (i.e., whether the number of observations reaches the preset threshold). 

The grid points that meet the conditions are marked, and after all grid points are checked, global marking information is 230 

collected. To reduce unnecessary computational overhead, only the location information of the observation data is used for 

preliminary judgment and filtering in this stage, avoiding redundant calculations. The filtered model grid points for 

assimilation are then reduced in dimension to generate corresponding coordinate sequences (𝑥1, 𝑦1), (𝑥2, 𝑦2), ⋯ , (𝑥𝐷 , 𝑦𝐷), 

which are then rebalanced and redistributed according to the number of processes. For example, in Figure 4, the coordinate 

sequence (𝑥1, 𝑦1), (𝑥2, 𝑦2), ⋯ , (𝑥𝑑 , 𝑦𝑑) is assigned to node 𝑁1. 235 

Additionally, to avoid memory overflow on a single node due to excessive process numbers, this study synchronously 

optimizes the program's memory management mechanism. First, the data required for assimilation (including observations, 

ensemble samples, and background fields) are stored in the root process of each node (for example, the root process 
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corresponding to node 𝑁1 is labeled 𝑃1 in Figure 4). Other processes within the node (such as 𝑃2) then retrieve data from the 

root process through pointer sharing. The "root process pointer sharing" strategy ensures that large arrays are not redundantly 240 

copied, preventing storage space redundancy. At the same time, in local assimilation calculations, only locally scoped data 

are used for computations, avoiding the processing of global data. Through the dual approach of "spatial restriction + pointer 

sharing", both memory usage and computational efficiency are optimized in parallel. 

 

 245 

Figure 4: Schematic of the parallel mechanism in the SVD-3DEnVar assimilation scheme. The black grid represents the model's 

horizontal grid, the orange grid divisions represent individual parallel domains, and the solid circle scatter points represent the 

observation data locations. (𝒙𝒊, 𝒚𝒊) denotes the i-th (i=1,2,...,m) horizontal grid point to be assimilated, 𝑵𝒋 represents the j-th 

(j=1,2,...,J) node, and 𝑷𝟏, 𝑷𝒊, and 𝑷𝑱 represent the root processes corresponding to nodes 𝑵𝟏, 𝑵𝒋, and 𝑵𝑱, respectively. "Data" 

refers to the data required for assimilation (including observations, ensemble samples, and background fields). 250 

 

It should be noted that if the model region is directly partitioned into grids, local areas may have insufficient observation 

counts, causing early termination of assimilation in those regions while other processes continue running. This leads to idle 

processes and underutilized computational resources, which becomes a significant bottleneck in efficiency improvement. 

The approach adopted in this study allows for synchronous invocation of all processes, and each process completes the 255 

assimilation task around the same time, effectively avoiding the problem of idle waiting in a single process, thus 

significantly improving resource utilization. 

To evaluate the impact of the parallel strategy on the operational efficiency of the SVD-3DEnVar assimilation scheme, 

targeted test experiments were designed in this study. First, the local block radius was fixed at 10 times the grid size, and 

only the number of nodes was varied, with all other experimental conditions remaining identical to those in the ideal 260 

experiment described in Section 4.1. Figure 5a showed the sensitivity of the assimilation computation time to the number of 

nodes. In the experiment, the number of nodes increased from 1 to 300, with each node equipped with 64 CPUs. The time 

spent on each key component of the assimilation scheme was then recorded. As the number of computing nodes increased 

from 1 to 150, the computation time for the assimilation program decreased linearly. When the number of nodes exceeded 
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150, the parallel efficiency of the assimilation program reached saturation, and the required time stabilized around 15 265 

minutes. 

Specifically, the computation time for the assimilation program was primarily distributed across three core steps: data I/O, 

resource allocation, and assimilation computation. In terms of data writing, the time spent remained stable with no 

significant fluctuation. The reason for this is that data writing is only performed by the root process and is not affected by the 

increase in the number of nodes. In the resource allocation step, due to the secondary allocation strategy, the time spent 270 

during the first allocation phase showed clear dependence on the number of nodes. When the number of nodes was small, the 

time spent on horizontal statistical processing of the assimilation grid points was relatively high. However, once the number 

of nodes reached a certain threshold, this time was significantly reduced and eventually approached zero. The data reading 

step showed a slight increase in time as the number of nodes increased. This phenomenon is likely related to data contention: 

multiple nodes simultaneously make read requests for the same data, causing data access conflicts and leading to a slight 275 

increase in time. This is a common phenomenon in parallel computing and is within a reasonable range. In contrast, the time 

spent on the assimilation computation step generally showed a downward trend. Notably, between 170 and 210 nodes, the 

time spent on the assimilation computation increased abnormally. The possible reason for this is that the actual time spent on 

assimilation computation can vary depending on the location of observations and the characteristics of the data (e.g., due to 

differences in the number of iterations). When the number of nodes was in this range, the task assignment for the 280 

experimental dataset did not achieve "efficiency uniformity," and some processes were assigned tasks with relatively high 

computational loads, which increased the overall time. However, since the current task assignment strategy only ensures an 

even distribution of the number of tasks, without considering differences in the computational time of individual tasks, this 

anomaly has a limited impact on the overall efficiency in practical applications and can be disregarded. 

Since SVD-3DEnVar employs a local patch parallel strategy, the size of each local patch is a key factor in determining the 285 

assimilation computation efficiency. Figure 5b tests the assimilation time for different horizontal localization radii with 150 

nodes. The results shows that as the localization radius increases, the computation time for SVD-3DEnVar also increases 

linearly. This increase primarily comes from the assimilation computation step. 

In summary, the parallel assimilation strategy designed in this study demonstrates good load balancing performance, which 

makes the SVD-3DEnVar scheme suitable for practical operational applications. 290 
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Figure 5: Computation time of the SVD-3DEnVar scheme under different numbers of nodes (a) and local patch radii (b). The 

specific design of the test experiment can be found in section 4.1 of the OSSE simulation experiment. The gray dashed line denotes 

the computational efficiency when using 150 nodes and a localization radius equal to 10 times the grid spacing, which represents a 295 
parallel parameter configuration well-suited for operational applications. 

 

4 Experimental Design and Results Analysis 

4.1 Experimental Design 

To test the performance of the revised SVD-3DEnVar scheme, two sets of assimilation experiments were conducted based 300 

on the TRAMS model in this section. 

The first group of experiments was the Observing System Simulation Experiment (OSSE) for Typhoon Khanun (2023, 

Typhoon No. 6) under ideal conditions, as shown in Figure 6a. The control experiment (CTL) was directly integrated 

forward from 12:00 UTC on July 28, while the assimilation (DA) experiment had the analysis time at 00:00 UTC on July 29. 

The background field for the DA experiment was derived from a 12-hour forward integration starting at 12:00 UTC on July 305 

28, and the true field was obtained from a 24-hour forward integration starting at 00:00 UTC on July 28. The horizontal u-

wind component in the vertical layers 8 to 32 from the true field was used as the observation. Considering model resolution, 

observation data, and parallel efficiency, the radius of the local block was set to 10 times the grid size, and the observation 

localization scale parameters were set to 3 times the grid size (i.e., 𝑙ℎ = 𝑙𝑣 = 10, 𝜎ℎ = 𝜎𝑣 = 3). The model variables updated 
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in the assimilation process include the v-wind field (v), potential temperature (θ), dimensionless pressure (π), and water 310 

vapor mixing ratio (q), making a total of 5 variables. The experiment used an ensemble of 30 members, with a truncation 

order of 𝐾 = 27. 

 

 

Figure 6: Assimilation experiment flow design: (a) OSSE experiment; (b) Sea surface wind assimilation experiment. The 315 
horizontal axis represents the corresponding time. CTL refers to the control experiment without any assimilation, and the specific 

assimilation designs for DA, DA1, DA2, and DA3 are described in the relevant text. 

 

Following the validation of the SVD-3DEnVar assimilation scheme's effectiveness in the OSSE experiment, further 

assimilation tests were conducted using actual observational data. The testing period was chosen to coincide with Typhoon 320 

"Mocha" (2024, Typhoon No. 11), and the assimilated observational data were the satellite-fusion sea surface wind field 

inversion products described in Section 2 (with an observation height of 10m). The goal was to preliminarily assess the 

performance of the scheme in a real-world weather process. It should be noted that the reason why the same typhoon case 

was not selected for both the OSSE and the actual assimilation experiment is that the sea surface wind product has only been 

made publicly available since September 2024. The experimental design is shown in Figure 6b. 325 

The control experiment (CTL) was obtained by directly integrating the global analysis field from 12:00 UTC on September 5, 

2024. The first assimilation was initiated at 00:00 UTC on September 6, 2024, with the background field being derived from 

a 12-hour forecast starting at 12:00 UTC on September 5, 2024. To further test the impact of multiple-cycle assimilation on 

model forecasting in an operational environment, after the first assimilation (denoted as DA1), two consecutive assimilation 

experiments were designed (denoted as DA2 and DA3), with a 6-hour interval between each assimilation cycle. The analysis 330 

variables, localization parameters, number of ensemble members, and truncation order for this experiment were identical to 

those used in the previous OSSE experiment. 
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4.2 Results of OSSE Experiment 

This section primarily verifies the rationality of the SVD-3DEnVar assimilation scheme in an idealized typhoon forecasting 

scenario. The "true error" used in the experiment is obtained by subtracting the pre-defined "true field" from the forecast 335 

field (refer to Figure 6a). 

The analysis increments and true errors of the u-wind field at the 10th model level (approximately at 1.5 km height) are first 

selected to compare the consistency of the horizontal distribution. The analysis increment of the u-wind field and the true 

error show very similar spatial distribution and magnitude (Figures 7a-b). This is because in the OSSE experiment, 

observational data for the u-wind field on this model level were directly provided. In contrast, for the other four variables (v, 340 

θ, π, q) where no direct observations were provided, the analysis increments do not match the true error as closely as the u-

wind field (Figures 7c-j). However, the analysis increments still reasonably capture the spatial distribution of the errors, 

particularly in the typhoon region. 

This indicates that the SVD-3DEnVar assimilation scheme can, even when assimilating only a single variable, adjust the 

other variables indirectly through the flow-dependent background error covariance relationships contained in the ensemble 345 

samples, thus producing an initial analysis field that is physically coherent. 

 

https://doi.org/10.5194/egusphere-2025-4632
Preprint. Discussion started: 14 November 2025
c© Author(s) 2025. CC BY 4.0 License.



15 

 

 

Figure 7: The true errors (first column) and analysis increments (second column) at the model's 10th layer (approximately 1.5 km 

altitude). From top to bottom, the variables correspond to u (a, b), v (c, d), θ (e, f), π (g, h), and q (i, j). 350 

 

Further comparisons are made between the typhoon track and intensity before and after assimilation, using observations 

from the true field. The CTL experiment forecast shows a systematic northward bias in the typhoon track (Figure 8a). For 

typhoon intensity, the CTL experiment exhibits an overestimation of intensity between 24-72 hours and an underestimation 
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between 114-144 hours (Figure 8b). The DA experiment effectively reduces the forecast bias in both the typhoon track and 355 

intensity. These results indicate that after assimilating the wind field, the SVD-3DEnVar scheme can significantly improve 

typhoon track and intensity forecasts. This improvement is, on one hand, due to a more accurate description of the dynamical 

and thermo-dynamical structure of the initial typhoon core, and on the other hand, is also related to the reduction of initial 

errors in the large-scale steering flow through data assimilation. 

 360 

 

Figure 8: OSSE simulation results for Typhoon Khanun under ideal conditions: (a) typhoon track and (b) minimal sea-level 

pressure (unit: hPa). 

 

4.3 Results of OSSE Experiment 365 

This section further tests the impact of sea surface wind field data assimilation based on SVD-3DEnVar on typhoon 

forecasting under real-world conditions. First, the deviation characteristics between the available observational data and 

model forecast results are compared. It is found that at the analysis time (00:00 UTC on September 6, 2024), in the typhoon-

affected area, the model forecasted wind speeds are generally lower than the observed wind speeds (as shown in Figure 9). 

This is likely due to the weaker intensity representation of super typhoons in the ERA5 reanalysis data, which serves as the 370 

driving field for the model (Li et al., 2024). 
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Figure 9: Sea surface wind background field (unit: m/s) at 00:00 UTC on September 6, 2024 (analysis time) (a), observed field (b), 

and their differences (c). 375 

 

After assimilating the sea surface wind field observational data using SVD-3DEnVar, the model effectively adjusts the 

previously weak typhoon circulation (Figure 10a). The central pressure of the typhoon decreases as the circulation 

strengthens (Figure 10c), which is consistent with the gradient wind balance relationship. In terms of the thermodynamic 

structure, the temperature in the typhoon core increases after adjustment, indicating a more pronounced warm-core structure 380 

(Figure 10e), while the water vapor increases (Figure 10g). This is due to the enhanced suction effect as wind speed 

increases, which leads to more water vapor from the sea surface being pumped into the typhoon center, causing an increase 

in specific humidity in the surrounding region. This also contributes to the subsequent intensification of the typhoon forecast. 

From the vertical profile, the impact of assimilating the sea surface wind field is mainly confined to the boundary layer 

below 1 km (Figures 10b, d, f, h). Overall, the incremental distribution of the four key meteorological elements—wind speed, 385 

pressure, potential temperature, and specific humidity—after assimilation is consistent with the physical laws and expected 

adjustments during the typhoon intensification process. This confirms the rationality of assimilating observational data from 

the perspective of the synergistic evolution of these variables and further validates the reliability of the SVD-3DEnVar 

scheme in the assimilation application for actual typhoon events. 
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 390 

 

Figure 10: Assimilation analysis increments at the model's second layer (the first column) and the vertical cross-section along the 

black line in the first column (the second column). From top to bottom, the corresponding variables are u (a, b), v (c, d), θ (e, f), π 

(g, h), and q (i, j). 

 395 

Building on the validation of the analysis increment's rationality, further tests were conducted to assess the impact of sea 

surface wind field data assimilation on typhoon track and intensity forecasts. Three assimilation experiments—DA1, DA2, 

and DA3—were set up, with the specific details of these experiments provided in Section 4.1. 
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As shown in Figure 11a, the assimilation experiments have little impact on the typhoon's track. This is primarily because the 

typhoon's movement is mainly controlled by the large-scale steering flow at the edge of the subtropical high, while the 400 

increments from data assimilation (refer to Figure 10) are mostly concentrated in the typhoon's vortex region, with vertical 

influence confined to the boundary layer. Assimilating the sea surface wind field effectively corrects the underestimation of 

the initial typhoon intensity in the CTL experiment (Figure 11b). However, this correction cannot be maintained, with the 

forecast returning to the pre-assimilation levels after approximately 6 hours forecast. This suggests that adjusting only the 

low-level typhoon structure is insufficient to substantially improve typhoon intensity forecast biases. Further improvements 405 

require combining typhoon initialization (e.g., Zhang et al., 2026) and the assimilation of additional observational data (e.g., 

cloud steering winds) (e.g., Li et al., 2015) to adjust the middle and upper-level typhoon structures. As the assimilation 

cycles are conducted at 6-hour intervals, the results of DA2 and DA3 show little difference from DA1. 

 

 410 

Figure 11: Typhoon Yagi path (a) and 10m maximum wind speed (unit: m/s) (b) before and after assimilation. 
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5 Conclusion and Discussion 

To further promote the SVD-3DEnVar assimilation scheme toward practical operational applications, this study proposes an 

efficient 3D perturbation generation scheme and a local patch parallel assimilation strategy. The OSSE test results based on 415 

the TRAMS model show that after computational efficiency optimization, the time required to generate a 3D perturbation 

field has been reduced from 22 minutes to 2.2 seconds, while the runtime of the assimilation process for the SVD-3DEnVar 

scheme has decreased from 1,700 minutes under serial execution to less than 15 minutes (using parallel processing across 

150 nodes). Additionally, the reasonableness of optimized SVD-3DEnVar assimilation scheme was preliminarily verified 

through idealized experiments (Typhoon Khanun, 2023) and real-world experiments (Typhoon Yagi, 2024). 420 

The experimental results in Figure 11 indicate that assimilating only sea surface wind data is not sufficient to effectively 

improve the model's typhoon forecasts. To obtain a more accurate initial field, it is necessary to assimilate as much 

observational data as possible from the middle and upper atmosphere and other forecast variables. Therefore, future work 

should focus on introducing additional types of observational operators and corresponding quality control systems into the 

SVD-3DEnVar scheme to meet the multi-source observational data assimilation needs in operational forecasts. 425 

It is noted that the analysis increments from SVD-3DEnVar often contain small-scale noise, especially for variables that lack 

direct observations (see Figures 7 and 10). This noise can generate spurious gravity waves in the model, which may affect 

the subsequent forecast quality, particularly in the case of cycling assimilation. This could be due to the use of a single 

localization scale in the SVD-3DEnVar scheme, as the background error covariance relationships between different analysis 

variables are embedded in the singular vectors of the local ensemble samples, with the scale characteristics primarily 430 

dependent on the localization radius and observation localization scale parameters (as discussed in Section 3.1). 

To address these issues, we plan to focus on two aspects. First, we will adopt the Incremental Analysis Update (IAU) 

technique (Bloom et al., 1996) to alleviate the impact of initial field adjustments on the model. The IAU technique 

decomposes the analysis increments into smaller components and gradually incorporates them into the model forecast, 

effectively filtering out short-wavelength noise from the increments, thereby improving the consistency between the model 435 

and initial conditions. We have already achieved good practical results using the IAU method in radar data assimilation (Lin 

et al., 2025). On the other hand, multi-scale assimilation techniques are also an effective way to improve the coordination of 

increments across different scales. For example, Zhang and Tian (2018) implemented a multi-scale assimilation scheme 

based on a multi-grid approach (Xie et al., 2011) in their NLS-4DVar method. Given the similarities between this method 

and SVD-3DEnVar (such as both representing analysis increments via a linear combination of ensemble perturbations), their 440 

research provides valuable insights for the future development of multi-scale assimilation in the SVD-3DEnVar framework. 

With the rapid development of artificial intelligence (AI) and machine learning (ML) technologies, their application in 

meteorological data assimilation shows promising prospects. For instance, the machine learning-based data assimilation 

method DiffDA utilizes a pre-trained GraphCast weather forecasting model as a denoising diffusion model and combines 

predicted states with sparse observational data to assimilate atmospheric variable (Huang et al., 2024). FuXiDA, based on a 445 
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unified fusion neural network, effectively adjusts the weights between observations and background without the need to 

estimate error covariance matrices. This deep learning assimilation framework, when applied to satellite observations, not 

only reduces analysis errors but also significantly improves forecast performance (Xu et al., 2025b). ADAF also 

approximates the product of the Kalman gain matrix and the innovation vector using neural networks, replacing traditional 

assimilation frameworks, and is able to rapidly process large amounts of observations to generate high-quality analysis fields 450 

at low computational cost (Xiang et al., 2025). Keller and Potthast (2024) proposed an AI-based variational assimilation 

method (AI-Var), where a trained neural network minimizes the cost function in the variational process to obtain an accurate 

initial field needed for numerical forecasts. The further integration of machine learning with the SVD-3DEnVar scheme to 

address challenges such as complex nonlinear observation operator design and multi-scale assimilation is a promising 

direction for future research. 455 
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