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Driving Factors of Oxalic Acid and Enhanced Role of Gas-Phase Oxidation under

Cleaner Conditions: Insights from 2007-2018 Field Observations in the Pearl River Delta

We sincerely thank reviewers for your time and constructive comments. We have carefully revised
the manuscript to improve its clarity and enhance the readers' understanding. Our point-by-point
responses are marked in blue and the corresponding changes to the original text are shown below

each response. We hope that these revisions adequately address the comments and concerns.

Anonymous Referee #1

General comments

The manuscript reports long-term field observations of di-acids and its related primary and
secondary markers from anthropogenic and biogenic sources at a site in the PRD region, China. It
also combines these observations with machine-learning methods to investigate and quantify
potential contributions of major drivers to the variation of oxalic acid. Their major findings
highlight the increasing importance of gas-phase oxidation in forming SOA. Overall, the topic is
valuable with good-quality datasets, but the manuscript needs clearer methodological descriptions,
stronger validation of the machine-learning attribution, and more mechanistic and systematic
support before publication. For the machine learning methodology part, the attribution is
potentially interesting, but [ am concerned about robustness given the relatively small dataset (~400
observations) and 11 features. With this sample size there is a substantial risk of overfitting and
unstable feature attributions, especially if the data are temporally autocorrelated. I would suggest

a major revision.

Comment 1: Attribution to gas- vs aqueous-phase pathways is mechanistically simplified; aqueous
production depends on pH, transition metals, oxidant availability, and organic composition, the

author may consider adding more feature variables in the machine learning model.

Response: Thanks for your valuable suggestions. We agree that there are other factors influencing
the formation of aqueous-phase products other than pH and ALWC. This is same to gas-phase
products. However, due to unavailability of related data in this study, such as transition metals and

oxidant concentrations in aqueous phase, we can not quantify their contributions on variations in Co.

Here, we add three feature variables in the machine learning model, including sulfate, photolysis
frequencies of O3 (J(O'D)) and NO; (J(NOy)), to make our results better reflect the impacts of
gaseous and aqueous pathways. Sulfate is suggested as an important product from secondary

aqueous-phase chemistry (Liu et al., 2021) and can be used as an indicator for aqueous reactions.



J(O'D) represents the photolytic rate of ozone producing excited oxygen atoms O('D), which
subsequently react with water vapor to generate hydroxyl radicals (OH), the dominant oxidant
driving daytime gas-phase oxidation processes. J(NOz) describes the photolysis rate of nitrogen
dioxide, leading to the formation of NO and ground-state oxygen atoms O (*P), which further
participate in ozone formation. Therefore, they are key parameters characterizing the intensity of

atmospheric photochemical activity (Ehhalt and Rohrer, 2000).

After the inclusion of these three variables, the results of the machine learning model remain highly
consistent with those of the previous version, and the overall conclusions are unchanged. These
results confirm the appropriateness of the selected variables and the robustness of the model
outcomes. Specifically, from ITO to IT4, the IF values associated with gas-phase oxidation processes
increased from 37% to 55%, whereas those related to aqueous-phase oxidation processes decreased
from 42% to 30%, indicating an increasing importance of gas-phase oxidation under cleaner
atmospheric conditions. In addition, the general impacts of changes in gas-phase oxidation (45%)
and aqueous-phase oxidation (34%) are substantially higher than that of AVOC (14%) and BVOC
emissions (7%). Although the ranking of feature importance changed, the indicators for gas-phase
and aqueous-phase oxidation (such as Oy, J(O'D), sulfate, ALWC) still exhibit relatively high
importance among all variables. As ALWC and pH were estimated by a thermodynamic equilibrium
model, ISORROPIA II (Nenes et al., 1998), in which sulfate plays a crucial role and partly reflects
variations in both pH and ALWC, sulfate ranks second in feature importance rather than ALWC.
The comparison between new and old version can be seen below. To maintain consistency in the
number of variables, we also added sulfate, J(O'D), and J(NO») into correlation analysis. In addition,
the appropriateness of the selected variables also needs to be clarified. We have updated the number

and corresponding statement in manuscript, and added limitation of this study at the end of

manuscript.
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Figure 6 (new). (a) Impact of changes of each variable on C: variation during the whole study period. (b)

Impact factor of individual variable under different pollution conditions.



Biogenic emissions Anthropogenic emissions

- Levoglucosan

Hopanes
[ ] Octadecanoic acid
|:| Picene
[ 1n

Aqueous-phase
oxidation processes

Gas-phase
oxidation processes

Figure 6 (old).

Feature importance

o I
son- [
xow) I
wn
auwe [
Temp -
vii [
Hopanes -
ru [l
Levoglucosan .
Ny |
Octadecanoic acid .

sr ]

Picene I a

100

oo
<
1

=N
=]
1

=
(=]
1

Impact factor (%o)

[~
f=
1

(=]
I

1TO

IT1 T2 IT3 1T4

Feature impact

High

ooty A BRI - Rty ¢ o APV e o
B R &

<

g S

s wtnae o

Feature value

0 10 20 30 40 50 60 70 80

mean(|SHAP value|) (average impact on model output magnitude)

-150

T Low
-50 0 50 100

SHAP value (impact on model output)

-100 150

Figure 5 (new). (a) Bar plot of the mean |[SHAP| values representing the overall importance of each feature in
predicting C: concentrations. (b) Beeswarm plot of individual SHAP values for each feature across all samples.
Red (blue) represents high (low) value in each feature. Positive (negative) SHAP values indicate that the

feature contributes to an increase (decrease) in the C: prediction.
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Figure 3. Correlations between Cz and primary anthropogenic source markers, SOA markers, indicators for
gas- and aqueous-phase oxidation, as well as meteorological parameters. Blank cells indicate no significant
correlations. One asterisk, two asterisks denote p value < 0.05, 0.01, respectively. Due to the unavailability of

Ox data in 2012 and 2013, correlation analysis was not conducted for these two years.

Line 168-179

Extreme Gradient Boosting (XGBoost), an advanced ensemble machine learning method based
on gradient boosting decision trees, is known for its high computational efficiency, robust predictive
performance (Chen et al., 2016) and thus has been applied in air pollutant research recently (Hou et
al., 2022; Peng et al., 2023; Liu et al., 2025). In this study, XGBoost was employed to assess the
relative contributions of various factors to oxalic acid variation. The implementation and Python
package of XGBoost algorithm are publicly available online (https://github.com/dmlc/xgboost). A
total of 14 variables were used as input features to train the model, including levoglucosan, hopanes,

octadecanoic acid, picene, terephthalic acid (tPh), Oy, photolysis frequencies of O3 (JO'D) and NO;



(JNO»), ALWC, pH, sulfate (SO4*), temperature (Temp), solar radiation (SR), and relative humidity
(RH). To avoid redundant and confounding explanations, the secondary organic molecular markers,
such as DHOPA, phthalic acid (Ph), and malic acid, were excluded in the model training. They are
influenced by VOC emissions and secondary oxidation processes, which are already represented by
the factors mentioned above. Our results showed that there were great agreements between the
observations and simulations for C; and other DCA (Fig. S2), which indicated the model predictions
were reliable.

Line 283-292

ALWC not only regulates the gas-particle partitioning of semi-volatile VOCs and their reaction
rates by acting as a medium (Nenes et al., 2021), but also serves as a nucleophile that participates
in reactive uptake of SOA intermedium (Zhang et al., 2022b). Aerosol pH plays a crucial role in
governing acid-catalyzed reactions during aqueous-phase processing (Cooke et al., 2024). In
addition, sulfate is also an important secondary product formed through aqueous oxidation (Liu et
al., 2021). Oy, a proxy of atmospheric oxidants, facilitates secondary photochemical oxidation of
VOCs. J(O'D) and J(NO,) represent photolysis frequencies of O3 and NO» (Ehhalt and Rohrer,
2000). Accordingly, ALWC, pH, and sulfate were employed as indicators for aqueous-phase
oxidation , while Oy, J(O'D), and J(NO,) were used as indicators for gas-phase oxidation. In this
study, C, showed strong correlations with ALWC (r = 0.50, p < 0.01), sulfate (r = 0.62, p < 0.01),
and Oy (r = 0.64, p < 0.01) across the whole datasets, suggesting secondary oxidation processes
were the dominant drivers of C, variability between 2007 and 2018.

Line 347-369

The rationality for selecting the variables used to train the model need to be clarified to ensure
the reliability of the results. Levoglucosan, hopanes, octadecanoic acid, picene, and tPh serve as
source-specific molecular markers for biomass burning, vehicle emission, cooking, coal combustion,
and waste incineration, respectively. These species are used to represent changes in AVOC
emissions. As two of the most important BVOCs globally, isoprene emission is highly dependent
on temperature and solar radiation, while monoterpenes emission is sensitive to temperature
(Guenther et al., 1993). Their emissions rate can be estimated using equation 3-5 and equation 6,
respectively:

Ei=1I-C,- Cr (3)
acpqL
Vi+a2L? (4)

cr1 (T-Ts)
_ RTST
Cr= —— o (5)

1+exp RTST

CL=

where E; is isoprene emission rate at a temperature 7(K) and photosynthetically active radiation
(PAR) flux L (umol m -2 s!), I is isoprene emission rate at a standard temperature Ts and a standard
PAR flux (1000 umol m 2 s"). a = 0.0027 and c; = 1.066 are empirical coefficients determined by

measurements. L can be calculated as multiplying solar radiation (W m2) by photon flux efficacy



(1.86 umol J!). R is a constant -8.314 J K-! mol’!, and cri = 95000 J mol’!, ¢t = 230000 J mol-,
and Ty = 314 K are empirical coefficients estimated by measurements.

Enm= Ms -exp (B (T —Ts)) (6)
where E,, is monoterpenes emission rate at temperature 7' (K), M, is monoterpenes emission rate at
a standard temperature Ts, B (K'!) is an empirical coefficient ranging from 0.057 to 0.144 K''. In
addition, inadequate moisture can have significantly decreased stomatal conductance and
photosynthesis (Guenther et al., 2006). Therefore, RH is an important factor influencing BVOC
emissions. J(O'D) and J(NO>) are photolysis frequencies of O3 and NO,, which are relevant to the
generation of hydroxyl radical (an important oxidant in atmosphere) (Ehhalt and Rohrer, 2000). O
is also commonly used as a proxy for ambient oxidizing capacity. ALWC and pH have important
impacts on SOA formation in aqueous phase (Nguyen et al., 2015; Xu et al., 2016). Previous studies
have shown that sulfate is a secondary species primarily produced through aqueous-phase oxidation
(Yu et al., 2005; Liu et al., 2021). Thus, ALWC, pH, and sulfate are used as indicators of aqueous-
phase processes. To avoid redundant and confounding explanations, the secondary organic
molecular markers, such as DHOPA, Ph, and malic acid, were excluded from the model training.
These species are influenced by both VOC emissions and secondary oxidation processes, which are
already represented by the factors mentioned above.

Line 370-375

The feature importance is presented in Fig. 5a. Ox, sulfate, and J(O'D), which represent
secondary oxidation processes, exhibited the three highest [SHAP| values, indicating their dominant
impacts on C; variation. Although pH and ALWC exhibited relatively high feature importance
among all variables, their [SHAP| values were lower than sulfate. This is because pH and ALWC in
this study was calculated by a thermodynamic equilibrium model, ISORROPIA II (Nenes et al.,
1998), in which sulfate plays a crucial role and partly reflects variations in both pH and ALWC.

Line 385-393

To further quantify the impacts of changes in all factors on Cs, IF (discussed in Section 2.4)
was calculated and presented in Fig. 6. Ox accounted for the highest contribution (35%), followed
by sulfate (24%) and J(O'D) (9%). All factors were classified into four groups according to their
representativeness mentioned before: (1) AVOC emissions (levoglucosan, hopanes, octadecanoic
acid, picene, and tPh); (2) BVOC emissions (Temp, SR, and RH); (3) gas-phase oxidation pathways
(Ox, J(O'D), and J(NO»)); (4) aqueous-phase oxidation pathways (ALWC, pH, and sulfate). Due to
the minor fluctuations of meteorological conditions in each year, the impacts of changes in BVOC
emissions on C, were small (7%). Although AVOC emissions showed an obvious decreasing trend
over the study period, the impacts of these changes (14%) were significantly lower than that of gas-
phase oxidation processes (45%) and aqueous-phase oxidation processes (34%). The results were
consistent with correlation analysis, underscoring the dominant role of secondary oxidation

processes in C, formation.



Line 394-399

The IF values for each variable are presented in Table S10. From ITO to IT4, IF values for gas-
phase oxidation processes increased from 37% to 55%, whereas those for aqueous-phase oxidation
processes decreased from 42% to 30% (Fig. 6b). Meanwhile, IF values for AVOC (10%—15%) and
BVOC emissions (5%—-8%) remained at a low and stable level.

Line 437-439

Second, there are other factors influencing the formation of aqueous-phase products other than
pH and ALWC. This is same to gas-phase products. However, due to unavailability of related data
in this study, such as transition metals and hydroxyl radical in aqueous phase, we were unable to

quantify their contributions on variations in C,, which may introduce uncertainties.

Comment 2: line 84: you should spell out an abbreviation (ALWC) the first time it appears in the

main text even if you already defined it in the abstract.

Response: Thanks for reminding this. We have added statement of ALWC (aerosol liquid water

content) in line 84.

Line 84-86
During COVID-19, lower aerosol liquid water content (ALWC) and elevated O3 shifted the
dominant formation pathway of C, from aqueous-phase oxidation of ®C; and Pyr to gas-phase

photochemical decomposition of longer-chain DCA (malonic (Cs) and succinic (Ca)).

Comment 3: Figure 1: there s almost no exact content in the figure. The author may consider adding

back-trajectories or removing this figure to the SI.

Response: Thanks for your suggestion. We have moved Figure 1 to SI because we don’t have

discussion about back-trajectories in this part.

Comment 4: line 209: Malic acid is a plausible product of biogenic VOC photooxidation, but it is
not a unique tracer. Given the winter, urban-influenced atmosphere, anthropogenic VOCs and

combustion sources could contribute substantially.

Response: Thank for this insightful comment. We agree that malic acid is a typical secondary
product originating from the photooxidation of both biogenic and anthropogenic precursors, and
thus should not be considered a unique tracer for BSOA. We should clarify that in our manuscript.
The contributions from biogenic and anthropogenic VOCs on malic acid formation are different.
Sato et al. (2021) conducted a chamber study to investigated mass fractions of malic acid in SOA
produced from biogenic and anthropogenic sources. Based on chamber results, they estimated that

malic acid produced through the oxidation of BVOCs (a-pinene and isoprene) accounted for 63%,



which was higher than that formed by AVOCs (toluene and naphthalene). Given that a-pinene only
accounts for 34% in monoterpenes (Sindelarova et al., 2014) and BVOC emissions are about eight
times higher than that AVOC emissions globally (Glasius and Goldstein, 2016), malic acid produced
from biogenic sources may dominate over that from anthropogenic sources. In addition, malic acid
was found to be strongly correlated (N = 49, R?> = 0.95) with monoterpene tracers (3-
Hydroxyglutaric acid, 3-Hydroxy-4,4-dimethylglutaric acid, 3-Methyl-1,2,3-butanetricarboxylic
acid, 3-Isopropylpentanedioic acid, 3-Acetyl pentanedioic acid) in one-year field measurements
(Cheng et al., 2021). Another research also observed such strong correlation between malic acid and

monoterpene tracers in both summer (R? = 0.92) and winter (R> = 0.87) (Hu and Yu, 2013).

Due to low level of human activities, traffic and industrial emissions in the surrounding area, this
site experiences limited anthropogenic influence. Furthermore, there is no residential heating in the
PRD region, which is a major source of AVOCs during the wintertime. Consequently, although
anthropogenic emissions may increase in winter, the rise is less pronounced than in urban areas. The
PRD region is situated in a subtropical zone, characterized by mild winter temperatures averaging
around 20 °C (Table S5). This climatic condition sustains considerable biogenic emissions even in
winter. Therefore, these evidences indicated that malic acid in our sampling site could be formed

mainly by photodegradation of BVOCs, especially monoterpenes.

Furthermore, as shown in Table S7, the correlation between oxalic acid and malic acid strengthens
with pollution levels decreasing, while the correlation between oxalic acid and ASOA tracers
weakens. This divergent pattern indicates that anthropogenic precursors were not the dominant
source of malic acid. In general, biogenic sources had more contribution to malic acid formation

than anthropogenic in this study.

Because we don’t have unique BSOA tracers in this study, we used malic acid concentrations to
reflect BSOA variations. When we quantified impact of BVOCs on oxalic acid by machine learning,
we used meteorological parameters (e.g., temperature, solar radiation, and relative humidity), which
can determine BVOC emissions, as proxies for BVOC emissions instead of malic acid. This will
avoid potential confusion of AVOC and BVOC emissions. We acknowledge that the original
phrasing in the manuscript was imprecise and have revised the relevant sentences accordingly to

prevent any misunderstanding.

Line 214-220

Malic acid is a typical secondary product formed through photooxidation of both
anthropogenic and biogenic VOCs (AVOCs and BVOCs). However, a recent study estimated that
malic acid produced through the oxidation of BVOCs (a-pinene and isoprene) was higher than that
formed by AVOCs (toluene and naphthalene) (Sato et al., 2021). In addition, malic acid was also
found to be strongly correlated with monoterpene tracers (R?> = 0.87-0.95) in field measurements

(Hu and Yu, 2013; Cheng et al., 2021). Given high BVOC emissions (Wang et al., 2021) and



relatively high temperature (~20 °C, Table S5) in the PRD region, malic acid was mainly produced
from biogenic precursors in this study, especially monoterpenes. Thus, we used malic acid to reflect
the variations of SOA (BSOA).

Line 278-282

As discussed previously, malic acid can be produced by photooxidation of both anthropogenic
and biogenic precursors. However, this divergent pattern of correlations supported that
anthropogenic precursors were not the dominant source of malic acid in this study. Thus, these
results suggested that the relative contributions of biogenic sources to SOA become more important

under cleaner conditions.

Comment 5: line 226: The authors normalize oxalic acid and related species by PM:sto reduce
dilution effects. I would rather recommend using primary and inertia tracers such as ACO as a more

appropriate normalizer for removing dilution.

Response: Thank you for the valuable suggestion. Indeed, using CO as a normalization tracer for
dicarboxylic acids and oxalic acid is more reasonable for evaluating the influence of atmospheric
dilution. Accordingly, we have added a figure in the Supplement showing that the temporal trends
of dicarboxylic acids and oxalic acid normalized by CO are consistent with their original trends.
This result indicates that meteorology-driven atmospheric dilution had a limited influence on their
observed variations. The related discussion has been incorporated into the same paragraph in the
revised manuscript. Here, we showed an increase in the the ratio of C2/PM s to reflect the relative

importance of SOA is increasing as pollution levels decrease.

Line 236-244

Carbon monoxide (CO) can be used as a normalization tracer to assess the influence of
atmospheric dilution. As shown in Fig. S3, the temporal trends of DCA and C; normalized by CO
are consistent with their original trends, indicating that atmospheric dilution had a limited influence
on their observed variations. To further explore the changes of SOA formation under different
pollution conditions, our samples were divided into five categories according to interim targets
recommended by the Worle Health Organization (WHO) in 2021 (World Health Organization, 2021):
ITO ( PM2s> 75 pg m™3), IT1 (75 ug m™3 > PMys> 50 pg m™3), IT2 (50 ug m™3 > PM, s> 37.5 ug
m™3), IT3 (37.5 pg m3 > PMys> 25 pug m3), and IT4 (PMas< 25 pg m3). We found that the
molecular markers and C, decreased significantly (p < 0.01) from ITO to IT4 (Table S6). However,
the ratio of C; to PMa2s (C2/PMzs) increased from 6.8 x 1073 to 10.3x 103 (p < 0.01, Fig. S4),

suggesting that the relative importance of SOA increased as pollution levels decreased.
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Figure S3. The concentrations of DCA and C2 normalized by carbon monoxide (CO, ppm). Due to the lack
of in situ CO measurements at the sampling site, monthly CO data were obtained from the Copernicus
Atmosphere Monitoring Service (CAMS) global reanalysis product (EAC4), provided by the European
Centre for Medium-Range Weather Forecasts (ECMWF, https://cds.climate.copernicus.eu/datasets). The

dataset has a horizontal resolution of approximately 0.75° x 0.75°.

Comment 6: Figure 3: add oxalic acid data in this figure.

Response: Thanks for suggestion. We have added oxalic acid data in this figure.
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Figure 3. (a) Annual variations in aliphatic DCA. (b) Annual variations in oxalic acid. The concentrations of
DCA decreased from 864 + 283 ng m= (2007) to 307 + 122 ng m~ (2018), and the concentrations of oxalic acid
decreased from 692 + 243 ng m> (2007) to 274 + 114 ng m™ (2018), but the trends were not statistically
significant (p > 0.05). Due to the absence of oxalic acid measurements in 2009, the concentrations of aliphatic

DCA for that year are not presented.

Comment 7: line 255-258: I do not find enough evidence supporting the two sentences claiming the

limited contribution of anthropogenic VOCs and meteorology.

Response: Thanks for this valuable comment. The AVOCs and meteorology play important roles in
oxalic acid formation. However, what we want to discuss here is that the influences of changes in
AVOCs and meteorology on C, variations. We apology for the imprecise statement, which confuses
the concept of “absolute contributions of AVOCs and meteorology” with “impacts of changes in
AVOCs and meteorology”. For example, although contributions from AVOCs to C; is important,
their impacts on C, variations could be limited when AVOCs remain at a stable level. We have

revised the relevant sentences to prevent any misunderstanding.

As shown in Figure 3 (see above), oxalic acid exhibited weak correlations with primary
anthropogenic source markers across the entire dataset. Although anthropogenic sources
experienced substantial reductions during the campaign period (discussed in Section 3.1), oxalic

acid did not show a corresponding significant decreasing trend. In addition, a recent study observed



an unexpected increase in oxalic acid when anthropogenic emissions were substantially reduced
during the COVID-19 pandemic (Meng et al., 2023). These evidences implied that the reductions

in anthropogenic emissions were not the driving factor for oxalic acid variations.

Because our field measurements were conducted in the same season each year (from October to
December), the inter-annual differences in meteorological conditions were small. This resulted in
the consistently weak correlations observed between oxalic acid and key meteorological parameters
such as temperature, solar radiation, and relative humidity (Figure 3). Therefore, we conclude that

the changes in meteorology were too small to be driving factor for oxalic acid formation.

Line 265-275

Similarly, we found that anthropogenic emissions experienced substantial reductions during
our campaign period (discussed in Section 3.1), while C; did not show a corresponding significant
decreasing trend. Although strong correlations between C, and primary anthropogenic source
markers were observed in certain individual years, the correlations remained weak across the entire
dataset. These findings implied that the changes in anthropogenic emissions were not the driving
factor for oxalic acid formation in this study. Because our field measurements were conducted in
the same season each year (from October to December), the inter-annual differences in
meteorological conditions were negligible. This resulted in consistently weak correlations observed
between C; and meteorological parameters such as temperature, SR, and RH. Therefore, we

concluded that the changes in meteorology were too small to be the driving factor for C, formation.

Comment 8: Table 1: how may data points are in each category?

Response: Thanks for your suggestion. We have moved Table 1 to Table S5, which shows
correlations between C and various factors under different pollution levels. In addition, we have

added number of samples in each category and each year.

Table S5. Correlations between C2 and various factors under different pollution levels.

ITO

IT1

IT2

IT3

IT4

Levoglucosan

Hopanes

Octadecanoic acid

Picene
Terephthalic acid
Phthalic acid
DHOPA
Malic acid
Ox
J(O1D)
JINO2)

0.17 (-0.05, 0.37)
-0.04 (-0.25, 1.08)
0.54 (0.36, 0.68) **
0.06 (-0.17, 0.28)
0.40 (0.20, 0.57) **
0.63 (0.47, 0.74) **
0.19 (-0.13, 0.30) *
033 (0.13, 0.52) *
0.28 (0.05, 0.48) *
0366 (0.15, 0.53) **
0.29 (0.08, 0.48) **

-0.03 (-0.22, 0.16)
-0.21 (-0.38, -0.01) *
-0.03 (-0.22, 0.16)
-0.28 (-0.46, -0.07) *
0.23 (0.04, 0.40) *
0.28 (0.01, 0.45) **
0.49 (0.29, 0.60) **
0.53 (0.38, 0.66) **
0.54 (0.37, 0.68) **
0.17 (-0.03, 0.36)
0.14 (-0.07, 0.33)

-0.10 (-0.36, 0.16)
-0.05 (-0.31, 0.22)
0.01 (-0.26, 0.27)
-0.18 (-0.45,0.12)

0.43 (0.19, 0.62) **

0.44 (0.20, 0.63) **

045 (021, 0.64) **

0.66 (0.48, 0.77) **

0.56 (0.25, 0.70) **
0.33 (0.05, 0.56) *

0.49 (0.24, 0.68) **

0.01 (-0.23, 0.26)
0.29 (0.05, 0.49) *
-0.03 (-0.26, 0.22)
0.08 (-0.25, 0.39)
0.34 (0.1, 0.54) *

0.34 (0.11,0.54) **

042 (0.20, 0.61) **

0.69 (0.44, 0.75) **

0.51 (0.42, 0.75) **
0.13 (-0.12, 0.37)
0.22 (-0.03, 0.45)

-0.29 (-0.61,0.11)
041 (-0.01,0.70) *
0.17 (-0.23,0.52)
0.02 (-0.62, 0.64)
0.41 (0.04, 0.69) *
031 (0.01, 0.54) **
032 (-0.01, 0.65) **
0.72 (0.45, 0.87) **
0.68 (0.39, 0.84) **
-0.09 (-0.49, 0.34)
0.02 (-0.40, 0.44)



IT1

IT2

IT3

IT4

IT0
Sulfate 0.49 (0.28, 0.62) **
ALWC 0.48 (0.31, 0.65) **
pH -0.19 (-0.39, 0.03)
Temperature 0.24 (0.02, 0.43) *
RH 0.15 (-0.06, 0.36)
SR -0.01 (-0.23,0.21)

0.29 (0.12, 0.46) **
0.36 (0.19, 0.50) **
-0.15 (-0.32, 0.03)
0.42 (0.27, 0.56) **

0.60 (0.43, 0.74) **
0.32 (0.09, 0.53) **
-0.38 (-0.57, 0.16) **
0.50 (0.30, 0.67) **

0.28 (0.11, 0.44) **
0.13 (-0.06, 0.30)

-0.03 (-0.21, 0.26)

0.43 (0.21, 0.61) **

042 (021, 0.59) **
0.30 (0.08, 0.49) **
-0.01 (-0.24, 0.22)
0.40 (0.19, 0.58) **
-0.03 (-0.19, 0.26)
0.42 (0.21, 0.59) **

0.55 (0.24, 0.76) **
0.15 (-0.01, 0.31)
-0.19 (-0.54, 0.21)

0.63 (0.35, 0.81) **
-0.03 (-0.39, 0.33)

0.53 (0.22, 0.75) **

The values in brackets indicate the 95% confidence intervals (CIs) of the correlation coefficients. One, two

asterisks denote p values less than 0.05, 0.01, respectively. No asterisk denotes the correlations are not

statistically significant.

Table S6. Meteorological parameters, PM2.5 main components, organic molecular tracers, diacids, pH, and

ALWC in the PRD (IT0-IT4).

ITO IT1 IT2 IT3 IT4
N=129 N=144 N=T2 N=84 N=33
I. Meteorological parameters
Temperature (°C) 202429 215+3.6 21.6+34 228431 208+438
Relative humidity (%) 564124 56+ 13 6210 67+9 66+7
Solar radiation (W m ) 148.0+43.9 145.6 £42.6 118.0 =46 115.5£43.4 112.0+50.5
Boundary layer height (m) 578 + 159 578 + 134 613+ 167 583 + 142 626 + 154
II. Molecular tracers (ng m)
Levoglucosan 3334225 194 = 131 114+79 96 = 74 63+ 34
Hopanes 34£26 20£1.6 1319 0.88+0.70 0.54+0.30
Octadecanoic acid 37.5+21.0 284172 22341438 17.3+8.7 11.3£0.93
Picene 0.26 +0.20 0.22+0.15 0.18+0.11 0.17£0.10 0.10£0.04
Terephthalic acid 50.0 +46.8 48.9+30.7 3214313 27.9+27.1 14.5+12.4
Phthalic acid 403+17.8 29.2+16.0 22.7+102 19.6 +10.1 14.1+8.8
DHOPA 2.52+2.28 2.27+2.07 1.42 £1.06 1.05+1.01 0.78 £0.43
Malic acid 19.0+19.0 16.6 + 16.4 9.6+8.3 74%6.1 39+23
II1. Aliphatic Diacids (ng m™)
Oxalic acid (C2) 619 +290 483 +200 329+ 158 293 + 125 189 + 102
Succinic acid (Cy) 55.0+49.5 29.3+28.5 18.5+14.2 16.7+12.7 129+ 12.1
Glutaric acid (Cs) 12.5+10.5 6.4+59 4.8+2.7 42+42 45+5.6
Adipic acid (Cs) 7.1+42 49+34 40+2.7 34+£25 29+2.6
Pimelic acid (Cy) 19+13 1.4+038 1107 1.1+0.9 0.7+0.5
Suberic acid (Cs) 30+£22 25+1.5 22+13 20+1.3 14+£1.0
Azelaic acid (Cy) 13.5+12.3 11.9+83 104+£7.0 9.6+6.1 6.7+3.8
Sebacic acid (Cyo) 20+1.8 17412 1.6+13 15+ 1.1 1.0£09
Subtotal 734 4337 540 +218 358+ 163 3254135 208 + 67
IV. Other species
pH 2.04+0.96 240+0.61 248 +£0.43 2.36 +£0.58 2.11+£0.71
ALWC (ug m™) 209+ 11.0 15.1£99 13.1£69 13.1+8.0 72430
136.7 +31.7 1349+34.4 111.9+£27.1 98.5+25.0 72.7+£19.1

Ox (ng m?)




Table S2. Information of PM2.s samples.

Year Duration Number of samples
2007 October to November 32
2008 November to December 45
2009 November to December 25
2010 October to December 69
2011 November to December 28
2012 November to December 39
2013 November to December 29
2014 October to November 20
2015 October to November 37
2016 October to November 33
2017 October to December 55
2018 October to December 50

Comment 9: Figure 6: The author should consider using the same features to predict other di-acids

to see if these features can well capture the variation of other di-acids.

Response: Thank you for the valuable suggestion. We have used the same features to predict other

DCA. Our results show great agreements between measurement data and prediction (R?>=0.72-0.82),

which further verify the reliability of our machine learning model.
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Anonymous Referee #2

General comments

This work analyzed a long-term variation of oxalic acid in atmospheric aerosols in the Pearl River
Delta from 2007 to 2018. Aerosol liquid water and Ox are the driving factors of C2 formation, and
gas-phase oxidation would play a more important role than aqueous-phase oxidation as air
pollution decreases. The long-term data is valuable and informative. However, the data

interpretation needs to be more rigorous. I may suggest a major revision before publication.

Major comments:

Comment 1: The ALWC and Ox are identified as the drivers of C2 variation. The authors also
highlight the increased contribution of gas-phase oxidation and decreased contribution of aqueous-
phase oxidation to C2 formation as pollution levels declined. However, high air pollution level is

usually accompanied by high humidity and low Ox.

Response: Thanks for comment. In Table S6, we provided information under different pollution
levels during our study period. Because the sampling was conducted in the same season (mainly
from October to December), the inter-annual differences in meteorological condition are small.
Relative humidity fluctuated within a narrow range (56% ~ 67%) under different pollution levels.
Due to strict emission control measures during the past decades in the Pearl River Delta (PRD)
region (Bian et al., 2019), dramatic reductions were identified in sulfate and nitrate, which are the
highly hygroscopic compounds in PMys. As a result, aerosol liquid water content (ALWC)
decreased significantly from 20.9 ug m (high pollution, ITO) to 7.5 ug m= (low pollution, IT4).

In many urban environments, high pollution levels are often accompanied by suppressed Oy
concentrations. This results from that heavy pollution events are typically characterized by stagnant
meteorological conditions, high relative humidity, and elevated NO emissions. Under such
conditions, strong NO titration efficiently removes O3, leading to lower O3 and thus lower Ox.
However, previous WRF-Chem simulations have demonstrated that the response of O3 to
anthropogenic emission changes exhibits strong regional heterogeneity in China (Wang et al., 2021).
For example, emission reduction due to the COVID-19 lockdown increased O3 concentrations in
the Yangtze River Delta (YRD) and central China, while it led to O3 decrease in most parts of the
PRD. This could be explained by the regional disparities of the O3—NOx—VOC regime. In PRD,
most rural areas were NOy-limited (our sampling site is located in a rural area), which means that
the reductions in anthropogenic emissions would lead to lower Os. This is consistent with our
observations showing a decreasing trend in Ox concentrations from 163.7 pg m= (high pollution,

ITO0) to 72.7 ug m (low pollution, IT4).



Table S6. Meteorological parameters, PM2.5 main components, organic molecular tracers, diacids, pH, and

ALWC in the PRD (IT0-IT4).

ITO IT1 IT2 IT3 IT4
I. Meteorological parameters
Temperature (°C) 202+29 21.5+3.6 21.6+34 22.8+3.1 20.8 £4.8
Relative humidity (%) 56+12.4 56+13 62+ 10 67+9 66+ 7
Solar radiation (W m2) 148.0 +43.9 145.6 +42.6 118.0 £ 46 115.5+434 112.0 £ 50.5
Boundary layer height (m) 578 £ 159 578 £ 134 613 £ 167 583+ 142 626 + 154
I1. Molecular tracers (ng m-)
Levoglucosan 333 £225 194 + 131 114 £ 79 96 + 74 63 +34
Hopanes 34+26 20+1.6 1.3+£1.9 0.88 +£0.70 0.54 +0.30
Octadecanoic acid 37.5+21.0 284+17.2 223+14.8 17.3+8.7 11.3+0.93
Picene 0.26 +£0.20 0.22+0.15 0.18+0.11 0.17 +0.10 0.10 + 0.04
Terephthalic acid 50.0 £46.8 48.9 +30.7 32.1+31.3 27.9+27.1 145+124
Phthalic acid 403+17.8 29.2+16.0 22.7+£10.2 19.6 £10.1 14.1£8.8
DHOPA 2.52+2.28 2.27+£2.07 1.42 £1.06 1.05+1.01 0.78 £0.43
Malic acid 19.0+19.0 16.6 +16.4 9.6+8.3 74+6.1 39+23
II1. Aliphatic Diacids (ng m)
Oxalic acid (C,) 619 +£290 483 £ 200 329 + 158 293 £ 125 189 £ 102
Succinic acid (Cy) 55.0+49.5 29.3+28.5 18.5+14.2 16.7+12.7 129+ 12.1
Glutaric acid (Cs) 12.5+10.5 6.4+59 4.8+27 42+42 45+5.6
Adipic acid (C¢) 7.1+42 49+34 4.0+27 34+£25 29+26
Pimelic acid (C) 19+13 14+0.8 1.1+£0.7 1.1£09 0.7+0.5
Suberic acid (Csg) 3.0+£22 25+15 22+13 20+13 14+1.0
Azelaic acid (Cy) 135+123 11.9+83 104 +7.0 9.6+6.1 6.7+3.8
Sebacic acid (Cy) 20+1.8 1.7+12 1.6+1.3 1.5+1.1 1.0+£09
Subtotal 734 +337 540 + 218 358 £163 325+135 208 + 67
IV. Other species
pH 2.04+0.96 2.40 £0.61 2.48 £0.43 2.36 £0.58 2.11£0.71
ALWC (ug m?) 209+ 11.0 151499 131469 13.1£8.0 72430
Oy (ug m?) 136.7 £31.7 1349 +34.4 111.9+27.1 98.5+25.0 72.7+19.1

Comment 2: How did the authors exclude the impacts of different emission levels when addressing

the influence of RH and Ox on C2 variation?

Response: Thanks for the comment. Anthropogenic volatile organic compounds (AVOCs) are

indeed important precursors of C», and their influences should be carefully examined. In this study,

instead of excluding impacts of changes in anthropogenic emission, we demonstrated the impacts

were limited from the several complementary perspectives.

First, long-term trends showed that anthropogenic emissions (biomass burning, vehicle emission,

and cooking) decreased significantly from 2007 to 2018, whereas C, did not experience

corresponding decline. This initial finding was further supported by correlation analysis, which

revealed the consistently weak correlations between C, and primary anthropogenic markers



throughout the entire dataset. These findings indicated that changes in anthropogenic emissions
were not the dominant driving factors for C; variations. In contrast, Ox and ALWC displayed strong

correlations with C,, suggesting they are main drivers of C, variability.

However, we acknowledge that when investigating the influence of Ox and ALWC on C; variations
under different pollution levels (IT0-1T4), the original manuscript did not include the corresponding
correlations between C; and other factors within each category. The absence of this information
indeed weakens the logical completeness of our argument. To address this, we have added the
relevant results to the Supplement (Table S7). It shows the correlations between C, and primary
anthropogenic markers (Levoglucosan, hopanes, octadecanoic acid, picene, and terephthalic acid)
remain generally weak across all pollution categories. This indicates that changes in anthropogenic
emissions exert only limited influence on C, variations. Moreover, fluctuations in anthropogenic
markers within each category were not substantial. Thus, it is reasonable that we apply the

correlation coefficients between C, and O/ALWC to reflect their influences on C; formation.

Additionally, instead of simply excluding anthropogenic emissions from consideration, we
quantitatively assessed their influence using a machine learning model. The results show that
changes in anthropogenic emissions contribute only a small portion (~14%) of the overall variability
in C,. This quantitative evidence strengthens our conclusion that variations in gas-phase and

aqueous-phase oxidation are the dominant drivers of C variations.

Table S7. Correlations between C: and various factors under different pollution levels.

IT0

IT1

IT2

IT3

IT4

Levoglucosan

Hopanes

Octadecanoic acid

Picene
Terephthalic acid
Phthalic acid
DHOPA
Malic acid
Ox
J(O1D)
J(NO2)
Sulfate
ALWC
pH
Temperature
RH
SR

0.17 (-0.05, 0.37)
-0.04 (-0.25, 1.08)
0.54 (0.36, 0.68) **
0.06 (-0.17, 0.28)
0.40 (0.20, 0.57) **
0.63 (0.47, 0.74) **
0.19 (-0.13, 0.30) *
033 (0.13, 0.52) *
0.28 (0.05, 0.48) *
0.366 (0.15, 0.53) **
0.29 (0.08, 0.48) **
0.49 (0.28, 0.62) **
0.48 (0.31, 0.65) **
-0.19 (-0.39, 0.03)
0.24 (0.02, 0.43) *
0.15 (-0.06, 0.36)
-0.01 (-0.23, 0.21)

-0.03 (-0.22, 0.16)
-0.21 (-0.38, -0.01) *
-0.03 (-0.22, 0.16)
-0.28 (-0.46, -0.07) *
0.23 (0.04, 0.40) *
0.28 (0.01, 0.45) **
0.49 (0.29, 0.60) **
0.53 (0.38, 0.66) **
0.54 (0.37, 0.68) **
0.17 (-0.03, 0.36)
0.14 (-0.07, 0.33)
0.29 (0.12, 0.46) **
0.36 (0.19, 0.50) **
-0.15 (-0.32, 0.03)
042 (0.27, 0.56) **
0.28 (0.1, 0.44) **
0.13 (-0.06, 0.30)

-0.10 (-0.36, 0.16)
-0.05 (-0.31, 0.22)
0.01 (-0.26, 0.27)
-0.18 (-0.45, 0.12)

043 (0.19, 0.62) **
0.44 (0.20, 0.63) **
045 (0.21, 0.64) **
0.66 (0.48, 0.77) **
0.56 (0.25, 0.70) **
0.33 (0.05, 0.56) *
0.49 (0.24, 0.68) **
0.60 (0.43, 0.74) **
0.32 (0.09, 0.53) **
-0.38 (-0.57, 0.16) **
0.50 (0.30, 0.67) **
-0.03 (-0.21, 0.26)

0.43 (0.21, 0.61) **

0.01 (-0.23, 0.26)
0.29 (0.05, 0.49) *
-0.03 (-0.26, 0.22)
0.08 (-0.25, 0.39)
0.34 (0.11,0.54) *

0.34 (0.1, 0.54) **

042 (0.20, 0.61) **

0.69 (0.44, 0.75) **

0.51 (0.42, 0.75) **
0.13 (-0.12, 0.37)
0.22 (-0.03, 0.45)

042 (021, 0.59) **

0.30 (0.08, 0.49) **
-0.01 (-0.24, 0.22)

0.40 (0.19, 0.58) **
-0.03 (-0.19, 0.26)

0.42 (0.21, 0.59) **

-0.29 (-0.61,0.11)
041 (-0.01, 0.70) *
0.17 (-0.23,0.52)
0.02 (-0.62, 0.64)
0.41 (0.04, 0.69) *
031 (0.01, 0.54) **
0.32 (-0.01, 0.65) **
0.72 (0.45, 0.87) **
0.68 (0.39, 0.84) **
-0.09 (-0.49, 0.34)
0.02 (-0.40, 0.44)
0.55 (0.24, 0.76) **
0.15 (-0.01,0.31)
-0.19 (-0.54,0.21)
0.63 (0.35, 0.81) **
-0.03 (-0.39, 0.33)
0.53(0.22, 0.75) **

The values in brackets indicate the 95% confidence intervals (Cls) of the correlation coefficients. One, two



asterisks denote p values less than 0.05, 0.01, respectively. No asterisk denotes the correlations are not

statistically significant.

Line 265-275

Meng et al. (2023) reported an unexpected enhancement of C, during the COVID-19 pandemic,
when anthropogenic emissions were substantially reduced. This reflected limited influence of
reductions in anthropogenic organic precursors on formation of C,. Similarly, we found that
anthropogenic emissions experienced substantial reductions during our campaign period (discussed
in Section 3.1), while C, did not show a corresponding significant decreasing trend. Although strong
correlations between C, and primary anthropogenic source markers were observed in certain
individual years, the correlations remained weak across the entire dataset. These findings implied
that the changes in anthropogenic emissions were not the driving factor for C, formation in this
study. Because our field measurements were conducted in the same season each year (from October
to December), the inter-annual differences in meteorological conditions were small. This resulted
in consistently weak correlations observed between C, and meteorological parameters such as
temperature, SR, and RH. Therefore, we concluded that the changes in meteorology were too small
to be the driving factor for C, formation.

Line 315-329

The opposite trends implied the roles of gas-phase and aqueous-phase oxidation in C,
formation might change. However, the precision and stability of Pearson’s r values are strongly
influenced by sample size when the variations appear small or when sample sizes differ among
groups. Therefore, the differences in Pearson’s r values do not necessarily imply statistically
significant changes, especially when they are very close (IT1-IT4). To assess the statistical
significance of these differences, we compared correlation coefficients between groups using the
method described in Text S1. As shown in Table S8-S9, significant differences in the C,-Ox
correlation were observed only between ITO and the other pollution levels. For the C,-ALWC
correlation, a significant difference was found only between ITO and IT4. Given that IT1-1T4
represents a continuous evolution of atmospheric conditions, rather than discrete and independent
regimes, large differences in correlation coefficients among these categories are not expected.
Although the correlation between C; and sulfate was strong, it did not show the similar trends as
that between C, and ALWC. In contrast, the correlations between C, and primary anthropogenic
markers remained generally weak across all pollution categories (Table S7), indicating that changes
in anthropogenic emissions exert only limited influence on C; variations. Therefore, the significant
and opposite changes in correlations of C, with Ox and ALWC between high pollution level (IT0)
and low pollution level (IT4) suggested a shift in the dominant C, formation pathway from aqueous-

phase oxidation to gas-phase photochemical oxidation under lower pollution conditions.

Comment 3: In Fig. 5, the correlation between C2 and Ox is always higher than that between C2
and ALWC under IT1, 2, 3, and 4. The correlation between C2 and ALWC is weak under any IT



condition.

Response: Thanks for the comment. In this study, both Ox and ALWC display significant positive
correlations with C, under most pollution levels. Our results show that the correlation coefficients
between C, and Oy are consistently higher than that between C, and ALWC under IT1-IT4, whereas
the C2-ALWC correlations is higher than that of C,-Ox under ITO (Figure 4, see below). This pattern
likely results from the reduction in pollution levels (accompanied by decreases in ALWC), which
weakens the role of aqueous-phase oxidation in C, formation, while the contribution from gas-phase

oxidation becomes relatively more important.

We note that the Pearson correlation coefficients reflect the strength of linear associations but do
not directly represent the quantitative contribution of each factor. Thus, the lower Pearson’s r values
between C; and ALWC than those between C> and Ox under IT1-IT4 do not necessarily imply a
smaller contribution of aqueous-phase pathways compared with gas-phase pathways. Here,
correlation analysis is used primarily to identify potential drivers and their changing patterns, while

a machine learning model is further applied to quantify their contributions to C, variations.

Although the correlations between C, and ALWC is relatively weak under IT1-1T4, they are still
stronger than those for other factors (Table S7, see above). This weak correlation may arise from
several reasons: (1) reductions in pollution levels (and ALWC) weaken the influence of aqueous-
phase oxidation; (2) the effect of ALWC on C; may be non-linear and not fully captured by linear
correlation; (3) ALWC serves as an indicator of aqueous-phase processes in this study, but aqueous

production also depends on other factors such as transition metals and oxidant availability.
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Figure 4. The correlation between C2 and ALWC, as well as Ox. The values in brackets indicate the 95%
confidence intervals (CIs) of the correlation coefficients. One, two asterisks denote p values less than 0.05,
0.01, respectively. With decreasing pollution levels, the correlation between C2 and ALWC weakens, whereas

that between Cz and Ox strengthens.

Line 330-334
The Pearson correlation coefficients reflect the strength of linear associations but do not

directly represent the quantitative contribution of each factor. Thus, the lower Pearson’s r values



between C, and ALWC than those between C, and Ox under IT1-IT4 do not necessarily imply a
smaller contribution of aqueous-phase pathways compared with gas-phase pathways. Here,
correlation analysis is used primarily to identify potential drivers and their changing patterns, while

a machine learning model is further applied to quantify their contributions to C variations.

Comment 4: Section 3.4: For the machine learning analysis, the authors quantify the contributions
of different sources using some input parameters. The rationality of this approach needs to be
elaborated. For example, air temperature, solar radiation, and relative humidity are used to
represent the emission of biogenic precursors (lines 318-319). Do all these meteorological factors
promote the emission of biogenic precursors? For biogenic emissions, is there a synergistic or
antagonistic mechanism between these factors? Please explain in detail. The reasonability of using

the input parameters to represent other sources also needs to be elaborated.

Response: Thanks for this valuable comment. We apologize for the missing explanation regarding
the selection of input parameters in the original manuscript. Each variable used in the machine
learning model should be chosen rationally to ensure the reliability of the results. We have now

added a detailed discussion on the selection of input parameters in Section 3.4.

Line 347-369

The rationality for selecting the variables used to train the model need to be clarified to ensure
the reliability of the results. Levoglucosan, hopanes, octadecanoic acid, picene, and tPh serve as
source-specific molecular markers for biomass burning, vehicle emission, cooking, coal combustion,
and waste incineration, respectively. These species are used to represent changes in AVOC. As two
of the most important BVOCs globally, isoprene emission is highly dependent on temperature and
solar radiation, while monoterpenes emission is sensitive to temperature (Guenther et al., 1993).
Their emissions rate can be estimated using equation 3-5 and equation 6, respectively:

Ei= IS.CL.CT (3)
acypqL
V1+a?L? (4)

cr1 (T-Ts)
_ RTST
Cr = ——=5 = ®)
Ltexp T2 =)
P RTT

CL=

where E; is isoprene emission rate at a temperature 7(K) and photosynthetically active radiation
(PAR) flux L (umol m -2 1), I is isoprene emission rate at a standard temperature Ts and a standard
PAR flux (1000 pmol m 2 s!). o= 0.0027 and cr1 = 1.066 are empirical coefficients determined by
measurements. L can be calculated as multiplying solar radiation (W m2) by photon flux efficacy
(1.86 umol J!). R is a constant -8.314 J K-! mol'!, and cri = 95000 J mol’!, ¢t = 230000 J mol-',
and Tm = 314 K are empirical coefficients estimated by measurements.

Epn = Mg -exp (B (T —Ts)) (6)

where E,, is monoterpenes emission rate at temperature 7 (K), M, is monoterpenes emission rate at



a standard temperature Ts, B (K') is an empirical coefficient ranging from 0.057 to 0.144 K'!. In
addition, inadequate moisture can have significantly decreased stomatal conductance and
photosynthesis (Guenther et al., 2006). Therefore, temperature, solar radiation, and RH are
important factors determining BVOC emissions. As discussed previously, Ox, J(O'D), and J(NO,)
can be employed as indicators of gas-phase oxidation, while ALWC, pH, and sulfate are used as
indicators of aqueous-phase processes. To avoid redundant and confounding explanations, the
secondary organic molecular markers, such as DHOPA, Ph, and malic acid, were excluded from the
model training. These species are influenced by both VOC emissions and secondary oxidation

processes, which are already represented by the factors mentioned above.

Comment 5: For the contribution of gas-phase oxidation versus aqueous-phase oxidation, is the

result here obtained based on machine learning comparable to those reported in published literature?

Response: A previous stable carbon isotopic study conducted in North China (urban site) reported
that the contributions of gas-phase and aqueous-phase pathways to C, formation accounted for 12.3%

and 47.2% during average days, but shifted to 50.5% and 16.1% during the COVID-19 lockdown.

However, in this study, we investigate the “impacts of changes in gas-phase oxidation and aqueous-
phase oxidation” by machine learning model, rather than the “absolute contributions of gas-phase
oxidation and aqueous-phase oxidation”. The former is independent of VOCs precursors because
SHAP values reflect the marginal impact of a unit change in each variable on the predicted C,
concentration while keeping other variables constant (discussed in Section 2.4). In contrast, the
latter is dependent on VOCs precursors. Therefore, our machine learning approach provides a more
appropriate and meaningful assessment of process-driven changes in C, formation. Our updated
results show that gas-phase and aqueous-phase pathways account for 45% and 34% (after including
additional factors following Reviewer #1’s suggestion) for C; variations generally. In addition, after
inclusion of new factors, the results and general conclusions are similar to our previous version.
This further enhances the reliability of our method. The comparison between results of new and old
versions is presented below. We apology for some unclear statements in original text, which lead to

misunderstanding. We have revised them now.
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Line 28-42

Secondary organic aerosol (SOA) is a dominant constituent of fine particulate matter, exerting
significant impacts on both climate and human health. Oxalic acid (C>), a key end-product formed
from the oxidation of volatile organic compounds, can provide insights into the formation
mechanism of SOA. Thus, long-term measurements of C; and related compounds help understand
the changes in SOA formation with decreasing pollutant levels. In this study, C; and its homologs,
along with five primary anthropogenic source markers and three SOA markers, were measured in
the Pearl River Delta (PRD) during 2007-2018. The concentrations of C; did not exhibit significant
downward trends, despite substantial reductions in anthropogenic emissions, such as biomass
burning (-11% yr!), vehicle emissions (-17% yr'!"), and cooking emissions (-7% yr™"). Correlation
analysis revealed that aerosol liquid water content (ALWC) and O (O3 + NO») were the main drivers
of C, variations. Moreover, the relative contribution of biogenic SOA increased under cleaner
conditions. A machine learning model was applied to quantify the impacts of changes in
anthropogenic precursor emissions, biogenic precursor emissions, aqueous-phase oxidation

processes, and gas-phase oxidation processes on C, variability. As pollution levels declined, the



impacts of gas-phase oxidation increased from 37% to 55%, whereas that of aqueous-phase
oxidation declined from 42% to 30%. This shift indicated a transition from aqueous-phase to gas-
phase pathways in C; and SOA formation. Our findings highlight the increasing importance of gas-
phase oxidation under low-pollution conditions and underscore the need for effective ozone control
strategies to further reduce SOA in the future.

Line 385-393

To further quantify the impacts of changes in all factors on Cs, IF (discussed in Section 2.4)
was calculated and presented in Fig. 6. Ox accounted for the highest contribution (35%), followed
by sulfate (24%) and J(O'D) (9%). All factors were classified into four groups according to their
representativeness mentioned before: (1) AVOC emissions (levoglucosan, hopanes, octadecanoic
acid, picene, and tPh); (2) BVOC emissions (Temp, SR, and RH); (3) gas-phase oxidation pathways
(Oy, J(O'D), and J(NO»)); (4) aqueous-phase oxidation pathways (ALWC, pH, and sulfate). Due to
the minor fluctuations of meteorological conditions in each year, the impacts of changes in BVOC
emissions on C; were small (7%). Although AVOC emissions showed an obvious decreasing trend
over the study period, the impacts of these changes (14%) were significantly lower than that of gas-
phase oxidation processes (45%) and aqueous-phase oxidation processes (34%). The results were
consistent with correlation analysis, underscoring the dominant role of secondary oxidation

processes in C, formation.

Comment 6: Figures 2 and 3: I am curious about the high levels since 2013. Please explain the

reasons.

Response: Thanks for the comment. In our previous study, we observed that there was also a
rebounce in PM» s and its main components since 2013 (Figure 7, see below) (He et al., 2025).
Importantly, that analysis employed a measurement technique distinct from the analytical
procedures used for organic molecular markers in this study, suggesting that the observed rebound
is unlikely to arise from methodological artifacts. We recognize that examining long-term trends of
molecular markers is inherently challenging, as even minor changes in sampling or analytical
protocols may introduce discontinuities. Consequently, it was necessary to assess the stability of

both the sampling procedures and the analytical system over the entire study period.

Because background concentrations of many organic molecular markers were below detection limits,
we examined the long-term patterns of PM» s main components in blank filter samples to evaluate
whether sampling or environment biases were related to this phenomenon. As shown in Figure 8
(see below), these species exhibited minimal variability in the blank filter samples and no obvious

increase was observed since 2013, indicating that the potential sampling bias was negligible.

To further assess analytical stability, we examined the response factors (RFs) derived from annual



calibration curves for all quantified compounds (Table S4, see below). The RF values remained
highly consistent across years, indicating that neither instrument sensitivity nor analytical

performance experienced significant drift during the measurement period.

Meteorological variability was also considered as a potential driver. However, interannual
differences in temperature, relative humidity, solar radiation, and boundary layer height were small

(Table S5), suggesting that meteorology alone cannot explain the observed rebound.

In addition, another study covering multiple stations in the PRD region also reported a similar
increase in PM3 s and its main components since 2013 (Figure 9) (Yan et al., 2020), supporting that
the rebound was not due to newly emerging pollution sources near our sampling location. However,

the underlying cause of this rebound was not elaborated in that study.

Unfortunately, until now, we can not fully explain the rebound since 2013. We have incorporated
the relevant information and clarifications in Materials and Method section, which confirms the
stability and reliability of our long-term measurements and demonstrate that the observed trends in

molecular markers were not driven by methodology.
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Figure 7. Trend of PM2.5 and its major components (He et al., 2025).
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Table S4. Response factors (RFs) derived from the annual calibration curves.

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Succinic acid 1.79 3.66 0.90 0.93 0.93 1.47 2.11 1.47 1.47 1.65 2.41 1.52

Glutaric acid 2.88 4.07 3.31 2.30 2.30 2.93 2.70 2.93 0.81 3.95 5.53 2.38

Adipic acid 2.64 3.87 2.82 2.81 2.81 3.70 3.66 3.76 1.54 5.86 3.76 3.24

Pimelic acid 2.16 2.53 2.30 2.19 2.19 3.97 3.90 3.97 3.96 5.78 3.76 4.54

Suberic acid 2.23 2.47 2.70 2.68 2.68 4.6 3.06 4.60 5.41 7.36 439 6.45

Azelaic acid 2.03 2.03 2.42 241 2.41 3.99 3.12 3.98 5.07 6.37 3.44 6.87

Sebacic acid 3.13 3.27 431 4.29 4.29 5.79 5.54 5.79 5.79 4.83 4.93 4.45

Phthalic acid 1.01 1.07 0.86 0.66 0.98 1.92 1.86 1.93 1.88 1.88 1.98 1.91
Terephthalic acid 1.01 1.07 0.86 0.66 0.98 1.92 1.86 1.93 1.88 1.88 1.98 1.91
17a(H)-22,29,30-trisnorhopane 0.79 0.79 0.70 0.79 0.55 0.83 0.99 0.82 0.91 0.53 0.67 0.76
17a(H),21B(H)-30-norhopane 0.73 0.73 0.63 0.73 0.53 0.74 0.87 0.75 0.78 0.46 0.62 0.78
17a(H),21B(H)-30-hopane 0.78 0.78 0.74 0.78 0.52 0.78 0.88 0.76 0.42 0.70 0.59 0.97
17a(H),21B(H)-22R-homohopane 1.26 1.26 0.72 1.26 0.45 1.11 1.50 1.12 0.42 0.73 0.91 1.75
17a(H),21B(H)-22S-homohopane 1.55 1.55 0.72 1.55 1.33 1.25 1.90 1.19 0.42 1.83 1.01 1.79
Levoglucosan 1.35 1.30 1.22 0.92 1.04 0.93 0.97 0.93 0.97 0.96 0.95 0.96
Octadecanoic acid 0.50 0.56 0.66 0.68 0.96 0.89 1.29 0.89 1.22 0.71 0.89 1.09
Picene 0.84 0.80 0.84 0.77 0.78 0.66 0.80 0.66 0.79 111 0.81 1.06

Citramalic acid 1.35 1.95 1.30 3.70 3.56 2.60 2.10 2.59 2.63 2.07 2.04 2.09

Malic acid 1.46 1.46 1.16 0.95 0.91 0.87 0.86 1.02 1.15 0.85 0.76 1.05




Line 158-162

Examining long-term trends of molecular markers is inherently challenging, as even minor
changes in sampling or analytical protocols may introduce discontinuities. Consequently, it was
necessary to assess the stability of both the sampling procedures and the analytical system over the
entire study period. Table S4 presents the response factors (RFs) of all measured species derived
from the annual calibration curves. The RF values remained highly consistent across years,
indicating that neither instrument sensitivity nor analytical performance experienced significant
drift during the measurement period.

Line227-232

Unexpectedly, a rebound in the concentrations of molecular markers and aliphatic DCA was
observed in 2013, which was also observed in PM> 5 and its major component (He et al., 2025). This
rebound was unlikely driven by meteorological variability, as inter-annual differences in key
meteorological parameters were relatively small (Table S5). Similarly, another study covering
multiple stations across the PRD also report a post-2013 increase in PMa s, supporting that the
rebound was not attributable to newly emerging pollution sources near our sampling site (Yan et al.,

2020). Unfortunately, until now, the underlying cause of this rebound remained unclear.

Comment 7: Lines 250-252: “Meanwhile, the correlations between C2 and ASOA markers became
weaker. These results suggested ....”" Please explain this statement. In Table 1, I did not find an
obvious decreasing trend for the correlation coefficients between C2 and Phthalic acid (changing
from 0.28 under ITI to 0.31 under IT4) or DHOPA (changing from 0.49 under ITI to 0.32 under
1T4) from ITI to IT4.

Response: Thanks for the comment. We apologize for this imprecise statement. Indeed, the
decreases in correlations between C; and Phthalic acid, as well as DHOPA relatively small. But the
correlations between C, and malic acid displayed an obvious increase, suggesting that the relative
contribution of BVOCs becomes more important under cleaner environment. We have moved Table
1 to Supplement (Table S7), and removed “Meanwhile, the correlations between C, and ASOA

markers became weaker” in the manuscript.

Table S7. Correlations between C: and various factors under different pollution levels.

ITO IT1 IT2 IT3 T4
Levoglucosan 0.17 (-0.05, 0.37) -0.03 (-0.22, 0.16) -0.10 (-0.36, 0.16) 0.01 (-0.23, 0.26) -0.29 (-0.61, 0.11)
Hopanes -0.04 (-0.25, 1.08) 021 (-0.38, -0.01) * -0.05 (-0.31, 0.22) 0.29 (0.05, 0.49) * 0.41 (-0.01, 0.70) *

Octadecanoic acid

Picene
Terephthalic acid
Phthalic acid
DHOPA
Malic acid

0.54 (0.36, 0.68) **
0.06 (-0.17, 0.28)
0.40 (0.20, 0.57) **
0.63 (0.47,0.74) **
0.19 (-0.13, 0.30) *
0.33 (0.13,0.52) *

-0.03 (-0.22, 0.16)
-0.28 (-0.46, -0.07) *
0.23 (0.04, 0.40) *
0.28 (0.01, 0.45) **
0.49 (0.29, 0.60) **
0.53 (0.38, 0.66) **

0.01 (-0.26, 0.27)

-0.18 (-0.45,0.12)
0.43 (0.19, 0.62) **
0.44 (0.20, 0.63) **
045 (0.21, 0.64) **
0.66 (0.48, 0.77) **

-0.03 (-0.26, 0.22)
0.08 (-0.25, 0.39)
0.34 (0.11,0.54) *
0.34 (0.11, 0.54) **
042 (0.20, 0.61) **
0.69 (0.4, 0.75) **

0.17 (-0.23, 0.52)

0.02 (-0.62, 0.64)
0.41 (0.04, 0.69) *
031 (0.01, 0.54) **
0.32 (-0.01, 0.65) **
0.72 (0.45, 0.87) **



ITO

IT1

IT2

IT3

IT4

Ox
J(O1D)
J(NO2)
Sulfate
ALWC

pH

Temperature
RH
SR

0.28 (0.05, 0.48) *
0.366 (0.15, 0.53) **
0.29 (0.08, 0.48) **
0.49 (0.28, 0.62) **
0.48 (0.31, 0.65) **
-0.19 (-0.39, 0.03)
0.24 (0.02, 0.43) *
0.15 (-0.06, 0.36)

-0.01 (-0.23,0.21)

0.54 (0.37, 0.68) **
0.17 (-0.03, 0.36)
0.14 (-0.07, 0.33)

0.29 (0.12, 0.46) **

0.36 (0.19, 0.50) **
-0.15 (-0.32, 0.03)

042 (0.27, 0.56) **

0.28 (0.1, 0.44) **
0.13 (-0.06, 0.30)

0.56 (0.25, 0.70) **
0.33 (0.05, 0.56) *
0.49 (0.24, 0.68) **
0.60 (0.43, 0.74) **
0.32 (0.09, 0.53) **

-0.38 (-0.57, 0.16) **
0.50 (0.30, 0.67) **
-0.03 (-0.21, 0.26)
0.43 (0.21, 0.61) **

0.51 (0.42, 0.75) **
0.13 (-0.12, 0.37)
0.22 (-0.03, 0.45)

042 (021, 0.59) **

0.30 (0.08, 0.49) **
-0.01 (-0.24, 0.22)

0.40 (0.19, 0.58) **
-0.03 (-0.19, 0.26)

0.42 (0.21, 0.59) **

0.68 (0.39, 0.84) **
-0.09 (-0.49, 0.34)
0.02 (-0.40, 0.44)

0.55 (0.24, 0.76) **
0.15 (-0.01, 0.31)
-0.19 (-0.54,0.21)

0.63 (035, 0.81) **
-0.03 (-0.39, 0.33)

0.53 (0.22, 0.75) **

Line 278-282

As discussed previously, malic acid can be produced by photooxidation of both anthropogenic
and biogenic precursors. However, no corresponding increasing trends were observed in the
correlations between C, and ASOA tracers (Ph and DHOPA), supporting that anthropogenic
precursors were not the dominant source of malic acid in this study. Thus, these results indicated
that the relative contributions of biogenic sources to SOA become more important under cleaner

conditions.

Comment 8: Lines 287-290: 1 did not see an obvious difference in the correlation efficiency between

C2 and Ox or between C2 and ALWC from IT1 to IT4. The change of Pearson r values seems small.

Response: Thanks for your comment. Although Pearson correlation coefficients provide a measure
of association strength, the differences in Pearson r values do not necessarily imply statistically
significant changes, especially when the variations appear small or when sample sizes differ among
groups. We agree that the significance of the differences in correlation coefficients between different

categories need to be further verified, because they are very close from IT1 to IT4.

To further evaluate whether the observed differences in correlation coefficients across the different
groups are statistically meaningful, we applied the Fisher r-to-z transformation test. This method
converts Pearson r values into approximately normally distributed z-scores, enabling a rigorous
statistical comparison between two independent correlations. Thus, it allows us to determine
whether the correlation strength between C, and ALWC or between C, and Oy differs significantly
under different pollution levels, thereby providing a more robust basis for our interpretation. We
have added the methodological description and the corresponding results in the Supplement (Text
S1, Table S8-S9; see below). In addition, we calculated the 95% confidence intervals (95% Cls) of

Pearson r values for each group and included them in Figure 4.

The results show that, for the correlation between C, and Oy, significant differences in Pearson r

values are only observed between ITO and other pollution levels. For the correlation between C and



ALWC, significant difference in Pearson r values is only observed between ITO and IT4. Although
r value itself is not a function of sample size, its precision and stability are strongly influenced by
sample size. Smaller sample size leads to wider confidence intervals and greater variability in
Pearson r, which may mask the differences between groups. In addition, IT-IT4 represents a
continuous evolution of atmospheric conditions, rather than discrete and independent regimes.
Consequently, the differences in correlation coefficients among IT1-1T4 are not expected to be very
large. We acknowledge that the differences in correlation coefficients from IT1 to IT4 are not
statistically significant due to the limit of our relatively small sample size in each group, and it is
imprecise to claim an increase/decrease trend in correlation between C, and O/ALWC with
reductions in pollution levels. But the significant differences between ITO and IT4 for Ox (increasing)
and ALWC (decreasing) suggests that there could be a potential shift in the dominant formation
pathways in C, formation from high to low pollution stage. To verify this hypothesis, we conducted

machine learning in the next section, which generated more evidences to support our conclusions.

We have corrected our statements in manuscript to make them more rigorous.

Table S5. Significance (p values) of the difference between correlation coefficients in different categories (Ca-

ALWC).

IT0 IT1 IT2 IT3
IT1 0.25
IT2 0.21 0.76
IT3 0.15 0.64 0.89
IT4 <0.05 0.22 0.37 0.43

Table S6. Significance (p values) of the difference between correlation coefficients in different categories (Ca-

0y).

IT0 IT1 IT2 IT3
IT1 <0.01
IT2 <0.05 0.84
IT3 <0.01 0.47 0.65

IT4 <0.01 0.22 0.33 0.55
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Figure 4. The correlation between C2 and ALWC, as well as Ox. The values in brackets indicate the 95%
confidence intervals (CIs) of the correlation coefficients. One, two asterisks denote p values less than 0.05,
0.01, respectively. With decreasing pollution levels, the correlation between C2 and ALWC weakens, whereas

that between Cz and Ox strengthens.

Text S1. Descriptions of Fisher r-to-z transformation.

The Pearson correlation coefficient 7 is widely used to quantify the strength and direction of
linear relationships between two variables. However, the sampling distribution of 7 is not normally
distributed, especially when the true correlation is far from zero or the sample size is small. To
address this issue, Fisher (1921) proposed a transformation of  to a variable z, known as the Fisher
r-to-z transformation, defined as:

z= Sl 2 (1)
This transformation converts » into an approximately normal distribution, allowing for more
accurate estimation of confidence intervals and hypothesis testing. The standard error of z is given
as:

SE=1/yn-3 )
where 7 is the sample size. After calculating the confidence interval in the z-space, it can be back-
transformed to the original » scale, providing a robust measure of uncertainty for correlation
estimates.

Furthermore, the Fisher r-to-z transformation can also be used to test whether two correlation
coefficients from independent samples differ significantly. For two correlations 7; and r; with
sample sizes n; and n2, their corresponding z values are calculated as above, and the standard error

of the difference is calculated as:
SE=1/|—+ — 3)

The difference is then standardized as:

z1-z2
<2 “4)

A two-tailed p value can be derived from the standard normal distribution to determine whether the




difference between r; and r; is statistically significant. This approach provides a rigorous method
for comparing correlation strengths across independent datasets.

Line 315-329

The opposite trends implied the roles of gas-phase and aqueous-phase oxidation in C,
formation might change. However, the precision and stability of Pearson’s r values are strongly
influenced by sample size when the variations appear small or when sample sizes differ among
groups. Therefore, the differences in Pearson’s r values do not necessarily imply statistically
significant changes, especially when they are very close (IT1-IT4). To assess the statistical
significance of these differences, we compared correlation coefficients between groups using the
method described in Text S1. As shown in Table S8-S9, significant differences in the C,-Ox
correlation were observed only between ITO and the other pollution levels. For the C,-ALWC
correlation, a significant difference was found only between ITO and IT4. Given that IT1-IT4
represents a continuous evolution of atmospheric conditions, rather than discrete and independent
regimes, large differences in correlation coefficients among these categories are not expected.
Although the correlation between C, and sulfate was strong, it did not show the similar trends as
that between C; and ALWC. In contrast, the correlations between C; and primary anthropogenic
markers remained generally weak across all pollution categories (Table S7), indicating that changes
in anthropogenic emissions exert only limited influence on C, variations. Therefore, the significant
and opposite changes in correlations of C; with Ox and ALWC between high pollution level (ITO)
and low pollution level (IT4) suggested a shift in the dominant C, formation pathway from aqueous-
phase oxidation to gas-phase photochemical oxidation under lower pollution conditions.

Line 330-334

The Pearson correlation coefficients reflect the strength of linear associations but do not
directly represent the quantitative contribution of each factor. Thus, the lower Pearson’s r values
between C; and ALWC than those between C; and Ox under IT1-IT4 do not necessarily imply a
smaller contribution of aqueous-phase pathways compared with gas-phase pathways. Here,
correlation analysis is used primarily to identify potential drivers and their changing patterns, while

a machine learning model is further applied to quantify their contributions to C variations.

Comment 9: The dataset collected during 2007-2018 is valuable and informative. My concern is
the uncertainty caused by long-term storage. How long after sampling were these samples analyzed?

How much of the C2 organic acid could change during storage?

Response: Thank you for raising this important concern. We fully agree that long-term storage may
introduce uncertainties in the quantification of molecular markers. In this study, all filter samples
were immediately wrapped in aluminum foil and stored at -20 °C after collection. The samples were

typically analyzed within several months after sampling.

Previous studies have shown that low temperature storage can largely preserve the chemical

composition of ambient organic aerosols. For example, Resch et al. (2023) reported that ambient



aerosol samples stored at -20 °C for more than one month largely retained their molecular profiles.
High-intensity peaks, such as carboxylic acids with molecular-weight (MW) = 172, 184, 186, and
200, showed changes in peak area within +25%, indicating good stability under low temperature
storage. In addition, this study demonstrates that low MW carboxylic acids are more stable than
high MW carboxylic acids during storage. Thus, as a typical low MW carboxylic acid, C; is expected

to remain largely stable during storage.

Although we cannot quantify decomposition of dicarboxylic acid during storage in this study, the

storage duration was generally consistent across each year, minimizing potential inter-annual biases.

Line 113-121

PM, s samples were collected using prebaked (450°C, 4h) quartz filters (8in. x 10in., QMA,
Whatman, UK). Each sample lasted for 24h using a high-volume air sampler (HVPM2.5, Tisch
Environmental Inc., USA) at an airflow rate of 1.1 m® min™'. Field blank samples were also collected
by mounting the blank filter onto the sampler for 10 min without turning on the sampler. In this
study, a total of 462 PM, 5 samples were collected mostly during the wintertime (October, November,
and December) of each year from 2007 to 2018. The detailed information about sampling can be
found in Table S2. After the collection, each filter was wrapped in an aluminum foil, zipped in
Teflon bags, and stored in a freezer (-20°C) prior to analysis. Resch et al. (2023) reported that
ambient aerosol samples stored at -20 °C for more than one month largely retained their molecular
profiles. In addition, this study demonstrates that low MW carboxylic acids are more stable than
high MW carboxylic acids during storage. Thus, the aliphatic DCA measured in this study are

expected to remain largely stable during storage.
Comment 10: In addition, in lines 115-116, I may suggest adding a table in the supplementary to

detail the sample information.

Response: Thanks for your suggestion. We have added PM,s samples information in the

Supplement.

Table S2. Information of PM2.s samples.

Year Duration Number of samples
2007 October to November 32
2008 November to December 45
2009 November to December 25
2010 October to December 69
2011 November to December 28
2012 November to December 39

2013 November to December 29



Year Duration Number of samples

2014 October to November 20
2015 October to November 37
2016 October to November 33
2017 October to December 55
2018 October to December 50

Specific comments:

Comment 1: Please specify the data source of solar radiation in the method section.

Response: We apologize for not including this information. We apologize for not specifying the
data source in the original manuscript. The solar radiation data used in this study were obtained
from the ERAS reanalysis dataset provided by the European Centre for Medium-Range Weather
Forecasts (ECMWF) via the Copernicus Climate Data Store (CDS,

https://cds.climate.copernicus.eu/datasets/).

Line 124-127

The surface net solar radiation (SR) and boundary layer height (BLH) data used in this study
were obtained from the ERAS reanalysis dataset provided by the European Centre for Medium-
Range Weather Forecasts (ECMWF) via the Copernicus Climate Data Store (CDS,

https://cds.climate.copernicus.eu/datasets/). The concentrations of PM> s and its main components,

as well as ALWC and pH, can be found in our previous study (He et al., 2025).

Comment 2: In Figure 2, 3, or other similar figures, modify the name of the y-axis to the
corresponding species. It would be easier for readers.

Response: Thanks for suggestion.


https://cds.climate.copernicus.eu/datasets/
https://cds.climate.copernicus.eu/datasets/
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Figure 2. Annual variations in different molecular markers (ng m~) in the PRD during 2007 to 2018. The

shaded area represents the 95% prediction band.
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Figure 3. (a) Annual variations in aliphatic DCA. (b) Annual variations in oxalic acid. Due to the absence of

aliphatic DCA and oxalic acid measurements in 2009, their concentrations for that year are not presented.

Comment 3: Figure captions need to be revised. For example, “The concentrations decreased from
864 + 283 ng m-3 (2007) to 307 = 122 ng m-3 (2018), ....”, “Pearson’s r values between C2 and
ALWC decreased from 0.43 to 0.15, while those between C2 and Ox increased from 0.28 to 0.68.”

or similar statements should not be described in the figure caption.

Response: Thanks for suggestion. We have revised that.

Comment 4: Line 225 and Table 1: Change “IT4 (25 ug/m*> >PM2.5)” to “PM>5 < 25 ug/m>”.

Response: Thanks for suggestion. We have moved Table 1 to Supplement (Table S7) and changing

corresponding statements in manuscript.

Comment 5: Lines 244-245: Please show the data or other evidence on the higher temperature,

solar radiation, or humidity in PRD.

Response: Thanks for your comments. The PRD region is located in southern China and is
characterized by a subtropical monsoon climate, featuring warm temperatures, high humidity, and

abundant solar radiation throughout the year. During wintertime, the temperatures were above 20 °C,



while the RH were close to 60%. Meanwhile, solar radiation ranged from 95.3 £ 49.1 to 161.3 +
41.3 W m 2 (Table S5). It is necessary to include relevant evidences to support our statement. We

have added them in revised manuscript.
Line 260-261

This was likely related to elevated temperature (above 20 °C), solar radiation (95.3-161.3 W
m?), and relative humidity (~60%) in the PRD (Table S5), which led to a higher degree of aerosol

aging.

Comment 6: Lines 330-332: Please show evidence on the statement that lower ALWC favors the C2

compounds from the particle-phase to the gas-phase.

Response: Thank you for this comment. We apologize for inappropriate wording in the original
manuscript. According to Hu et al. (2022), more than 90% of the gas—particle partitioning of glyoxal
(Gly) and methylglyoxal (mGly) proceeds through an irreversible pathway. Moreover, this
irreversible uptake was found to be positively dependent on relative humidity (RH) and the
abundance of secondary inorganic aerosols (SNA; sulfate, nitrate, and ammonium), which are key
determinants of aerosol liquid water content (ALWC). Therefore, we should state it as “lower
ALWC levels would suppress the partitioning of semi-volatile C, precursors (e.g., Gly and mGly)
from the gas-phase into the particle-phase”. The statement has been revised accordingly, and the

relevant reference has been added to the manuscript.
Line 394-399

The IF values for each variable are presented in Table S10. From ITO to 1T4, IF values for gas-
phase oxidation processes increased from 37% to 55%, whereas those for aqueous-phase oxidation
processes decreased from 42% to 30% (Fig. 6b). Meanwhile, IF values for AVOC (10%—15%) and
BVOC emissions (5%—8%) remained at a low and stable level. These findings indicated that the
gas-phase oxidation pathway became increasingly important as pollution levels decreased. A
possible explanation is that under cleaner conditions, lower ALWC levels would suppress the
partitioning of semi-volatile C, precursors (e.g., Gly and mGly) from the gas-phase into the particle-
phase (Hu et al., 2022).
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