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Driving Factors of Oxalic Acid and Enhanced Role of Gas-Phase Oxidation under 

Cleaner Conditions: Insights from 2007–2018 Field Observations in the Pearl River Delta 

Response Letter to Reviewer’s Comments 

Dear reviewer: 

We sincerely appreciate your time and constructive comments. In response, we conducted a 

more detailed data interpretation and incorporated relevant supporting evidence to strengthen the 

reliability of our conclusions. We have also carefully revised the manuscript to improve clarity and 

facilitate better understanding for readers. Our point-by-point responses are marked in blue and the 

corresponding changes to the original text are shown below each response. We hope that these 

revisions adequately address the comments and concerns. 

Major comments: 

Comment 1: The ALWC and Ox are identified as the drivers of C2 variation. The authors also 

highlight the increased contribution of gas-phase oxidation and decreased contribution of aqueous-

phase oxidation to C2 formation as pollution levels declined. However, high air pollution level is 

usually accompanied by high humidity and low Ox. 

Response: Thanks for comment. In Table S6, we provided information under different pollution 

levels during our study period. Because the sampling was conducted in the same season (mainly 

from October to December), the inter-annual differences in meteorological condition are small. 

Relative humidity fluctuated within a narrow range (56% ~ 67%) under different pollution levels. 

Due to strict emission control measures during the past decades in the Pearl River Delta (PRD) 

region (Bian et al., 2019), dramatic reductions were identified in sulfate and nitrate, which are the 

highly hygroscopic compounds in PM2.5. As a result, aerosol liquid water content (ALWC) 

decreased significantly from 20.9 μg m-3 (high pollution, IT0) to 7.5 μg m-3 (low pollution, IT4). 

In many urban environments, high pollution levels are often accompanied by suppressed Ox 

concentrations. This results from that heavy pollution events are typically characterized by stagnant 

meteorological conditions, high relative humidity, and elevated NO emissions. Under such 

conditions, strong NO titration efficiently removes O3, leading to lower O3 and thus lower Ox. 

However, previous WRF-Chem simulations have demonstrated that the response of O3 to 

anthropogenic emission changes exhibits strong regional heterogeneity in China (Wang et al., 2021). 

For example, emission reduction due to the COVID-19 lockdown increased O3 concentrations in 

the Yangtze River Delta (YRD) and central China, while it led to O3 decrease in most parts of the 

PRD. This could be explained by the regional disparities of the O3−NOx−VOC regime. In PRD, 

most rural areas were NOx-limited (our sampling site is located in a rural area), which means that 



 

 

the reductions in anthropogenic emissions would lead to lower O3. This is consistent with our 

observations showing a decreasing trend in Ox concentrations from 163.7 μg m-3 (high pollution, 

IT0) to 72.7 μg m-3 (low pollution, IT4). 

Table S6. Meteorological parameters, PM2.5 main components, organic molecular tracers, diacids, pH, and 

ALWC in the PRD (IT0-IT4). 

 IT0 IT1 IT2 IT3 IT4 

Ⅰ. Meteorological parameters      

Temperature (℃) 20.2 ± 2.9 21.5 ± 3.6 21.6 ± 3.4 22.8 ± 3.1 20.8 ± 4.8 

Relative humidity (%) 56 ± 12.4 56 ± 13 62 ± 10 67 ± 9 66 ± 7 

Solar radiation (W m−2) 148.0 ± 43.9 145.6 ± 42.6 118.0 ± 46 115.5 ± 43.4 112.0 ± 50.5 

Boundary layer height (m) 578 ± 159 578 ± 134 613 ± 167 583 ± 142 626 ± 154 

Ⅱ. Molecular tracers (ng m-3)      

Levoglucosan 333 ± 225 194 ± 131 114 ± 79 96 ± 74 63 ± 34 

Hopanes 3.4 ± 2.6  2.0 ± 1.6 1.3 ± 1.9 0.88 ± 0.70 0.54 ± 0.30 

Octadecanoic acid 37.5 ± 21.0 28.4 ± 17.2 22.3 ± 14.8 17.3 ± 8.7 11.3 ± 0.93 

Picene 0.26 ± 0.20 0.22 ± 0.15 0.18 ± 0.11 0.17 ± 0.10 0.10 ± 0.04 

Terephthalic acid  50.0 ± 46.8 48.9 ± 30.7 32.1 ± 31.3 27.9 ± 27.1 14.5 ± 12.4 

Phthalic acid  40.3 ± 17.8 29.2 ± 16.0 22.7 ± 10.2 19.6 ± 10.1 14.1 ± 8.8 

DHOPA 2.52 ± 2.28 2.27 ± 2.07 1.42 ±1.06  1.05 ± 1.01 0.78 ± 0.43 

Malic acid 19.0 ± 19.0 16.6 ± 16.4 9.6 ± 8.3 7.4 ± 6.1 3.9 ± 2.3 

Ⅲ. Aliphatic Diacids (ng m-3)      

Oxalic acid (C2) 619 ± 290 483 ± 200 329 ± 158 293 ± 125 189 ± 102 

Succinic acid (C4) 55.0 ± 49.5 29.3 ± 28.5 18.5 ± 14.2 16.7 ± 12.7 12.9 ± 12.1 

Glutaric acid (C5) 12.5 ± 10.5 6.4 ± 5.9 4.8 ± 2.7 4.2 ± 4.2 4.5 ± 5.6 

Adipic acid (C6) 7.1 ± 4.2 4.9 ± 3.4 4.0 ± 2.7 3.4 ± 2.5 2.9 ± 2.6 

Pimelic acid (C7) 1.9 ± 1.3 1.4 ± 0.8 1.1 ± 0.7 1.1 ± 0.9 0.7 ± 0.5 

Suberic acid (C8) 3.0 ± 2.2 2.5 ± 1.5 2.2 ± 1.3 2.0 ± 1.3 1.4 ± 1.0 

Azelaic acid (C9) 13.5 ± 12.3 11.9 ± 8.3 10.4 ± 7.0 9.6 ± 6.1 6.7 ± 3.8 

Sebacic acid (C10) 2.0 ± 1.8 1.7 ± 1.2 1.6 ± 1.3 1.5 ± 1.1 1.0 ± 0.9 

Subtotal 734 ± 337 540 ± 218 358 ± 163 325 ± 135 208 ± 67 

Ⅳ. Other species      

pH  2.04 ± 0.96 2.40 ± 0.61 2.48 ± 0.43 2.36 ± 0.58 2.11 ± 0.71 

ALWC (μg m-3)  20.9 ± 11.0 15.1 ± 9.9 13.1 ± 6.9 13.1 ± 8.0 7.2 ± 3.0 

Ox (μg m-3) 136.7 ± 31.7 134.9 ± 34.4 111.9 ± 27.1 98.5 ± 25.0 72.7 ± 19.1 

 

Comment 2: How did the authors exclude the impacts of different emission levels when addressing 

the influence of RH and Ox on C2 variation? 

Response: Thanks for the comment. Anthropogenic volatile organic compounds (AVOCs) are 

indeed important precursors of C2, and their influences should be carefully examined. In this study, 

instead of excluding impacts of changes in anthropogenic emission, we demonstrated the impacts 

were limited from the several complementary perspectives. 



 

 

First, long-term trends showed that anthropogenic emissions (biomass burning, vehicle emission, 

and cooking) decreased significantly from 2007 to 2018, whereas C2 did not experience 

corresponding decline. This initial finding was further supported by correlation analysis, which 

revealed the consistently weak correlations between C2 and primary anthropogenic markers 

throughout the entire dataset. These findings indicated that changes in anthropogenic emissions 

were not the dominant driving factors for C2 variations. In contrast, Ox and ALWC displayed strong 

correlations with C2, suggesting they are main drivers of C2 variability.  

However, we acknowledge that when investigating the influence of Ox and ALWC on C2 variations 

under different pollution levels (IT0-IT4), the original manuscript did not include the corresponding 

correlations between C2 and other factors within each category. The absence of this information 

indeed weakens the logical completeness of our argument. To address this, we have added the 

relevant results to the Supplement (Table S7). It shows the correlations between C2 and primary 

anthropogenic markers (Levoglucosan, hopanes, octadecanoic acid, picene, and terephthalic acid) 

remain generally weak across all pollution categories. This indicates that changes in anthropogenic 

emissions exert only limited influence on C2 variations. Moreover, fluctuations in anthropogenic 

markers within each category were not substantial. Thus, it is reasonable that we apply the 

correlation coefficients between C2 and Ox/ALWC to reflect their influences on C2 formation. 

Additionally, instead of simply excluding anthropogenic emissions from consideration, we 

quantitatively assessed their influence using a machine learning model. The results show that 

changes in anthropogenic emissions contribute only a small portion (~14%) of the overall variability 

in C2. This quantitative evidence strengthens our conclusion that variations in gas-phase and 

aqueous-phase oxidation are the dominant drivers of C2 variations. 

Table S7. Correlations between C2 and various factors under different pollution levels. 

 IT0 IT1 IT2 IT3 IT4 

Levoglucosan 0.17 (-0.05, 0.37) -0.03 (-0.22, 0.16) -0.10 (-0.36, 0.16) 0.01 (-0.23, 0.26) -0.29 (-0.61, 0.11) 

Hopanes -0.04 (-0.25, 1.08)  -0.21 (-0.38, -0.01) * -0.05 (-0.31, 0.22) 0.29 (0.05, 0.49) * 0.41 (-0.01, 0.70) * 

Octadecanoic acid 0.54 (0.36, 0.68) ** -0.03 (-0.22, 0.16) 0.01 (-0.26, 0.27) -0.03 (-0.26, 0.22) 0.17 (-0.23, 0.52) 

Picene 0.06 (-0.17, 0.28) -0.28 (-0.46, -0.07) * -0.18 (-0.45, 0.12) 0.08 (-0.25, 0.39) 0.02 (-0.62, 0.64) 

Terephthalic acid  0.40 (0.20, 0.57) ** 0.23 (0.04, 0.40) * 0.43 (0.19, 0.62) ** 0.34 (0.11, 0.54) * 0.41 (0.04, 0.69) * 

Phthalic acid 0.63 (0.47, 0.74) ** 0.28 (0.01, 0.45) ** 0.44 (0.20, 0.63) ** 0.34 (0.11, 0.54) ** 0.31 (0.01, 0.54) ** 

DHOPA 0.19 (-0.13, 0.30) * 0.49 (0.29, 0.60) ** 0.45 (0.21, 0.64) ** 0.42 (0.20, 0.61) ** 0.32 (-0.01, 0.65) ** 

Malic acid 0.33 (0.13, 0.52) * 0.53 (0.38, 0.66) ** 0.66 (0.48, 0.77) ** 0.69 (0.44, 0.75) ** 0.72 (0.45, 0.87) ** 

Ox 0.28 (0.05, 0.48) * 0.54 (0.37, 0.68) ** 0.56 (0.25, 0.70) ** 0.51 (0.42, 0.75) ** 0.68 (0.39, 0.84) ** 

J(O1D) 0.366 (0.15, 0.53) **  0.17 (-0.03, 0.36) 0.33 (0.05, 0.56) * 0.13 (-0.12, 0.37) -0.09 (-0.49, 0.34) 

J(NO2) 0.29 (0.08, 0.48) ** 0.14 (-0.07, 0.33) 0.49 (0.24, 0.68) ** 0.22 (-0.03, 0.45) 0.02 (-0.40, 0.44) 

Sulfate 0.49 (0.28, 0.62) ** 0.29 (0.12, 0.46) ** 0.60 (0.43, 0.74) ** 0.42 (0.21, 0.59) ** 0.55 (0.24, 0.76) ** 

ALWC 0.48 (0.31, 0.65) ** 0.36 (0.19, 0.50) ** 0.32 (0.09, 0.53) ** 0.30 (0.08, 0.49) ** 0.15 (-0.01, 0.31) 



 

 

 IT0 IT1 IT2 IT3 IT4 

pH -0.19 (-0.39, 0.03) -0.15 (-0.32, 0.03) -0.38 (-0.57, -0.16) ** -0.01 (-0.24, 0.22) -0.19 (-0.54, 0.21) 

Temperature 0.24 (0.02, 0.43) * 0.42 (0.27, 0.56) ** 0.50 (0.30, 0.67) ** 0.40 (0.19, 0.58) ** 0.63 (0.35, 0.81) ** 

RH 0.15 (-0.06, 0.36) 0.28 (0.11, 0.44) ** -0.03 (-0.21, 0.26) -0.03 (-0.19, 0.26) -0.03 (-0.39, 0.33) 

SR -0.01 (-0.23, 0.21) 0.13 (-0.06, 0.30) 0.43 (0.21, 0.61) ** 0.42 (0.21, 0.59) ** 0.53 (0.22, 0.75) ** 

The values in brackets indicate the 95% confidence intervals (CIs) of the correlation coefficients. One, two 

asterisks denote p values less than 0.05, 0.01, respectively. No asterisk denotes the correlations are not 

statistically significant. 

 

The results of correlation analysis are presented in Fig. 3. The correlation coefficients between 

C2 and SOA tracers (phthalic acid, DHOPA, and malic acid) were relatively higher (r = 0.58, 0.41, 

and 0.51, respectively; p < 0.01), further supporting that C2 was primarily formed via secondary 

oxidation processes. Meng et al. (2023) reported an unexpected enhancement of C2 during the 

COVID-19 pandemic, when anthropogenic emissions were substantially reduced. This reflected 

limited influence of reductions in anthropogenic organic precursors on formation of C2. Similarly, 

we found that anthropogenic emissions experienced substantial reductions during our campaign 

period (discussed in Section 3.1), while C2 did not show a corresponding significant decreasing 

trend. Although strong correlations between C2 and primary anthropogenic source markers were 

observed in certain individual years, the correlations remained weak across the entire dataset. These 

findings implied that the changes in anthropogenic emissions were not the driving factor for C2 

formation in this study. Because our field measurements were conducted in the same season each 

year (from October to December), the inter-annual differences in meteorological conditions were 

small. This resulted in consistently weak correlations observed between C2 and meteorological 

parameters such as temperature, SR, and RH. Therefore, we concluded that the changes in 

meteorology were too small to be the driving factor for C2 formation. 

 

As presented in Fig. 3, the correlations between C2 and ALWC weakened, whereas that 

between C2 and Ox strengthened from 2007 to 2018. It is noteworthy that no significant correlations 

were observed between C2 and Ox in 2007 and 2010, when ALWC concentrations were high. In 

contrast, a strong correlation (r = 0.62, p < 0.01) emerged in 2008, coinciding with a sharp decrease 

in ALWC (Fig. S5). This suggested that the gas-phase formation pathway of C2 might be enhanced 

when ALWC was low. The pattern became more pronounced with decreasing pollution levels (Fig. 

4). From IT0 to IT4, ALWC decreased from 20.9 ± 11.0 μg m-3 to 7.2 ± 3.0 μg m-3 (Table S6). The 

Pearson’s r values between C2 and ALWC dropped from 0.43 to 0.15, whereas that between C2 and 

Ox increased from 0.28 to 0.68. The opposite trends implied the roles of gas-phase and aqueous-

phase oxidation in C2 formation might change. However, the precision and stability of Pearson’s r 

values are strongly influenced by sample size when the variations appear small or when sample 

sizes differ among groups. Therefore, the differences in Pearson’s r values do not necessarily imply 

statistically significant changes, especially when they are very close (IT1–IT4). To assess the 



 

 

statistical significance of these differences, we compared correlation coefficients between groups 

using the method described in Text S1. As shown in Table S8–S9, significant differences in the C2-

Ox correlation were observed only between IT0 and the other pollution levels. For the C2-ALWC 

correlation, a significant difference was found only between IT0 and IT4. Given that IT1–IT4 

represents a continuous evolution of atmospheric conditions, rather than discrete and independent 

regimes, large differences in correlation coefficients among these categories are not expected. 

Although the correlation between C2 and sulfate was strong, it did not show the similar trends as 

that between C2 and ALWC. In contrast, the correlations between C2 and primary anthropogenic 

markers remained generally weak across all pollution categories (Table S7), indicating that changes 

in anthropogenic emissions exert only limited influence on C2 variations. Therefore, the significant 

and opposite changes in correlations of C2 with Ox and ALWC between high pollution level (IT0) 

and low pollution level (IT4) suggested a shift in the dominant C2 formation pathway from aqueous-

phase oxidation to gas-phase photochemical oxidation under lower pollution conditions. 

 

Comment 3: In Fig. 5, the correlation between C2 and Ox is always higher than that between C2 

and ALWC under IT1, 2, 3, and 4. The correlation between C2 and ALWC is weak under any IT 

condition. 

Response: Thanks for the comment. In this study, both Ox and ALWC display significant positive 

correlations with C2 under most pollution levels. Our results show that the correlation coefficients 

between C2 and Ox are consistently higher than that between C2 and ALWC under IT1–IT4, whereas 

the C2-ALWC correlations is higher than that of C2-OX under IT0 (Figure 4, see below). This pattern 

likely results from the reduction in pollution levels (accompanied by decreases in ALWC), which 

weakens the role of aqueous-phase oxidation in C2 formation, while the contribution from gas-phase 

oxidation becomes relatively more important. 

We note that the Pearson correlation coefficients reflect the strength of linear associations but do 

not directly represent the quantitative contribution of each factor. Thus, the lower Pearson’s r values 

between C2 and ALWC than those between C2 and Ox under IT1-IT4 do not necessarily imply a 

smaller contribution of aqueous-phase pathways compared with gas-phase pathways. Here, 

correlation analysis is used primarily to identify potential drivers and their changing patterns, while 

a machine learning model is further applied to quantify their contributions to C2 variations. 

Although the correlations between C2 and ALWC is relatively weak under IT1-IT4, they are still 

stronger than those for other factors (Table S7, see above). This weak correlation may arise from 

several reasons: (1) reductions in pollution levels (and ALWC) weaken the influence of aqueous-

phase oxidation; (2) the effect of ALWC on C2 may be non-linear and not fully captured by linear 

correlation; (3) ALWC serves as an indicator of aqueous-phase processes in this study, but aqueous 

production also depends on other factors such as transition metals and oxidant availability. 



 

 

 

Figure 4. The correlation between C2 and ALWC, as well as Ox. The values in brackets indicate the 95% 

confidence intervals (CIs) of the correlation coefficients. One, two asterisks denote p values less than 0.05, 

0.01, respectively. With decreasing pollution levels, the correlation between C2 and ALWC weakens, whereas 

that between C2 and Ox strengthens. 

The Pearson correlation coefficients reflect the strength of linear associations but do not 

directly represent the quantitative contribution of each factor. Thus, the lower Pearson’s r values 

between C2 and ALWC than those between C2 and Ox under IT1-IT4 do not necessarily imply a 

smaller contribution of aqueous-phase pathways compared with gas-phase pathways. Here, 

correlation analysis is used primarily to identify potential drivers and their changing patterns, while 

a machine learning model is further applied to quantify their contributions to C2 variations. 

 

Comment 4: Section 3.4: For the machine learning analysis, the authors quantify the contributions 

of different sources using some input parameters. The rationality of this approach needs to be 

elaborated. For example, air temperature, solar radiation, and relative humidity are used to 

represent the emission of biogenic precursors (lines 318-319). Do all these meteorological factors 

promote the emission of biogenic precursors? For biogenic emissions, is there a synergistic or 

antagonistic mechanism between these factors? Please explain in detail. The reasonability of using 

the input parameters to represent other sources also needs to be elaborated. 

Response: Thanks for this valuable comment. We apologize for the missing explanation regarding 

the selection of input parameters in the original manuscript. Each variable used in the machine 

learning model should be chosen rationally to ensure the reliability of the results. We have now 

added a detailed discussion on the selection of input parameters in Section 3.4. 

The rationality for selecting the variables used to train the model need to be clarified to ensure 

the reliability of the results. Levoglucosan, hopanes, octadecanoic acid, picene, and tPh serve as 

source-specific molecular markers for biomass burning, vehicle emission, cooking, coal combustion, 

and waste incineration, respectively. These species are used to represent changes in AVOC. As two 

of the most important BVOCs globally, isoprene emission is highly dependent on temperature and 

solar radiation, while monoterpenes emission is sensitive to temperature (Guenther et al., 1993). 



 

 

Their emissions rate can be estimated using equation 3-5 and equation 6, respectively: 

 𝐸𝑖 =  𝐼𝑆 ∙ 𝐶𝐿 ∙  𝐶𝑇 (3) 

 𝐶𝐿 =
𝛼𝑐𝐿1𝐿

√1+α2L2
 (4) 

 𝐶𝑇 =  
exp

𝑐𝑇1 (𝑇−𝑇𝑆)

𝑅𝑇𝑆𝑇

1+exp
𝑐𝑇2 (𝑇− 𝑇𝑀)

𝑅𝑇𝑆𝑇

 (5) 

where Ei is isoprene emission rate at a temperature T(K) and photosynthetically active radiation 

(PAR) flux L (μmol m -2 s-1), Is is isoprene emission rate at a standard temperature Ts and a standard 

PAR flux (1000 μmol m -2 s-1). α = 0.0027 and cL1 = 1.066 are empirical coefficients determined by 

measurements. L can be calculated as multiplying solar radiation (W m-2) by photon flux efficacy 

(1.86 μmol J-1). R is a constant -8.314 J K-1 mol-1, and cT1 = 95000 J mol-1, cT2 = 230000 J mol-1, 

and TM = 314 K are empirical coefficients estimated by measurements. 

    𝐸𝑚 =  𝑀𝑆  · exp (𝛽 (𝑇 − 𝑇𝑆))   (6) 

where Em is monoterpenes emission rate at temperature T (K), Ms is monoterpenes emission rate at 

a standard temperature Ts, β (K-1) is an empirical coefficient ranging from 0.057 to 0.144 K-1. In 

addition, inadequate moisture can have significantly decreased stomatal conductance and 

photosynthesis (Guenther et al., 2006). Therefore, temperature, solar radiation, and RH are 

important factors determining BVOC emissions. As discussed previously, Ox, J(O1D), and J(NO2) 

can be employed as indicators of gas-phase oxidation, while ALWC, pH, and sulfate are used as 

indicators of aqueous-phase processes. To avoid redundant and confounding explanations, the 

secondary organic molecular markers, such as DHOPA, Ph, and malic acid, were excluded from the 

model training. These species are influenced by both VOC emissions and secondary oxidation 

processes, which are already represented by the factors mentioned above. 

 

Comment 5: For the contribution of gas-phase oxidation versus aqueous-phase oxidation, is the 

result here obtained based on machine learning comparable to those reported in published literature? 

Response: A previous stable carbon isotopic study conducted in North China (urban site) reported 

that the contributions of gas-phase and aqueous-phase pathways to C2 formation accounted for 12.3% 

and 47.2% during average days, but shifted to 50.5% and 16.1% during the COVID-19 lockdown. 

However, in this study, we investigate the “impacts of changes in gas-phase oxidation and aqueous-

phase oxidation” by machine learning model, rather than the “absolute contributions of gas-phase 

oxidation and aqueous-phase oxidation”. The former is independent of VOCs precursors because 

SHAP values reflect the marginal impact of a unit change in each variable on the predicted C2 

concentration while keeping other variables constant (discussed in Section 2.4). In contrast, the 

latter is dependent on VOCs precursors. Therefore, our machine learning approach provides a more 

appropriate and meaningful assessment of process-driven changes in C2 formation. Our updated 

results show that gas-phase and aqueous-phase pathways account for 45% and 34% (after including 



 

 

additional factors following Reviewer #1’s suggestion) for C2 variations generally. In addition, after 

inclusion of new factors, the results and general conclusions are similar to our previous version. 

This further enhances the reliability of our method. The comparison between results of new and old 

versions is presented below. We apology for some unclear statements in original text, which lead to 

misunderstanding. We have revised them now. 

 

Figure 6 (new). (a) Impact of changes of each variable on C2 variation during the whole study period. (b) 

Impact factor of individual variable under different pollution conditions. 

 

Figure 6 (old). 

Secondary organic aerosol (SOA) is a dominant constituent of fine particulate matter, exerting 

significant impacts on both climate and human health. Oxalic acid (C2), a key end-product formed 

from the oxidation of volatile organic compounds, can provide insights into the formation 

mechanism of SOA. Thus, long-term measurements of C2 and related compounds help understand 

the changes in SOA formation with decreasing pollutant levels. In this study, C2 and its homologs, 

along with five primary anthropogenic source markers and three SOA markers, were measured in 

the Pearl River Delta (PRD) during 2007–2018. The concentrations of C2 did not exhibit significant 

downward trends, despite substantial reductions in anthropogenic emissions, such as biomass 

burning (-11% yr-1), vehicle emissions (-17% yr-1), and cooking emissions (-7% yr-1). Correlation 

analysis revealed that aerosol liquid water content (ALWC) and Ox (O3 + NO2) were the main drivers 



 

 

of C2 variations. Moreover, the relative contribution of biogenic SOA increased under cleaner 

conditions. A machine learning model was applied to quantify the impacts of changes in 

anthropogenic precursor emissions, biogenic precursor emissions, aqueous-phase oxidation 

processes, and gas-phase oxidation processes on C2 variability. As pollution levels declined, the 

impacts of gas-phase oxidation increased from 37% to 55%, whereas that of aqueous-phase 

oxidation declined from 42% to 30%. This shift indicated a transition from aqueous-phase to gas-

phase pathways in C2 and SOA formation. Our findings highlight the increasing importance of gas-

phase oxidation under low-pollution conditions and underscore the need for effective ozone control 

strategies to further reduce SOA in the future. 

 

To further quantify the impacts of changes in all factors on C2, IF (discussed in Section 2.4) 

was calculated and presented in Fig. 6. Ox accounted for the highest contribution (35%), followed 

by sulfate (24%) and J(O1D) (9%). All factors were classified into four groups according to their 

representativeness mentioned before: (1) AVOC emissions (levoglucosan, hopanes, octadecanoic 

acid, picene, and tPh); (2) BVOC emissions (Temp, SR, and RH); (3) gas-phase oxidation pathways 

(Ox, J(O1D), and J(NO2)); (4) aqueous-phase oxidation pathways (ALWC, pH, and sulfate). Due to 

the minor fluctuations of meteorological conditions in each year, the impacts of changes in BVOC 

emissions on C2 were small (7%). Although AVOC emissions showed an obvious decreasing trend 

over the study period, the impacts of these changes (14%) were significantly lower than that of gas-

phase oxidation processes (45%) and aqueous-phase oxidation processes (34%). The results were 

consistent with correlation analysis, underscoring the dominant role of secondary oxidation 

processes in C2 formation. 

 

Comment 6: Figures 2 and 3: I am curious about the high levels since 2013. Please explain the 

reasons. 

Response: Thanks for the comment. In our previous study, we observed that there was also a 

rebounce in PM2.5 and its main components since 2013 (Figure 7, see below) (He et al., 2025). 

Importantly, that analysis employed a measurement technique distinct from the analytical 

procedures used for organic molecular markers in this study, suggesting that the observed rebound 

is unlikely to arise from methodological artifacts. We recognize that examining long-term trends of 

molecular markers is inherently challenging, as even minor changes in sampling or analytical 

protocols may introduce discontinuities. Consequently, it was necessary to assess the stability of 

both the sampling procedures and the analytical system over the entire study period.  

Because background concentrations of many organic molecular markers were below detection limits, 

we examined the long-term patterns of PM2.5 main components in blank filter samples to evaluate 

whether sampling or environment biases were related to this phenomenon. As shown in Figure 8  



 

 

(see below), these species exhibited minimal variability in the blank filter samples and no obvious 

increase was observed since 2013, indicating that the potential sampling bias was negligible.  

To further assess analytical stability, we examined the response factors (RFs) derived from annual 

calibration curves for all quantified compounds (Table S4, see below). The RF values remained 

highly consistent across years, indicating that neither instrument sensitivity nor analytical 

performance experienced significant drift during the measurement period.  

Meteorological variability was also considered as a potential driver. However, interannual 

differences in temperature, relative humidity, solar radiation, and boundary layer height were small 

(Table S5), suggesting that meteorology alone cannot explain the observed rebound. 

In addition, another study covering multiple stations in the PRD region also reported a similar 

increase in PM2.5 and its main components since 2013 (Figure 9) (Yan et al., 2020), supporting that 

the rebound was not due to newly emerging pollution sources near our sampling location. However, 

the underlying cause of this rebound was not elaborated in that study. 

Unfortunately, until now, we can not fully explain the rebound since 2013. We have incorporated 

the relevant information and clarifications in Materials and Method section, which confirms the 

stability and reliability of our long-term measurements and demonstrate that the observed trends in 

molecular markers were not driven by methodology. 

 

Figure 7. Trend of PM2.5 and its major components (He et al., 2025). 

 



 

 

 

Figure 8. Annual variations in measured compounds of blank filter samples (He et al., 2025). 

 

 

Figure 9. The concentration of PM2.5 and its chemical compositions from 2000 to 2019 in PRD (Yan et al., 

2020). 

 



 

 

Table S4. Response factors (RFs) derived from the annual calibration curves. 

 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 

Succinic acid 1.79 3.66 0.90 0.93 0.93 1.47 2.11 1.47 1.47  1.65 2.41 1.52 

Glutaric acid 2.88 4.07 3.31 2.30 2.30 2.93 2.70 2.93 0.81  3.95 5.53 2.38 

Adipic acid 2.64 3.87 2.82 2.81 2.81 3.70 3.66 3.76 1.54  5.86 3.76 3.24 

Pimelic acid 2.16 2.53 2.30 2.19 2.19 3.97 3.90 3.97 3.96  5.78 3.76 4.54 

Suberic acid 2.23 2.47 2.70 2.68 2.68 4.6 3.06 4.60 5.41  7.36 4.39 6.45 

Azelaic acid 2.03 2.03 2.42 2.41 2.41 3.99 3.12 3.98 5.07  6.37 3.44 6.87 

Sebacic acid 3.13 3.27 4.31 4.29 4.29 5.79 5.54 5.79 5.79  4.83 4.93 4.45 

Phthalic acid 1.01 1.07 0.86 0.66 0.98 1.92 1.86 1.93 1.88 1.88 1.98 1.91 

Terephthalic acid 1.01 1.07 0.86 0.66 0.98 1.92 1.86 1.93 1.88 1.88 1.98 1.91 

17α(H)-22,29,30-trisnorhopane 0.79 0.79 0.70 0.79 0.55 0.83 0.99 0.82 0.91 0.53 0.67 0.76 

17α(H),21β(H)-30-norhopane 0.73 0.73 0.63 0.73 0.53 0.74 0.87 0.75 0.78 0.46 0.62 0.78 

17α(H),21β(H)-30-hopane 0.78 0.78 0.74 0.78 0.52 0.78 0.88 0.76 0.42 0.70 0.59 0.97 

17α(H),21β(H)-22R-homohopane 1.26 1.26 0.72 1.26 0.45 1.11 1.50 1.12 0.42 0.73 0.91 1.75 

17α(H),21β(H)-22S-homohopane 1.55 1.55 0.72 1.55 1.33 1.25 1.90 1.19 0.42 1.83 1.01 1.79 

Levoglucosan 1.35 1.30 1.22 0.92 1.04 0.93 0.97 0.93 0.97 0.96 0.95 0.96 

Octadecanoic acid 0.50 0.56 0.66 0.68 0.96 0.89 1.29 0.89 1.22 0.71 0.89 1.09 

Picene 0.84 0.80 0.84 0.77 0.78 0.66 0.80 0.66 0.79 1.11 0.81 1.06 

Citramalic acid 1.35 1.95 1.30 3.70 3.56 2.60 2.10 2.59 2.63 2.07 2.04 2.09 

Malic acid 1.46 1.46 1.16 0.95 0.91 0.87 0.86 1.02 1.15 0.85 0.76 1.05 

 

 



 

 

Examining long-term trends of molecular markers is inherently challenging, as even minor 

changes in sampling or analytical protocols may introduce discontinuities. Consequently, it was 

necessary to assess the stability of both the sampling procedures and the analytical system over the 

entire study period. Table S4 presents the response factors (RFs) of all measured species derived 

from the annual calibration curves. The RF values remained highly consistent across years, 

indicating that neither instrument sensitivity nor analytical performance experienced significant 

drift during the measurement period. 

 

Aliphatic DCA, a group of typical SOA molecular markers (Kawamura and Bikkina, 2016), 

were analyzed to investigate further the changes in SOA formation under decreasing pollutant levels. 

Although their concentrations in 2007 (864 ± 283 ng m-3) were much higher than those in 2018 (307 

± 122 ng m-3) (Fig. 3), this downward trend was not statistically significant (p > 0.05), which was 

similar to the trends of other SOA markers. Unexpectedly, a rebound in the concentrations of 

molecular markers and aliphatic DCA was observed in 2013, which was also observed in PM2.5 and 

its major component (He et al., 2025). This rebound was unlikely driven by meteorological 

variability, as inter-annual differences in key meteorological parameters were relatively small (Table 

S5). Similarly, another study covering multiple stations across the PRD also report a post-2013 

increase in PM2.5, supporting that the rebound was not attributable to newly emerging pollution 

sources near our sampling site (Yan et al., 2020). Unfortunately, until now, the underlying cause of 

this rebound remained unclear. 

 

Comment 7: Lines 250-252: “Meanwhile, the correlations between C2 and ASOA markers became 

weaker. These results suggested ….” Please explain this statement. In Table 1, I did not find an 

obvious decreasing trend for the correlation coefficients between C2 and Phthalic acid (changing 

from 0.28 under IT1 to 0.31 under IT4) or DHOPA (changing from 0.49 under IT1 to 0.32 under 

IT4) from IT1 to IT4. 

Response: Thanks for the comment. We apologize for this imprecise statement. Indeed, the 

decreases in correlations between C2 and Phthalic acid, as well as DHOPA relatively small. But the 

correlations between C2 and malic acid displayed an obvious increase, suggesting that the relative 

contribution of BVOCs becomes more important under cleaner environment. We have moved Table 

1 to Supplement (Table S7), and removed “Meanwhile, the correlations between C2 and ASOA 

markers became weaker” in the manuscript. 

Table S7. Correlations between C2 and various factors under different pollution levels. 

 IT0 IT1 IT2 IT3 IT4 

Levoglucosan 0.17 (-0.05, 0.37) -0.03 (-0.22, 0.16) -0.10 (-0.36, 0.16) 0.01 (-0.23, 0.26) -0.29 (-0.61, 0.11) 

Hopanes -0.04 (-0.25, 1.08)  -0.21 (-0.38, -0.01) * -0.05 (-0.31, 0.22) 0.29 (0.05, 0.49) * 0.41 (-0.01, 0.70) * 



 

 

 IT0 IT1 IT2 IT3 IT4 

Octadecanoic acid 0.54 (0.36, 0.68) ** -0.03 (-0.22, 0.16) 0.01 (-0.26, 0.27) -0.03 (-0.26, 0.22) 0.17 (-0.23, 0.52) 

Picene 0.06 (-0.17, 0.28) -0.28 (-0.46, -0.07) * -0.18 (-0.45, 0.12) 0.08 (-0.25, 0.39) 0.02 (-0.62, 0.64) 

Terephthalic acid  0.40 (0.20, 0.57) ** 0.23 (0.04, 0.40) * 0.43 (0.19, 0.62) ** 0.34 (0.11, 0.54) * 0.41 (0.04, 0.69) * 

Phthalic acid 0.63 (0.47, 0.74) ** 0.28 (0.01, 0.45) ** 0.44 (0.20, 0.63) ** 0.34 (0.11, 0.54) ** 0.31 (0.01, 0.54) ** 

DHOPA 0.19 (-0.13, 0.30) * 0.49 (0.29, 0.60) ** 0.45 (0.21, 0.64) ** 0.42 (0.20, 0.61) ** 0.32 (-0.01, 0.65) ** 

Malic acid 0.33 (0.13, 0.52) * 0.53 (0.38, 0.66) ** 0.66 (0.48, 0.77) ** 0.69 (0.44, 0.75) ** 0.72 (0.45, 0.87) ** 

Ox 0.28 (0.05, 0.48) * 0.54 (0.37, 0.68) ** 0.56 (0.25, 0.70) ** 0.51 (0.42, 0.75) ** 0.68 (0.39, 0.84) ** 

J(O1D) 0.366 (0.15, 0.53) **  0.17 (-0.03, 0.36) 0.33 (0.05, 0.56) * 0.13 (-0.12, 0.37) -0.09 (-0.49, 0.34) 

J(NO2) 0.29 (0.08, 0.48) ** 0.14 (-0.07, 0.33) 0.49 (0.24, 0.68) ** 0.22 (-0.03, 0.45) 0.02 (-0.40, 0.44) 

Sulfate 0.49 (0.28, 0.62) ** 0.29 (0.12, 0.46) ** 0.60 (0.43, 0.74) ** 0.42 (0.21, 0.59) ** 0.55 (0.24, 0.76) ** 

ALWC 0.48 (0.31, 0.65) ** 0.36 (0.19, 0.50) ** 0.32 (0.09, 0.53) ** 0.30 (0.08, 0.49) ** 0.15 (-0.01, 0.31) 

pH -0.19 (-0.39, 0.03) -0.15 (-0.32, 0.03) -0.38 (-0.57, -0.16) ** -0.01 (-0.24, 0.22) -0.19 (-0.54, 0.21) 

Temperature 0.24 (0.02, 0.43) * 0.42 (0.27, 0.56) ** 0.50 (0.30, 0.67) ** 0.40 (0.19, 0.58) ** 0.63 (0.35, 0.81) ** 

RH 0.15 (-0.06, 0.36) 0.28 (0.11, 0.44) ** -0.03 (-0.21, 0.26) -0.03 (-0.19, 0.26) -0.03 (-0.39, 0.33) 

SR -0.01 (-0.23, 0.21) 0.13 (-0.06, 0.30) 0.43 (0.21, 0.61) ** 0.42 (0.21, 0.59) ** 0.53 (0.22, 0.75) ** 

Notably, the correlations between C2 and malic acid strengthened progressively with the 

reductions in anthropogenic emissions (from 2007 to 2018). This trend became more apparent when 

the data were categorized by pollution levels, with the correlation coefficients increased from 0.33 

(IT0) to 0.72 (IT4) (Table S7). As discussed previously, malic acid can be produced by 

photooxidation of both anthropogenic and biogenic precursors. However, no corresponding 

increasing trends were observed in the correlations between C2 and ASOA tracers (Ph and DHOPA), 

supporting that anthropogenic precursors were not the dominant source of malic acid in this study. 

Thus, these results indicated that the relative contributions of biogenic sources to SOA become more 

important under cleaner conditions. 

 

Comment 8: Lines 287-290: I did not see an obvious difference in the correlation efficiency between 

C2 and Ox or between C2 and ALWC from IT1 to IT4. The change of Pearson r values seems small. 

Response: Thanks for your comment. Although Pearson correlation coefficients provide a measure 

of association strength, the differences in Pearson r values do not necessarily imply statistically 

significant changes, especially when the variations appear small or when sample sizes differ among 

groups. We agree that the significance of the differences in correlation coefficients between different 

categories need to be further verified, because they are very close from IT1 to IT4. 

To further evaluate whether the observed differences in correlation coefficients across the different 

groups are statistically meaningful, we applied the Fisher r-to-z transformation test. This method 

converts Pearson r values into approximately normally distributed z-scores, enabling a rigorous 

statistical comparison between two independent correlations. Thus, it allows us to determine 

whether the correlation strength between C2 and ALWC or between C2 and Ox differs significantly 



 

 

under different pollution levels, thereby providing a more robust basis for our interpretation. We 

have added the methodological description and the corresponding results in the Supplement (Text 

S1, Table S8-S9; see below). In addition, we calculated the 95% confidence intervals (95% CIs) of 

Pearson r values for each group and included them in Figure 4. 

The results show that, for the correlation between C2 and Ox, significant differences in Pearson r 

values are only observed between IT0 and other pollution levels. For the correlation between C2 and 

ALWC, significant difference in Pearson r values is only observed between IT0 and IT4. Although 

r value itself is not a function of sample size, its precision and stability are strongly influenced by 

sample size. Smaller sample size leads to wider confidence intervals and greater variability in 

Pearson r, which may mask the differences between groups. In addition, IT-IT4 represents a 

continuous evolution of atmospheric conditions, rather than discrete and independent regimes. 

Consequently, the differences in correlation coefficients among IT1-IT4 are not expected to be very 

large. We acknowledge that the differences in correlation coefficients from IT1 to IT4 are not 

statistically significant due to the limit of our relatively small sample size in each group, and it is 

imprecise to claim an increase/decrease trend in correlation between C2 and Ox/ALWC with 

reductions in pollution levels. But the significant differences between IT0 and IT4 for Ox (increasing) 

and ALWC (decreasing) suggests that there could be a potential shift in the dominant formation 

pathways in C2 formation from high to low pollution stage. To verify this hypothesis, we conducted 

machine learning in the next section, which generated more evidences to support our conclusions. 

We have corrected our statements in manuscript to make them more rigorous. 

Table S5. Significance (p values) of the difference between correlation coefficients in different categories (C2-

ALWC). 

 IT0 IT1 IT2 IT3 

IT1 0.25    

IT2 0.21 0.76   

IT3 0.15 0.64 0.89  

IT4 < 0.05 0.22 0.37 0.43 

 

Table S6. Significance (p values) of the difference between correlation coefficients in different categories (C2-

Ox). 

 IT0 IT1 IT2 IT3 

IT1 < 0.01    

IT2 < 0.05 0.84   

IT3 < 0.01 0.47 0.65  

IT4 < 0.01 0.22 0.33 0.55 

 



 

 

 

Figure 4. The correlation between C2 and ALWC, as well as Ox. The values in brackets indicate the 95% 

confidence intervals (CIs) of the correlation coefficients. One, two asterisks denote p values less than 0.05, 

0.01, respectively. With decreasing pollution levels, the correlation between C2 and ALWC weakens, whereas 

that between C2 and Ox strengthens. 

 

Text S1. Descriptions of Fisher r-to-z transformation. 

The Pearson correlation coefficient r is widely used to quantify the strength and direction of 

linear relationships between two variables. However, the sampling distribution of r is not normally 

distributed, especially when the true correlation is far from zero or the sample size is small. To 

address this issue, Fisher (1921) proposed a transformation of r to a variable z, known as the Fisher 

r-to-z transformation, defined as: 

 𝑧 =  
1

2
𝑙𝑛

1+𝑟

1−𝑟
   (1) 

This transformation converts r into an approximately normal distribution, allowing for more 

accurate estimation of confidence intervals and hypothesis testing. The standard error of z is given 

as: 

 𝑆𝐸 =  1/√𝑛 − 3  (2) 

where n is the sample size. After calculating the confidence interval in the 𝑧-space, it can be back-

transformed to the original r scale, providing a robust measure of uncertainty for correlation 

estimates. 

Furthermore, the Fisher r-to-z transformation can also be used to test whether two correlation 

coefficients from independent samples differ significantly. For two correlations r1 and r2 with 

sample sizes n1 and n2, their corresponding z values are calculated as above, and the standard error 

of the difference is calculated as: 

 𝑆𝐸 =  1/√
1

𝑛1−3
+  

1

𝑛2−3
 (3) 

The difference is then standardized as: 

 𝑧 =  
𝑧1−𝑧2

𝑆𝐸
   (4) 



 

 

A two-tailed p value can be derived from the standard normal distribution to determine whether the 

difference between r1 and r2 is statistically significant. This approach provides a rigorous method 

for comparing correlation strengths across independent datasets. 

 

As presented in Fig. 3, the correlations between C2 and ALWC weakened, whereas that 

between C2 and Ox strengthened from 2007 to 2018. It is noteworthy that no significant correlations 

were observed between C2 and Ox in 2007 and 2010, when ALWC concentrations were high. In 

contrast, a strong correlation (r = 0.62, p < 0.01) emerged in 2008, coinciding with a sharp decrease 

in ALWC (Fig. S5). This suggested that the gas-phase formation pathway of C2 might be enhanced 

when ALWC was low. The pattern became more pronounced with decreasing pollution levels (Fig. 

4). From IT0 to IT4, ALWC decreased from 20.9 ± 11.0 μg m-3 to 7.2 ± 3.0 μg m-3 (Table S6). The 

Pearson’s r values between C2 and ALWC dropped from 0.43 to 0.15, whereas that between C2 and 

Ox increased from 0.28 to 0.68. The opposite trends implied the roles of gas-phase and aqueous-

phase oxidation in C2 formation might change. However, the precision and stability of Pearson’s r 

values are strongly influenced by sample size when the variations appear small or when sample 

sizes differ among groups. Therefore, the differences in Pearson’s r values do not necessarily imply 

statistically significant changes, especially when they are very close (IT1–IT4). To assess the 

statistical significance of these differences, we compared correlation coefficients between groups 

using the method described in Text S1. As shown in Table S8–S9, significant differences in the C2-

Ox correlation were observed only between IT0 and the other pollution levels. For the C2-ALWC 

correlation, a significant difference was found only between IT0 and IT4. Given that IT1–IT4 

represents a continuous evolution of atmospheric conditions, rather than discrete and independent 

regimes, large differences in correlation coefficients among these categories are not expected. 

Although the correlation between C2 and sulfate was strong, it did not show the similar trends as 

that between C2 and ALWC. In contrast, the correlations between C2 and primary anthropogenic 

markers remained generally weak across all pollution categories (Table S7), indicating that changes 

in anthropogenic emissions exert only limited influence on C2 variations. Therefore, the significant 

and opposite changes in correlations of C2 with Ox and ALWC between high pollution level (IT0) 

and low pollution level (IT4) suggested a shift in the dominant C2 formation pathway from aqueous-

phase oxidation to gas-phase photochemical oxidation under lower pollution conditions. 

The Pearson correlation coefficients reflect the strength of linear associations but do not 

directly represent the quantitative contribution of each factor. Thus, the lower Pearson’s r values 

between C2 and ALWC than those between C2 and Ox under IT1-IT4 do not necessarily imply a 

smaller contribution of aqueous-phase pathways compared with gas-phase pathways. Here, 

correlation analysis is used primarily to identify potential drivers and their changing patterns, while 

a machine learning model is further applied to quantify their contributions to C2 variations. 

 



 

 

Comment 9: The dataset collected during 2007-2018 is valuable and informative. My concern is 

the uncertainty caused by long-term storage. How long after sampling were these samples analyzed? 

How much of the C2 organic acid could change during storage? 

Response: Thank you for raising this important concern. We fully agree that long-term storage may 

introduce uncertainties in the quantification of molecular markers. In this study, all filter samples 

were immediately wrapped in aluminum foil and stored at -20 °C after collection. The samples were 

typically analyzed within several months after sampling.  

Previous studies have shown that low temperature storage can largely preserve the chemical 

composition of ambient organic aerosols. For example, Resch et al. (2023) reported that ambient 

aerosol samples stored at -20 °C for more than one month largely retained their molecular profiles. 

High-intensity peaks, such as carboxylic acids with molecular-weight (MW) = 172, 184, 186, and 

200, showed changes in peak area within ±25%, indicating good stability under low temperature 

storage. In addition, this study demonstrates that low MW carboxylic acids are more stable than 

high MW carboxylic acids during storage. Thus, as a typical low MW carboxylic acid, C2 is expected 

to remain largely stable during storage. 

Although we cannot quantify decomposition of dicarboxylic acid during storage in this study, the 

storage duration was generally consistent across each year, minimizing potential inter-annual biases. 

PM2.5 samples were collected using prebaked (450℃, 4h) quartz filters (8in. × 10in., QMA, 

Whatman, UK). Each sample lasted for 24h using a high-volume air sampler (HVPM2.5, Tisch 

Environmental Inc., USA) at an airflow rate of 1.1 m3 min−1. Field blank samples were also collected 

by mounting the blank filter onto the sampler for 10 min without turning on the sampler. In this 

study, a total of 462 PM2.5 samples were collected mostly during the wintertime (October, November, 

and December) of each year from 2007 to 2018. After the collection, each filter was wrapped in an 

aluminum foil, zipped in Teflon bags, and stored in a freezer (-20°C) prior to analysis. Resch et al. 

(2023) reported that ambient aerosol samples stored at -20 °C for more than one month largely 

retained their molecular profiles. In addition, this study demonstrates that low MW carboxylic acids 

are more stable than high MW carboxylic acids during storage. Thus, the aliphatic DCA measured 

in this study are expected to remain largely stable during storage. 

 

Comment 10: In addition, in lines 115-116, I may suggest adding a table in the supplementary to 

detail the sample information. 

Response: Thanks for your suggestion. We have added PM2.5 samples information in the 

Supplement. 

Table S2. Information of PM2.5 samples. 



 

 

Year Duration Number of samples 

2007 October to November 32 

2008 November to December 45 

2009 November to December 25 

2010 October to December 69 

2011 November to December 28 

2012 November to December 39 

2013 November to December 29 

2014 October to November 20 

2015 October to November 37 

2016 October to November 33 

2017 October to December 55 

2018 October to December 50 

 

Specific comments: 

Comment 1: Please specify the data source of solar radiation in the method section. 

Response: We apologize for not including this information. We apologize for not specifying the data 

source in the original manuscript. The solar radiation data used in this study were obtained from the 

ERA5 reanalysis dataset provided by the European Centre for Medium-Range Weather Forecasts 

(ECMWF) via the Copernicus Climate Data Store (CDS, 

https://cds.climate.copernicus.eu/datasets/). 

Gaseous pollutants data (e.g., NO2 and O3) and meteorological parameters (e.g., temperature, 

relative humidity) were obtained from an air quality monitoring station operated at WQS. The 

station was under maintenance during 2012–2013, therefore data for this period are unavailable. 

The surface net solar radiation and boundary layer height (BLH) data used in this study were 

obtained from the ERA5 reanalysis dataset provided by the European Centre for Medium-Range 

Weather Forecasts (ECMWF) via the Copernicus Climate Data Store (CDS, 

https://cds.climate.copernicus.eu/datasets/). The concentrations of PM2.5 and its main components, 

https://cds.climate.copernicus.eu/datasets/
https://cds.climate.copernicus.eu/datasets/


 

 

as well as ALWC and pH, can be found in our previous study (He et al., 2025). 

 

Comment 2: In Figure 2, 3, or other similar figures, modify the name of the y-axis to the 

corresponding species. It would be easier for readers. 

Response: Thanks for suggestion. 

 

Figure 2. Annual variations in different molecular markers (ng m-3) in the PRD during 2007 to 2018. The 

shaded area represents the 95% prediction band. 



 

 

 

Figure 3. (a) Annual variations in aliphatic DCA. (b) Annual variations in oxalic acid. Due to the absence of 

aliphatic DCA and oxalic acid measurements in 2009, their concentrations for that year are not presented. 

 

Comment 3: Figure captions need to be revised. For example, “The concentrations decreased from 

864 ± 283 ng m-3 (2007) to 307 ± 122 ng m-3 (2018), ….”, “Pearson’s r values between C2 and 

ALWC decreased from 0.43 to 0.15, while those between C2 and Ox increased from 0.28 to 0.68.” 

or similar statements should not be described in the figure caption. 

Response: Thanks for suggestion. We have revised that. 

Comment 4: Line 225 and Table 1: Change “IT4 (25 ug/m3 >PM2.5)” to “PM2.5 < 25 ug/m3”. 

Response: Thanks for suggestion. We have moved Table 1 to Supplement (Table S7) and changing 

corresponding statements in manuscript. 

Comment 5: Lines 244-245: Please show the data or other evidence on the higher temperature, 



 

 

solar radiation, or humidity in PRD. 

Response: Thanks for your comments. The PRD region is located in southern China and is 

characterized by a subtropical monsoon climate, featuring warm temperatures, high humidity, and 

abundant solar radiation throughout the year. During wintertime, the temperatures were above 20 ℃, 

while the RH were close to 60%. Meanwhile, solar radiation ranged from 95.3 ± 49.1 to 161.3 ± 

41.3 W m−2 (Table S5). It is necessary to include relevant evidences to support our statement. We 

have added them in revised manuscript. 

This was likely related to elevated temperature (above 20 ℃), solar radiation (95.3–161.3 W 

m−2), and relative humidity (~60%) in the PRD (Table S5), which led to a higher degree of aerosol 

aging. 

Comment 6: Lines 330-332: Please show evidence on the statement that lower ALWC favors the C2 

compounds from the particle-phase to the gas-phase. 

Response: Thank you for this comment. We apologize for inappropriate wording in the original 

manuscript. According to Hu et al. (2022), more than 90% of the gas–particle partitioning of glyoxal 

(Gly) and methylglyoxal (mGly) proceeds through an irreversible pathway. Moreover, this 

irreversible uptake was found to be positively dependent on relative humidity (RH) and the 

abundance of secondary inorganic aerosols (SNA; sulfate, nitrate, and ammonium), which are key 

determinants of aerosol liquid water content (ALWC). Therefore, we should state it as “lower 

ALWC levels would suppress the partitioning of semi-volatile C2 precursors (e.g., Gly and mGly) 

from the gas-phase into the particle-phase”. The statement has been revised accordingly, and the 

relevant reference has been added to the manuscript. 

The IF values for each variable are presented in Table S10. From IT0 to IT4, IF values for gas-

phase oxidation processes increased from 37% to 55%, whereas those for aqueous-phase oxidation 

processes decreased from 42% to 30% (Fig. 6b). Meanwhile, IF values for AVOC (10%–15%) and 

BVOC emissions (5%–8%) remained at a low and stable level. These findings indicated that the 

gas-phase oxidation pathway became increasingly important as pollution levels decreased. A 

possible explanation is that under cleaner conditions, lower ALWC levels would suppress the 

partitioning of semi-volatile C2 precursors (e.g., Gly and mGly) from the gas-phase into the particle-

phase (Hu et al., 2022). 

 



 

 

References: 

Bian, Y. H., Huang, Z. J., Ou, J. M., Zhong, Z. M., Xu, Y. Q., Zhang, Z. W., Xiao, X., Ye, X., Wu, 

Y. Q., Yin, X. H., Li, C., Chen, L. F., Shao, M., and Zheng, J. Y.: Evolution of anthropogenic air pollutant 

emissions in Guangdong Province, China, from 2006 to 2015, Atmos. Chem. Phys., 19, 11701-11719, 

https://doi.org/10.5194/acp-19-11701-2019, 2019. 

Fisher, R. A. S.: On the “Probable Erro” of a Coefficient of Correlation Deduced from a Small 

Sample, Metron,  https://digital.library.adelaide.edu.au/server/api/core/bitstreams/d40cfd09-0ddc-

490a-89c1-437bf6ae26ef/content, 1921. 

Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global 

terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), 

Atmos. Chem. Phys., 6, 3181-3210, https://doi.org/10.5194/acp-6-3181-2006, 2006. 

Guenther, A. B., Zimmerman, P. R., Harley, P. C., Monson, R. K., and Fall, R.: Isoprene and 

monoterpene emission rate variability: Model evaluations and sensitivity analyses, Journal of 

Geophysical Research-Atmospheres, 98, 12609-12617, https://doi.org/10.1029/93JD00527, 1993. 

He, Y., Ding, X., He, Q., Zhang, Y., Chen, D., Zhang, T., Yang, K., Wang, J., Cheng, Q., Jiang, H., 

Wang, Z., Liu, P., Wang, X., and Boy, M.: Long-term Trends in PM2.5 Chemical Composition and Its 

Impact on Aerosol Properties: Field Observations from 2007 to 2020 in Pearl River Delta, South China, 

Atmos. Chem. Phys., 25, 13729-13745, https://doi.org/10.5194/acp-25-13729-2025, 2025. 

Hu, J., Chen, Z., Qin, X., and Dong, P.: Reversible and irreversible gas–particle partitioning of 

dicarbonyl compounds observed in the real atmosphere, Atmos. Chem. Phys., 22, 6971-6987, 

https://doi.org/10.5194/acp-22-6971-2022, 2022. 

Kawamura, K. and Bikkina, S.: A review of dicarboxylic acids and related compounds in 

atmospheric aerosols: Molecular distributions, sources and transformation, Atmos. Res., 170, 140-160, 

https://doi.org/10.1016/j.atmosres.2015.11.018, 2016. 

Meng, J., Wang, Y., Li, Y., Huang, T., Wang, Z., Wang, Y., Chen, M., Hou, Z., Zhou, H., Lu, K., 

Kawamura, K., and Fu, P.: Measurement Report: Investigation on the sources and formation processes 

of dicarboxylic acids and related species in urban aerosols before and during the COVID-19 lockdown 

in Jinan, East China, Atmos. Chem. Phys., 23, 14481-14503, https://doi.org/10.5194/acp-23-14481-2023, 

2023. 

Resch, J., Wolfer, K., Barth, A., and Kalberer, M.: Effects of storage conditions on the molecular-

level composition of organic aerosol particles, Atmos. Chem. Phys., 23, 9161-9171, 

https://doi.org/10.5194/acp-23-9161-2023, 2023. 

Wang, N., Xu, J. W., Pei, C. L., Tang, R., Zhou, D. R., Chen, Y. N., Li, M., Deng, X. J., Deng, T., 

Huang, X., and Ding, A. J.: Air Quality During COVID-19 Lockdown in the Yangtze River Delta and 

the Pearl River Delta: Two Different Responsive Mechanisms to Emission Reductions in China, Environ. 

Sci. Technol., 55, 5721-5730, https://doi.org/10.1021/acs.est.0c08383, 2021. 

Yan, F. H., Chen, W. H., Jia, S. G., Zhong, B. Q., Yang, L. M., Mao, J. Y., Chang, M., Shao, M., 

Yuan, B., Situ, S., Wang, X. M., Chen, D. H., and Wang, X. M.: Stabilization for the secondary species 

contribution to PM2.5 in the Pearl River Delta (PRD) over the past decade, China: A meta-analysis, 

Atmos. Environ., 242, https://doi.org/10.1016/j.atmosenv.2020.117817, 2020. 

 

https://doi.org/10.5194/acp-19-11701-2019
https://digital.library.adelaide.edu.au/server/api/core/bitstreams/d40cfd09-0ddc-490a-89c1-437bf6ae26ef/content
https://digital.library.adelaide.edu.au/server/api/core/bitstreams/d40cfd09-0ddc-490a-89c1-437bf6ae26ef/content
https://doi.org/10.5194/acp-6-3181-2006
https://doi.org/10.1029/93JD00527
https://doi.org/10.5194/acp-25-13729-2025
https://doi.org/10.5194/acp-22-6971-2022
https://doi.org/10.1016/j.atmosres.2015.11.018
https://doi.org/10.5194/acp-23-14481-2023
https://doi.org/10.5194/acp-23-9161-2023
https://doi.org/10.1021/acs.est.0c08383
https://doi.org/10.1016/j.atmosenv.2020.117817

