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Response Letter to Reviewer’s Comments 

Dear reviewer: 

We sincerely thank you for your time and valuable comments. We have added more 

information about machine learning to enhance the robustness of our results, and carefully revised 

the manuscript to improve its clarity and enhance the readers' understanding. Our point-by-point 

responses are marked in blue and the corresponding changes to the original text are shown below 

each response. We hope that these revisions adequately address the comments and concerns. 

 

Comment 1: Attribution to gas- vs aqueous-phase pathways is mechanistically simplified; aqueous 

production depends on pH, transition metals, oxidant availability, and organic composition, the 

author may consider adding more feature variables in the machine learning model. 

Response: Thanks for your valuable suggestions. We agree that there are other factors influencing 

the formation of aqueous-phase products other than pH and ALWC. This is same to gas-phase 

products. However, due to unavailability of related data in this study, such as transition metals and 

oxidant concentrations in aqueous phase, we can not quantify their contributions on variations in C2. 

Here, we add three feature variables in the machine learning model, including sulfate, photolysis 

frequencies of O3 (J(O1D)) and NO2 (J(NO2)), to make our results better reflect the impacts of 

gaseous and aqueous pathways. Sulfate is suggested as an important product from secondary 

aqueous-phase chemistry (Liu et al., 2021) and can be used as an indicator for aqueous reactions. 

J(O1D) represents the photolytic rate of ozone producing excited oxygen atoms O(1D), which 

subsequently react with water vapor to generate hydroxyl radicals (OH), the dominant oxidant 

driving daytime gas-phase oxidation processes. J(NO2) describes the photolysis rate of nitrogen 

dioxide, leading to the formation of NO and ground-state oxygen atoms O (3P), which further 

participate in ozone formation. Therefore, they are key parameters characterizing the intensity of 

atmospheric photochemical activity (Ehhalt and Rohrer, 2000). 

After the inclusion of these three variables, the results of the machine learning model remain highly 

consistent with those of the previous version, and the overall conclusions are unchanged. These 

results confirm the appropriateness of the selected variables and the robustness of the model 

outcomes. Specifically, from IT0 to IT4, the IF values associated with gas-phase oxidation processes 

increased from 37% to 55%, whereas those related to aqueous-phase oxidation processes decreased 

from 42% to 30%, indicating an increasing importance of gas-phase oxidation under cleaner 



 

 

atmospheric conditions. In addition, the general impacts of changes in gas-phase oxidation (45%) 

and aqueous-phase oxidation (34%) are substantially higher than that of AVOC (14%) and BVOC 

emissions (7%). Although the ranking of feature importance changed, the indicators for gas-phase 

and aqueous-phase oxidation (such as Ox, J(O1D), sulfate, ALWC) still exhibit relatively high 

importance among all variables. As ALWC and pH were estimated by a thermodynamic equilibrium 

model, ISORROPIA Ⅱ (Nenes et al., 1998), in which sulfate plays a crucial role and partly reflects 

variations in both pH and ALWC, sulfate ranks second in feature importance rather than ALWC. 

The comparison between new and old version can be seen below. To maintain consistency in the 

number of variables, we also added sulfate, J(O1D), and J(NO2) into correlation analysis. In addition, 

the appropriateness of the selected variables also needs to be clarified. We have updated the number 

and corresponding statement in manuscript, and added limitation of this study at the end of 

manuscript. 

 

Figure 6 (new). (a) Impact of changes of each variable on C2 variation during the whole study period. (b) 

Impact factor of individual variable under different pollution conditions. 

 

Figure 6 (old). 



 

 

 

Figure 5 (new). (a) Bar plot of the mean |SHAP| values representing the overall importance of each feature in 

predicting C2 concentrations. (b) Beeswarm plot of individual SHAP values for each feature across all samples. 

Red (blue) represents high (low) value in each feature. Positive (negative) SHAP values indicate that the 

feature contributes to an increase (decrease) in the C2 prediction. 

 

Figure 5 (old). 

 



 

 

 

Figure 3. Correlations between C2 and primary anthropogenic source markers, SOA markers, indicators for 

gas- and aqueous-phase oxidation, as well as meteorological parameters. Blank cells indicate no significant 

correlations. One asterisk, two asterisks denote p value < 0.05, 0.01, respectively. Due to the unavailability of 

Ox data in 2012 and 2013, correlation analysis was not conducted for these two years. 

Extreme Gradient Boosting (XGBoost), an advanced ensemble machine learning method based 

on gradient boosting decision trees, is known for its high computational efficiency, robust predictive 

performance (Chen et al., 2016) and thus has been applied in air pollutant research recently (Hou et 

al., 2022; Peng et al., 2023; Liu et al., 2025). In this study, XGBoost was employed to assess the 

relative contributions of various factors to oxalic acid variation. The implementation and Python 

package of XGBoost algorithm are publicly available online (https://github.com/dmlc/xgboost). A 

total of 14 variables were used as input features to train the model, including levoglucosan, hopanes, 

octadecanoic acid, picene, terephthalic acid (tPh), Ox, photolysis frequencies of O3 (JO1D) and NO2 

(JNO2), ALWC, pH, sulfate (SO4
2-), temperature (Temp), solar radiation (SR), and relative humidity 

(RH). To avoid redundant and confounding explanations, the secondary organic molecular markers, 



 

 

such as DHOPA, phthalic acid (Ph), and malic acid, were excluded in the model training. They are 

influenced by VOC emissions and secondary oxidation processes, which are already represented by 

the factors mentioned above. Our results showed that there were great agreements between the 

observations and simulations for C2 and other DCA (Fig. S2), which indicated the model predictions 

were reliable. 

 

ALWC not only regulates the gas-particle partitioning of semi-volatile VOCs and their reaction 

rates by acting as a medium (Nenes et al., 2021), but also serves as a nucleophile that participates 

in reactive uptake of SOA intermedium (Zhang et al., 2022b). Aerosol pH plays a crucial role in 

governing acid-catalyzed reactions during aqueous-phase processing (Cooke et al., 2024). In 

addition, sulfate is also an important secondary product formed through aqueous oxidation (Liu et 

al., 2021). Ox, a proxy of atmospheric oxidants, facilitates secondary photochemical oxidation of 

VOCs. J(O1D) and J(NO2) represent photolysis frequencies of O3 and NO2 (Ehhalt and Rohrer, 

2000). Accordingly, ALWC, pH, and sulfate were employed as indicators for aqueous-phase 

oxidation , while Ox, J(O1D), and J(NO2) were used as indicators for gas-phase oxidation. In this 

study, C2 showed strong correlations with ALWC (r = 0.50, p < 0.01), sulfate (r = 0.62, p < 0.01), 

and Ox (r = 0.64, p < 0.01) across the whole datasets, suggesting secondary oxidation processes 

were the dominant drivers of C2 variability between 2007 and 2018. 

 

The rationality for selecting the variables used to train the model need to be clarified to ensure 

the reliability of the results. Levoglucosan, hopanes, octadecanoic acid, picene, and tPh serve as 

source-specific molecular markers for biomass burning, vehicle emission, cooking, coal combustion, 

and waste incineration, respectively. These species are used to represent changes in AVOC 

emissions. As two of the most important BVOCs globally, isoprene emission is highly dependent 

on temperature and solar radiation, while monoterpenes emission is sensitive to temperature 

(Guenther et al., 1993). Their emissions rate can be estimated using equation 3-5 and equation 6, 

respectively: 

 𝐸𝑖 =  𝐼𝑆 ∙ 𝐶𝐿 ∙  𝐶𝑇 (3) 

 𝐶𝐿 =
𝛼𝑐𝐿1𝐿

√1+α2L2
 (4) 

 𝐶𝑇 =  
exp

𝑐𝑇1 (𝑇−𝑇𝑆)

𝑅𝑇𝑆𝑇

1+exp
𝑐𝑇2 (𝑇− 𝑇𝑀)

𝑅𝑇𝑆𝑇

 (5) 

where Ei is isoprene emission rate at a temperature T(K) and photosynthetically active radiation 

(PAR) flux L (μmol m -2 s-1), Is is isoprene emission rate at a standard temperature Ts and a standard 

PAR flux (1000 μmol m -2 s-1). α = 0.0027 and cL1 = 1.066 are empirical coefficients determined by 

measurements. L can be calculated as multiplying solar radiation (W m-2) by photon flux efficacy 

(1.86 μmol J-1). R is a constant -8.314 J K-1 mol-1, and cT1 = 95000 J mol-1, cT2 = 230000 J mol-1, 

and TM = 314 K are empirical coefficients estimated by measurements. 

    𝐸𝑚 =  𝑀𝑆  · exp (𝛽 (𝑇 − 𝑇𝑆))   (6) 



 

 

where Em is monoterpenes emission rate at temperature T (K), Ms is monoterpenes emission 

rate at a standard temperature Ts, β (K-1) is an empirical coefficient ranging from 0.057 to 0.144 K-

1. In addition, inadequate moisture can have significantly decreased stomatal conductance and 

photosynthesis (Guenther et al., 2006). Therefore, RH is an important factor influencing BVOC 

emissions. J(O1D) and J(NO2) are photolysis frequencies of O3 and NO2, which are relevant to the 

generation of hydroxyl radical (an important oxidant in atmosphere) (Ehhalt and Rohrer, 2000). Ox 

is also commonly used as a proxy for ambient oxidizing capacity. ALWC and pH have important 

impacts on SOA formation in aqueous phase (Nguyen et al., 2015; Xu et al., 2016). Previous studies 

have shown that sulfate is a secondary species primarily produced through aqueous-phase oxidation 

(Yu et al., 2005; Liu et al., 2021). Thus, ALWC, pH, and sulfate are used as indicators of aqueous-

phase processes. To avoid redundant and confounding explanations, the secondary organic 

molecular markers, such as DHOPA, Ph, and malic acid, were excluded from the model training. 

These species are influenced by both VOC emissions and secondary oxidation processes, which are 

already represented by the factors mentioned above. 

The feature importance is presented in Fig. 5a. Ox, sulfate, and J(O1D), which represent 

secondary oxidation processes, exhibited the three highest |SHAP| values, indicating their dominant 

impacts on C2 variation. Although pH and ALWC exhibited relatively high feature importance 

among all variables, their |SHAP| values were lower than sulfate. This is because pH and ALWC in 

this study was calculated by a thermodynamic equilibrium model, ISORROPIA Ⅱ (Nenes et al., 

1998), in which sulfate plays a crucial role and partly reflects variations in both pH and ALWC. In 

contrast, the feature importance of anthropogenic emission markers and meteorological parameters 

were relatively lower, suggesting that their influences were smaller compared to that of secondary 

processes. As shown in Fig. 5b, Ox, sulfate, and J(O1D) exhibited obviously positive correlations 

with their SHAP values, indicating that higher values of these variables contributed to increases in 

C2 concentrations. However, pH showed a negative correlation with its SHAP values, suggesting 

that lower pH levels were associated with higher C2 concentrations. Notably, the influence of 

extremely low pH on C2 formation appeared to be more pronounced. 

To further quantify the impacts of changes in all factors on C2, IF (discussed in Section 2.4) 

was calculated and presented in Fig. 6. Ox accounted for the highest contribution (35%), followed 

by sulfate (24%) and J(O1D) (9%). All factors were classified into four groups according to their 

representativeness mentioned before: (1) AVOC emissions (levoglucosan, hopanes, octadecanoic 

acid, picene, and tPh); (2) BVOC emissions (Temp, SR, and RH); (3) gas-phase oxidation pathways 

(Ox, J(O1D), and J(NO2)); (4) aqueous-phase oxidation pathways (ALWC, pH, and sulfate). Due to 

the minor fluctuations of meteorological conditions in each year, the impacts of changes in BVOC 

emissions on C2 were small (7%). Although AVOC emissions showed an obvious decreasing trend 

over the study period, the impacts of these changes (14%) were significantly lower than that of gas-

phase oxidation processes (45%) and aqueous-phase oxidation processes (34%). The results were 

consistent with correlation analysis, underscoring the dominant role of secondary oxidation 



 

 

processes in C2 formation. 

The IF values for each variable are presented in Table S10. From IT0 to IT4, IF values for gas-

phase oxidation processes increased from 37% to 55%, whereas those for aqueous-phase oxidation 

processes decreased from 42% to 30% (Fig. 6b). Meanwhile, IF values for AVOC (10%–15%) and 

BVOC emissions (5%–8%) remained at a low and stable level. These findings indicated that the 

gas-phase oxidation pathway became increasingly important as pollution levels decreased. A 

possible explanation is that under cleaner conditions, lower ALWC levels favored the partitioning 

of semi-volatile C2 precursors (e.g., Gly and mGly) from the particle phase into the gas phase. In 

addition, less ALWC participates in heterogeneous reactions of SOA intermedium as a nucleophile. 

Thus, their aqueous-phase pathway was hindered, and more C2 was formed via photochemical 

degradation of longer-chain DCA (Kawamura and Bikkina, 2016; Meng et al., 2023). This indicated 

the growing importance of gas-phase oxidation processes in the formation of C2 and SOA under 

cleaner conditions. Although Ox did not exhibit a clear trend at our measurement station, Cao et al. 

(2024) reported a rapid increase in O3 concentration across the PRD region over the past decade. 

This may promote SOA formation through enhanced gas-phase oxidation pathways. Therefore, 

coordinated control of VOCs and NOx should be emphasized (Wang et al., 2021b) in the future to 

reduce ozone pollution and further mitigate SOA formation. 

 

Meanwhile, we acknowledge there are several limitations in this study. First, our measurements 

were mainly conducted in wintertime, which may not represent summertime conditions when 

photochemical activity is higher. Second, there are other factors influencing the formation of 

aqueous-phase products other than pH and ALWC. This is same to gas-phase products. However, 

due to unavailability of related data in this study, such as transition metals and hydroxyl radical in 

aqueous phase, we were unable to quantify their contributions on variations in C2, which may 

introduce uncertainties. 

 

Comment 2: line 84: you should spell out an abbreviation (ALWC) the first time it appears in the 

main text even if you already defined it in the abstract. 

Response: Thanks for reminding this. We have added statement of ALWC (aerosol liquid water 

content) in line 84. 

During COVID-19, lower aerosol liquid water content (ALWC) and elevated O3 shifted the 

dominant formation pathway of C2 from aqueous-phase oxidation of ωC2 and Pyr to gas-phase 

photochemical decomposition of longer-chain DCA (malonic (C3) and succinic (C4)). 

 

Comment 3: Figure 1: there’s almost no exact content in the figure. The author may consider adding 

back-trajectories or removing this figure to the SI. 

Response: Thanks for your suggestion. We have moved Figure 1 to SI because we don’t have 



 

 

discussion about back-trajectories in this part. 

Comment 4: line 209: Malic acid is a plausible product of biogenic VOC photooxidation, but it is 

not a unique tracer. Given the winter, urban-influenced atmosphere, anthropogenic VOCs and 

combustion sources could contribute substantially. 

Response: Thank for this insightful comment. We agree that malic acid is a typical secondary 

product originating from the photooxidation of both biogenic and anthropogenic precursors, and 

thus should not be considered a unique tracer for BSOA. We should clarify that in our manuscript. 

The contributions from biogenic and anthropogenic VOCs on malic acid formation are different. 

Sato et al. (2021) conducted a chamber study to investigated mass fractions of malic acid in SOA 

produced from biogenic and anthropogenic sources. Based on chamber results, they estimated that 

malic acid produced through the oxidation of BVOCs (α-pinene and isoprene) accounted for 63%, 

which was higher than that formed by AVOCs (toluene and naphthalene). Given that α-pinene only 

accounts for 34% in monoterpenes (Sindelarova et al., 2014) and BVOC emissions are about eight 

times higher than that AVOC emissions globally (Glasius and Goldstein, 2016), malic acid produced 

from biogenic sources may dominate over that from anthropogenic sources. In addition, malic acid 

was found to be strongly correlated (N = 49, R2 = 0.95) with monoterpene tracers (3-

Hydroxyglutaric acid, 3-Hydroxy-4,4-dimethylglutaric acid, 3-Methyl-1,2,3-butanetricarboxylic 

acid, 3-Isopropylpentanedioic acid, 3-Acetyl pentanedioic acid) in one-year field measurements 

(Cheng et al., 2021). Another research also observed such strong correlation between malic acid and 

monoterpene tracers in both summer (R2 = 0.92) and winter (R2 = 0.87) (Hu and Yu, 2013).  

Due to low level of human activities, traffic and industrial emissions in the surrounding area, this 

site experiences limited anthropogenic influence. Furthermore, there is no residential heating in the 

PRD region, which is a major source of AVOCs during the wintertime. Consequently, although 

anthropogenic emissions may increase in winter, the rise is less pronounced than in urban areas. The 

PRD region is situated in a subtropical zone, characterized by mild winter temperatures averaging 

around 20 °C (Table S5). This climatic condition sustains considerable biogenic emissions even in 

winter. Therefore, these evidences indicated that malic acid in our sampling site could be formed 

mainly by photodegradation of BVOCs, especially monoterpenes. 

Furthermore, as shown in Table S7, the correlation between oxalic acid and malic acid strengthens 

with pollution levels decreasing, while the correlation between oxalic acid and ASOA tracers 

weakens. This divergent pattern indicates that anthropogenic precursors were not the dominant 

source of malic acid. In general, biogenic sources had more contribution to malic acid formation 

than anthropogenic in this study. 

Because we don’t have unique BSOA tracers in this study, we used malic acid concentrations to 

reflect BSOA variations. When we quantified impact of BVOCs on oxalic acid by machine learning, 

we used meteorological parameters (e.g., temperature, solar radiation, and relative humidity), which 



 

 

can determine BVOC emissions, as proxies for BVOC emissions instead of malic acid. This will 

avoid potential confusion of AVOC and BVOC emissions. We acknowledge that the original 

phrasing in the manuscript was imprecise and have revised the relevant sentences accordingly to 

prevent any misunderstanding. 

Phthalic acid has been identified as a SOA tracer derived from naphthalene (Kleindienst et al., 

2012), while DHOPA is a tracer for SOA formed from aromatic hydrocarbons (Ding et al., 2017). 

Given the substantial anthropogenic sources of naphthalene and aromatic hydrocarbons, phthalic 

acid and DHOPA can be used as anthropogenic SOA (ASOA) markers. Malic acid is a typical 

secondary product formed through photooxidation of both anthropogenic and biogenic VOCs 

(AVOCs and BVOCs). However, a recent study estimated that malic acid produced through the 

oxidation of BVOCs (α-pinene and isoprene) was higher than that formed by AVOCs (toluene and 

naphthalene) (Sato et al., 2021). In addition, malic acid was also found to be strongly correlated 

with monoterpene tracers (R2 = 0.87-0.95) in field measurements (Hu and Yu, 2013; Cheng et al., 

2021). Given high BVOC emissions (Wang et al., 2021) and relatively high temperature (~20 ℃, 

Table S5) in the PRD region, malic acid was mainly produced from biogenic precursors in this study, 

especially monoterpenes. Thus, we used malic acid to reflect the variations of SOA (BSOA). 

Although phthalic acid, DHOPA, and malic acid decreased from 51.9 ± 14.9, 1.85 ± 1.35, and 24.2 

± 19.4 ng m-3 to 16.7 ± 5.7, 1.05 ± 0.88, 5.9 ± 4.9 ng m-3, respectively, their declining trends were 

not statistically significant (p > 0.05). This indicated that the influence of reductions in emissions 

of anthropogenic organic precursors on SOA was limited. 

 

Notably, the correlation between C2 and malic acid strengthened progressively with the 

reductions in anthropogenic emissions. This trend became more apparent when the data were 

categorized by pollution levels, with the correlation coefficients increased from 0.33 (IT0) to 0.72 

(IT4) (Table S7). Meanwhile, the correlations between C2 and ASOA markers weakened. As 

discussed previously, malic acid can be produced by photooxidation of both anthropogenic and 

biogenic precursors. However, this divergent pattern of correlations supported that anthropogenic 

precursors were not the dominant source of malic acid in this study. Thus, these results suggested 

that the relative contributions of biogenic sources to SOA become more important under cleaner 

conditions. 

 

Comment 5: line 226: The authors normalize oxalic acid and related species by PM2.5 to reduce 

dilution effects. I would rather recommend using primary and inertia tracers such as ΔCO as a more 

appropriate normalizer for removing dilution. 

Response: Thank you for the valuable suggestion. Indeed, using CO as a normalization tracer for 

dicarboxylic acids and oxalic acid is more reasonable for evaluating the influence of atmospheric 

dilution. Accordingly, we have added a figure in the Supplement showing that the temporal trends 

of dicarboxylic acids and oxalic acid normalized by CO are consistent with their original trends. 



 

 

This result indicates that meteorology-driven atmospheric dilution had a limited influence on their 

observed variations. The related discussion has been incorporated into the same paragraph in the 

revised manuscript. Here, we showed an increase in the the ratio of C2/PM2.5 to reflect the relative 

importance of SOA is increasing as pollution levels decrease. 

C2 was the most abundant compound among aliphatic DCA, accounting for 80%–91%, 

followed by C4 (4%–13%), and C9 (1%–4%). Therefore, the overall trend of aliphatic DCA was 

primarily driven by C2 (Fig. 2), and subsequent discussions will focus on C2. Its concentration 

declined from 692 ± 243 (2007) to 274 ± 114 (2018), but did not exhibit a clear trend (p > 0.05). 

Carbon monoxide (CO) can be used as a normalization tracer to assess the influence of atmospheric 

dilution. As shown in Fig. S3, the temporal trends of DCA and C2 normalized by CO are consistent 

with their original trends, indicating that atmospheric dilution had a limited influence on their 

observed variations. To further explore the changes of SOA formation under different pollution 

conditions, our samples were divided into five categories according to interim targets recommended 

by the Worle Health Organization (WHO) in 2021 (World Health Organization, 2021): IT0 ( PM2.5 > 

75 μg m−3), IT1 (75 μg m−3 > PM2.5 > 50 μg m−3), IT2 (50 μg m−3 > PM2.5 > 37.5 μg m−3), IT3 (37.5 

μg m−3 > PM2.5 > 25 μg m−3), and IT4 (PM2.5 < 25 μg m−3). We found that the molecular markers 

and C2 decreased significantly (p < 0.01) from IT0 to IT4 (Table S6). However, the ratio of C2 to 

PM2.5 (C2/PM2.5) increased from 6.8 × 10-3 to 10.3× 10-3 (p < 0.01, Fig. S4), suggesting that the 

relative importance of SOA increased as pollution levels decreased. 

 

Figure S3. The concentrations of DCA and C2 normalized by carbon monoxide (CO, ppm). Due to the lack 

of in situ CO measurements at the sampling site, monthly CO data were obtained from the Copernicus 

Atmosphere Monitoring Service (CAMS) global reanalysis product (EAC4), provided by the European 

Centre for Medium-Range Weather Forecasts (ECMWF, https://cds.climate.copernicus.eu/datasets). The 

dataset has a horizontal resolution of approximately 0.75° × 0.75°. 

 

Comment 6: Figure 3: add oxalic acid data in this figure. 

https://cds.climate.copernicus.eu/datasets


 

 

Response: Thanks for suggestion. We have added oxalic acid data in this figure. 

 

Figure 3. (a) Annual variations in aliphatic DCA. (b) Annual variations in oxalic acid. The concentrations of 

DCA decreased from 864 ± 283 ng m-3 (2007) to 307 ± 122 ng m-3 (2018), and the concentrations of oxalic acid 

decreased from 692 ± 243 ng m-3 (2007) to 274 ± 114 ng m-3 (2018), but the trends were not statistically 

significant (p > 0.05). Due to the absence of oxalic acid measurements in 2009, the concentrations of aliphatic 

DCA for that year are not presented. 

 

Comment 7: line 255-258: I do not find enough evidence supporting the two sentences claiming the 

limited contribution of anthropogenic VOCs and meteorology. 

Response: Thanks for this valuable comment. The AVOCs and meteorology play important roles in 

oxalic acid formation. However, what we want to discuss here is that the influences of changes in 

AVOCs and meteorology on C2 variations. We apology for the imprecise statement, which confuses 

the concept of “absolute contributions of AVOCs and meteorology” with “impacts of changes in 

AVOCs and meteorology”. For example, although contributions from AVOCs to C2 is important, 

their impacts on C2 variations could be limited when AVOCs remain at a stable level. We have 

revised the relevant sentences to prevent any misunderstanding. 

As shown in Figure 3 (see above), oxalic acid exhibited weak correlations with primary 

anthropogenic source markers across the entire dataset. Although anthropogenic sources 



 

 

experienced substantial reductions during the campaign period (discussed in Section 3.1), oxalic 

acid did not show a corresponding significant decreasing trend. In addition, a recent study observed 

an unexpected increase in oxalic acid when anthropogenic emissions were substantially reduced 

during the COVID-19 pandemic (Meng et al., 2023). These evidences implied that the reductions 

in anthropogenic emissions were not the driving factor for oxalic acid variations. 

Because our field measurements were conducted in the same season each year (from October to 

December), the inter-annual differences in meteorological conditions were small. This resulted in 

the consistently weak correlations observed between oxalic acid and key meteorological parameters 

such as temperature, solar radiation, and relative humidity (Figure 3). Therefore, we conclude that 

the changes in meteorology were too small to be driving factor for oxalic acid formation. 

The results of correlation analysis are presented in Fig. 3. The correlation coefficients between C2 

and SOA tracers (phthalic acid, DHOPA, and malic acid) were relatively higher (r = 0.58, 0.41, and 

0.51, respectively; p < 0.01), further supporting that C2 was primarily formed via secondary 

oxidation processes. Meng et al. (2023) reported an unexpected enhancement of C2 during the 

COVID-19 pandemic, when anthropogenic emissions were substantially reduced. This reflected 

limited influence of reductions in anthropogenic organic precursors on formation of C2. Similarly, 

we found that anthropogenic emissions experienced substantial reductions during our campaign 

period (discussed in Section 3.1), while C2 did not show a corresponding significant decreasing 

trend. Although strong correlations between C2 and primary anthropogenic source markers were 

observed in certain individual years, the correlations remained weak across the entire dataset. These 

findings implied that the changes in anthropogenic emissions were not the driving factor for oxalic 

acid formation in this study. Because our field measurements were conducted in the same season 

each year (from October to December), the inter-annual differences in meteorological conditions 

were negligible. This resulted in consistently weak correlations observed between C2 and 

meteorological parameters such as temperature, SR, and RH. Therefore, we concluded that 

the changes in meteorology were too small to be the driving factor for C2 formation. 

 

Comment 8: Table 1: how may data points are in each category? 

Response: Thanks for your suggestion. We have moved Table 1 to Table S5, which shows 

correlations between C2 and various factors under different pollution levels. In addition, we have 

added number of samples in each category and each year. 

Table S5. Correlations between C2 and various factors under different pollution levels. 

 IT0 IT1 IT2 IT3 IT4 

Levoglucosan 0.17 (-0.05, 0.37) -0.03 (-0.22, 0.16) -0.10 (-0.36, 0.16) 0.01 (-0.23, 0.26) -0.29 (-0.61, 0.11) 

Hopanes -0.04 (-0.25, 1.08)  -0.21 (-0.38, -0.01) * -0.05 (-0.31, 0.22) 0.29 (0.05, 0.49) * 0.41 (-0.01, 0.70) * 

Octadecanoic acid 0.54 (0.36, 0.68) ** -0.03 (-0.22, 0.16) 0.01 (-0.26, 0.27) -0.03 (-0.26, 0.22) 0.17 (-0.23, 0.52) 



 

 

 IT0 IT1 IT2 IT3 IT4 

Picene 0.06 (-0.17, 0.28) -0.28 (-0.46, -0.07) * -0.18 (-0.45, 0.12) 0.08 (-0.25, 0.39) 0.02 (-0.62, 0.64) 

Terephthalic acid  0.40 (0.20, 0.57) ** 0.23 (0.04, 0.40) * 0.43 (0.19, 0.62) ** 0.34 (0.11, 0.54) * 0.41 (0.04, 0.69) * 

Phthalic acid 0.63 (0.47, 0.74) ** 0.28 (0.01, 0.45) ** 0.44 (0.20, 0.63) ** 0.34 (0.11, 0.54) ** 0.31 (0.01, 0.54) ** 

DHOPA 0.19 (-0.13, 0.30) * 0.49 (0.29, 0.60) ** 0.45 (0.21, 0.64) ** 0.42 (0.20, 0.61) ** 0.32 (-0.01, 0.65) ** 

Malic acid 0.33 (0.13, 0.52) * 0.53 (0.38, 0.66) ** 0.66 (0.48, 0.77) ** 0.69 (0.44, 0.75) ** 0.72 (0.45, 0.87) ** 

Ox 0.28 (0.05, 0.48) * 0.54 (0.37, 0.68) ** 0.56 (0.25, 0.70) ** 0.51 (0.42, 0.75) ** 0.68 (0.39, 0.84) ** 

J(O1D) 0.366 (0.15, 0.53) **  0.17 (-0.03, 0.36) 0.33 (0.05, 0.56) * 0.13 (-0.12, 0.37) -0.09 (-0.49, 0.34) 

J(NO2) 0.29 (0.08, 0.48) ** 0.14 (-0.07, 0.33) 0.49 (0.24, 0.68) ** 0.22 (-0.03, 0.45) 0.02 (-0.40, 0.44) 

Sulfate 0.49 (0.28, 0.62) ** 0.29 (0.12, 0.46) ** 0.60 (0.43, 0.74) ** 0.42 (0.21, 0.59) ** 0.55 (0.24, 0.76) ** 

ALWC 0.48 (0.31, 0.65) ** 0.36 (0.19, 0.50) ** 0.32 (0.09, 0.53) ** 0.30 (0.08, 0.49) ** 0.15 (-0.01, 0.31) 

pH -0.19 (-0.39, 0.03) -0.15 (-0.32, 0.03) -0.38 (-0.57, -0.16) ** -0.01 (-0.24, 0.22) -0.19 (-0.54, 0.21) 

Temperature 0.24 (0.02, 0.43) * 0.42 (0.27, 0.56) ** 0.50 (0.30, 0.67) ** 0.40 (0.19, 0.58) ** 0.63 (0.35, 0.81) ** 

RH 0.15 (-0.06, 0.36) 0.28 (0.11, 0.44) ** -0.03 (-0.21, 0.26) -0.03 (-0.19, 0.26) -0.03 (-0.39, 0.33) 

SR -0.01 (-0.23, 0.21) 0.13 (-0.06, 0.30) 0.43 (0.21, 0.61) ** 0.42 (0.21, 0.59) ** 0.53 (0.22, 0.75) ** 

The values in brackets indicate the 95% confidence intervals (CIs) of the correlation coefficients. One, two 

asterisks denote p values less than 0.05, 0.01, respectively. No asterisk denotes the correlations are not 

statistically significant. 

 

Table S6. Meteorological parameters, PM2.5 main components, organic molecular tracers, diacids, pH, and 

ALWC in the PRD (IT0-IT4). 

 IT0 

N=129 

IT1 

N=144 

IT2 

N=72 

IT3 

N=84 

IT4 

N=33 

Ⅰ. Meteorological parameters      

Temperature (℃) 20.2 ± 2.9 21.5 ± 3.6 21.6 ± 3.4 22.8 ± 3.1 20.8 ± 4.8 

Relative humidity (%) 56 ± 12.4 56 ± 13 62 ± 10 67 ± 9 66 ± 7 

Solar radiation (W m−2) 148.0 ± 43.9 145.6 ± 42.6 118.0 ± 46 115.5 ± 43.4 112.0 ± 50.5 

Boundary layer height (m) 578 ± 159 578 ± 134 613 ± 167 583 ± 142 626 ± 154 

Ⅱ. Molecular tracers (ng m-3)      

Levoglucosan 333 ± 225 194 ± 131 114 ± 79 96 ± 74 63 ± 34 

Hopanes 3.4 ± 2.6  2.0 ± 1.6 1.3 ± 1.9 0.88 ± 0.70 0.54 ± 0.30 

Octadecanoic acid 37.5 ± 21.0 28.4 ± 17.2 22.3 ± 14.8 17.3 ± 8.7 11.3 ± 0.93 

Picene 0.26 ± 0.20 0.22 ± 0.15 0.18 ± 0.11 0.17 ± 0.10 0.10 ± 0.04 

Terephthalic acid  50.0 ± 46.8 48.9 ± 30.7 32.1 ± 31.3 27.9 ± 27.1 14.5 ± 12.4 

Phthalic acid  40.3 ± 17.8 29.2 ± 16.0 22.7 ± 10.2 19.6 ± 10.1 14.1 ± 8.8 

DHOPA 2.52 ± 2.28 2.27 ± 2.07 1.42 ±1.06  1.05 ± 1.01 0.78 ± 0.43 

Malic acid 19.0 ± 19.0 16.6 ± 16.4 9.6 ± 8.3 7.4 ± 6.1 3.9 ± 2.3 

Ⅲ. Aliphatic Diacids (ng m-3)      

Oxalic acid (C2) 
619 ± 290 483 ± 200 329 ± 158 293 ± 125 189 ± 102 

Succinic acid (C4) 
55.0 ± 49.5 29.3 ± 28.5 18.5 ± 14.2 16.7 ± 12.7 12.9 ± 12.1 

Glutaric acid (C5) 
12.5 ± 10.5 6.4 ± 5.9 4.8 ± 2.7 4.2 ± 4.2 4.5 ± 5.6 

Adipic acid (C6) 
7.1 ± 4.2 4.9 ± 3.4 4.0 ± 2.7 3.4 ± 2.5 2.9 ± 2.6 

Pimelic acid (C7) 
1.9 ± 1.3 1.4 ± 0.8 1.1 ± 0.7 1.1 ± 0.9 0.7 ± 0.5 

Suberic acid (C8) 
3.0 ± 2.2 2.5 ± 1.5 2.2 ± 1.3 2.0 ± 1.3 1.4 ± 1.0 

Azelaic acid (C9) 
13.5 ± 12.3 11.9 ± 8.3 10.4 ± 7.0 9.6 ± 6.1 6.7 ± 3.8 



 

 

 IT0 

N=129 

IT1 

N=144 

IT2 

N=72 

IT3 

N=84 

IT4 

N=33 

Sebacic acid (C10) 
2.0 ± 1.8 1.7 ± 1.2 1.6 ± 1.3 1.5 ± 1.1 1.0 ± 0.9 

Subtotal 734 ± 337 540 ± 218 358 ± 163 325 ± 135 208 ± 67 

Ⅳ. Other species      

pH  2.04 ± 0.96 2.40 ± 0.61 2.48 ± 0.43 2.36 ± 0.58 2.11 ± 0.71 

ALWC (μg m-3)  20.9 ± 11.0 15.1 ± 9.9 13.1 ± 6.9 13.1 ± 8.0 7.2 ± 3.0 

Ox (μg m-3) 136.7 ± 31.7 134.9 ± 34.4 111.9 ± 27.1 98.5 ± 25.0 72.7 ± 19.1 

 

Table S2. Information of PM2.5 samples. 

Year Duration Number of samples 

2007 October to November 32 

2008 November to December 45 

2009 November to December 25 

2010 October to December 69 

2011 November to December 28 

2012 November to December 39 

2013 November to December 29 

2014 October to November 20 

2015 October to November 37 

2016 October to November 33 

2017 October to December 55 

2018 October to December 50 

 

Comment 9: Figure 6: The author should consider using the same features to predict other di-acids 

to see if these features can well capture the variation of other di-acids. 

Response: Thank you for the valuable suggestion. We have used the same features to predict other 

DCA. Our results show great agreements between measurement data and prediction (R2=0.72–0.82), 

which further verify the reliability of our machine learning model. 

 



 

 

 

Figure S2. Observations and simulations of DCA 
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