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Reviewer 1 

Reviewer Comment 1.1 — I would like to compliment the authors on a very thorough and useful 

paper. I think there is great value in this very thorough review, and I think output such as Figure 

6 can be very helpful. I did find the paper very dense which affects its readability; I have included 

some feedback below which maybe helps in addressing this. 

 

Reply: We thank the reviewer for taking the time to read the manuscript and provide constructive feedback. 

In response to the comments, we have revised the paper to improve clarity and readability by adding a table 

of key definitions (Table 1), introducing a new subsection on the roles of the statistical/ML component in 

hybrid models (Section 4.2), and expanding the discussion of future directions, including links to socio-

hydrological modeling (Section 5). Detailed responses to all comments are provided below. 

 

Reviewer Comment 1.2 — There are a lot of different definitions discussed including their 

synonyms, and I wondered if adding a box with key definitions may help the reader. (eg two-

way (or loosely) coupled models and tightly coupled models, etc.) Or maybe it can be added to 

existing figures such as figure 2. 

 

Reply: As per your suggestion, we have added Table 1 with definitions for 11 technical terms. 

Term Definition 

Compound flooding Flooding arises from a combination of multiple drivers—such as storm surge, river discharge, 

rainfall, waves, or tides—whose interactions may amplify the hazard (Moftakhari et al., 2017; 

Wahl et al., 2015). 

Process-based model A numerical model that solves governing physical equations (e.g., Navier–Stokes, shallow-

water equations) to simulate hydrodynamic, hydraulic, atmospheric, or surface-runoff 

processes. 

Statistical model A model that represents system behavior through probability distributions, empirical 

relationships, or data-driven statistical structures rather than directly solving physical equations. 

Coupling The integration of two or more models so that the output of one drives (and sometimes is also 

driven by) another, allowing different environmental domains to be represented in one 

workflow. 

Two-way (loosely) 

coupled model 

Two independent models run separately but exchange information in both directions at set 

intervals. The codes remain distinct and are called iteratively, so feedback is captured but with 

lower temporal granularity than in tight coupling (Santiago-Collazo et al., 2019). 
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Term Definition 

Tightly (fully) 

coupled model 

Model components are merged into a single executable or solver framework and share state 

variables at every (or very fine) time-step, ensuring high-frequency, bidirectional feedback 

(Santiago-Collazo et al., 2019). 

Bias correction Statistical adjustment of model outputs to correct systematic deviations between modeled and 

observed data (Maraun and Widmann, 2018). 

Data assimilation Statistical methods that blend model forecasts with observations to estimate the evolving system 

state (Moradkhani et al., 2005). 

Uncertainty 

quantification 

Identification, characterization, and propagation of uncertainties arising from forcings, 

parameters, initial states, assumptions and model structure—and strategies to reduce them 

(Abbaszadeh et al., 2022; Muñoz et al., 2024). 

Copula A multivariate distribution that couples given marginals into a joint distribution, allowing 

flexible modelling of dependence (including tail behavior) (Nelsen, 2006). 

Physics-informed 

machine learning 

Machine-learning techniques in which physical laws (e.g., partial differential equations, 

conservation principles) are imposed as soft constraints in the loss function or as hard constraints 

that are built directly into the model architecture, yielding data-efficient, physically consistent 

surrogates (Raissi et al., 2019). 

 

 

Reviewer Comment 1.3 — In sections 3.1 and 3.2, I was wondering about the “statistical 

component” and whether it would help to include a classification of the different roles or function 

of the statistical component within the different types of coupling. Clarifying the different roles 

of the statistical component within a hybrid model may help users to classify their specific hybrid 

approach? 

 

Reply: In the revised version, we added a new section, “4.2 Roles of the statistical component in hybrid 

models,” to summarize the different functions of the statistical component within a hybrid model: 

“4.2 Roles of the statistical component in hybrid models 

In hybrid modeling frameworks, the statistical/ML component plays different roles depending 

on the coupling strategy and the compound flood problem being addressed. Although Section 3 

introduces statistical tools within each hybrid category, the functional purpose of the statistical 

block varies considerably across sequential, feedback, and ensemble designs. Across these 

paradigms, the statistical/ML block typically performs one or more of the five roles listed in Table 

2:  
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Table 1. Roles of the statistical/ML component across hybrid modeling pathways 

Role of statistical/ML 

component 
Description Sequential Feedback Ensemble 

(1) Boundary/driver 

generator 

Supplies synthetic or real-time forcings (e.g., 

rainfall, discharge, surge) as inputs to a 

physics-based solver. 
✓ — (✓)* 

(2) Scenario sampler/event-

catalogue builder 

Draws joint extremes (e.g., via 

copulas/multivariate methods) to expand 

beyond historical records. 
✓ (✓)* (✓)* 

(3) Physics surrogate 

Provides a computationally efficient surrogate 

for an otherwise expensive physics-based 

model (e.g., rainfall–runoff, PIML 

hydrodynamics). 

— ✓ (✓)* 

(4) State updater 

Assimilates observations or corrects model 

states during runtime; characteristic of two-

way feedback systems. 

— ✓ (✓)* 

(5) Ensemble aggregator 

Combines independent predictions using 

performance-, uncertainty-, or cost-based 

weighting. 

— — ✓ 

* Parentheses indicate roles that may appear in some implementations but are not core to the pathway. 

 

Mapping these roles helps clarify how the statistical component contributes to the broader 

simulation framework and provides a consistent basis for classifying hybrid approaches. As 

summarized in Table 2, sequential hybrids typically rely on roles (1) and (2); feedback hybrids 

make use of roles (3) and (4) (and occasionally role 2); and ensemble hybrids center on role (5) 

while potentially incorporating roles (1)–(4) within individual ensemble members. This functional 

perspective highlights that the statistical or ML component is not a single construct but a spectrum 

of tasks that complement the physics engine in different ways.” 

 

Reviewer Comment 1.4 — Finally, I was wondering if there would be premise in adding a small 

discussion about linking (the framework of) compound flood modelling to more socio-

hydrological models that capture not only compound flood / hydrological dynamics but also 

their interactions with people; eg https://gmd.copernicus.org/articles/16/2437/2023/?. 

 

Reply: We added a new paragraph to Section 5 to emphasize this potential future pathway: 

“Emerging socio-hydrological and agent-based frameworks also offer opportunities for expanding 

compound flood modeling beyond physical drivers alone. These models explicitly simulate the 

feedbacks between human decisions and hydrological responses across a wide range of spatial 

scales, from large-scale agent-based systems, where millions of agents interact dynamically with 

soil moisture, groundwater, reservoirs, and routing processes (De Bruijn et al., 2023), to household-
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level adaptation models (Haer et al., 2020), catchment-scale frameworks that couple agent 

behavior with calibrated runoff responses (Sousa et al., 2025), behavior-aware reservoir-operation 

schemes (Gautam et al., 2025), and more generic socio-hydrological agent-based platforms 

developed for integrated water management applications (Lillo-Saavedra et al., 2024). Integrating 

compound flood frameworks with such socio-hydrological models could allow future studies to 

capture not only the multivariate flood physics but also how human behavior, adaptation, exposure, 

and decision-making co-evolve with compound flood hazards under changing climate and 

socioeconomic conditions.” 
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Reviewer Comment 1.5 — Some literature suggestions. Tilloy et al 2019, Mishra et al 2022. 

 

Reply: As per your suggestion, we cited these two papers in the Introduction: 

• Tilloy, A., Malamud, B. D., Winter, H., & Joly-Laugel, A. (2019). A review of quantification 

methodologies for multi-hazard interrelationships. Earth-Science Reviews, 196, 102881. 
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• Mishra, A., Mukherjee, S., Merz, B., Singh, V. P., Wright, D. B., Villarini, G., ... & Stedinger, J. R. 

(2022). An overview of flood concepts, challenges, and future directions. Journal of hydrologic 

engineering, 27(6), 03122001. 


