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Abstract: Many data-driven methods predict sea surface temperature (SST) at specific locations using only the
20  previous period SST values as predictors, which ignores the spatiotemporal dependencies of SST variability and the
influence of multiple variables on SST patterns. Additionally, these methods have difficulty in capturing the feature
dependencies involved in SST fluctuations, limiting the accuracy and horizon of SST predictions. This study proposes
a new medium- and long-term forecasting model to address these issues, which includes two sub-models: a featural
granularity model and a data-knowledge-driven ConvLSTM prediction model. The former restacks the one-
25 dimensional time-series of each variable into multidimensional feature variables using an adaptive granulation-based
method. The latter integrates parameters that affect ocean dynamics and thermodynamics, along with pixel-to-pixel
similarity, to achieve partition predictions. The multidimensional feature variables were fed into the ConvLSTM
model to exploit the feature- spatiotemporal patterns for predictions. Experiments conducted in three sea areas of the
western Pacific and Indian Oceans indicate that the use of featural granularity can enhance the ability of the prediction
30 model to capture dynamic characteristics in the time domain and internal dependencies of the features and extend
prediction horizons. The combination of knowledge-driven and study area segmentation concepts can help the
prediction model better capture the unique features and dynamics of the local area, further improving prediction
accuracy. Validation against observations and cross-comparisons with baseline models in three different sea areas for
the prediction of monthly SST with lead times ranging from 1 to 120 months demonstrate that the proposed model
35 can generate consistent and more accurate regional SST predictions. The differences between predicted and observed

values range from -0.7 to 0.7K, with an RMSE of approximately 0.3 to 0.57K for SST predictions. This developed
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model provides a promising approach for medium- and long-term sea surface temperature forecasting, which can be

easily adapted to other ocean parameter prediction tasks.

1 Introduction

40 Sea Surface Temperature (SST) refers to the temperature of the upper layer of the ocean’s surface, which
represents the temperature of the water in direct contact with the atmosphere. SST is a crucial variable within the
global ocean-atmospheric system, playing a vital role in the exchange of heat, moisture, momentum, and gases
between the ocean and the atmosphere (Cao et al., 2021; Xue et al., 2022). Changes in SST can have a significant
impact on the global climate and ecosystems, potentially leading to extreme events (e.g., typhoons, droughts, and

45 floods) (Bentamy et al., 2017; Minnett et al., 2019; Xiao et al., 2019a). Therefore, future projections of SST are of

significance in the early warning of extreme events and understanding climate dynamics.

Currently, methods for predicting SST can be divided into two main categories. One is physics-based numerical
models. It uses a series of complex mathematical equations coupled with the physical laws of the ocean to simulate
ocean dynamics and predict SST (Aparna et al., 2018; Liu and Fu, 2018; Stockdale et al., 2006). For example, Noh et

50 al. (2002) improved the prediction accuracy of SST by embedding a new ocean mixed layer model into an ocean
general circulation model. Krishnamurti et al. (2006) predicted global SST seasonal anomalies by constructing a super-
ensemble based on 13 state-of-the-art coupled atmosphere-ocean models. Some agencies including the European
Centre for Medium-Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction
Command (NCEP) also provide coupled model forecasts based on ensemble techniques, where ECMWF and NCEP

55 can forecast various parameters 10-15 days and 380 hours in advance, respectively. Although SST forecasts based on
numerical models can achieve good accuracy over large spatial regions, they usually involve complex external data
and multiple assumptions for model initiation and time integration (Patil and Deo, 2018; Xu et al., 2020). Their
performance is determined by the coupling and data assimilation mechanisms, and furthermore, since various

parameters are simultaneously predicted, it is challenging to precisely tune a single parameter.

60 The other category is data-driven models, which can learn the latent characteristics from historical data and
further predict SSTs using the learned patterns (Su et al., 2018; Su et al., 2021; Xiao et al., 2022; Xin et al., 2020).
Some data-driven models have been used, such as Markov models (Xue and Leetmaa, 2000), support vector
regression(Imani et al., 2017), empirical canonical correlation analysis (Collins et al., 2004; Tang et al., 2000), linear
regression (Kug et al., 2004), empirical orthogonal functions (Neetu et al., 2011), and artificial neural networks (ANNs)
65 (Azhary and Minaoui, 2025; Liu et al., 2024; Philippus et al., 2024). These approaches have excellent tractability and
are especially advantageous when information regarding the physical mechanisms of real-world processes is
inadequate (Xiao et al., 2019b; Xu et al., 2020). Among these data-driven approaches, ANNs tend to be more popular
because they can fully explore the complex patterns hidden in the data and model them (Aguilar-Martinez and Hsieh,
2009; Wu et al., 2006; Bilgili et al., 2024; Yang et al., 2025). For example, Xiao et al. (2019a) developed a hybrid
70 prediction model based on LSTM and AdaBoost methods for accurately predicting location-specific SSTs. Patil and

Deo (2017) used wavelet neural networks to predict the SST at six selected sites in the Indian Ocean and obtained
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good prediction results. However, they are limited to predicting SST in a few locations and cannot simultaneously
provide spatial information similar to the physics-based numerical models. Patil and Deo (2018) proposed a data-
driven model with a very large number of individual ANNs (20.5902 million networks) running simultaneously for
75 basin-scale SST predictions. However, the large number of networks may affect the running speed of the computer
and the promotion of the model. Furthermore, changes in SST occur through advection and diffusion, indicating an
interaction between the SST of a specific location and that of its neighboring points (De Bézenac et al., 2019).
Therefore, the independent prediction of SSTs at each location disregards the interaction between SSTs at different

locations, potentially impacting the accuracy and validity of the prediction.

80 Graph neural networks (GNNs) effectively capture local spatial correlations through adjacent-node aggregation.
However, the prevalent overemphasis on neighborhood relationships and neglect of global connections in current
models inevitably undermines SST prediction accuracy, particularly given the ocean’s interconnected nature where
geographically distant sites exhibit correlated patterns (Dai et al., 2025; Liang et al., 2023). Convolutional long short-
term memory (ConvLSTM) is capable of learning dependent information over time while incorporating spatial

85 features, making it effective for processing time series data with both temporal autocorrelation and spatial
characteristics(Azhary and Minaoui, 2025; Song et al., 2025; Vytla et al., 2025). Xiao et al. (2019b) successfully
achieved precise SST prediction in the East China Sea utilizing the ConvLSTM model, which effectively captures the
spatial and temporal correlations inherent in SST data. Hao et al. (2023) studied the impact of model structure
(different parameter settings) on the performance of the ConvLSTM and ST-ConvLSTM (an improved version of

90  ConvLSTM) models in predicting SST and found ConvLSTM has good performance in predicting SST in the South
China Sea. Azhary and Minaoui (2025) proposed an encoder-decoder dual attention ConvLSTM model that leverages
convolutional operations for spatial dependencies, LSTM for temporal sequences, and dual attention (contextual +
spatial) to prioritize critical spatiotemporal features. The model achieves significant improvements in prediction
accuracy and computational efficiency for Moroccan coastal SST forecasting compared to single-attention baselines.

95 In addition, some researchers have also considered the influence of historical SST information at locations near the
prediction point by adding convolutional layers with regional information extraction capabilities to the neural network.
However, these models, which utilize SST observations as inputs, do not capture the internal dependencies of specific
periodic features involved in SST fluctuations (Shao et al., 2022; Yang et al., 2018; Yu et al., 2020). Furthermore,
actual SST variability is governed by complex interactions among multiple oceanic-atmospheric parameters.

100 Prevailing data-driven SST forecasting approaches often treat SST as an isolated variable, focusing primarily on its
temporal dynamics while neglecting critical cross-parameter couplings—particularly thermodynamic-dynamic

interactions across spatiotemporal scales—which fundamentally limit prediction accuracy.

To bridge these gaps, this paper proposes a novel method for SST prediction based on granular computing and

the ConvLSTM model of data-knowledge-driven. This method fully considers the influence of the driving factors of

105 SST changes, greatly exploits the spatiotemporal information of SST sequences, and extends the prediction horizons.
Validation against observations and model comparisons across three heterogeneous sea areas demonstrate the

method’s reliability for medium-term (1 month—10 years) and long-term (>10 years) SST forecasting.
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2 Methodology

Fig. 1 shows the working mechanism of the proposed granulation-based ConvLSTM Model of Data-Knowledge-

110  Driven, which involves three stages: data pre-processing based on featural granularity model and expert knowledge,
ConvLSTM training, and accuracy assessment. In the first stage, we utilize the relevant theories and research results

of previous experts on the dynamic changes of SST as an expert knowledge base as a knowledge-driven, thereby
incorporating human practical experience and wisdom. Specifically, 13 meteorological and oceanic parameters that

reflect ocean thermal and dynamical processes, as well as sea-air interactions, were selected as input predictors for

115 SST prediction by integrating the physical mechanisms of SST variability. By quantitying the similarity between the
pixels within the study area, the study area was divided into different sub-regions, and different parameters were
selected for each sub-region as predictors for SST prediction. Finally, the one-dimensional time series of each predictor

is extracted pixel by pixel. Each one-dimensional time series was adaptively segmented according to its trend
characteristics to generate unequal-length temporal granules and was restacked into multidimensional feature variables.

120 In the second stage, the feature variables were fed into the constructed ConvLSTM model to achieve the prediction of
the feature variables associated with the SST. In the third stage, the SSTs were obtained by applying the degranulation

process to these predictions. The accuracy of the proposed prediction model was evaluated through a comparison with

other models, namely, Convolutional Gated Recurrent Unit (ConvGRU), Convolutional Neural Network (CNN), Deep
Learning Neural Network (DLNN), Bi-Directional Long Short-Term Memory (Bi-LSTM), and Fully Connected Long

125 Short-Term Memory network (FC-LSTM). Each step is described in the following subsections. In Section 3, we apply

the method to three different sea areas and made detailed analysis.

Predictors selection and study area segmentation ConvLSTM training Accuracy assessment
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Fig. 1 Visual representation of the proposed model. The cross-validation in Step 3 is based on the RMSE values of

predictions obtained using the proposed model and baseline models.
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130 2.1 Predictors selection and study area segmentation

Changes in SST result from the interaction of various meteorological and oceanic variables, with dynamic and
thermal interactions between different variables (Shao et al., 2022). Therefore, incorporating surface parameters that
reflect these processes may be more effective for predicting SST. Variables such as total cloud cover (tcc), evaporation
(e), 2m temperature (t2m), 10m u-component of wind (ul0), 10m v-component of wind (v10), 2m dewpoint

135 temperature (d2m), mean sea level pressure (msl), total precipitation (tp), sea surface temperature (SST), sea skin
temperature (skt), surface net solar radiation (ssr), surface latent heat flux (slhf) and surface sensible heat flux (sshf)
can influence SST variability patterns by affecting ocean thermal and dynamical processes as well as sea-air
interactions. Clouds modulate SST by reflecting incoming sunlight, while evaporation can affect SST by influencing
sea-air interactions(Espinosa and Zelinka, 2024; Hsiao et al., 2022). Sea-air temperature difference, relative humidity

140 and wind speed can modulate changes in latent heat fluxes by affecting ocean evaporation, which in turn affects
changes in SST. Additionally, evaporation and precipitation cause changes in the salinity and temperature of the ocean
mixed layer, affecting the buoyancy and density at the ocean surface. This leads to mixing and convection between
surface and subsurface oceans, which in turn affects SST(Tuchen et al., 2024; Fu et al., 2024; Xie et al., 2010). Wind
stress forcing can further intensify vertical processes exchanging surface and subsurface water (e.g., mixing, vertical

145 advection, and turbulence)(Wills et al., 2022; Roach et al., 2023). Hence, the 13 aforementioned meteorological,
seawater states, and dynamics variables were utilized as an expert knowledge base. The input predictors for predicting

SST will be derived from this knowledge base.

Although SST in different regions of the ocean is influenced by these factors, their relative importance can vary

significantly from one region to another due to unique regional characteristics and interactions. Therefore, by

150  quantifying the similarity between the pixels within the study area using data from the entire study period, the study

area was divided into different sub-regions, and different parameters were selected for each sub-region as predictors

for SST prediction. The process involves grouping pixels with similar meteorological and oceanic conditions, which

can be achieved by using correlation-based methods to create co-occurrence networks. Co-occurrence networks can

be constructed by calculating the correlation coefficient matrix for every two pixels in the study area and selected

155 statistically significant and strongly correlated pixels (i.e., correlation coefficient > 0.8 and p-value < 0.01)(Jiao et al.,

2020). Fig. 2(a) shows co-occurrence networks generated from the matrix of predictors for all pixels in study area I

(The South China Sea). The nodes in the network represent individual pixels, and the edges connecting two nodes

indicate the correlation strength between corresponding pixels. Each color corresponds to a distinct module, with

pixels within each module sharing similar meteorological and oceanic conditions. Through the identification of pixel

160  positions and associated variables within each module, we can divide study area I into two subregions, i.e., region 1

and region 2 (Fig. 2(b)) and identify the key variables influencing SST changes within these subregions. The key

variables that affect the SST change in region 1 are SST, d2m, skt, tcc, t2m, sshf, msl, ul0, tp and ssr, and the key
variables that affect the SST change in region 2 are SST, ssr, msl, skt, t2m, slhf, e, ul0, v10, sshf and d2m.
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165 Fig.2 (a) Co-occurrence networks generated from the matrix of predictors for all pixels in study area I. (b) The study

area I is divided into two sub-regions, corresponding to the two color-coded modules in the co-occurrence networks.

The drivers of SST variability in different regions are not identical, and too many predictors can increase the
complexity of the subsequent prediction model, thereby reducing the prediction accuracy. While the Co-occurrence
network diagram can visually identify factors that affect SST dynamics in a region, it does not inherently determine

170  the importance or relative influence of each variable. When many variables are identified, it becomes challenging to
prioritize or select the most critical ones. Therefore, we further used the random forest algorithm, which has the ability
to measure the importance of variables, to select the important predictors in different regions. By integrating the
insights from the Co-occurrence network with the variable importance scores derived from the random forest analysis,
we were able to identify and prioritize the most significant factors influencing SST, thereby improving the efficiency

175 and accuracy of our prediction model. Taking study area I as an example, Fig. 3 shows the importance ranking of the
13 predictors in regions 1 and 2 based on the random forest algorithm and the prediction errors using different numbers
of predictor variables after ranking by importance. The prediction accuracy of the model increases and then decreases
as the number of input predictors increases, both for region 1 and region 2. While the random forest results indicate
that using just four variables as input can already yield high accuracy, our co-occurrence network analysis revealed

180  thatthe SST dynamics in regions 1 and 2 are driven by distinct, context-dependent interactions between meteorological
and oceanic factors. For instance, region 1 exhibits stronger coupling between sshf and tp, while region 2 is more
sensitive to slhf and e. These nuanced relationships, though not the top four most “globally” important variables,
contribute to capturing region-specific variability that might be missed with only four predictors—especially in
extreme or transitional conditions. Thus, for region 1, the model has a high accuracy of prediction when eight variables

185 are selected: SST, skt, t2m, sshf, msl, ul0, tp and ssr. For region 2, the model has a high accuracy of prediction when
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nine variables are selected: SST, skt, t2m, slhf, e, ul0, v10, sshf and d2m. Following this, a comparison will be made
between the outcomes derived from the co-occurrence network and the random forest analysis. The common variables
identified will then be utilized as predictor variables in regional models aimed at predicting SST.
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Fig. 3 Results of the importance of drivers based on random forest and the prediction errors using different numbers

of predictor variables after ranking by importance (study area I)

2.2 Formation of multi-series features based on featural granularity model

Information granules refer to sets of related data or information that are considered as a unit. In general, periodic
or partially periodic time series can be divided into a series of information granules (i.e., temporally continuous trend
segments) according to their tendency features. These information granules can be approximated by stretching a series
of templates in the horizontal and vertical directions (Cao et al., 2023). Therefore, we first granulated the one-
dimensional time series for each variable at each pixel into data granules within various tendency feature. Specifically,
we partition information granules based on the monotonicity and concavity-convexity of the target variable series
X (X = {x1,%5, ..., X, }). The monotonicity and concavity-convexity of X are represented by its first-order dynamic
X' (X' = {x{,x3 ..., x5,_1}) and second-order dynamic X" (X" = {x{,x3 ..., x;,_,}), respectively.
(te[12,..,n—-1]) (1)
(te[12,..,n-2]) )

[ —
Xt = Xe41 — Xt

"no__ 1 12
Xt = Xee1 — Xt

If the monotonicity and concavity-convexity of X change at the data point x;, then x; is considered as the
splitting point of X. That is, if x{ * x;,; < 0U x{" * x;,; < 0, the monotonicity and/or concavity-convexity of the
data point x; changes, and thus, the target variable series X can be divided into {xq, x5, ..., x;} and {x;4, ..., X5}
In addition, to address the noisy characteristic of the target variable series or small variations in concavity-convexity
that may lead to dense partitioning, two constraints are added to each variable series through data analysis and multiple
experiments: [t — 1| > 8; N |x, —x;| > @;, where 6; and @; are the thresholds for the jth variable series and

estimated from all available temporal data. In this manner, each variable series is granulated into information granules
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with various trend characteristics.

Subsequently, we used quarter-circle sinusoids as templates and applied appropriate horizontal and vertical scale
stretches to approximate the information granules. We then introduced a 3-D feature space, represented by amplitude

(a), template type (T1-T4), and duration (d), to characterize the original granules, as illustrated in Fig. 4(a-b).

(a)? = ¥ (0 D,
b 2 303} d,
1t N
1300 " T Dx;
£=302f a || b 3
> o)y 7 i N
j 205 " ! d 4 :
4 dy 1
-1 —— Observation® Sl g, ® .
O Approximations (T1) [
O Approximations (T2) 4
o Appmxlnuﬁops(‘(a)
q_Approximations (14)| 300, : ;
51 57 60 6;90 m, |, m, L m, | m, [, m,
Time (Month)
—=r (d)
—=— Approximations 303f _ D
33
< 300 AN A,
= A,
g d,
297} i
a, d
d =
P S T 294rln : B - : —
12 24 36 48 60 72 84 96 108 0 1 1 2 2

Time (Month) Time (Month)

Fig. 4 (a) Four quarter-period sinusoids used as templates and approximate skt values obtained through template
matching. (b) Original variable values of pixels at 106.11°E, 18.84°N and their approximation through the combination
of stretched templates. (c) Formation of multi-series features for SST variables at 107.10°E, 0.37°N. (d) Formation of

multi-series features for SST variables at 107.10°E, 17.45°N.

Using the 3-D feature space directly to describe the original granules formed by 1-dimensional time series of
each variable at each pixel leads to information redundancy, thereby diminishing the accuracy of subsequent predictive
modeling and escalating computational complexity. Moreover, the examination of unequal-length information
granules generated by various variables at each pixel reveals that the information granules of an uptrend are usually
concave followed by convex or first convex and then concave, whereas the downward trend is first convex and then
concave or concave followed by convex. Considering these two factors, we combined adjacent unequal-length
information granules with different concavities and convexities but the same monotonicity to form new information
granules. Throughout the duration of the study, it was observed that nearly all variables exhibited a notable periodicity
at each pixel, with a recurring cycle of 12 months. We identified the number of new information granules (h) during
each cycle to construct h sets of new durations (D) and amplitudes (A), as shown in Fig. 4(c-d), where the sign of A

denotes the monotonicity of the granules. Subsequently, the 3-D feature space consisting of amplitude, template type,

EGUsphere\
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230 and time domain for each variable at each pixel is transformed into a 4*h-D feature space
([A1,Dq,Fy,Cq, Ay, Dy, Fy, Cy, -+, Ay, Dy, Fpy, C,]) consisting of the newly constructed amplitude (A), duration (D),
curvature (C), and fluctuation (F) features. C and F can be calculated using the amplitude and duration of the granules.
An example of an SST variable for this calculation is shown in Fig. 4(c-d). Suppose my, my, m,, m; and m, are
the times of monotonicity division, i.e., m; € {t|x; *xx{,; < 0}. L, l,, I3 and I, are the times of concavity-

235 convexity division, that is, I; € {t|x;’ * x{};; < 0}. The 16-D feature space of the granules between m, and m, can
be represented by [Ay, Dy, Fy, Cy, Az, Dy, Fy, Co, A3, D3, F3, C3, Ay, Dy, Fy, Cu ], where Ay = X, — X, » Dy =my; —
m;_, + 1. F;and C; can be calculated using Equations 3 and 4, respectively. Since the new feature space is going to
be used as input for machine learning, we need to ensure that the feature space of these variables at each pixel has the
same number of elements. After analyzing each pixel in three distinct study areas, it was determined that approximately

240 9.47% exhibited inconsistencies in the feature space elements of the predictors. Subsequently, through a series of
experiments, the inconsistent pixels were addressed by filling the corresponding positions in the feature space of each

variable with a value of 0 to maintain consistency in the number of elements.

Li-mi—q

G = my—m;_y 3)
_ |xli_xmi—1|
= e @

245 2.3 Construction of ConvLSTM model

ConvLSTM is a neural network model that combines CNNs and LSTM networks (Shi et al., 2015). Its basic idea
is to combine the recurrent neural network structure of LSTM with the convolutional operation of CNN to
simultaneously capture spatial and temporal features of a sequence. In ConvLSTM, each LSTM unit is modified to a
convolutional LSTM unit, which combines convolutional operation with the state update and gating operations of the

250 LSTM unit to model and predict spatiotemporal sequence data. The structure of ConvLSTM units is shown in Fig. 5.

o

A
C; 3
hy
o —

I’ i t/‘
Xt % Kiir % +) Convolution

Fig. 5 Structure of ConvLSTM units

X, is the input of the ConvLSTM in which the gates f;, i;, and O, and the candidate cell state C’, are controlled
by (X;, hi_1). The cell state C,is updated using f; and i;. O, determines the amount of information propagated

255 to the time step t+1. These gates consist of a sigmoid fully connected neural network layer and a point-wise
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multiplication operation. The working mechanism of these gates and the information flow can be represented as

follows:
fe= U(fo * Xy + Wy * het + WerCoq + bf) ®)
ip=0(Wy * Xe + Wy x hy_q + W,;°Ce_y + by) 6)
260 C'; = tanh(Wy, * X; + Wy * hy_q + b.) @)
Ce = f:°Ceq +1°C'y (®)
Or = 0(Wyo * Xy + Who * hy—q + Weo°Croq + bo) )
h; = 0,°tanh(C;) (10)

where X, is the input at time t, h,_; and C;_; are the hidden state and cell state at the previous time step, and W
265 and b are the weight and bias parameters of the corresponding gates. * denotes the convolution operator. ° denotes

element-wise multiplication, and ¢ and tanh are the sigmoid and hyperbolic tangent activation functions, respectively.

Due to interactions within the global climate system, it is important to model not only the spatial relationships

among neighboring regions but also to capture the spatial dependencies of any given region (Mu et al., 2019). However,

a single convolutional layer can only account for spatial dependencies in close proximity, as it is limited by the size

270 of'its kernels. Furthermore, the variation of SST is influenced not only by the most recent month but also by interannual
climate variations. Thus, it is necessary to consider both short-term and long-term temporal information in the entire
prediction model. Therefore, to achieve high-precision prediction results, we need to stack multiple ConvLSTM layers

with different numbers of kernels and kernel sizes to derive a prediction model.

The hyperparameters of the prediction model (e.g., the number of ConvLSTM layers, number of kernels and
275 kernel size, and dropout rate) must be tuned to improve its performance. In this study, 10% of the data from the training
dataset was randomly selected to tune the hyperparameters of the prediction model. We first tested a relatively simple
model with only one ConvLSTM layer and then generated new models by conducting several operations, including
changing one or two hyperparameter settings, setting more ConvLSTM and Convolutional layers, adjusting the order
of layers, or replacing part of the network with more complex components. Three indexes including the mean absolute
280 error (MAE), the determination coefficient (R?), and the root mean square error (RMSE) were used to evaluate the
prediction performance of these models with different parameter settings, and models with good prediction
performance were used as the seeds to start a new round of the best model searching. Finally, the optimal parameters
of the ConvLSTM network architecture can be determined until the prediction performance is no longer improved.
After testing the performance of different optimizers, we used the Adam optimizer for training. Through this process,
285 we constructed a 4-layer deep neural network model for predicting SST feature variables, as shown in Fig. 6. The
feature variables constructed in section 2.2 of t continuous time steps are taken as the input data. These input data are
then passed through three ConvLSTM layers and one Conv3D layer, respectively, to output i 16-feature variable
images corresponding to the SST variable at time steps t+1 to t+i. The four convolutional layers have filter sizes of
7x7, 3x3, 5x5, and 7x7x7, with 50, 50, 50, and 16 filters, respectively. A dropout mechanism and a regularization layer

290 are added after each ConvLSTM layer, with dropout values of 0.5, 0.5, and 0.2, respectively.
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Fig. 6 The architecture of the proposed ConvLSTM network.

2.4 Transform the obtained feature variables to SST

EGUsphere®

The final predictions of the ConvLSTM model are feature variables. The SSTs can be obtained by transforming

the predictions, which is referred to as the degranulation of the obtained feature variables. The transformation formula

is contingent upon the templates utilized to transform SSTs into multi-series features. In this study, quarter-cycle

sinusoids were used as templates, and therefore, the SSTs were determined using the sinusoidal formula:

xi=asin(2"—;+®)+b

an

where x is the ith SST value of the template, and b is the value of its starting SST point. The parameter @ is

determined by the type of matching template, for example, concave increasing and decreasing templates are used when

@is 0 and n/2, respectively. a and d denote the amplitude and duration of the matching templates, respectively,

which can be calculated using the final prediction of the feature variable.

The spatial extent of study area I is 0-25°N and 105-125°E, as shown in Fig. 7. It is bordered by two broad

continental shelves to the north and south, with a maximum depth of about 5,000 m in the east-central part of the sea

(Lietal.,2007; Pan et al., 2013). This study area is located in the South China Sea, one of the largest tropical marginal

seas in the western Pacific Ocean, and is surrounded by China, Vietnam, Malaysia, Indonesia, and the Philippines(Kuo

et al., 2000; Wang et al., 2021). The South China Sea is of critical ecological importance, with significant petroleum

295

300
3 Experimental results and discussion
3.1 Study area and data

305

310

reserves, important international trade routes, and rich fishery resources(Li et al., 2021).

To enhance the assessment of the proposed SST prediction model, Study areas II and III were also included for

SST prediction. The spatial extents of these two study areas are 20 ~ 35°S and 75-98°E, and 45 ~ 60°S and 60-90°E,

11
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respectively, located in the southern Indian Ocean, far from land. These regions were chosen due to their geographical
overlap with high latitudes (60-90°S), mid-latitudes (30-60°S), and low latitudes (0-30°N). Additionally, they
315 encompass the tropical zone (23.5°N-23.5°S), the southern temperate zone (23.5-66.5°S), and the southern cold zone
(66.5-90°S) in terms of temperature zones. Furthermore, the three study areas vary in their distances from the shoreline.
These factors contribute to a diverse range of spatial changes in SST within the study areas, enhancing the evaluation

of the SST prediction model's effectiveness.

30° N

egend
SKT(K)
e High : 311.03

-50° S
B Low:254.72
60°E  80°E 100°E 120°E 140°E

320 Fig. 7 Location map of the study area

In this study, we used monthly meteorological parameters with a spatial resolution of 0.25° from 1959 to 2021 to
predict SST. These data can be obtained from website (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-
eraS-single-levels-monthly-means, last access: January 10, 2022). These monthly meteorological parameters were
obtained from the ERAS dataset generated by ECMWE, which are generated by combining simulated and observed

325 data all over the world (Hersbach et al., 2020). The ERAS dataset is available from 1959, but it is not sufficient to
support high-precision SST predictions using only these 756 months of data. To expand the temporal coverage of these
data, we used the CMIP5 monthly data on single levels from ECMWF for 1850-2005, which can be obtained from
website (https://cds.climate.copernicus.eu/cdsapp#!/dataset/projections-cmip5-monthly-single-levels, last access:
January 10, 2022). Unlike the ERAS5 dataset, which assimilates upper-air and satellite data, the CMIP5 monthly dataset

330 is generated by coupled Global Circulation Model (GCM) simulations that inform the Intergovernmental Panel on
Climate Change (IPCC) reports. In order to maintain consistency between the two datasets, a regression model was
developed to establish a relationship between ERAS and CMIP data, with the CMIP data subsequently calibrated
through regression matching (Meng et al., 2021). The data from 1850 to 2011 were used as the training and validation
sets for the prediction model, and the data from 2012 to 2021 were used for prediction to further validate the accuracy

335 of the prediction model.

12
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3.2 Experiment setup

In this study, we used the feature variables constructed in Section 2.2 of t continuous time steps as input data to
predict the feature variable images constructed based on SST for the next 10 consecutive steps. To ensure that the
ConvLSTM model we constructed achieved the best predictions for different study areas, we analyzed the variation

340 in the magnitude of the loss function with the number of epochs in the ConvLSTM model for each study area’s
predictions and selected the number of epochs in which the loss functions remained nearly constant. Study areas I, II,
and III were partitioned into 2, 2, and 3 sub-areas, respectively, using the pixel similarity evaluation method outlined
in Section 2.1. The number of epochs predicted for the two sub-areas of study area I, the two sub-areas of study area
11, and the three sub-areas of study area III were set to 264, 192, 208, 222, 215, 198, and 246, respectively. We also

345 examined the variations in R%, MAE, and RMSE of the ConvLSTM model for each sub-region prediction with the
timestep, and the optimal timestep for prediction of the two sub-regions in study area I, the two sub-regions in study

area II, and the three sub-regions in study area I1I were set to 18, 21, 16, 22, 15, 23, and 26, respectively.

3.3 Results and discussion
3.3.1 Effect of study area segmentation on prediction performance of feature variables

350 To evaluate the impact of regional partitioning on the final result, we used feature variables derived from 13
predictive indicators as inputs for the constructed ConvLSTM model to predict the target variables (based on SST-
constructed feature variables) for three study areas and their seven subdivided areas. It can be found that
compartmentalized prediction performs much better than the overall prediction for all prediction horizons. Fig. 8
shows the predictive performance of the constructed model for 1 to 10 steps ahead of predictions for the entire study

355 area I and its sub-regions. This is due to the fact that different regions within the study area exhibit different spatial
patterns and temporal dynamics, which can be better captured by dividing the area into smaller sub-regions based on

the temporal and spatial characteristics of the predictors within the study area.
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Fig. 8 the proposed model’s predictive performance for 1 to 10 steps ahead predictions for the study area I and its sub-
regions. R1 and R2 denote the results of individual predictions for regions 1 and 2 of study I, respectively. R1U and

R2U represent the results of both regions when the overall prediction is made.

3.3.2 Effect of knowledge-driven on prediction performance of feature variables

To evaluate the impact of meteorological and oceanic parameters that affect ocean dynamics and thermodynamics
on the predictive performance of the model, we conducted a comparative analysis of three distinct inputs to evaluate
their predictive efficacy on target variables within seven sub-regions. The three inputs were as follows: (1) predicting
the target variables for seven sub-regions using solely the SST-based constructed feature variables, (2) predicting the
target variables for seven sub-regions using feature variables constructed based on 13 indicators that affect ocean
dynamics, and (3) predicting the target variables for seven sub-regions using feature variables constructed from various
indicators selected separately for each sub-region, based on the contribution analysis conducted in subsection 2.1.
Figs.9 and 10 show the comparison of the prediction results for the different inputs (Due to space limitations, it is
difficult to present all the results for all seven sub-regions. Therefore, we only show the results for the two sub-regions
divided by study area I). The inclusion of multivariate factors improves the predictive performance of the model,
enabling it to consider the dynamic balance between various variables and providing a better fit with the real marine

environment. Therefore, for each sub-regions, using feature variables constructed from 13 indicators affecting the
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375 ocean dynamics pattern as inputs results in higher prediction accuracy for each horizon compared to using only SST-
based feature variables. Moreover, this finding suggests that data-driven forecasting methods should consider the joint
effect of multiple variables rather than treating each variable individually. Additionally, we observe that upon
scrutinizing the indicator contributions of each subregion and selecting inputs based on their significant importance
contributions, the prediction accuracy of the subregions shows no notable diminution across all prediction horizons.

380  Notably, at several prediction horizons, the accuracy surpasses that of the model employing all feature variables as
inputs. This could be because not all of the 13 indicators are highly correlated with the SST changes in these sub-
regions, while some variables have weak explanatory power for the SST changes or even have a negative impact on
the prediction results. In this case, using more indicators does not necessarily improve the prediction accuracy, as they

do not provide additional information and may even introduce noise or interference.
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Fig.9 Prediction results of feature variables under three different input conditions in sub-region 1 of study area I
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Fig.10 Prediction results of feature variables under three different input conditions in sub-region 2 of study area I

3.3.3 Effectiveness of Model on SST prediction

390 The SSTs were obtained by applying the degranulation process to the predicted feature variables. We analyzed
the prediction results of the test samples from various perspectives and found that the predicted SSTs and their spatial
distribution are in good agreement with the observed SST images. The discrepancies between the predicted and
observed SSTs are primarily within the temperature range of -0.7 to 0.7 K. Fig.11 illustrates the predicted SSTs for
the 12 months of 2009 in study area 1. Due to space limitations, we randomly selected the predicted results for 2009

395 for display. It is clear that the predicted SSTs and their spatial distribution for all 12 months of 2009 are consistent
with the observed SST images. The differences between the predicted and observed SSTs fluctuate within the range
of -0.7 to 0.7 K for over 94.3% of the pixels throughout the January-December period. Although Fig. 11 indicates that
some images contain values with significant errors, the histogram of the differences illustrates that these pixels with
large errors are typically very few, averaging no more than 30 pixels per image. These pixels are often located at the

400 land-sea interface, which may be due to the large spatial resolution of the data used in this study and the fact that areas
close to the shore often consist of mixed pixels. The small number of mixed pixels in the images may lead to

insufficient feature learning of the proposed model for these pixels. In addition, the distribution of errors in each image
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does not exhibit a specific pattern. However, comparing the error distributions with the distributions of each indicator
selected for the corresponding month reveals that regions with relatively large errors often coincide with higher wind
405 speeds. Due to the lack of a clear regularity in wind speed variation, constructing an accurate multiseries
characterization of wind speed for this study is challenging. Consequently, the prediction accuracy of SST in regions

with large wind speed variations is inevitably affected.
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Fig.11 The predicted SSTs (first column), observed SSTs (second column), and spatial distribution (third column) and

statistics (fourth column) of prediction errors for study area I in 2009

20



https://doi.org/10.5194/egusphere-2025-4618
Preprint. Discussion started: 15 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

3.3.4 Accuracy comparison between the proposed model and the baseline models

415 To further evaluate the prediction performance of proposed method for SST, we separately predicted the SSTs
for the years 2012-2021 using our method and six widely baseline models for SST prediction. The optimal
hyperparameters for the baseline models were determined using a grid search method. Detailed parameters for baseline
models are provided in Supplementary Materials. The proposed prediction model was established considering units
of feature segments rather than individual SST values. Thus, the proposed prediction method could obtain 120 months

420 ahead predictions of SST in the study area after performing one prediction and degranulation. To fairly compare the
SSTs predicted by the baseline models and our proposed method, we set the prediction length of one run of the baseline
models to 120. However, we found that the prediction accuracy of the five baseline models was very low when their
prediction length was set to 120. In order to make a comparison between our predicted models and the baseline models,
we experimented with the prediction length of the baseline model and found that these baseline models had the highest

425 accuracy when it was set to 48. This also implies that these baseline models are difficult to use for longer predictions.
Therefore, we first evaluated the prediction performance of our proposed method for 120 months of SST from 2012-
2021 and then compared our first 48 predictions with the 48 predictions of each baseline model to judge the

performance of our proposed method.

Due to limited space, it is difficult to show the forecast results for all of these 120 months. Therefore, we present

430  the forecast results for the two years with relatively lower total forecast accuracy in this 10-year period, where 2021
has the lowest accuracy and 2020 ranks second-lowest. By showcasing these two years, we aim to demonstrate that

even in less optimal scenarios, the model maintains reliable performance, thereby supporting the robustness of
predictions for other years with higher accuracy. Fig. 12 shows the predicted SSTs for each month of the year 2021

within study area I. The first column represents the observed SST images, the second column is the predicted SST

435 images, the third column is the difference between the observed and predicted SST images, and the fourth column
exhibits the density plot depicting the disparities between the predicted and observed values for the respective months

in 2021 and 2020. Our proposed methodology demonstrates the ability to forecast SST distribution for the year 2021,

with discrepancies between predicted and observed values typically falling within the range of -1 to 1 K. The forecast
accuracy for 2021 is slightly lower than that for 2020, with February, March, May, June, October, and December

440 having lower forecast accuracy for the SST in 2021 than that for 2020. In contrast, the forecast accuracy for the other

months is similar to that of 2020, indicating that the forecasts for other years are reliable.
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Fig.12 The predicted SSTs (first column), observed SSTs (second column), and spatial distribution (third column) and

statistics (fourth column) of prediction errors for the study area I in 2021

We conducted a comparative analysis between our initial 48 predictions for the three study areas and the 48
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predictions generated by each baseline model, as depicted in Figs. 13-15. The modeling process in this study focused
on key periodic characteristics, such as fluctuation amplitude and duration. As a result, the forecasting results closely

450  matched the fluctuation trends and amplitudes of real data across different time scales. Additionally, the proposed
model integrates the influence of multiple variables and sub-regions during the modeling process, leading to the lowest
RMSE and superior performance. In the monthly SST predictions over up to 48 months for study areas I, II, and 11,
the discrepancies between the predicted and observed SSTs fluctuated within the ranges of -0.6 to 0.54 K, -0.3 to 0.4
K, and -0.4 to 0.35 K, respectively, with RMSEs of approximately 0.49 K, 0.2 K, and 0.21 K, respectively.

455 The Graph Memory Neural Network (GMNN) achieved the second-highest prediction accuracy among all
models, with RMSEs of 0.53 K (Area I), 0.24 K (Area II), and 0.28 K (Area III). This represents the strongest baseline
performance, attributable to GMNN's unique capability to model structured spatial dependencies through graph-based
memory mechanisms. Although both the Bi-LSTM model and FC-LSTM model do not consider the spatial
dependence of SST, their prediction accuracy still outperforms that of the DLNN and CNN models. In the monthly

460 SST predictions for months 1-48 in study area I, the RMSEs between the predicted and observed values for BILSTM,
FCLSTM, CNN, and DNN are approximately 0.68 K, 0.75 K, 0.87 K, and 0.93 K, respectively. For study area II, the
RMSE:s for BILSTM, FCLSTM, CNN, and DNN are approximately 0.25 K, 0.28 K, 0.33 K, and 0.37 K, respectively.
In study area III, the RMSEs for BILSTM, FCLSTM, CNN, and DNN are approximately 0.32 K, 0.40 K, 0.51 K, and
0.55 K, respectively. This is because the Bi-LSTM and LSTM models are good at long-term dependence modeling.

465 Furthermore, in this study, we modeled each pixel when making predictions for these study areas, so these two models
have relatively high accuracy. The experimental results also indicate that the prediction performance of ConvGRU for
SST lies between that of BILSTM and LSTM, with BiLSTM outperforming LSTM. In the monthly SST predictions
for months 1-48 in study areas I, II, and III, the RMSEs between ConvGRU’s predicted and observed values are
approximately 0.73 K, 0.26 K, and 0.4 K, respectively. BILSTM extends LSTM by processing the sequence in both

470 forward and backward directions. This bidirectional approach allows BiLSTM to leverage information from both past
and future states, providing a more comprehensive understanding of the temporal context. This often leads to improved
prediction accuracy because BiLSTM can capture dependencies that a unidirectional LSTM might miss. ConvGRU's
simpler GRU units have fewer parameters and gates compared to LSTM and BiLSTM, making it computationally
more efficient but potentially less powerful in capturing long-term dependencies. The DLNN model exhibits the worst

475 performance among all the models. This may be due to the fact that CNN can learn hierarchical representations, which
can capture the spatial dependency of SST. A typical CNN architecture consists of layers with progressively larger
receptive fields, enabling the network to learn increasingly complex features from low-level to high-level features.

DLNNSs typically use a shallower architecture and are less capable of building hierarchical representations.
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Fig.15 RMSE of SST predictions for the years 2012-2021 within study area III, obtained using the baseline models

and the proposed model.

4 Conclusions

In this study, we proposed a novel method for SST prediction based on granular computing and the ConvLSTM

490 model of data-knowledge-driven. The model considers multiple influencing factors in ocean dynamics and
thermodynamics processes and can fully utilize spatiotemporal information of image sequences to improve the
accuracy of SST prediction. Our experiments showed that the combination of knowledge-driven and study area
segmentation concepts can enable the development of customized prediction models that are tailored to the specific
characteristics of the study area and the available knowledge. This can improve the interpretability and understanding

495 of the prediction model and further improve the accuracy of the prediction. In addition, the introduction of the idea of
feature granularity allows machine learning models to fully capture the dynamic characteristics in the time domain

and internal dependencies of the features and extend the prediction horizons. The comparison of different statistical
indicators and different perspectives also shows that the proposed model has strong robustness and generalization

ability and has great potential in the time series prediction of SST. In the monthly SST prediction of the South China

500 Sea region (study area I) for up to 120 months, the difference between the predicted SSTs and the observed SSTs
ranges from -0.7 K to 0.7 K, with an RMSE of approximately 0.57 K. Similarly, in study areas II and III, the monthly

SST predictions over the same 120-month period exhibited a variance between predicted and observed temperatures

ranging from -0.5 to 0.5 K, with an RMSE ranging from 0.3 to 0.5 K.
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Our research provides a new idea and method for SST prediction. The extended prediction horizons provided by

505  the proposed method are also a significant improvement over existing model. This is important for decision-makers
who require accurate and reliable forecasts for planning and management purposes, especially in areas such as fisheries,

marine transportation, and climate change mitigation. It is worth noting that the proposed method is not without
limitations. The use of the granular computing model we constructed requires that the sequence of variables be
periodic, which may limit the applicability of the proposed method in some cases. In the future, we can further improve

510  the predictive performance of SST by coupling numerical and machine learning models to enable the models to better

account for ocean dynamics and thermodynamic processes.
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