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Abstract: Many data-driven methods predict sea surface temperature (SST) at specific locations using only the 

previous period SST values as predictors, which ignores the spatiotemporal dependencies of SST variability and the 20 

influence of multiple variables on SST patterns. Additionally, these methods have difficulty in capturing the feature 

dependencies involved in SST fluctuations, limiting the accuracy and horizon of SST predictions. This study proposes 

a new medium- and long-term forecasting model to address these issues, which includes two sub-models: a featural 

granularity model and a data-knowledge-driven ConvLSTM prediction model. The former restacks the one-

dimensional time-series of each variable into multidimensional feature variables using an adaptive granulation-based 25 

method. The latter integrates parameters that affect ocean dynamics and thermodynamics, along with pixel-to-pixel 

similarity, to achieve partition predictions. The multidimensional feature variables were fed into the ConvLSTM 

model to exploit the feature- spatiotemporal patterns for predictions. Experiments conducted in three sea areas of the 

western Pacific and Indian Oceans indicate that the use of featural granularity can enhance the ability of the prediction 

model to capture dynamic characteristics in the time domain and internal dependencies of the features and extend 30 

prediction horizons. The combination of knowledge-driven and study area segmentation concepts can help the 

prediction model better capture the unique features and dynamics of the local area, further improving prediction 

accuracy. Validation against observations and cross-comparisons with baseline models in three different sea areas for 

the prediction of monthly SST with lead times ranging from 1 to 120 months demonstrate that the proposed model 

can generate consistent and more accurate regional SST predictions. The differences between predicted and observed 35 

values range from -0.7 to 0.7K, with an RMSE of approximately 0.3 to 0.57K for SST predictions. This developed 

https://doi.org/10.5194/egusphere-2025-4618
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.



2 

 

model provides a promising approach for medium- and long-term sea surface temperature forecasting, which can be 

easily adapted to other ocean parameter prediction tasks. 

1 Introduction 

Sea Surface Temperature (SST) refers to the temperature of the upper layer of the ocean’s surface, which 40 

represents the temperature of the water in direct contact with the atmosphere. SST is a crucial variable within the 

global ocean-atmospheric system, playing a vital role in the exchange of heat, moisture, momentum, and gases 

between the ocean and the atmosphere (Cao et al., 2021; Xue et al., 2022). Changes in SST can have a significant 

impact on the global climate and ecosystems, potentially leading to extreme events (e.g., typhoons, droughts, and 

floods) (Bentamy et al., 2017; Minnett et al., 2019; Xiao et al., 2019a). Therefore, future projections of SST are of 45 

significance in the early warning of extreme events and understanding climate dynamics. 

Currently, methods for predicting SST can be divided into two main categories. One is physics-based numerical 

models. It uses a series of complex mathematical equations coupled with the physical laws of the ocean to simulate 

ocean dynamics and predict SST (Aparna et al., 2018; Liu and Fu, 2018; Stockdale et al., 2006). For example, Noh et 

al. (2002) improved the prediction accuracy of SST by embedding a new ocean mixed layer model into an ocean 50 

general circulation model. Krishnamurti et al. (2006) predicted global SST seasonal anomalies by constructing a super-

ensemble based on 13 state-of-the-art coupled atmosphere-ocean models. Some agencies including the European 

Centre for Medium-Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction 

Command (NCEP) also provide coupled model forecasts based on ensemble techniques, where ECMWF and NCEP 

can forecast various parameters 10-15 days and 380 hours in advance, respectively. Although SST forecasts based on 55 

numerical models can achieve good accuracy over large spatial regions, they usually involve complex external data 

and multiple assumptions for model initiation and time integration (Patil and Deo, 2018; Xu et al., 2020). Their 

performance is determined by the coupling and data assimilation mechanisms, and furthermore, since various 

parameters are simultaneously predicted, it is challenging to precisely tune a single parameter.  

The other category is data-driven models, which can learn the latent characteristics from historical data and 60 

further predict SSTs using the learned patterns (Su et al., 2018; Su et al., 2021; Xiao et al., 2022; Xin et al., 2020). 

Some data-driven models have been used, such as Markov models (Xue and Leetmaa, 2000), support vector 

regression(Imani et al., 2017), empirical canonical correlation analysis (Collins et al., 2004; Tang et al., 2000), linear 

regression (Kug et al., 2004), empirical orthogonal functions (Neetu et al., 2011), and artificial neural networks (ANNs) 

(Azhary and Minaoui, 2025; Liu et al., 2024; Philippus et al., 2024). These approaches have excellent tractability and 65 

are especially advantageous when information regarding the physical mechanisms of real-world processes is 

inadequate (Xiao et al., 2019b; Xu et al., 2020). Among these data-driven approaches, ANNs tend to be more popular 

because they can fully explore the complex patterns hidden in the data and model them (Aguilar-Martinez and Hsieh, 

2009; Wu et al., 2006; Bilgili et al., 2024; Yang et al., 2025). For example, Xiao et al. (2019a) developed a hybrid 

prediction model based on LSTM and AdaBoost methods for accurately predicting location-specific SSTs. Patil and 70 

Deo (2017) used wavelet neural networks to predict the SST at six selected sites in the Indian Ocean and obtained 
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good prediction results. However, they are limited to predicting SST in a few locations and cannot simultaneously 

provide spatial information similar to the physics-based numerical models. Patil and Deo (2018) proposed a data-

driven model with a very large number of individual ANNs (20.5902 million networks) running simultaneously for 

basin-scale SST predictions. However, the large number of networks may affect the running speed of the computer 75 

and the promotion of the model. Furthermore, changes in SST occur through advection and diffusion, indicating an 

interaction between the SST of a specific location and that of its neighboring points (De Bézenac et al., 2019). 

Therefore, the independent prediction of SSTs at each location disregards the interaction between SSTs at different 

locations, potentially impacting the accuracy and validity of the prediction.  

Graph neural networks (GNNs) effectively capture local spatial correlations through adjacent-node aggregation. 80 

However, the prevalent overemphasis on neighborhood relationships and neglect of global connections in current 

models inevitably undermines SST prediction accuracy, particularly given the ocean’s interconnected nature where 

geographically distant sites exhibit correlated patterns (Dai et al., 2025; Liang et al., 2023). Convolutional long short-

term memory (ConvLSTM) is capable of learning dependent information over time while incorporating spatial 

features, making it effective for processing time series data with both temporal autocorrelation and spatial 85 

characteristics(Azhary and Minaoui, 2025; Song et al., 2025; Vytla et al., 2025). Xiao et al. (2019b) successfully 

achieved precise SST prediction in the East China Sea utilizing the ConvLSTM model, which effectively captures the 

spatial and temporal correlations inherent in SST data. Hao et al. (2023) studied the impact of model structure 

(different parameter settings) on the performance of the ConvLSTM and ST-ConvLSTM (an improved version of 

ConvLSTM) models in predicting SST and found ConvLSTM has good performance in predicting SST in the South 90 

China Sea. Azhary and Minaoui (2025) proposed an encoder-decoder dual attention ConvLSTM model that leverages 

convolutional operations for spatial dependencies, LSTM for temporal sequences, and dual attention (contextual + 

spatial) to prioritize critical spatiotemporal features. The model achieves significant improvements in prediction 

accuracy and computational efficiency for Moroccan coastal SST forecasting compared to single-attention baselines. 

In addition, some researchers have also considered the influence of historical SST information at locations near the 95 

prediction point by adding convolutional layers with regional information extraction capabilities to the neural network. 

However, these models, which utilize SST observations as inputs, do not capture the internal dependencies of specific 

periodic features involved in SST fluctuations (Shao et al., 2022; Yang et al., 2018; Yu et al., 2020). Furthermore, 

actual SST variability is governed by complex interactions among multiple oceanic-atmospheric parameters. 

Prevailing data-driven SST forecasting approaches often treat SST as an isolated variable, focusing primarily on its 100 

temporal dynamics while neglecting critical cross-parameter couplings—particularly thermodynamic-dynamic 

interactions across spatiotemporal scales—which fundamentally limit prediction accuracy. 

To bridge these gaps, this paper proposes a novel method for SST prediction based on granular computing and 

the ConvLSTM model of data-knowledge-driven. This method fully considers the influence of the driving factors of 

SST changes, greatly exploits the spatiotemporal information of SST sequences, and extends the prediction horizons. 105 

Validation against observations and model comparisons across three heterogeneous sea areas demonstrate the 

method’s reliability for medium-term (1 month–10 years) and long-term (>10 years) SST forecasting. 
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2 Methodology 

Fig. 1 shows the working mechanism of the proposed granulation-based ConvLSTM Model of Data-Knowledge-

Driven, which involves three stages: data pre-processing based on featural granularity model and expert knowledge, 110 

ConvLSTM training, and accuracy assessment. In the first stage, we utilize the relevant theories and research results 

of previous experts on the dynamic changes of SST as an expert knowledge base as a knowledge-driven, thereby 

incorporating human practical experience and wisdom. Specifically, 13 meteorological and oceanic parameters that 

reflect ocean thermal and dynamical processes, as well as sea-air interactions, were selected as input predictors for 

SST prediction by integrating the physical mechanisms of SST variability. By quantifying the similarity between the 115 

pixels within the study area, the study area was divided into different sub-regions, and different parameters were 

selected for each sub-region as predictors for SST prediction. Finally, the one-dimensional time series of each predictor 

is extracted pixel by pixel. Each one-dimensional time series was adaptively segmented according to its trend 

characteristics to generate unequal-length temporal granules and was restacked into multidimensional feature variables. 

In the second stage, the feature variables were fed into the constructed ConvLSTM model to achieve the prediction of 120 

the feature variables associated with the SST. In the third stage, the SSTs were obtained by applying the degranulation 

process to these predictions. The accuracy of the proposed prediction model was evaluated through a comparison with 

other models, namely, Convolutional Gated Recurrent Unit (ConvGRU), Convolutional Neural Network (CNN), Deep 

Learning Neural Network (DLNN), Bi-Directional Long Short-Term Memory (Bi-LSTM), and Fully Connected Long 

Short-Term Memory network (FC-LSTM). Each step is described in the following subsections. In Section 3, we apply 125 

the method to three different sea areas and made detailed analysis. 

 

Fig. 1 Visual representation of the proposed model. The cross-validation in Step 3 is based on the RMSE values of 

predictions obtained using the proposed model and baseline models. 
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2.1 Predictors selection and study area segmentation 130 

Changes in SST result from the interaction of various meteorological and oceanic variables, with dynamic and 

thermal interactions between different variables (Shao et al., 2022). Therefore, incorporating surface parameters that 

reflect these processes may be more effective for predicting SST. Variables such as total cloud cover (tcc), evaporation 

(e), 2m temperature (t2m), 10m u-component of wind (u10), 10m v-component of wind (v10), 2m dewpoint 

temperature (d2m), mean sea level pressure (msl), total precipitation (tp), sea surface temperature (SST), sea skin 135 

temperature (skt), surface net solar radiation (ssr), surface latent heat flux (slhf) and surface sensible heat flux (sshf) 

can influence SST variability patterns by affecting ocean thermal and dynamical processes as well as sea-air 

interactions. Clouds modulate SST by reflecting incoming sunlight, while evaporation can affect SST by influencing 

sea-air interactions(Espinosa and Zelinka, 2024; Hsiao et al., 2022). Sea-air temperature difference, relative humidity 

and wind speed can modulate changes in latent heat fluxes by affecting ocean evaporation, which in turn affects 140 

changes in SST. Additionally, evaporation and precipitation cause changes in the salinity and temperature of the ocean 

mixed layer, affecting the buoyancy and density at the ocean surface. This leads to mixing and convection between 

surface and subsurface oceans, which in turn affects SST(Tuchen et al., 2024; Fu et al., 2024; Xie et al., 2010). Wind 

stress forcing can further intensify vertical processes exchanging surface and subsurface water (e.g., mixing, vertical 

advection, and turbulence)(Wills et al., 2022; Roach et al., 2023). Hence, the 13 aforementioned meteorological, 145 

seawater states, and dynamics variables were utilized as an expert knowledge base. The input predictors for predicting 

SST will be derived from this knowledge base. 

Although SST in different regions of the ocean is influenced by these factors, their relative importance can vary 

significantly from one region to another due to unique regional characteristics and interactions. Therefore, by 

quantifying the similarity between the pixels within the study area using data from the entire study period, the study 150 

area was divided into different sub-regions, and different parameters were selected for each sub-region as predictors 

for SST prediction. The process involves grouping pixels with similar meteorological and oceanic conditions, which 

can be achieved by using correlation-based methods to create co-occurrence networks. Co-occurrence networks can 

be constructed by calculating the correlation coefficient matrix for every two pixels in the study area and selected 

statistically significant and strongly correlated pixels (i.e., correlation coefficient > 0.8 and p-value < 0.01)(Jiao et al., 155 

2020). Fig. 2(a) shows co-occurrence networks generated from the matrix of predictors for all pixels in study area I 

(The South China Sea). The nodes in the network represent individual pixels, and the edges connecting two nodes 

indicate the correlation strength between corresponding pixels. Each color corresponds to a distinct module, with 

pixels within each module sharing similar meteorological and oceanic conditions. Through the identification of pixel 

positions and associated variables within each module, we can divide study area I into two subregions, i.e., region 1 160 

and region 2 (Fig. 2(b)) and identify the key variables influencing SST changes within these subregions. The key 

variables that affect the SST change in region 1 are SST, d2m, skt, tcc, t2m, sshf, msl, u10, tp and ssr, and the key 

variables that affect the SST change in region 2 are SST, ssr, msl, skt, t2m, slhf, e, u10, v10, sshf and d2m. 
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Fig.2 (a) Co-occurrence networks generated from the matrix of predictors for all pixels in study area I. (b) The study 165 

area I is divided into two sub-regions, corresponding to the two color-coded modules in the co-occurrence networks. 

The drivers of SST variability in different regions are not identical, and too many predictors can increase the 

complexity of the subsequent prediction model, thereby reducing the prediction accuracy. While the Co-occurrence 

network diagram can visually identify factors that affect SST dynamics in a region, it does not inherently determine 

the importance or relative influence of each variable. When many variables are identified, it becomes challenging to 170 

prioritize or select the most critical ones. Therefore, we further used the random forest algorithm, which has the ability 

to measure the importance of variables, to select the important predictors in different regions. By integrating the 

insights from the Co-occurrence network with the variable importance scores derived from the random forest analysis, 

we were able to identify and prioritize the most significant factors influencing SST, thereby improving the efficiency 

and accuracy of our prediction model. Taking study area I as an example, Fig. 3 shows the importance ranking of the 175 

13 predictors in regions 1 and 2 based on the random forest algorithm and the prediction errors using different numbers 

of predictor variables after ranking by importance. The prediction accuracy of the model increases and then decreases 

as the number of input predictors increases, both for region 1 and region 2. While the random forest results indicate 

that using just four variables as input can already yield high accuracy, our co-occurrence network analysis revealed 

that the SST dynamics in regions 1 and 2 are driven by distinct, context-dependent interactions between meteorological 180 

and oceanic factors. For instance, region 1 exhibits stronger coupling between sshf and tp, while region 2 is more 

sensitive to slhf and e. These nuanced relationships, though not the top four most “globally” important variables, 

contribute to capturing region-specific variability that might be missed with only four predictors—especially in 

extreme or transitional conditions. Thus, for region 1, the model has a high accuracy of prediction when eight variables 

are selected: SST, skt, t2m, sshf, msl, u10, tp and ssr. For region 2, the model has a high accuracy of prediction when 185 
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nine variables are selected: SST, skt, t2m, slhf, e, u10, v10, sshf and d2m. Following this, a comparison will be made 

between the outcomes derived from the co-occurrence network and the random forest analysis. The common variables 

identified will then be utilized as predictor variables in regional models aimed at predicting SST. 

 

Fig. 3 Results of the importance of drivers based on random forest and the prediction errors using different numbers 190 

of predictor variables after ranking by importance (study area I) 

2.2 Formation of multi-series features based on featural granularity model  

Information granules refer to sets of related data or information that are considered as a unit. In general, periodic 

or partially periodic time series can be divided into a series of information granules (i.e., temporally continuous trend 

segments) according to their tendency features. These information granules can be approximated by stretching a series 195 

of templates in the horizontal and vertical directions (Cao et al., 2023). Therefore, we first granulated the one-

dimensional time series for each variable at each pixel into data granules within various tendency feature. Specifically, 

we partition information granules based on the monotonicity and concavity-convexity of the target variable series 

𝑋 (𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}). The monotonicity and concavity-convexity of 𝑋 are represented by its first-order dynamic 

𝑋′ (𝑋′ = {𝑥1
′ , 𝑥2

′ … , 𝑥𝑛−1
′ }) and second-order dynamic 𝑋′′ (𝑋′′ = {𝑥1

′′, 𝑥2
′′ … , 𝑥𝑛−2

′′ }), respectively. 200 

𝑥𝑡
′ = 𝑥𝑡+1 − 𝑥𝑡      (𝑡 ∈ [1,2, … , 𝑛 − 1] )                             (1) 

𝑥𝑡
′′ = 𝑥𝑡+1

′ − 𝑥𝑡
′    (𝑡 ∈ [1,2, … , 𝑛 − 2] )                             (2) 

If the monotonicity and concavity-convexity of 𝑋 change at the data point 𝑥𝑡 , then 𝑥𝑡  is considered as the 

splitting point of 𝑋. That is, if 𝑥𝑡
′ ∗ 𝑥𝑡+1

′ < 0 ∪ 𝑥𝑡
′′ ∗ 𝑥𝑡+1

′′ < 0, the monotonicity and/or concavity-convexity of the 

data point 𝑥𝑡 changes, and thus, the target variable series 𝑋 can be divided into {𝑥1, 𝑥2, … , 𝑥𝑡} and {𝑥𝑡+1, … , 𝑥𝑛}. 205 

In addition, to address the noisy characteristic of the target variable series or small variations in concavity-convexity 

that may lead to dense partitioning, two constraints are added to each variable series through data analysis and multiple 

experiments: |𝑡 − 1| > 𝜃𝑗 ∩ |𝑥𝑡 − 𝑥1| > ∅𝑗 , where  𝜃𝑗  and ∅𝑗  are the thresholds for the 𝑗 th variable series and 

estimated from all available temporal data. In this manner, each variable series is granulated into information granules 
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with various trend characteristics.  210 

Subsequently, we used quarter-circle sinusoids as templates and applied appropriate horizontal and vertical scale 

stretches to approximate the information granules. We then introduced a 3-D feature space, represented by amplitude 

(a), template type (T1-T4), and duration (d), to characterize the original granules, as illustrated in Fig. 4(a-b). 

 

Fig. 4 (a) Four quarter-period sinusoids used as templates and approximate skt values obtained through template 215 

matching. (b) Original variable values of pixels at 106.11°E, 18.84°N and their approximation through the combination 

of stretched templates. (c) Formation of multi-series features for SST variables at 107.10°E, 0.37°N. (d) Formation of 

multi-series features for SST variables at 107.10°E, 17.45°N. 

Using the 3-D feature space directly to describe the original granules formed by 1-dimensional time series of 

each variable at each pixel leads to information redundancy, thereby diminishing the accuracy of subsequent predictive 220 

modeling and escalating computational complexity. Moreover, the examination of unequal-length information 

granules generated by various variables at each pixel reveals that the information granules of an uptrend are usually 

concave followed by convex or first convex and then concave, whereas the downward trend is first convex and then 

concave or concave followed by convex. Considering these two factors, we combined adjacent unequal-length 

information granules with different concavities and convexities but the same monotonicity to form new information 225 

granules. Throughout the duration of the study, it was observed that nearly all variables exhibited a notable periodicity 

at each pixel, with a recurring cycle of 12 months. We identified the number of new information granules (ℎ) during 

each cycle to construct ℎ sets of new durations (𝐷) and amplitudes (A), as shown in Fig. 4(c-d), where the sign of A 

denotes the monotonicity of the granules. Subsequently, the 3-D feature space consisting of amplitude, template type, 
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and time domain for each variable at each pixel is transformed into a 4*h-D feature space 230 

([𝐴1, 𝐷1, 𝐹1, 𝐶1, 𝐴2, 𝐷2, 𝐹2, 𝐶2, ⋯ , 𝐴ℎ, 𝐷ℎ, 𝐹ℎ, 𝐶ℎ )) consisting of the newly constructed amplitude (A), duration (D), 

curvature (𝐶), and fluctuation (F) features. C and 𝐹 can be calculated using the amplitude and duration of the granules. 

An example of an SST variable for this calculation is shown in Fig. 4(c-d). Suppose 𝑚0, 𝑚1, 𝑚2, 𝑚3 and 𝑚4 are 

the times of monotonicity division, i.e., 𝑚𝑖 ∈ {𝑡|𝑥𝑡
′ ∗ 𝑥𝑡+1

′ < 0} . 𝑙1 , 𝑙2 , 𝑙3  and 𝑙4  are the times of concavity-

convexity division, that is, 𝑙𝑖 ∈ {𝑡|𝑥𝑡
′′ ∗ 𝑥𝑡+1

′′ < 0}. The 16-D feature space of the granules between 𝑚0 and 𝑚4 can 235 

be represented by [𝐴1, 𝐷1, 𝐹1, 𝐶1, 𝐴2, 𝐷2, 𝐹2, 𝐶2, 𝐴3, 𝐷3, 𝐹3, 𝐶3, 𝐴4, 𝐷4, 𝐹4, 𝐶4 ), where 𝐴𝑖 = 𝑥𝑚𝑖
− 𝑥𝑚𝑖−1

 , 𝐷𝑖 = 𝑚𝑖 −

𝑚𝑖−1 + 1. 𝐹𝑖 and 𝐶𝑖 can be calculated using Equations 3 and 4, respectively. Since the new feature space is going to 

be used as input for machine learning, we need to ensure that the feature space of these variables at each pixel has the 

same number of elements. After analyzing each pixel in three distinct study areas, it was determined that approximately 

9.47% exhibited inconsistencies in the feature space elements of the predictors. Subsequently, through a series of 240 

experiments, the inconsistent pixels were addressed by filling the corresponding positions in the feature space of each 

variable with a value of 0 to maintain consistency in the number of elements. 

𝐶𝑖 =
𝑙𝑖−𝑚𝑖−1

𝑚𝑖−𝑚𝑖−1
                                                   (3) 

𝐹𝑖 =
|𝑥𝑙𝑖

−𝑥𝑚𝑖−1
|

|𝑥𝑚𝑖
−𝑥𝑖−1|

                                                  (4) 

2.3 Construction of ConvLSTM model 245 

ConvLSTM is a neural network model that combines CNNs and LSTM networks (Shi et al., 2015). Its basic idea 

is to combine the recurrent neural network structure of LSTM with the convolutional operation of CNN to 

simultaneously capture spatial and temporal features of a sequence. In ConvLSTM, each LSTM unit is modified to a 

convolutional LSTM unit, which combines convolutional operation with the state update and gating operations of the 

LSTM unit to model and predict spatiotemporal sequence data. The structure of ConvLSTM units is shown in Fig. 5. 250 

 

Fig. 5 Structure of ConvLSTM units 

𝑋𝑡 is the input of the ConvLSTM in which the gates 𝑓𝑡, 𝑖𝑡, and 𝑂𝑡 and the candidate cell state 𝐶′
𝑡 are controlled 

by (𝑋𝑡 , ℎ𝑡−1 ). The cell state 𝐶𝑡 is updated using 𝑓𝑡 and 𝑖𝑡. 𝑂𝑡 determines the amount of information propagated 

to the time step 𝑡 +1. These gates consist of a sigmoid fully connected neural network layer and a point-wise 255 
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multiplication operation. The working mechanism of these gates and the information flow can be represented as 

follows: 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓 ∗ 𝑋𝑡 + 𝑊ℎ𝑓 ∗ ℎ𝑡−1 + 𝑊𝑐𝑓°𝐶𝑡−1 + 𝑏𝑓)                      (5) 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖 ∗ 𝑋𝑡 + 𝑊ℎ𝑖 ∗ ℎ𝑡−1 + 𝑊𝑐𝑖°𝐶𝑡−1 + 𝑏𝑖)                       (6) 

𝐶′
𝑡 = tanh(𝑊𝑥𝑐 ∗ 𝑋𝑡 + 𝑊ℎ𝑐 ∗ ℎ𝑡−1 + 𝑏𝑐)                          (7) 260 

𝐶𝑡 = 𝑓𝑡°𝐶𝑡−1 + 𝑖𝑡°𝐶′
𝑡                                   (8) 

𝑂𝑡 = 𝜎(𝑊𝑥𝑜 ∗ 𝑋𝑡 + 𝑊ℎ𝑜 ∗ ℎ𝑡−1 + 𝑊𝑐𝑜°𝐶𝑡−1 + 𝑏𝑜)                     (9) 

ℎ𝑡 = 𝑂𝑡° tanh(𝐶𝑡)                                  (10) 

where 𝑋𝑡 is the input at time t, ℎ𝑡−1 and 𝐶𝑡−1 are the hidden state and cell state at the previous time step, and W 

and b are the weight and bias parameters of the corresponding gates. ∗ denotes the convolution operator. ° denotes 265 

element-wise multiplication, and σ and tanh are the sigmoid and hyperbolic tangent activation functions, respectively.  

Due to interactions within the global climate system, it is important to model not only the spatial relationships 

among neighboring regions but also to capture the spatial dependencies of any given region (Mu et al., 2019). However, 

a single convolutional layer can only account for spatial dependencies in close proximity, as it is limited by the size 

of its kernels. Furthermore, the variation of SST is influenced not only by the most recent month but also by interannual 270 

climate variations. Thus, it is necessary to consider both short-term and long-term temporal information in the entire 

prediction model. Therefore, to achieve high-precision prediction results, we need to stack multiple ConvLSTM layers 

with different numbers of kernels and kernel sizes to derive a prediction model.  

The hyperparameters of the prediction model (e.g., the number of ConvLSTM layers, number of kernels and 

kernel size, and dropout rate) must be tuned to improve its performance. In this study, 10% of the data from the training 275 

dataset was randomly selected to tune the hyperparameters of the prediction model. We first tested a relatively simple 

model with only one ConvLSTM layer and then generated new models by conducting several operations, including 

changing one or two hyperparameter settings, setting more ConvLSTM and Convolutional layers, adjusting the order 

of layers, or replacing part of the network with more complex components. Three indexes including the mean absolute 

error (MAE), the determination coefficient (R2), and the root mean square error (RMSE) were used to evaluate the 280 

prediction performance of these models with different parameter settings, and models with good prediction 

performance were used as the seeds to start a new round of the best model searching. Finally, the optimal parameters 

of the ConvLSTM network architecture can be determined until the prediction performance is no longer improved. 

After testing the performance of different optimizers, we used the Adam optimizer for training. Through this process, 

we constructed a 4-layer deep neural network model for predicting SST feature variables, as shown in Fig. 6. The 285 

feature variables constructed in section 2.2 of t continuous time steps are taken as the input data. These input data are 

then passed through three ConvLSTM layers and one Conv3D layer, respectively, to output 𝑖 16-feature variable 

images corresponding to the SST variable at time steps t+1 to t+i. The four convolutional layers have filter sizes of 

7x7, 3x3, 5x5, and 7x7x7, with 50, 50, 50, and 16 filters, respectively. A dropout mechanism and a regularization layer 

are added after each ConvLSTM layer, with dropout values of 0.5, 0.5, and 0.2, respectively. 290 
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Fig. 6 The architecture of the proposed ConvLSTM network. 

2.4 Transform the obtained feature variables to SST  

The final predictions of the ConvLSTM model are feature variables. The SSTs can be obtained by transforming 

the predictions, which is referred to as the degranulation of the obtained feature variables. The transformation formula 295 

is contingent upon the templates utilized to transform SSTs into multi-series features. In this study, quarter-cycle 

sinusoids were used as templates, and therefore, the SSTs were determined using the sinusoidal formula: 

𝑥𝑖 = asin (
𝜋𝑖

2𝑑
+ ∅) + 𝑏                                   (11) 

where 𝑥  is the 𝑖 th SST value of the template, and 𝑏  is the value of its starting SST point. The parameter ∅  is 

determined by the type of matching template, for example, concave increasing and decreasing templates are used when 300 

∅ is 0 and π/2, respectively. 𝑎 and 𝑑 denote the amplitude and duration of the matching templates, respectively, 

which can be calculated using the final prediction of the feature variable.  

3 Experimental results and discussion  

3.1 Study area and data  

The spatial extent of study area I is 0-25°N and 105-125°E, as shown in Fig. 7. It is bordered by two broad 305 

continental shelves to the north and south, with a maximum depth of about 5,000 m in the east-central part of the sea 

(Li et al., 2007; Pan et al., 2013). This study area is located in the South China Sea, one of the largest tropical marginal 

seas in the western Pacific Ocean, and is surrounded by China, Vietnam, Malaysia, Indonesia, and the Philippines(Kuo 

et al., 2000; Wang et al., 2021). The South China Sea is of critical ecological importance, with significant petroleum 

reserves, important international trade routes, and rich fishery resources(Li et al., 2021).  310 

To enhance the assessment of the proposed SST prediction model, Study areas II and III were also included for 

SST prediction. The spatial extents of these two study areas are 20 ~ 35°S and 75-98°E, and 45 ~ 60°S and 60-90°E, 
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respectively, located in the southern Indian Ocean, far from land. These regions were chosen due to their geographical 

overlap with high latitudes (60-90°S), mid-latitudes (30-60°S), and low latitudes (0-30°N). Additionally, they 

encompass the tropical zone (23.5°N-23.5°S), the southern temperate zone (23.5-66.5°S), and the southern cold zone 315 

(66.5-90°S) in terms of temperature zones. Furthermore, the three study areas vary in their distances from the shoreline. 

These factors contribute to a diverse range of spatial changes in SST within the study areas, enhancing the evaluation 

of the SST prediction model's effectiveness. 

 

Fig. 7 Location map of the study area 320 

In this study, we used monthly meteorological parameters with a spatial resolution of 0.25° from 1959 to 2021 to 

predict SST. These data can be obtained from website (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-

era5-single-levels-monthly-means, last access: January 10, 2022). These monthly meteorological parameters were 

obtained from the ERA5 dataset generated by ECMWF, which are generated by combining simulated and observed 

data all over the world (Hersbach et al., 2020). The ERA5 dataset is available from 1959, but it is not sufficient to 325 

support high-precision SST predictions using only these 756 months of data. To expand the temporal coverage of these 

data, we used the CMIP5 monthly data on single levels from ECMWF for 1850–2005, which can be obtained from 

website (https://cds.climate.copernicus.eu/cdsapp#!/dataset/projections-cmip5-monthly-single-levels, last access: 

January 10, 2022). Unlike the ERA5 dataset, which assimilates upper-air and satellite data, the CMIP5 monthly dataset 

is generated by coupled Global Circulation Model (GCM) simulations that inform the Intergovernmental Panel on 330 

Climate Change (IPCC) reports. In order to maintain consistency between the two datasets, a regression model was 

developed to establish a relationship between ERA5 and CMIP data, with the CMIP data subsequently calibrated 

through regression matching (Meng et al., 2021). The data from 1850 to 2011 were used as the training and validation 

sets for the prediction model, and the data from 2012 to 2021 were used for prediction to further validate the accuracy 

of the prediction model. 335 
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3.2 Experiment setup  

In this study, we used the feature variables constructed in Section 2.2 of t continuous time steps as input data to 

predict the feature variable images constructed based on SST for the next 10 consecutive steps. To ensure that the 

ConvLSTM model we constructed achieved the best predictions for different study areas, we analyzed the variation 

in the magnitude of the loss function with the number of epochs in the ConvLSTM model for each study area’s 340 

predictions and selected the number of epochs in which the loss functions remained nearly constant. Study areas I, II, 

and III were partitioned into 2, 2, and 3 sub-areas, respectively, using the pixel similarity evaluation method outlined 

in Section 2.1. The number of epochs predicted for the two sub-areas of study area I, the two sub-areas of study area 

II, and the three sub-areas of study area III were set to 264, 192, 208, 222, 215, 198, and 246, respectively. We also 

examined the variations in R2, MAE, and RMSE of the ConvLSTM model for each sub-region prediction with the 345 

timestep, and the optimal timestep for prediction of the two sub-regions in study area I, the two sub-regions in study 

area II, and the three sub-regions in study area III were set to 18, 21, 16, 22, 15, 23, and 26, respectively. 

3.3 Results and discussion 

3.3.1 Effect of study area segmentation on prediction performance of feature variables 

To evaluate the impact of regional partitioning on the final result, we used feature variables derived from 13 350 

predictive indicators as inputs for the constructed ConvLSTM model to predict the target variables (based on SST-

constructed feature variables) for three study areas and their seven subdivided areas. It can be found that 

compartmentalized prediction performs much better than the overall prediction for all prediction horizons. Fig. 8 

shows the predictive performance of the constructed model for 1 to 10 steps ahead of predictions for the entire study 

area I and its sub-regions. This is due to the fact that different regions within the study area exhibit different spatial 355 

patterns and temporal dynamics, which can be better captured by dividing the area into smaller sub-regions based on 

the temporal and spatial characteristics of the predictors within the study area. 
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Fig. 8 the proposed model’s predictive performance for 1 to 10 steps ahead predictions for the study area I and its sub-

regions. R1 and R2 denote the results of individual predictions for regions 1 and 2 of study I, respectively. R1U and 360 

R2U represent the results of both regions when the overall prediction is made. 

3.3.2 Effect of knowledge-driven on prediction performance of feature variables  

To evaluate the impact of meteorological and oceanic parameters that affect ocean dynamics and thermodynamics 

on the predictive performance of the model, we conducted a comparative analysis of three distinct inputs to evaluate 

their predictive efficacy on target variables within seven sub-regions. The three inputs were as follows: (1) predicting 365 

the target variables for seven sub-regions using solely the SST-based constructed feature variables, (2) predicting the 

target variables for seven sub-regions using feature variables constructed based on 13 indicators that affect ocean 

dynamics, and (3) predicting the target variables for seven sub-regions using feature variables constructed from various 

indicators selected separately for each sub-region, based on the contribution analysis conducted in subsection 2.1. 

Figs.9 and 10 show the comparison of the prediction results for the different inputs (Due to space limitations, it is 370 

difficult to present all the results for all seven sub-regions. Therefore, we only show the results for the two sub-regions 

divided by study area I). The inclusion of multivariate factors improves the predictive performance of the model, 

enabling it to consider the dynamic balance between various variables and providing a better fit with the real marine 

environment. Therefore, for each sub-regions, using feature variables constructed from 13 indicators affecting the 
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ocean dynamics pattern as inputs results in higher prediction accuracy for each horizon compared to using only SST-375 

based feature variables. Moreover, this finding suggests that data-driven forecasting methods should consider the joint 

effect of multiple variables rather than treating each variable individually. Additionally, we observe that upon 

scrutinizing the indicator contributions of each subregion and selecting inputs based on their significant importance 

contributions, the prediction accuracy of the subregions shows no notable diminution across all prediction horizons. 

Notably, at several prediction horizons, the accuracy surpasses that of the model employing all feature variables as 380 

inputs. This could be because not all of the 13 indicators are highly correlated with the SST changes in these sub-

regions, while some variables have weak explanatory power for the SST changes or even have a negative impact on 

the prediction results. In this case, using more indicators does not necessarily improve the prediction accuracy, as they 

do not provide additional information and may even introduce noise or interference. 

 385 

Fig.9 Prediction results of feature variables under three different input conditions in sub-region 1 of study area I 
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Fig.10 Prediction results of feature variables under three different input conditions in sub-region 2 of study area I 

3.3.3 Effectiveness of Model on SST prediction 

The SSTs were obtained by applying the degranulation process to the predicted feature variables. We analyzed 390 

the prediction results of the test samples from various perspectives and found that the predicted SSTs and their spatial 

distribution are in good agreement with the observed SST images. The discrepancies between the predicted and 

observed SSTs are primarily within the temperature range of -0.7 to 0.7 K. Fig.11 illustrates the predicted SSTs for 

the 12 months of 2009 in study area I. Due to space limitations, we randomly selected the predicted results for 2009 

for display. It is clear that the predicted SSTs and their spatial distribution for all 12 months of 2009 are consistent 395 

with the observed SST images. The differences between the predicted and observed SSTs fluctuate within the range 

of -0.7 to 0.7 K for over 94.3% of the pixels throughout the January-December period. Although Fig. 11 indicates that 

some images contain values with significant errors, the histogram of the differences illustrates that these pixels with 

large errors are typically very few, averaging no more than 30 pixels per image. These pixels are often located at the 

land-sea interface, which may be due to the large spatial resolution of the data used in this study and the fact that areas 400 

close to the shore often consist of mixed pixels. The small number of mixed pixels in the images may lead to 

insufficient feature learning of the proposed model for these pixels. In addition, the distribution of errors in each image 
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does not exhibit a specific pattern. However, comparing the error distributions with the distributions of each indicator 

selected for the corresponding month reveals that regions with relatively large errors often coincide with higher wind 

speeds. Due to the lack of a clear regularity in wind speed variation, constructing an accurate multiseries 405 

characterization of wind speed for this study is challenging. Consequently, the prediction accuracy of SST in regions 

with large wind speed variations is inevitably affected. 
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 410 
 

Fig.11 The predicted SSTs (first column), observed SSTs (second column), and spatial distribution (third column) and 

statistics (fourth column) of prediction errors for study area I in 2009 
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3.3.4 Accuracy comparison between the proposed model and the baseline models 

To further evaluate the prediction performance of proposed method for SST, we separately predicted the SSTs 415 

for the years 2012-2021 using our method and six widely baseline models for SST prediction. The optimal 

hyperparameters for the baseline models were determined using a grid search method. Detailed parameters for baseline 

models are provided in Supplementary Materials. The proposed prediction model was established considering units 

of feature segments rather than individual SST values. Thus, the proposed prediction method could obtain 120 months 

ahead predictions of SST in the study area after performing one prediction and degranulation. To fairly compare the 420 

SSTs predicted by the baseline models and our proposed method, we set the prediction length of one run of the baseline 

models to 120. However, we found that the prediction accuracy of the five baseline models was very low when their 

prediction length was set to 120. In order to make a comparison between our predicted models and the baseline models, 

we experimented with the prediction length of the baseline model and found that these baseline models had the highest 

accuracy when it was set to 48. This also implies that these baseline models are difficult to use for longer predictions. 425 

Therefore, we first evaluated the prediction performance of our proposed method for 120 months of SST from 2012-

2021 and then compared our first 48 predictions with the 48 predictions of each baseline model to judge the 

performance of our proposed method. 

Due to limited space, it is difficult to show the forecast results for all of these 120 months. Therefore, we present 

the forecast results for the two years with relatively lower total forecast accuracy in this 10-year period, where 2021 430 

has the lowest accuracy and 2020 ranks second-lowest. By showcasing these two years, we aim to demonstrate that 

even in less optimal scenarios, the model maintains reliable performance, thereby supporting the robustness of 

predictions for other years with higher accuracy. Fig. 12 shows the predicted SSTs for each month of the year 2021 

within study area I. The first column represents the observed SST images, the second column is the predicted SST 

images, the third column is the difference between the observed and predicted SST images, and the fourth column 435 

exhibits the density plot depicting the disparities between the predicted and observed values for the respective months 

in 2021 and 2020. Our proposed methodology demonstrates the ability to forecast SST distribution for the year 2021, 

with discrepancies between predicted and observed values typically falling within the range of -1 to 1 K. The forecast 

accuracy for 2021 is slightly lower than that for 2020, with February, March, May, June, October, and December 

having lower forecast accuracy for the SST in 2021 than that for 2020. In contrast, the forecast accuracy for the other 440 

months is similar to that of 2020, indicating that the forecasts for other years are reliable. 
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Fig.12 The predicted SSTs (first column), observed SSTs (second column), and spatial distribution (third column) and 445 

statistics (fourth column) of prediction errors for the study area I in 2021 

We conducted a comparative analysis between our initial 48 predictions for the three study areas and the 48 
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predictions generated by each baseline model, as depicted in Figs. 13-15. The modeling process in this study focused 

on key periodic characteristics, such as fluctuation amplitude and duration. As a result, the forecasting results closely 

matched the fluctuation trends and amplitudes of real data across different time scales. Additionally, the proposed 450 

model integrates the influence of multiple variables and sub-regions during the modeling process, leading to the lowest 

RMSE and superior performance. In the monthly SST predictions over up to 48 months for study areas I, II, and III, 

the discrepancies between the predicted and observed SSTs fluctuated within the ranges of -0.6 to 0.54 K, -0.3 to 0.4 

K, and -0.4 to 0.35 K, respectively, with RMSEs of approximately 0.49 K, 0.2 K, and 0.21 K, respectively. 

The Graph Memory Neural Network (GMNN) achieved the second-highest prediction accuracy among all 455 

models, with RMSEs of 0.53 K (Area I), 0.24 K (Area II), and 0.28 K (Area III). This represents the strongest baseline 

performance, attributable to GMNN's unique capability to model structured spatial dependencies through graph-based 

memory mechanisms. Although both the Bi-LSTM model and FC-LSTM model do not consider the spatial 

dependence of SST, their prediction accuracy still outperforms that of the DLNN and CNN models. In the monthly 

SST predictions for months 1-48 in study area I, the RMSEs between the predicted and observed values for BILSTM, 460 

FCLSTM, CNN, and DNN are approximately 0.68 K, 0.75 K, 0.87 K, and 0.93 K, respectively. For study area II, the 

RMSEs for BILSTM, FCLSTM, CNN, and DNN are approximately 0.25 K, 0.28 K, 0.33 K, and 0.37 K, respectively. 

In study area III, the RMSEs for BILSTM, FCLSTM, CNN, and DNN are approximately 0.32 K, 0.40 K, 0.51 K, and 

0.55 K, respectively. This is because the Bi-LSTM and LSTM models are good at long-term dependence modeling. 

Furthermore, in this study, we modeled each pixel when making predictions for these study areas, so these two models 465 

have relatively high accuracy. The experimental results also indicate that the prediction performance of ConvGRU for 

SST lies between that of BiLSTM and LSTM, with BiLSTM outperforming LSTM. In the monthly SST predictions 

for months 1-48 in study areas I, II, and III, the RMSEs between ConvGRU’s predicted and observed values are 

approximately 0.73 K, 0.26 K, and 0.4 K, respectively. BiLSTM extends LSTM by processing the sequence in both 

forward and backward directions. This bidirectional approach allows BiLSTM to leverage information from both past 470 

and future states, providing a more comprehensive understanding of the temporal context. This often leads to improved 

prediction accuracy because BiLSTM can capture dependencies that a unidirectional LSTM might miss. ConvGRU's 

simpler GRU units have fewer parameters and gates compared to LSTM and BiLSTM, making it computationally 

more efficient but potentially less powerful in capturing long-term dependencies. The DLNN model exhibits the worst 

performance among all the models. This may be due to the fact that CNN can learn hierarchical representations, which 475 

can capture the spatial dependency of SST. A typical CNN architecture consists of layers with progressively larger 

receptive fields, enabling the network to learn increasingly complex features from low-level to high-level features. 

DLNNs typically use a shallower architecture and are less capable of building hierarchical representations. 

https://doi.org/10.5194/egusphere-2025-4618
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.



26 

 

 

Fig.13 RMSE of SST predictions for the years 2012-2021 within study area I, obtained using the baseline models and 480 

the proposed model. 

 

Fig.14 RMSE of SST predictions for the years 2012-2021 within study area II, obtained using the baseline models 

and the proposed model. 
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 485 

Fig.15 RMSE of SST predictions for the years 2012-2021 within study area III, obtained using the baseline models 

and the proposed model. 

4 Conclusions  

In this study, we proposed a novel method for SST prediction based on granular computing and the ConvLSTM 

model of data-knowledge-driven. The model considers multiple influencing factors in ocean dynamics and 490 

thermodynamics processes and can fully utilize spatiotemporal information of image sequences to improve the 

accuracy of SST prediction. Our experiments showed that the combination of knowledge-driven and study area 

segmentation concepts can enable the development of customized prediction models that are tailored to the specific 

characteristics of the study area and the available knowledge. This can improve the interpretability and understanding 

of the prediction model and further improve the accuracy of the prediction. In addition, the introduction of the idea of 495 

feature granularity allows machine learning models to fully capture the dynamic characteristics in the time domain 

and internal dependencies of the features and extend the prediction horizons. The comparison of different statistical 

indicators and different perspectives also shows that the proposed model has strong robustness and generalization 

ability and has great potential in the time series prediction of SST. In the monthly SST prediction of the South China 

Sea region (study area I) for up to 120 months, the difference between the predicted SSTs and the observed SSTs 500 

ranges from -0.7 K to 0.7 K, with an RMSE of approximately 0.57 K. Similarly, in study areas II and III, the monthly 

SST predictions over the same 120-month period exhibited a variance between predicted and observed temperatures 

ranging from -0.5 to 0.5 K, with an RMSE ranging from 0.3 to 0.5 K. 
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Our research provides a new idea and method for SST prediction. The extended prediction horizons provided by 

the proposed method are also a significant improvement over existing model. This is important for decision-makers 505 

who require accurate and reliable forecasts for planning and management purposes, especially in areas such as fisheries, 

marine transportation, and climate change mitigation. It is worth noting that the proposed method is not without 

limitations. The use of the granular computing model we constructed requires that the sequence of variables be 

periodic, which may limit the applicability of the proposed method in some cases. In the future, we can further improve 

the predictive performance of SST by coupling numerical and machine learning models to enable the models to better 510 

account for ocean dynamics and thermodynamic processes. 
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