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Text S1: LSTM Model 

This sequential architecture processes flattened SST grids (64 × 𝑛 × 𝑚 →64 × 𝑁,𝑁 =

𝑛 ×𝑚). Dual LSTM layers (512→256 units) capture temporal dependencies, with Dropout 

(0.3) mitigating overfitting. A fully connected layer outputs 48 × 𝑁  predictions, 

reconstructed into 48 𝑛 ×𝑚 SST fields. The model minimizes a mean square error (MSE) 

loss via Adam optimization. 

Text S2: Bidirectional LSTM (BiLSTM) 

Utilizing bidirectional processing, this model ingests 64-month SST sequences 

(64 × 𝑁 ). Two BiLSTM layers (128→64 units) with batch normalization (BN) extract 

forward/backward temporal dynamics. Predictions are generated through a dense layer 

(48 × 𝑁 output) and spatially reconstructed. Training employs adam optimization with  the 

loss function of root-mean-squared error(RMSE).  

Text S3: Spatiotemporal CNN Model 

Operating directly on SST data ( 64 × 𝑛 ×𝑚 ×1), this architecture combines 3D 

convolutions (32 filters, 5×5×5 kernels) with ConvLSTM2D (64 units) to jointly model 

spatiotemporal patterns. Transposed convolutions upsample outputs to 48 data. RMSprop 

optimization prioritizes frontal zone accuracy through MSE loss. 

Text S4: Deep Neural Network (DLNN) 

Flattened SST sequences (64 × 𝑁) undergo PCA dimensionality reduction (retaining 

95% variance)(k). Three dense layers (2048→1024 units) with LeakyReLU activations and 

Dropout (0.4) learn nonlinear mappings. Outputs are reshaped into 48 SST data, with 

Huber loss enhancing robustness to outliers. 

Text S5: ConvGRU Model 

Core structure follows the described 5-layer configuration: Five stacked ConvGRU2D 

layers (50 filters, 7×7 kernels each) with recurrent Dropout (0.5) and batch normalization. 

Final Conv2D layers (50→ 1 channels) refine spatial features. A recursive prediction 

mechanism iteratively generates 48 data by sliding the input window. The Adam scheme 

was adopted as the optimizer. 

Text S6: (GMNN, Liang et al., 2023) 

Proposed by Liang et al. (2023), the Graph Memory Neural Network (GMNN) is a 

spatiotemporal prediction model tailored for SST forecasting, emphasizing the integration 

of spatial, temporal, and attribute features of oceanographic data. Its workflow involves 

three key stages: first, historical SST data are converted into time-ordered graph sequences 

(each graph includes spatial adjacency, temporal indices, and SST attribute values) as input; 

second, a dual-module encoder is used—with iterative GNN layers as the graph encoder 

to extract spatial correlations through node-edge message passing, and an LSTM as the 

temporal encoder to capture temporal dynamics across graph sequences; finally, a 
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decoder with fully connected layers and a multi-output strategy maps the fused 

spatiotemporal features to future SST predictions. This design enables GMNN to 

effectively model the complex spatiotemporal dependencies in SST fields. 

Table S1 Parameter Specifications 

Model 
Input 

Dim 

Output 

Dim 
Core Architecture Optimizer 

Loss 

Function 

LSTM (64,N) (48,N) 
LSTM(512)→Dropout(0.3)→LSTM(256)→Dense

(48N) 

Adam 

(lr=0.001) 
MSE 

BiLST

M 
(64,N) (48,N) 

BiLSTM(128)→BN→BiLSTM(64)→BN→Dense

(48N) 

Adam 

(lr=0.001) 
RMSE 

CNN (64,n,m,1) (48,n,m,1) 
Conv3D(32,5³)→MaxPool3D(2)→ConvLSTM2D

(64)→Conv3DTranspose(1,3³) 

RMSprop 

(lr=2e⁻⁴) 
MSE 

DLNN (64,k) (48,N) 
Dense(2048)→LeakyReLU→Dropout(0.4)→Dens

e(1024)→Dense(48N) 

RMSprop 

(lr=10⁻⁴) 

Huber 

(δ=0.5) 

ConvG

RU 
(64,n,m,1) (48,n,m,1) 

5×ConvGRU2D(50,7×7)→BN→Dropout(0.5)→C

onv2D(50,7×7)→Conv2D(1,7×7) 

Adam 

(lr=0.001) 

0.6×SSIM+

0.4×MSE 

GMNN (56,n,m) (48,n,m) 
3 × GNN(128)→LSTM(64, dropout=0.2) →

Dense(128)→Dense(64)→Dense(48 N) 

Adam 

(lr=0.001) 
MSE 

Rerference 
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