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14  Abstract

15 Accurate large-scale crop mapping is critical for yield prediction, agricultural disaster monitoring,
16 and global food security. Synthetic Aperture Radar (SAR), with its all-weather, day-and-night imaging
17 capability, plays a vital role in remote sensing based crop mapping studies. However, most existing
18 studies fuse VV and VH polarization channels at the data level, overlooking channels’ differences in
19 signal-to-noise characteristics and temporal dynamics, which results in rice feature redundancy or
20 conflicts, particularly at rice field edges and in heterogeneous regions, thereby increasing
21 misclassifications error. To address these challenges, this study proposes a novel Spatiotemporal
22 Attention Model (SimTA) for rice mapping. (1) A VV-VH feature-level fusion scheme is designed,
23 integrated with a Content-Guided Attention (CGA) fusion method which effectively exploits the
24 complementary information of the dual-polarized SAR data for achieving deep spatiotemporal dynamics
25 fusion. (2) A Central Difference Convolution Spatial Extraction Conv (CDCSE Conv) Block is designed,
26 enhancing sensitivity to edge variations of rice field by combining standard and central difference
27 convolutions. (3) To achieve efficient spatiotemporal feature integration across SAR time series, a
28 Temporal-Spatial Attention (TSA) Block is developed, utilizing large-kernel convolutions for spatial
29 feature extraction and a squeeze-and-excitation mechanism for capturing long-range temporal
30 dependencies of rice time series. Extensive experiments were conducted by comparing SimTA with
31 different models under five fusion schemes. Results demonstrate that feature-level fusion consistently
32 outperforms other schemes, with SimTA achieving the best performance: OA =91.1%, F1 Score = 90.9%,
33 and mloU = 86.2%. Compared to the baseline SimVP, SimTA improves F1 Score and mIoU by 0.8% and
34 2.1%, respectively. The CGA enhanced feature-level fusion further boosts SimTA’s performance to OA
35 =91.5% and F1 = 91.4%. SimTA bridges the gap between existing VV-VH deep fusion schemes and
36 modern spatiotemporal modeling demands, offering a more accurate and generalizable approach for
37  large-scale rice mapping.

38 Keywords: rice mapping, Synthetic Aperture Radar, feature fusion, remote sensing, spatio-temporal

39 attention mechanism
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40 1. Introduction

41 Rice is one of the world's most essential staple crops. Accurate large-scale crop mapping plays a
42 crucial role in ensuring food security, managing agricultural resources and supporting environmental
43 sustainability (Zeng et al., 2017). Synthetic Aperture Radar (SAR), with its weather-independent and
44 high-frequency revisit capabilities, has become an indispensable data source for large-scale rice mapping,
45  particularly in regions where optical imagery is frequently hindered by cloud cover (Qadir et al., 2024;
46 Silva Filho et al., 2024; Yang et al., 2024). The Copernicus programme of the European Space Agency
47  provides open access to dual-polarization SAR data from the Sentinel-1 mission, which features wide
48 swath coverage, relatively small data volumes, and high temporal resolution. These characteristics make
49 Sentinel-1 a valuable resource for long-term, global-scale agricultural monitoring. Consequently, the use
50 of multi-temporal SAR imagery offers significant potential for accurate, large-area rice mapping (Ge et
51  al., 2025; Wang et al., 2022).

52 Despite its advantages, a significant portion of existing SAR-based rice mapping studies—
53 summarized in Table |—still rely heavily on data-level fusion scheme, which concatenate, add, or divide
54 VV and VH dual-polarized SAR bands across time series as model input for classification (Ma et al.,
55 2024; Wei etal., 2021; Yang et al., 2022). While this scheme preserves the full backscatter characteristics
56 of SAR signals, it may lack the capacity to distinguish differences in signal-to-noise ratio and temporal
57 dynamics between VV and VH channels, often leading to higher noise sensitivity, lower polarization
58  utilization and increased misclassification in heterogeneous or fragmented landscapes.

59 Recent studies have highlighted the potential of feature fusion to address these limitations. In
60 multimodal crop mapping studies, particularly involving optical and SAR images, model backbones are
61 commonly categorized into three main fusion schemes: data, feature, and decision fusion (Liu etal., 2024,
62 Orynbaikyzy et al., 2019; Sainte Fare Garnot et al., 2022). Data fusion directly concatenates inputs from
63 different modalities, which simplifies implementation and minimizes early-stage information loss
64 (Skakun et al., 2017; Valero et al., 2021). Decision fusion combines outputs from modality-specific
65 models, offering flexibility but requiring expert knowledge to accurately interpret and integrate results
66  (Gandhietal., 2023). Feature fusion scheme not only facilitates more nuanced integration of multi-source
67 information but also enhances model interpretability and robustness (Liu et al., 2025; Sainte Fare Garnot

68 etal., 2022; Zhao et al., 2023). Inspired by the success of feature fusion in multimodal crop classification
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69 studies, feature-level fusion scheme can be used to extract and deeply fuse the spatiotemporal features
70  of VV and VH time-series data.

71 In terms of modeling, deep learning (DL) methods, particularly Long Short-Term Memory
72 Networks (LSTMs) and Convolutional Neural Networks (CNNs), have become prevalent due to their
73 capabilities in capturing spatial and temporal dependencies in SAR images (Wang et al., 2022). Recent
74 progress has seen increasing attention to spatiotemporal attention mechanisms  (Fan et al., 2024; Tang
75 et al., 2024), which aim to jointly model dynamic crop growth processes and static spatial structure.
76 While self-attention-based methods (e.g., Transformers) show promise in extracting long-range
7 dependencies, they often entail substantial computational overhead and exhibit poor generalization when
78 applied to time-series remote sensing data with limited samples (Anandakrishnan et al., 2025; Tarasiou
79 etal., 2023; Yan et al., 2024). Moreover, these approaches often overlook the critical integration between
80 spatial and temporal dimensions, or suffer from overfitting due to overly complex structures.

81 The U-Net and its variants remain the dominant architecture in SAR-based rice mapping (Ge et al.,
82 2025; Lietal., 2022; Xu et al., 2021) in spatial modeling studies, thanks to their encoder-decoder design,
83 multi-scale representation capabilities, and suitability for temporal integration. However, challenges
84  persist in accurately extracting rice field boundaries and distinguishing rice from spectrally similar
85  vegetation types, especially in irregularly shaped and mixed-crop regions. To enhance boundary
86 sensitivity, some researchers have integrated self-attention mechanisms into U-Net-like frameworks, but
87 such designs often come at the cost of computational efficiency (Bai et al., 2021; Liu et al., 2024; Silva
88  Filho et al., 2024).

89 In summary, there are two key problems: (1) Most existing studies fuse VV and VH polarization
90 channels at the data level (Table 1), overlooking their differences in signal-to-noise characteristics and
91 temporal dynamics, which often results in feature redundancy or conflicts—especially in edge and
92 heterogeneous regions—thereby increasing classification error. (2) Current deep learning models adopt
93 incomplete spatiotemporal fusion methods by overlooking the critical integration between spatial and
94 temporal dimensions, result in underutilizing time-series SAR data and weakening both rice feature

95 representation and the temporal-spatial correlation between polarization modes.

96
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97  Table1
98 Fusion schemes and methods in related SAR based crop mapping studies, with a predominant focus on

99 data-level fusion scheme.

Model Objectives Data Fusion Fusion methods Advantage Limitations
) schemes &
Unet Rice manpin Sentinel-1 I]?e éi/t:l
(Wei et al., 2021) PPINE v v v
Fusion
. Higher noise
LSTM Sentinel-1 Data Fusion of VV and VH sensitivity, lower
(Thorp and Drajat, Rice mapping vV Ve}{ Level VV©OVH preserves SAR's fPU polariza’tion
2021) Fusion scattering characteristics utilization
TFBS Rice manning Sentinell o
(Yang et al., 2022) PPIE v vH .
Fusion
Crop mapping
STMA (Maize, Wheat, Sentinel-1 ]I:Zilzteal VV/VH bi Er;lhaliwel c;ro;t) . Loss of absolute
(Han et al., 2023) Grassland, VV VH . ophysicat feature physical information
Peanut, etc.) Fusion recognition
Sediment
deposition Feature masking
BiLSTM (rsrl;ﬁlr):lgi \ Sentinel-1 I]?e itzl VVAVH Lightweight and effect and loss of
(Maet al., 2024) deposition VV VH Fusion efficient computation polarimetric
gVater ’ discriminability
Farmland)
- Decrease data size and Limited information
XM-UNet . . Sentinel-1 . . . . .
Rice mapping VH - processing requirements  dimensionalit
(Ge et al., 2025) VH y

Note: VV © VH means the concatenation of multi-temporal VV and VH.

100 To address these existing limitations and bridges the gap between existing VV-VH deep fusion
101 schemes and modern spatiotemporal modeling demands, this study proposes a novel Spatiotemporal
102 Attention Model (SimTA) for accurate large area rice mapping by precisely modeling the spatiotemporal
103 dynamics and deeply fusing the spatiotemporal features of VV and VH time-series data from Sentinel-1
104  SAR imageries at the feature level. The main contributions of this study are as follows:

105 (1) A VV-VH feature-level fusion scheme is designed, integrated with a Content-Guided Attention
106 (CGA) fusion method which effectively exploits the complementary information of the dual-polarized
107 SAR data for achieving deep spatiotemporal dynamics fusion.

108 (2) A Central Difference Convolution Spatial Extraction Conv (CDCSE Conv) Block of SimTA is

109 designed for effectively enhancing model's sensitivity to edge variations of rice field by combining

5
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110 standard and central difference convolutions.

111 (3) A Temporal-Spatial Attention (TSA) Block of SimTA is developed to utilize large-kernel
112 convolutions for fully extracting spatiotemporal features and a squeeze-and-excitation mechanism for
113 capturing long-range temporal dependencies of rice time series by combining spatial static and temporal

114 dynamic attention mechanisms.

115 2. Materials

116 2.1 Study area

117 To validate the spatiotemporal generalization capability of rice phenological characteristics, this
118 study selects two representative rice-growing regions in North America—the Arkansas River Basin and
119 the Sacramento region—as the study areas. The two regions differ markedly in geographical settings,
120 climatic conditions, and rice cultivation practices, which facilitates a comprehensive assessment of the
121 model’ s adaptability and robustness under diverse ecological conditions. The Arkansas River Basin is
122 used for training, validation and temporal generalizability test, while the Sacramento region serves as the

123 test site for spatiotemporal generalization.
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125 Fig. 1 Geographic location of the study areas. (a) study arca for training, validation and temporal
126 generalizability test, (b) test site for spatiotemporal generalization.

127 The Arkansas River Basin in the United States (89°50'46"W-91°17'39"W, 33°4"22"N-36°58'10"N)
128 is selected as the study area to better characterize representative features of rice as shown in Fig. 1(a).
129 The region’s temperature and precipitation are suitable for rice cultivation, covering approximately
130 58,504 km?. It is a major rice-producing area in the United States, accounting for about 43% of national
131 rice production; therefore, rice samples within the study area are both generalizable and representative

6
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132 (Moreira et al., 2013; Wei et al., 2025). Rice is typically sown from April to June and harvested from
133 August to October (see Fig. 2). The region also grows cotton, corn, and soybean, whose climatic and
134 phenological characteristics differ markedly from those of rice. Based on the temporal dynamics of
135 backscatter coefficients (see Fig. 2(b) (¢)), rice in the Arkansas River Basin is predominantly dry-seeded.
136 Following sowing, fields are generally not maintained under prolonged deep flooding; the exposed,
137 rough soil surface and early weeds induce strong radar scattering, resulting in relatively high backscatter
138 in the VV and VH polarization channels in remote sensing imagery (VV around —20 dB). As irrigation
139  begins and the crop enters the rapid growth stage (May—July), the dense canopy structure gradually
140 becomes the dominant scatterer, leading to a pronounced increase in VV and VH backscatter.

141 To conduct spatiotemporal generalization analysis, the Sacramento Valley in California (121°10"—-
142 122°15'W, 38°02'-39°20'N) (show in Fig. 1(b)) is selected as the validation area. The region has a
143 Mediterranean climate with hot, dry summers and mild, wet winters. Its distinctive irrigation
144 infrastructure provides favorable conditions for rice cultivation, making it another major rice-growing
145 region in the United States. Unlike the Arkansas River Basin, the Sacramento Valley commonly employs
146 water seeding or continuous flooding, and predominantly cultivates short- and medium-grain rice.
147 Sowing typically occurs from April to May, with harvest from September to October. Due to ample water
148 resources and precise field management, VV and VH backscatter coefficients remain at low levels during
149 the early growth stages (VV around —22 dB). Consequently, differences in cultivation practices and water

150 management between the two regions give rise to markedly distinct VV/VH temporal signatures (Yang

151 etal., 2022).
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153 Fig. 2 Calendars and backscattering coefficients curves of rice in study areas. (a) The major calendar of
154 rice. (b) VH Backscatter Coefficients (dB) for Rice in Arkansas and Sacramento. (c)VV Backscatter

155 Coefficients (dB) for Rice in Arkansas and Sacramento.
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156 2.2 Sentinel-1 data sets

157 We chose Sentinel-1 data to monitor rice growth and its relationship with environmental factors
158  (https://www.earthdata.nasa.gov/data). Sentinel-1 satellite has a revisit period of 12 days and can provide
159 continuous multi-temporal information, which is essential for monitoring the dynamics of rice growth.
160 In addition, its spatial resolution of 10 m is sufficiently detailed to show most of the rice area, ensuring
161  the validity of the data. The interferometric wide-area (IW) mode of Sentinel-1 provides RS imagery
162 with two polarizations (VV and VH). Different polarizations can be chosen to transmit and receive radar
163 signals, allowing for the acquisition of various characteristics of rice features. Each polarization exhibits
164 distinct attributes within the same scene at the same time, providing additional information for crop
165 feature identification and classification. We collected radar images of the rice growth cycle from April to

166 October in 2017, 2018, and 2019 for in-depth analysis.
167 2.3 Reference datasets

168 The Crop Data Layer (CDL) dataset is used as the reference data for training, validation and test.
169 The CDL is generated based on Landsat Thematic Mapper imagery and combines Common Land Unit
170 and United States Department of Agriculture (USDA) related ground survey data to form a reliable land

171 cover class dataset which from https://croplandcros.scinet.usda.gov/. The dataset has a spatial resolution

172 of 30 meters and uses the Alber Equal Area Conic projected coordinate system, which provides accurate
173 information on the location of crop fields, the size of their area, and the class to which they belong. The
174 CDL is updated annually through farmer reports, ensuring that the data are current and accurate, making
175 it an important tool for agricultural monitoring and research. By using CDL as reference data, we are
176 able to effectively conduct model training and validation, thus enhancing the reliability and application

177  value of the research results.
178 2.4 Structure of training, validation and test samples

179 We cropped the mosaicked, multi-temporal Sentinel-1 imagery covering the study area into a
180  set of small image patches with dimensions of 256 x 256 x C x T, where T denotes the length of the
181  time series and C represents the number of feature channels derived from the multi-temporal
182  Sentinel-1 data as described in Table 2. The selected multi-temporal Sentinel-1 images encompass

183  the Arkansas during 2017-2019 and the Sacramento area in 2019. Using a non-overlapping sliding-
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184  window approach, we collected the Sentinel-1 image patches and their corresponding CDL samples,
185  yielding a total of 3,026 input image samples of size 256x256xTxC along with their CDL labels.
186  Subsequently, the 2017 and 2018 Arkansas data were split into training and test sets in an 6:4 ratio,
187  while the 2019 Arkansas and Sacramento area images were reserved as test sets to investigate how
188  model generalization across temporal and spatial dimensions affects the accuracy of crop area
189  estimation.

190  Table2

191 Detailed information of the heterogenous datasets

Dataset Region Year Time Series Channels Size Number
Train Arkansas 2017,2018 13 2 256%256 1061
Validation Arkansas 2017,2018 13 2 256%256 706
Temporal Arkansas 2019 13 2 256x256 884
generalizability
Spatiotemporal
Lo Sacramento 2019 13 2 256%256 375
generalizability

192

193 3. Models and experimental setup

194 The experimental design focuses on three main aspects: VV—VH fusion schemes, the SimTA model,
195 and feature fusion methods (Fig. 3). First, a VV-VH feature-level fusion scheme is proposed (Section
196 3.1), along with four other fusion schemes for comparison. Next, the SimTA model is introduced,
197 including two novel components—CDCSE Conv Block and TSA Block (Section 3.2)—and six
198 additional DL models are selected for benchmarking. Rice mapping and temporal generalizability
199 experiments are conducted under five fusion schemes and seven models to evaluate the robustness of the
200  proposed VV-VH feature-level fusion scheme (Section 4.1) and assess the performance of SimTA
201 (Section 4.2 and Section 4.3). Subsequently, a CGA deep feature fusion method is developed (Section
202 3.3) to further enhance the accuracy of SImTA (Section 4.4). In addition, the study employs ablation
203  studies, feature visualization, and Uniform Manifold Approximation and Projection to investigate and

204  wvalidate the proposed model’s innovations.



https://doi.org/10.5194/egusphere-2025-4613
Preprint. Discussion started: 19 November 2025
(© Author(s) 2025. CC BY 4.0 License.

EGUsphere

| Models and experiments

Result and Discousion

A w 1

Comparison of five fusion schemes

Spatial Encoder  Spatial Encoder - VH =i

n schemes

Mapping result | | Mapping Visualization |

VV-VH Data-level fusion scheme ———» ‘

. VV-VH Decision-level fusion scheme —

Spatial generalizability I

| VV-VH Feature-level fusion scheme I— ‘

Temporal generalizability |

= A ConvLSTM —

Interpretability of SinTA

Mapping result | | Mapping Visualization

Running efficiency ’

Ablation experiment I

Temporal Spatial
Attention Block

N
Add
[D — D | | % coneat
Nt BN | %
>[-=_ | . DFF

.u,c-:»: BiLSTM —
3

.,.M'....W il
= 6%
=
= TFBS =
=
« >
= STMA —
£
- L SimvP — ’

%

Comparison of five feature fusion methods

= e -
i e ? ? A Eduac

Mapping result | | Mapping Visualization

CGA Feature Fusion method

Feature fusion methods

l:l Innovations of this study. The VV-VH feature-level fusion scheme is integrated with CGA fusion method to effectively exploits the complementary
information of the dual-polarized SAR data for achieving deep spatiotemporal dynamics fusion. The CDCSE Conv Block is designed to enhance sensitivity

205 to edge variations of rice field while the TSA Block is developed to capture long-range temporal dependencies of rice time series.

206  Fig. 3 Experimental design workflow, with the innovations of this study highlighted in box.

207

208 3.1 VV-VH feature-level fusion scheme

209 Given the superior performance of VV and VH polarization modes from Sentinel-1 data in

210 monitoring rice growth conditions, we develop a VV-VH Feature-level Fusion scheme (Fig. 4(d)). In this

211 scheme, representative features are extracted from the raw observations of each polarization, integrated

212 into a unified feature vector, and subsequently processed using pattern recognition techniques to support

213 decision-making. The feature fusion at this level can be achieved through channel-wise summation or

214 concatenation, both of which align with the structure of data-level fusion and fully exploit the

215 complementary information of dual-polarized data to improve feature expressiveness and diversity. More

216 advanced and deeper feature fusion methods will be discussed in Section 3.3.

10
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217 To verify the VV-VH Feature-level Fusion scheme's performance, we compare it with four other
218 schemes. The VV polarization scheme (Fig. 4(a)) means that both receive and send signals are vertically
219 polarized. Satellite image data mainly reflects the vertical structural characteristics of the target crop
220 surface. In this paper, VV is directly input into the model according to the time series. The VH
221 polarization scheme (Fig. 4(b)) is where the signal is sent vertically polarized and received horizontally
222 polarized. This satellite image allows the model to capture richer features of the target surface and is
223 generally used for scenes with diverse structures. This paper directly feeds the VH into the model in a
224 time series. The VV-VH Data-level Fusion scheme (Fig. 4(c)) performs linear functions or concatenates
225 on channels of raw observations for each polarization, where the most used is stacking on channels, and
226 addition or division is also relatively more used. The VV-VH Decision-level Fusion scheme (Fig. 4(¢))

227 combines model predictions from each polarization via a weighted sum.
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229  Fig. 4 Illustration of five comparative VV-VH fusion schemes.
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230 3.2 SimTA model architecture

HW HW
BxTLCHW BxT,C.H.W BXT,ZC,7,T BXT,ZC,T,T

CDCSE Down CDCSE Down
Conv Block Conv Block Conv Block

Conv Block

(BLCHW) S R | ) -
I/ R BXT,GHW
I |Feature Fusion !
1
: :: 4 +—»  Up Conv Block BxT,C,HW
! Feature Fusion 1
i 1 ,
g C: l —»{CDCSE Cony Block Br2cE
: 'Feature@—,i 1
: : Up Conv Block
1 Feature Fusion 1
1
¢ 7
R T A S S ————— TSA Block — TSA Block

CCD'%SIEk g (¢! Duvl;{l K CCD%%Ek > C Do‘é{l k l T
onv Bloc ony Blocl ony Blocl onv Blocl TSA Block TSA Block

, ; H W H W .
(B,L,CHW) BXT,GHW BXT,GHW BTG BxT2C pr2cL

231 CDCSE Conv Block | Central Difference Convolution Spatial Extraction Block TSA Block = Temporal Spatial Attention Block

232 Fig. 5 Overall architecture of the proposed SimTA model for rice mapping using Sentinel-1 VV and VH
233  time-series data. The model first extracts multi-scale spatial features through CDCSE Conv Block, which
234 are then fused with long-range temporal information via the TSA Block. The architecture emphasizes the
235 integration of detailed spatial representations with long-range spatiotemporal dependencies to enhance
236  rice mapping accuracy.

237 The proposed SimTA (Spatiotemporal Attention) network, illustrated in Fig. 5, adopts a UNet-style
238 encoder—decoder architecture tailored for rice mapping from SAR time series. The network leverages
239 skip connections between corresponding encoder and decoder layers to facilitate multi-level feature
240 fusion, enabling the integration of low-level texture and high-level semantic information. To enhance
241 sensitivity to field boundaries, Central Difference Convolution (CDC) is incorporated into both encoder
242 and decoder modules. By computing the intensity differences between central and neighboring pixels,
243 CDC effectively captures edge details of rice fields. This hierarchical stacking of convolutional layers
244 allows the model to progressively extract more abstract and complex spatial features, transitioning from
245 shallow spatial cues to rich semantic representations.

246 To model temporal dependencies, a Temporal-Spatial Attention (TSA) module is embedded in the
247  bottleneck of the encoder. This module guides the network in identifying key temporal features across
248 the SAR image sequence, allowing for deeper integration of temporal dynamics with spatial context.

249 SimTA thus combines the spatial feature extraction capability of UNet with the dynamic temporal

12
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modeling of attention mechanisms. By jointly optimizing spatial and temporal features, the model

captures complex spatiotemporal patterns of rice growth while maintaining computational efficiency.

3.2.1 Central Difference Convolution Spatial Extraction Block (CDCSE Conv Block)

To enhance the model’s ability to capture complex spatial patterns and boundary details in rice fields,
we design the CDCSE Conv Block, which combines standard convolution with central difference
convolution through an adaptive weighting mechanism (Fig. 6). Time-series SAR images with
dimensions (B, T, C, H, W) are input into the encoder using a 3 X3 convolution (stride = 2), where T
denotes 13 acquisition dates and spatial resolution is 256 X 256. For efficient spatial feature extraction,
the temporal (T) and batch (B) dimensions are merged, enabling the model to learn inter-temporal
dependencies while simplifying the input structure. Within each encoding layer, two blocks are employed:

a standard ConvBlock for basic operations, and the CDCSE Conv Block for spatial enhancement.

(a)
CDCSE Conv Block

e ]
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=T ——1 Adaptive weight X Multiplication
Fig. 6 Architecture of the proposed CDCSE Conv Block with ConvBlock with its convolution kernel
schematic; (a) CDCSE Conv Block structure, (b) principle of the convolution kernel.

Standard convolution kernels operate via local weighted summation, which can extract certain

textures and features, but limits their ability to capture fine edge features—crucial for high-resolution

land cover classification. The specific calculation function is as eql,

y(R) =25 cRa(R)X(R +R)-x(R)) M
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268 where the region R denotes the receptive field or the neighborhood defined by the convolution kernel,
269  which contains all offset positions relative to the center point Py. For every position P,, compute the
270 difference between the neighborhood point x(Po+P,) and the center point x(P0)x(P0), multiply this
271 difference by the corresponding weight w(P,) at that position. Finally, sum all the weighted differences
272 to form the output of this operation. Center difference convolution, as illustrated in Fig. 6(b), enhances
273 gradient sensitivity by computing pixel-wise differences, thus preserving boundary transitions and subtle
274  variations. The adaptive weighting mechanism (He et al., 2024; Li et al., 2020) fuses standard and central
275 difference convolution outputs, dynamically adjusting their contributions based on regional
276 characteristics (Meng et al., 2024). This approach improves spatial detail representation and classification

277 accuracy in heterogeneous agricultural scenes, particularly for rice mapping with intricate edge structures.
278  3.2.2 Temporal Spatial Attention Block (TSA Block)

279 To enhance spatiotemporal feature integration in SAR time series, we propose the Temporal-Spatial
280  Attention (TSA) Block, adapted from the spatial attention module of DA-Net (Fu et al., 2019). The TSA
281 Block decomposes attention into two complementary branches:

282 Spatial Static Attention and Temporal Dynamic Attention, whose outputs are multiplicatively fused
283 (Fig. 7). Spatial Static Attention captures long-range spatiotemporal dependencies using a large receptive
284 field and models global context via the RepLK module (Ding et al., 2022), which applies large-kernel
285 convolutions to capture multi-scale spatial semantics. The subsequent ConvNeXt module (Liu et al.,
286 2022) further refines spatial details and enhances representational capacity for subtle crop growth
287  variations across time.

288 Temporal Dynamic Attention captures key temporal characteristics by extending channel-wise
289 attention through the SENet (Hu et al., 2020). Here, each time step encodes temporal crop status, and
290  each channel corresponds to different polarimetric or feature dimensions. We follow (Tan et al., 2023) in
291 using global average pooling to compress the feature tensor (TxC,H,W) into (TxC,1,1), then apply fully
292 connected layers to generate reweighting coefficients, restoring it to the original shape. These adaptive
293  weights reflect time-varying channel importance, enabling the model to dynamically focus on
294 informative temporal and spectral responses. Spatiotemporal correlations dominate spatial-only

295 information in remote sensing classification, and the TSA Block effectively exploits this for improved
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296 discrimination across crop types with overlapping phenological stages.
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297
298  Fig. 7 Specific architecture of the proposed TSA Block.

299  3.2.3 Loss functions and model settings

300 This paper uses the cross-entropy loss function, which is well-suited for multi-crop classification
301 tasks. The cross-entropy loss is the most commonly used loss function for pixel-level image semantic
302 segmentation tasks, which seeks the probability of correct classification for each pixel category and

303  pushes the actual labeling probability to one.

1 M

304 L=-=2> > ¥.log(p;) @
N i c=l

305 In eq.2, which is the number of samples, C is the number of classes, yicis the actual class distribution

306 of sample i, usually denoted as a one-shot coding vector indicating the actual classes, and pic is the
307  predicted class probability distribution of sample i, usually a probability vector indicating the model's
308  predicted probability for each class.

309 To train SimTA, we used the AdamW optimizer with a learning rate, which includes a warm-up
310 period from 0 to epoch 5 with a maximum value of 3 to 10, and then the learning rate decays to 5 x 10

311 at the end of training. We trained with a batch size of 2 and in parallel without regularization on an Nvidia
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312 3090 GPU. The entire network was built using the PyTorch deep learning framework with a total training

313 cycle of 40. It takes about 12 minutes to complete a training cycle.
314  3.2.4 Other models used for comparison

315 To verify the SIimTA's performance, we compare it with six other crop mapping models: ConvLSTM
316  (Masolele et al., 2021), BiLSTM (Ma et al., 2024), Unet (Wei et al., 2021), TFBS (Yang et al., 2022),
317  STMA (Han et al., 2023), and SimVP (Gao et al., 2022). The ConvLSTM and BiLSTM stack spatio-
318 temporal models for temporal image feature classification, using long and short-term memory units. The
319 ConvLSTM uses full connectivity to capture spatiotemporal correlations, but the BILSTM also improves
320 the ability to capture temporal information through bi-directionality (processing both forward and
321 backward sequences). The Unet, TFBS, STMA and SimVP models use Unet's "encoder-decoder"
322 structure, the structure contains the texture information and semantic information of the image and is
323 used for feature classification. Among them, LSTM is referenced in TFBS, which can be used to establish
324 the dependency of long-range temporal information for each feature. STMA combines spatial self-
325 attention and temporal self-attention to effectively capture the correlations in temporal information and
326 facilitate the fusion of spatiotemporal features. SimVP is used for CNN spatio-temporal modeling to
327 extract multiple crop types from time-series images. This method decouples temporal and spatial

328 information and utilizes a CNN-Inception architecture for crop extraction.
329 3.3 Content-Guided Attention (GCA) feature fusion method

330 Compared with traditional shallow fusion methods, we designed a deeper VV-VH Content-Guided
331  Attention (CGA) feature fusion method (Fig. 8(e))(Chen et al., 2024) for improving rice mapping
332 accuracy. CGA employs a content-aware attention mechanism, where an initial spatial attention map is
333 generated for each channel and then refined based on the input feature maps. By leveraging the content
334 of the input features, CGA enhances the network's focus on the unique and complementary characteristics
335 of each polarization channel. This allows for more effective recalibration of the fused features and
336 facilitates the learning of channel-specific attention maps, thereby capturing the distinct distributions and
337 dynamics of VV and VH data more accurately.

338 For comparison, we also implemented four commonly used feature-level fusion methods to evaluate

339 the performance of our CGA-based fusion method. Add (Addition, Fig. 8(a)) method directly adds two
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340

341

342

343

344

345

346

347
348

349

350

features in a linear manner. The Concat (Concatenation, Fig. 8(b)) method combines features by channel-
wise concatenation. Attention Feature Fusion (AFF, Fig. 8(c))(Dai et al., 2021) uses a dual-branch
attention module to extract both global and local features with multi-scale channel attention, while
residual connections help preserve both shared and modality-specific information. Dynamic Adaptive
Fusion (DFF, Fig. 8(d))(Xue and Marculescu, 2023), employs a global-local adaptive mechanism, where
dynamic attention guides the selection of informative features, effectively enhancing feature quality by

emphasizing useful details and suppressing redundancies.
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Fig. 8 Illustration of five different methods in Feature-Level Fusion scheme, (a) is Add, (b) is Concat, (c)

(e) CGA Block

is Attention Feature Fusion (AFF), (d) is Dynamic Feature Fusion (DFF), (e) is our Content-Guided

Attention (CGA).
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351 3.4 Evaluation metrics

352 In this study, F1 scores, mean Intersection over Union (mloU), and Overall Accuracy (OA) are used

353 as evaluation metrics to assess model performance. These metrics are defined as follows:

2xTP
354 I — 3)
2xTP+FP+FN
1 & TP
355 mloU = > 4)
k+1%< TP+FP+FN
455 TP+TN 6)

“TP+FN+FPLTN

357 TP (True Positive) denotes the number of correctly identified positive samples, specifically the instances
358 where rice is accurately predicted as rice. TN (True Negative) represents the number of correctly
359 identified negative samples, meaning the non-rice instances are correctly classified as non-rice. FN (False
360 Negative) refers to the number of positive samples that are incorrectly classified as negative, i.e., rice
361 samples misclassified as non-rice. FP (False Positive) indicates the number of negative samples

362 mistakenly classified as positive, that is, non-rice samples erroneously predicted as rice.

363 4. Experiment results and discussion

364 4.1 Comparison of five fusion schemes
365  4.1.1 Rice mapping results of five fusion schemes under different models

366 To compare the rice mapping capability and accuracy of the five fusion schemes, experiments were
367 conducted on the validation set using six different models (ConvLSTM, BiLSTM, Unet, TFBS, SimVP,
368 STMA, and SimTA). The data-level and feature-level fusion schemes adopted the widely used
369 concatenation (Concat) method, while the decision-level fusion schemes employed a weighted
370 summation method. The data-level and feature-level fusion schemes adopted the widely used
371 concatenation method, while the decision-level fusion schemes employed a weighted summation method.
372 The results are shown in

373 As shown in , there are significant differences in OA, F1, and mloU for different deep learning
374 models with different fusion, which suggests that the fusion of VV and VH polarization information at
375 the feature extraction stage is more effective than simple data splicing or decision-level fusion in deep

376 learning analysis of remote sensing data. Among them, unpolarized inputs (VV or VH) perform poorly,
18
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377 especially VV (dark blue), showing the worst results among all schemes (except for the extreme under
378  Unet and TFBS decision-level fusion), the average OA, F1 and mloU, respectively, while VH (light blue)
379 is slightly better than VV (dark blue). The reason is that the VH polarization contains more information
380  contributing to feature recognition than the VV polarization (Yang et al., 2021; Zhang et al., 2022).
381 However, single-polarized inputs still have a significant performance disadvantage compared to dual-
382 polarization fusion methods. Both data-level fusion (pink) and decision-level fusion (yellow) are
383 effective in improving accuracy (except for Unet and TFBS) but remain overall lower than feature-level
384 fusion (red), which performs the best in all models, especially on TFBS, SimVP, and SimTA (our model).
385 Compared to the suboptimal data-level fusion, the average OA, F1, and mloU of feature-level fusion
386 across all models increased by 0.7%, 0.9%, and 1.5%, while when the summation method was used, the
387 difference between the two further expanded to improvements of 1.2%, 1.9%, and 3.2% in OA, F1, and
388  mloU (Fig.A.1; Table.A.1; Table.A.2). This indicates that in deep learning analysis of remote sensing
389 data, the fusion of VV and VH polarization information at the feature extraction stage is more effective
390 than simple data concatenation or decision-level fusion.

391 Further observing the performance of different models, SimTA performs superiorly under all fusion
392  schemes, especially reaching the highest OA, F1, and mIoU of 91.1%, 90.9%, and 83.2% in the VV-VH
393 feature-level fusion (red) CGA mode, which is a clear advantage over other models. This indicates that
394 SimTA is more robust in spatio-temporal feature extraction and deep fusion of polarized information. In
395 addition, TFBS and Unet also perform relatively well in feature fusion mode, while ConvLSTM and
396 BiLSTM have weaker generalizability, which may be related to their limited time series model capability.
397 It is worth mentioning that the ConvLSTM, BiLSTM, Unet, TFBS, and STMA models involved in the
398 comparison in Section 4.1 all used only the concatenation of data-level fusion in the original published
399 study, and the version of SimTA used for the comparison here used only the same concatenation method
400 of feature-level fusion. While in Section 4.3, more deep feature fusion methods will be further compared,
401 which can further improve rice mapping accuracy; the highest OA, F1, and mloU are achieved under
402 SimTA with CGA feature fusion with 91.5%, 91.4%, and 84.2%, respectively, which compare to the

403 original publish Unet model (\Wei et al., 2021) improved by 1.1%, 1.4%, and 2.3%.
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Fig. 9 Rice mapping results of different models under five different fusion schemes with (a) OA, (b)

mloU and (c) F1.

4.1.2 Visualization of five fusion schemes under SimTA

To visually show the differences in rice mapping performance under different fusion schemes, this
20
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408 study analyzes the crop mapping results by visualization results of the SImTA model and combines them
409  with feature heatmaps which shown in Fig. 10. The heatmaps analysis reveals significant differences in
410  feature focus between the different fusion schemes: the VV-VH feature-level fusion exhibits the most
411 superior performance, while the single-polarized inputs (VV and VH) show obvious limitations.

Ground Truth @1 Vv 2)VH  (3)VV-VH (4 VV-VH  (5) VV-VH
Data Level Decision Level Feature Level

M Non-crop
B Rice
[] Non-rice crop

[ Correct
M Incorrect

M Non-crop
M Rice
[[] Nen-rice crop

[] Correct
M Incorrect

412

413 Fig. 10 Visualization of rice mapping and feature comparison results based on the optimal SimTA model
414 under five different fusion schemes, where (a) (d) are the classification result maps, (b) (e) are the heat
415 maps, and (c) (f) are the error maps. The heat value of the heat map is closer to red, the higher the model
416 focuses on this region. The VV-VH feature-level fusion yields clearer heat map boundaries,
417 demonstrating its capability to reduce feature redundancy and conflicts at rice field edges and in
418  heterogeneous areas.

419 Specifically, the two single-polarization inputs (especially the VV polarization) show a focus on
420 non-target regions in the heat map, a phenomenon that mainly stems from the incomplete information of
421 the single-source data as well as the speckle noise interference inherent in the SAR data (Moreira et al.,
422  2013; Yeetal., 2022; Ye et al., 2024). This lack of information leads to difficulties for the model in fully
423 capturing the features of the target region, which affects classification accuracy. In the VV-VH decision-

424 level fusion scheme (Fig. 10(b4)(e4)), there is a significant deficit in the allocation of the model's
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425 attention to the rice-growing region as shown in the decision-level heatmaps, and this limitation not only
426 affects the accurate identification of the rice area but also reduces its ability to discriminate crops with
427 similar scattering characteristics. It is worth noting that in the decision-level fusion scheme, if the model's
428 attentional weight distribution for rice and other crops tends to be close to each other, it will trigger a
429 more serious model problem, which suggests that the model fails to learn discriminative feature
430 representations among different crop classes adequately, and with the conclusion of (! et al.,, 2018)
431  that fusion at the decision level is close.

432 To further investigate the learning effects of different fusion schemes, we utilize Uniform Manifold
433 Approximation and Projection (UMAP) to visualize the features of different fusions
434  (Mohammadimanesh et al., 2019; Zhao et al., 2025). The results are shown in Fig. 11. UMAP is a
435 commonly used dimensionality reduction technique for visualizing high-dimensional data in two-
436 dimensional space. From Fig. 11, it can be observed that in the feature visualization learned under the
437 SimTA model with different fusion schemes, the data combination of VV-VH significantly enhances the
438 separability between categories. The combination of VV-VH fusion significantly enhances the degree of
439 separation between categories, and classification using multiple fused data features outperforms that
440  using a single polarization input. During VV—VH feature-level fusion, features of the same class tend to
441 form a single cluster instead of interacting extensively with features from other classes. This result
442 confirms that feature-level fusion not only integrates multiple sources of information effectively but also
443 clearly highlights feature differences in complex environments.

444 In comparison, both feature-level fusion and data-level fusion demonstrate a concentrated focus on
445 rice-growing areas in the heatmaps (Fig. 10 (b3) (e3); (b5) (e5)). Notably, the VV-VH feature-level fusion
446 scheme exhibits a more pronounced effect in classifying the target crops. This is due to the deep neural
447 network structure's ability to learn complex feature representations. Through the fusion of deep network
448 layers, features extracted at different levels can be effectively combined, making features of the same
449 category easier to cluster in high-dimensional space and form distinct category boundaries. The adaptive
450 feature selection and fusion across different network layers allow the model to focus more on selecting
451 features relevant to the target crop while ignoring irrelevant information, effectively filtering out
452  unrelated noise. Therefore, VV-VH feature-level fusion can efficiently integrate VV and VH polarization

453 features, providing a more reliable feature representation foundation for subsequent fine-grained
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454 classification tasks. These findings offer important methodological insights for improving the accuracy

455 of rice mapping and also highlight the critical role of multi-source data fusion in crop classification tasks.

vy (2) VH (3) VV-VH Data Level

(4) VV-VH Decision Level

O Non-crop
. Rice

. Non-rice crop

456
457 Fig. 11 The UMAP visualization results of five fusion schemes based on SimTA.

458  4.1.3 Temporal generalizability of five fusion schemes under different models

459 In the study, the differences in the temporal generalizability of the five fusion schemes were tested
460 and compared using data from 2019 which show in Fig. 12. From it can be seen that all the various fusion
461 schemes exhibit some temporal generalizability. Among them, the feature-level fusion scheme has the
462  best temporal generalizability, followed by data-level fusion, which is significantly better than the other
463 fusion schemes. The average values of F1, mloU and OA for feature-level fusion under different models
464 are 89.4%, 78.5%, and 87.8%, respectively (Fig. 9-Avg). Compared to VV, VH, decision-level fusion,
465 and data-level fusion, feature-level fusion provides 13.3%, 9.6%, 10.8%, and 0.9% improvement in

466 mloU.
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468 Fig. 12 Temporal generalizability of different models tested in 2019 under five different fusion schemes,

469 (a) OA values; (b) F1 values, (c) mIoU values; Avg: average of all model results.

470 Notably, the segmentation results in 2019 (shown in Fig. 12) are generally lower than those in 2017

471 and 2018 (Fig. 9). However, the performance degradation suffered by various fusion schemes is uneven.
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472 For example, the temporal generalizability of VV, VH and decision-level fusion is significantly weaker
473  than that of data-level fusion and feature-level fusion, with their mloU decreasing by 6.3%,7.1% and
474 5.0%respectively, compared to the validation set (Fig. 9-Avg) year. In comparison, the mloU of data-
475 level fusion and feature-level fusion only decrease by 1.6% and 2.3%. This indicates that there are
476 significant differences in the temporal generalizability of different fusion schemes and that VVVH data-
477 level fusion and feature-level fusion are able to utilize the information more comprehensively and retain
478 more details and features, thus effectively capturing the diversity and complexity of the data, and

479 consequently performing well in temporal generalization.
480 4.2 Interpretability of SimTA

481 The experimental results in Fig. 9 show that the SimTA model obtained the highest OA,mlIoU and
482 F1 under the same “Concat” fusion method. Further, to validate the validity of the model, in this paper,
483 we visualized the comparative results of SimTA's rice mapping, temporal generalizability, and feature
484 extraction (Fig. 13, Fig. 15), carried out the ablation experiments (Table 4), and counted the parameters

485  of the model and the computational efficiency (Table 5).
486  4.2.1 Rice mapping results and characteristic visualization

487 Under all five fusion schemes, VV, VH, data-level fusion scheme, feature-level fusion and decision-
488 level fusion, SimTA has the highest classification accuracy, with OA, F1, and mloU of 91.1%, 90.9%,
489 and 83.2%. Its mIoU is improved by 3.1%, 3.7%, 1.3%, 1.4%, 1.7% compared to BiILSTM, ConvLSTM,
490  Unet, TFBS, STMA with SimVP at feature-level fusion (Fig. 9). This demonstrates that SimTA has a
491 more significant advantage than other models in crop mapping applications. Among these, in feature-
492 level fusion, SimTA’s results are close to those of TFBS, which uses skip connections in the semantic
493  layers of the decoder to transmit semantic information while preserving shallow features, promoting
494 more precise classification. However, in other fusion schemes, TFBS’s multi-scale fusion scheme does
495 not show clear advantages, as these schemes only combine a single level, focusing more on the model’s
496  performance with respect to two factors. In the field of SAR mapping, due to poor imaging quality, it is
497 crucial to extract as much edge and texture information as possible in the shallow layers. SimTA
498 significantly enhances feature extraction capability by adaptively weighting the combination of central

499 difference convolution and standard convolution, suppressing noise influence while simultaneously
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500 modeling both global and local information. This greatly reduces computational redundancy while
501 ensuring high performance, making it especially suitable for task scenarios such as SAR image mapping,

502  which involves complex noise and sparse information.
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504 Fig. 13 Visualization of the rice mapping comparison results between SimTA and other five models based
505 on the best VV-VH Feature-Level Fusion. Six different models visualization of the rice mapping
506 comparison results under the optimal VV-VH Feature-Level Fusion, where (a) and (d) are the
507 classification result maps, (b) and (e) are the heat maps, and (c) and (f) are the error maps.

508 As shown in Fig. 13, the visualization results clearly demonstrate the results of the two regions: (a)
509 and (d) show the result plots of each model, (b) and (e) show the heat map, and (c) and (f) show the error
510  map. The comparison shows that the heat maps of ConvLSTM, BiLSTM, STMA and TFBS show that
511 these models are weak in distinguishing features with similar regions. In contrast, the performance result
512 maps of SimVP, Unet, and SimTA perform better, especially the SimTA model, which is almost
513  completely unconcerned with the rest of the region. SimTA enhances the ability to capture spatial details
514 through the CDCSE Conv Block and strengthens the sequential representation of the spatio-temporal
515  information through the TSA Block. In addition, SimTA combines RepLK with ConvNext, which can
516 integrate the extraction of global and local features of time-series data at the spatial level, thus

517 demonstrating greater adaptability when dealing with time-varying data. This design enables SimTA to
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518 effectively capture dynamic changes when processing time-series image data of rice growth, and to form
519 a stable and reliable feature representation by comprehensively analyzing the image features at different
520 time points. As a result, SimTA is able to keenly perceive the small differences in rice regions when the
521 growing environment changes, showing significant advantages.

522 The UMAP results of different models in feature fusion are shown in Fig. 14. It shows an overlap
523  between the rice region and other crop regions, while there is no overlap with non-crop regions. This
524 indicates that the segmentation and discrimination of the rice region share similarities in growth
525 characteristics and environmental conditions with those of other crop regions. In contrast, SimTA shows
526 significantly fewer interactions. Other models exhibit substantial interactions between non-crop regions
527 and other crop regions, which collectively reflect their insufficient sensitivity to edge details. The SimTA
528 model, on the other hand, shows significantly fewer interactions. This observation is consistent with the
529 heatmap results in Fig. 13, demonstrating that SImTA is more focused on the characteristics of the target

530  crop area.

(1) BILSTM (2) ConvLSTM (3) Unet (4) TFBS

(5) SMTA (6) SimVP (7) SimTA

O Non-crop
‘ Rice
‘ Non-rice crop

532 Fig. 14 The UMAP visualization results for different models in feature fusion schemes.

531

533  4.2.2 Temporal generalizability and characteristic visualization

534 The temporal mobility experiment verifies the effectiveness of the SIimTA models in terms of
535  temporal generalizability (Table.B.2). Five models show some temporal generalizability, with the

536  overall recognition F1s above 50% and the mloU metrics all exceeding 50%. Although the time scale
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537 changes and the pixel-level changes caused by agricultural activities still exist, the agricultural enclaves
538  did not substantially change in this time span, so the models perform well in temporal generalizability.
539 SimTA under the fusion of feature-level of VV-VH has the highest classification accuracy, with the F1
540 score of rice reaching 81.7%. It increased by 2.8%, 6.3%, 2.8%, 1.2%, and 2.1% compared to ConvLSTM,
541 BiLSTM, Unet, TFBS and SimVP, respectively. However, the accuracy of the model decreases over time

542 due to the variability of spatial and radar backscatter in the time domain.
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543
544 Fig. 15 Visualization of the temporal generalizability comparison results between SimTA and other
545  models based on the feature-level fusion scheme in 2019, where (a) and (d) are the result of crop mapping,

546  (b) and (e) are the heat maps, and (c) and (f) are the error maps.

547 Fig. 15 shows the visualization of the temporal mobility of the six models in two areas: (a) and (d)
548 show the result plots of each model, (b) and (e) show the heat map, and (c) and (f) show the error map.
549 The comparison shows that ConvLSTM, BiLSTM and Unet are not effective enough to extract features
550 from the rice region compared to the results of the validation set, thus leaving out some rice information.
551 While TFBS is able to extract enough rice information in the test set (shown in Fig. 15(d4)(e4)), it also
552 focuses on irrelevant regions compared to the validation set, which leads to the small objects of crop
553  regions. In contrast, the performance of SimVP and SimTA is much more impressive, especially for the

554 SimTA model, which extracts the features of the rice region completely and pays almost no focus on the
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555 other region. The high visual integrity of SimVP suggests that the model can be effectively applied to
556 other time periods as well, as SimTA emphasizes edge detail and spatio-temporal relationships more than

557 the other models.

Time Segmentation Rate Compare

08 2017 2018 2019
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b
&
0.2
0.0

ecg Over-segmentation Rate Under-segmentation Rate

559 Fig. 16 Violin plot comparing over-segmentation rate with under-segmentation rate based on SimTA in
560  2017,2018 and 2019.

561 According to Fig. 16, the analysis of the segmentation error for the rice region between 2017 and
562 2019 shows that the under-segment rate is always higher than the over-segment rate. This phenomenon
563 mainly stems from the discrete nature of farmland distribution and the localized characteristics of small
564 targets, which makes it difficult for the model to adequately learn its spatial expression law. Specifically,
565 the over-segmentation rate did not change significantly between the three years, indicating that the model
566 has good generalizability for a wide range of rice regions. In contrast, the median misdetection rate in
567 2019 was significantly higher than that in the previous two years but the upper quartile remained stable.
568 This result reveals a key limitation in the temporal generalizability test: the robustness of the model to
569 extreme misdetection cases did not degrade significantly (upper quartile remained stable), but the shift
570  inthe median suggests a distributional bias (such as increased fragmentation of the farmland, adjustments
571 in cropping patterns, or image features) between the 2019 environment and the training data (2017-2018).
572 Inherent challenges such as discrete farmland and small sample targets are further amplified in temporal

573 generalization, resulting in decreased model accuracy.

574 4.2.3 Spatial generalizability and characteristic visualization

575 Opverall, all fusion schemes demonstrate temporal spatial generalization (see Table 3), with feature-

576 level fusion performing the best, followed by data-level fusion; both significantly outperform the other
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577 schemes. Under feature-level fusion, the average F1 and OA are 91.3% and 92.5%, respectively,
578  corresponding to improvements of 23.2%, 14.6%, 10.8%, 15.1% and 12.1% in F1 relative to VV, VH,
579 decision-level fusion, and data-level fusion, respectively. VV-VH data-level fusion and VV—VH feature-
580 level fusion exhibit stronger generalization advantages when extracting time-series SAR imagery,
581 whereas VV and VH, owing to their single-polarization nature, face difficulty capturing inter-regional
582 differences in rice backscatter features, hindering the accommodation of subtle temporal changes in time-
583 series SAR data across diverse spatiotemporal contexts.

584  Table3

585 Spatial generalization accuracy metrics for different fusion schemes under SimTA

\A% VH Data Fusion Decision Fusion Feature Fusion
OA 84.2% 86.2% 89.5% 87.5% 92.5%
Fl1 68.1% 76.7% 79.4% 76.2% 91.3%
586 Fig. 17 shows a comparative visualization of rice mapping and feature representations across the

587 five fusion schemes for the optimal SimTA model, which (a) and (d) depict the classification outcomes,
588 while (a) and (c) illustrate the error maps and (b) and (d) display the corresponding heat maps. VV and
589 VH polarizations exhibit limited sensitivity to regional variations in rice backscatter, leading to the
590 omission of rice areas with pronounced heterogeneity and consequently impacting classification
591 performance. By contrast, both feature-level fusion and data-level fusion facilitate a more pronounced
592 delineation of rice extent. This enhancement stems from the complementary sensitivities of VV and VH
593  to the underlying scattering mechanisms; when fused, they provide a more comprehensive
594  characterization of regional rice backscatter signatures, thereby improving spatial generalization and

595  yielding more complete and higher-precision classifications.
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597 Fig. 17 Visualization of rice mapping and feature comparison results based on the optimal SimTA

598 model under five different fusion schemes, where (a) (c) are the error maps, (b) (d) are the heat maps.

599  4.2.4 Ablation experiment

600 In order to investigate the effectiveness of the two modules and assess their impact on the model
601 performance, as shown in Table 4, we conducted ablation experiments on the base model SimTA. We
602 systematically analyzed the performance changes under each configuration by gradually adding CDCSE
603 Conv Block and TSA Block to the base model (Baseline). The experimental results show that the overall
604 accuracy of the Baseline model is 88.6%, the average intersection and merger ratio is 77.3%, the OA
605 reaches 90% after adding feature-level fusion, and the mloU reaches 0.810. After CDCSE Conv Block
606 is added, the overall accuracy is improved to 90.3%, and the mloU increases to 0.816, which indicates
607  that CDCSE Conv Block significantly enhances the performance. Further, when TSA Block is added, the
608 model's performance is improved to 90.7% OA and 82.6% mloU, showing that TSA Block is equally
609 effective. Notably, the model performs best when both CDCSE Conv Block and TSA Block are used,
610 with an overall accuracy of 91.1% and an improved mloU of 83.3%, showing the synergistic effect of
611 these two modules. In addition, the ablation experiments also show that the introduction of both CDCSE
612 Conv Block and TSA Block can effectively improve the classification effect in different categories of
613 IoU metrics, especially the significant enhancement on Rice IoU and OtherPaddy IoU, which further

614  validates the effectiveness and complementarity of the modules.
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615 Table 4

616  Indicators of ablation experiments.

OA mloU F1 RiceloU
BaseLine 90.3% 81.3% 89.7% 77.0%
BaseLine+ Feature Fusion 90.4% 81.5% 89.8% 80.0%
BaseLine+ CDCSE Conv Block 90.5% 81.9% 90.2% 80.7%
BaseLine+ TSA Block 90.7% 82.6% 90.4% 81.6%
SimTA (Ours) 91.1% 83.2% 90.9% 82.2%
617
618 TSA Block: It refers to the proposed spatiotemporal attention module detailed in this study.

619 Compared to the Inception module for spatiotemporal sequence extraction used in SimVP, its
620 fundamental advancement lies in its enhanced spatiotemporal modeling capability and its dynamic
621 temporal feature selection mechanism. While Inception solely employs multi-scale convolution to fuse
622 spatial features within individual time steps—thus lacking sensitivity to the temporal dimension—it is
623  unable to effectively capture the temporal patterns associated with crop phenology changes. In contrast,
624 the TSA Block achieves precise modeling of crop growth dynamics through the integration of spatial
625 static attention and temporal dynamic attention: static attention captures long-term spatial dependencies
626 such as field structure, whereas dynamic attention accentuates feature variations across different growth
627 stages. The RepLK module enables the network to attend to relationships among distant pixels within
628 the same temporal period, and when combined with ConvNeXt, it effectively captures local detailed
629  information, allowing for the identification of characteristic spatial distribution patterns during the rice
630 growth cycle. The dynamic attention mechanism further emphasizes the feature disparities among
631  various growth phases.

632 CDCSEConv Block: Compared to conventional convolutional approaches and existing crop
633 mapping models, this block exhibits notable advantages. Its core strength lies in enhancing the sensitivity
634  tolocal feature variations and enabling adaptive feature fusion. Traditional convolutions rely on weighted
635 summation for feature extraction, which can lead to blurred boundaries and loss of fine crop details.
636 Center Difference Convolution (CDC) enhances edge sensitivity by computing pixel gradient differences,

637  thereby strengthening the detection of boundary features such as ridges and ditches. Additionally, the
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638 adaptive weighting strategy dynamically balances the contributions of local detail—primarily captured
639 by CDC—and global contextual information—primarily derived from standard convolution. This
640 configuration allows for precise detection of small-scale variations while maintaining boundary
641 continuity in complex agricultural scenes. The design is optimized to address the characteristics prevalent
642 in agricultural remote sensing, such as highly localized abrupt changes, critical boundary information,
643 and complex noise conditions, resulting in significant improvements in small-plot identification and

644  phenological period detection accuracy.
645  4.2.5 Running efficiency

646 The parameters and computational efficiencies of the models in this study are shown in Table 5. Our
647 model (SimTA) has 8.48M and 47.08 in the number of parameters and FLOPs, respectively, with a
648 slightly higher number of parameters compared to the baseline model, SimVP of 5.1M, which allows it
649 to have a stronger feature representation. Although its FLOPs are also higher than the baseline model's
650 28.59, the SimTA model remains within an acceptable range in terms of computational burden when
651 compared to more complex models (TFBS's 50.98 FLOPs), thus proving its superiority in terms of

652  performance and efficiency.

653  Table5
654 Comparison of different model parameters and computational efficiency.
. . SimTA
Model ConvLSTM  BiLSTM  Unet TFBS STMA  SimVP
(Ours)
Parameters(M) 0.06 50.41 32.08 7.7 304.6 5.1 8.89
Flops(G) 20.22 26.41 57.58 50.98 51.6 28.59 47.83
655 4.3 Comparison of five feature fusion methods
656 To assess the performance differences of different feature-level fusion methods in rice crop mapping,

657 this study systematically tested multiple fusion methods using a validation set on the SimTA dataset, and
658 the experimental results are shown in Table 6. From the quantitative analysis results, it can be seen that
659 the linear combination (Add) and channel concatenation (Concat) showed poor results. Especially Add
660 showed the worst results with overall accuracy OA, F1, mloU of 90.9%, 90.8% and 82.8%, which
661 indicates that there are still some mismatched features in multi-scale fusion between Add and Concat.
662 However, DFF does not have a significant increase compared to Concat, which may be due to the loss of

663 some information due to the complex structure. Both IAFF and CGA can effectively improve the result
33



https://doi.org/10.5194/egusphere-2025-4613
Preprint. Discussion started: 19 November 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

664 accuracy, especially the result accuracy of CGA reaches the highest OA, F1, and mloU of 91.5%, 91.4%,
665 and 84.2%, respectively. This demonstrates that choosing the right features on the channel and using a
666 suitable scheme for fusing the two polarization modalities will be more effective than a simple fusion

667  approach.
668  Table 6

669 Comparison of SImTA model rice mapping results under five different feature level fusion methods.

Fusion Method OA mloU F1 RiceloU  Parameter(M)
Add 90.9% 82.8% 90.8% 82.0% 8.90
Concat 91.1% 83.2% 90.9% 82.2% 8.89
DFF 91.1% 83.3% 83.3% 82.3% 8.92
AFF 91.4% 83.9% 91.2% 83.3% 8.90
CGA 91.5% 84.2% 91.4% 83.6% 8.91
670 Fig. 18 shows the visualization results of SIimTA in this paper in the feature-level fusion task. The

671 figure shows that different fusion methods show significant differences in the edge detail and small target
672 detection task. Specifically, the AFF and CGA methods based on the attention mechanism perform
673 particularly well in detecting edge details with small target regions. In contrast, the linear combination
674 (Add) method lost some detailed information during the fusion process, failing to effectively detect edge
675 details with small target rice regions (Fig. 10 (b1)(b2)). The channel concatenation (Concat) method
676  outperforms the linear combination method in detail retention because it retains the complete feature
677 information and reduces the neglect of small objects. However, the Concat method cannot dynamically
678 adjust the importance of the features, resulting in some redundant information being retained, which
679 affects the model's classification performance. In contrast, the AFF and CGA methods based on the
680 attention mechanism not only can dynamically screen important features but also reduce the loss of
681 shallow information through the residual structure, which shows block structure in (Fig. 8(d)(e)), thus
682 achieving a better balance between detail retention and feature expressiveness. In particular, the CGA
683 method, with its integration of global contextual information, not only preserves more detailed
684  information but also significantly enhances the model's focus on the rice region (Fig. 10(g1)(g2)). The
685 CGA method outperforms other fusion methods in small target detection and edge detail processing tasks.
686 In summary, the CGA method demonstrates significant advantages in feature fusion tasks and provides

687  more reliable technical support for rice crop mapping.
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689 Fig. 18 Visualization of SimTA model rice extraction distribution under five different feature level fusion

690 methods.

691 5. Conclusion

692 In this study, we propose a high-precision deep learning network SimTA developed based on
693 Sentinel-1 time series images, and explore the effects of different polarization methods and fusion
694 schemes on the accuracy of rice mapping. The SimTA network 's CDCSE Conv Block combines the
695 advantages of center difference convolution and ordinary convolution, and is able to enhance the weight
696  ofthe edge information features so as to recognize the size and shape of the rice crop area more accurately.
697 Meanwhile, a TSA Block is introduced into the network design, including spatial static attention and
698  temporal dynamic attention. Spatial static attention is used to capture the spatial global features at each
699  time step, while temporal dynamic attention focuses on the change of temporal information, thus fully
700  utilizing the dynamic characteristics of time series images. In the experiments with three different fusion
701 schemes and single-polarization approaches, the OA, mloU and F1 of SimTA under the feature-level
702 fusion scheme reached 91.1%, 83.1% and 90.8%, respectively, which significantly improved over other
703 models. In addition, the experimental results show that the feature-level fusion scheme outperforms data-
704 level fusion and decision-level fusion, while the dual-polarization approach outperforms the single-
705  polarization approach. This is due to the fact that feature-level fusion can fully combine spatial and
706 temporal information of the dual-polarization data in the feature extraction stage, which can more
707 accurately capture the boundary and shape features of the rice area. In more complex remote sensing
708  tasks like crop classification or disaster monitoring or when optical data acquisition is difficult, VV-VH

709 deep fusion of dual-polarization features will maximize the segmentation accuracy of the deep learning
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710 model. However, due to the low resolution of SAR images and the presence of noisy patches, in the

711 future we will combine SAR with optical data and thermal infrared data for mapping.
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