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Abstract 14 

Accurate large-scale crop mapping is critical for yield prediction, agricultural disaster monitoring, 15 

and global food security. Synthetic Aperture Radar (SAR), with its all-weather, day-and-night imaging 16 

capability, plays a vital role in remote sensing based crop mapping studies. However, most existing 17 

studies fuse VV and VH polarization channels at the data level, overlooking channels’ differences in 18 

signal-to-noise characteristics and temporal dynamics, which results in rice feature redundancy or 19 

conflicts, particularly at rice field edges and in heterogeneous regions, thereby increasing 20 

misclassifications error. To address these challenges, this study proposes a novel Spatiotemporal 21 

Attention Model (SimTA) for rice mapping. (1) A VV-VH feature-level fusion scheme is designed, 22 

integrated with a Content-Guided Attention (CGA) fusion method which effectively exploits the 23 

complementary information of the dual-polarized SAR data for achieving deep spatiotemporal dynamics 24 

fusion. (2) A Central Difference Convolution Spatial Extraction Conv (CDCSE Conv) Block is designed, 25 

enhancing sensitivity to edge variations of rice field by combining standard and central difference 26 

convolutions. (3) To achieve efficient spatiotemporal feature integration across SAR time series, a 27 

Temporal-Spatial Attention (TSA) Block is developed, utilizing large-kernel convolutions for spatial 28 

feature extraction and a squeeze-and-excitation mechanism for capturing long-range temporal 29 

dependencies of rice time series. Extensive experiments were conducted by comparing SimTA with 30 

different models under five fusion schemes. Results demonstrate that feature-level fusion consistently 31 

outperforms other schemes, with SimTA achieving the best performance: OA = 91.1%, F1 Score = 90.9%, 32 

and mIoU = 86.2%. Compared to the baseline SimVP, SimTA improves F1 Score and mIoU by 0.8% and 33 

2.1%, respectively. The CGA enhanced feature-level fusion further boosts SimTA’s performance to OA 34 

= 91.5% and F1 = 91.4%. SimTA bridges the gap between existing VV-VH deep fusion schemes and 35 

modern spatiotemporal modeling demands, offering a more accurate and generalizable approach for 36 

large-scale rice mapping.  37 

Keywords: rice mapping, Synthetic Aperture Radar, feature fusion, remote sensing, spatio-temporal 38 

attention mechanism  39 
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1. Introduction 40 

Rice is one of the world's most essential staple crops. Accurate large-scale crop mapping plays a 41 

crucial role in ensuring food security, managing agricultural resources and supporting environmental 42 

sustainability (Zeng et al., 2017). Synthetic Aperture Radar (SAR), with its weather-independent and 43 

high-frequency revisit capabilities, has become an indispensable data source for large-scale rice mapping, 44 

particularly in regions where optical imagery is frequently hindered by cloud cover (Qadir et al., 2024; 45 

Silva Filho et al., 2024; Yang et al., 2024). The Copernicus programme of the European Space Agency 46 

provides open access to dual-polarization SAR data from the Sentinel-1 mission, which features wide 47 

swath coverage, relatively small data volumes, and high temporal resolution. These characteristics make 48 

Sentinel-1 a valuable resource for long-term, global-scale agricultural monitoring. Consequently, the use 49 

of multi-temporal SAR imagery offers significant potential for accurate, large-area rice mapping (Ge et 50 

al., 2025; Wang et al., 2022). 51 

Despite its advantages, a significant portion of existing SAR-based rice mapping studies—52 

summarized in Table 1—still rely heavily on data-level fusion scheme, which concatenate, add, or divide 53 

VV and VH dual-polarized SAR bands across time series as model input for classification (Ma et al., 54 

2024; Wei et al., 2021; Yang et al., 2022). While this scheme preserves the full backscatter characteristics 55 

of SAR signals, it may lack the capacity to distinguish differences in signal-to-noise ratio and temporal 56 

dynamics between VV and VH channels, often leading to higher noise sensitivity, lower polarization 57 

utilization and increased misclassification in heterogeneous or fragmented landscapes. 58 

Recent studies have highlighted the potential of feature fusion to address these limitations. In 59 

multimodal crop mapping studies, particularly involving optical and SAR images, model backbones are 60 

commonly categorized into three main fusion schemes: data, feature, and decision fusion (Liu et al., 2024; 61 

Orynbaikyzy et al., 2019; Sainte Fare Garnot et al., 2022). Data fusion directly concatenates inputs from 62 

different modalities, which simplifies implementation and minimizes early-stage information loss 63 

(Skakun et al., 2017; Valero et al., 2021). Decision fusion combines outputs from modality-specific 64 

models, offering flexibility but requiring expert knowledge to accurately interpret and integrate results 65 

(Gandhi et al., 2023). Feature fusion scheme not only facilitates more nuanced integration of multi-source 66 

information but also enhances model interpretability and robustness (Liu et al., 2025; Sainte Fare Garnot 67 

et al., 2022; Zhao et al., 2023). Inspired by the success of feature fusion in multimodal crop classification 68 
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studies, feature-level fusion scheme can be used to extract and deeply fuse the spatiotemporal features 69 

of VV and VH time-series data. 70 

In terms of modeling, deep learning (DL) methods, particularly Long Short-Term Memory 71 

Networks (LSTMs) and Convolutional Neural Networks (CNNs), have become prevalent due to their 72 

capabilities in capturing spatial and temporal dependencies in SAR images (Wang et al., 2022). Recent 73 

progress has seen increasing attention to spatiotemporal attention mechanisms  (Fan et al., 2024; Tang 74 

et al., 2024), which aim to jointly model dynamic crop growth processes and static spatial structure. 75 

While self-attention-based methods (e.g., Transformers) show promise in extracting long-range 76 

dependencies, they often entail substantial computational overhead and exhibit poor generalization when 77 

applied to time-series remote sensing data with limited samples (Anandakrishnan et al., 2025; Tarasiou 78 

et al., 2023; Yan et al., 2024). Moreover, these approaches often overlook the critical integration between 79 

spatial and temporal dimensions, or suffer from overfitting due to overly complex structures.  80 

The U-Net and its variants remain the dominant architecture in SAR-based rice mapping (Ge et al., 81 

2025; Li et al., 2022; Xu et al., 2021) in spatial modeling studies, thanks to their encoder-decoder design, 82 

multi-scale representation capabilities, and suitability for temporal integration. However, challenges 83 

persist in accurately extracting rice field boundaries and distinguishing rice from spectrally similar 84 

vegetation types, especially in irregularly shaped and mixed-crop regions. To enhance boundary 85 

sensitivity, some researchers have integrated self-attention mechanisms into U-Net-like frameworks, but 86 

such designs often come at the cost of computational efficiency (Bai et al., 2021; Liu et al., 2024; Silva 87 

Filho et al., 2024). 88 

In summary, there are two key problems: (1) Most existing studies fuse VV and VH polarization 89 

channels at the data level (Table 1), overlooking their differences in signal-to-noise characteristics and 90 

temporal dynamics, which often results in feature redundancy or conflicts—especially in edge and 91 

heterogeneous regions—thereby increasing classification error. (2) Current deep learning models adopt 92 

incomplete spatiotemporal fusion methods by overlooking the critical integration between spatial and 93 

temporal dimensions, result in underutilizing time-series SAR data and weakening both rice feature 94 

representation and the temporal-spatial correlation between polarization modes. 95 

  96 
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Table 1  97 

Fusion schemes and methods in related SAR based crop mapping studies, with a predominant focus on 98 

data-level fusion scheme. 99 

To address these existing limitations and bridges the gap between existing VV-VH deep fusion 100 

schemes and modern spatiotemporal modeling demands, this study proposes a novel Spatiotemporal 101 

Attention Model (SimTA) for accurate large area rice mapping by precisely modeling the spatiotemporal 102 

dynamics and deeply fusing the spatiotemporal features of VV and VH time-series data from Sentinel-1 103 

SAR imageries at the feature level. The main contributions of this study are as follows: 104 

(1) A VV-VH feature-level fusion scheme is designed, integrated with a Content-Guided Attention 105 

(CGA) fusion method which effectively exploits the complementary information of the dual-polarized 106 

SAR data for achieving deep spatiotemporal dynamics fusion. 107 

(2) A Central Difference Convolution Spatial Extraction Conv (CDCSE Conv) Block of SimTA is 108 

designed for effectively enhancing model's sensitivity to edge variations of rice field by combining 109 

Model Objectives Data 
Fusion 

schemes 
Fusion methods Advantage Limitations 

Unet 

(Wei et al., 2021)  
Rice mapping 

Sentinel-1 

VV VH 

Data 

Level 

Fusion 

VV © VH 

Fusion of VV and VH 

preserves SAR's full 

scattering characteristics 

Higher noise 

sensitivity, lower 

polarization 

utilization 

LSTM 

(Thorp and Drajat, 

2021) 

Rice mapping 
Sentinel-1 

VV VH 

Data 

Level 

Fusion 

TFBS 

(Yang et al., 2022) 
Rice mapping 

Sentinel-1 

VV VH 

Data 

level 

Fusion 

STMA 

(Han et al., 2023) 

Crop mapping 

(Maize, Wheat, 

Grassland, 

Peanut, etc.) 

Sentinel-1 

VV VH 

Data 

level 

Fusion 

VV/VH 

Enhance crop 

biophysical feature 

recognition 

Loss of absolute 

physical information 

BiLSTM 

(Ma et al., 2024) 

Sediment 

deposition 

mapping 

(Sediment 

deposition, 

Water, 

Farmland)  

Sentinel-1 

VV VH 

Data 

Level 

Fusion 

VV+VH 
Lightweight and 

efficient computation 

Feature masking 

effect and loss of 

polarimetric 

discriminability 

XM-UNet 

(Ge et al., 2025) 
Rice mapping 

Sentinel-1 

VH 
VH - 

Decrease data size and 

processing requirements 

Limited information 

dimensionality 

Note:  VV © VH means the concatenation of multi-temporal VV and VH. 
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standard and central difference convolutions. 110 

(3) A Temporal-Spatial Attention (TSA) Block of SimTA is developed to utilize large-kernel 111 

convolutions for fully extracting spatiotemporal features and a squeeze-and-excitation mechanism for 112 

capturing long-range temporal dependencies of rice time series by combining spatial static and temporal 113 

dynamic attention mechanisms. 114 

2. Materials 115 

2.1 Study area 116 

To validate the spatiotemporal generalization capability of rice phenological characteristics, this 117 

study selects two representative rice-growing regions in North America—the Arkansas River Basin and 118 

the Sacramento region—as the study areas. The two regions differ markedly in geographical settings, 119 

climatic conditions, and rice cultivation practices, which facilitates a comprehensive assessment of the 120 

model’s adaptability and robustness under diverse ecological conditions. The Arkansas River Basin is 121 

used for training, validation and temporal generalizability test, while the Sacramento region serves as the 122 

test site for spatiotemporal generalization.  123 

 124 

Fig. 1 Geographic location of the study areas. (a) study arca for training, validation and temporal 125 

generalizability test, (b) test site for spatiotemporal generalization. 126 

The Arkansas River Basin in the United States (89°50′46″W–91°17′39″W, 33°4′22″N–36°58′10″N) 127 

is selected as the study area to better characterize representative features of rice as shown in Fig. 1(a). 128 

The region’s temperature and precipitation are suitable for rice cultivation, covering approximately 129 

58,504 km². It is a major rice-producing area in the United States, accounting for about 43% of national 130 

rice production; therefore, rice samples within the study area are both generalizable and representative 131 
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(Moreira et al., 2013; Wei et al., 2025). Rice is typically sown from April to June and harvested from 132 

August to October (see Fig. 2). The region also grows cotton, corn, and soybean, whose climatic and 133 

phenological characteristics differ markedly from those of rice. Based on the temporal dynamics of 134 

backscatter coefficients (see Fig. 2(b) (c)), rice in the Arkansas River Basin is predominantly dry-seeded. 135 

Following sowing, fields are generally not maintained under prolonged deep flooding; the exposed, 136 

rough soil surface and early weeds induce strong radar scattering, resulting in relatively high backscatter 137 

in the VV and VH polarization channels in remote sensing imagery (VV around −20 dB). As irrigation 138 

begins and the crop enters the rapid growth stage (May–July), the dense canopy structure gradually 139 

becomes the dominant scatterer, leading to a pronounced increase in VV and VH backscatter. 140 

To conduct spatiotemporal generalization analysis, the Sacramento Valley in California (121°10′–141 

122°15′W, 38°02′–39°20′N) (show in Fig. 1(b)) is selected as the validation area. The region has a 142 

Mediterranean climate with hot, dry summers and mild, wet winters. Its distinctive irrigation 143 

infrastructure provides favorable conditions for rice cultivation, making it another major rice-growing 144 

region in the United States. Unlike the Arkansas River Basin, the Sacramento Valley commonly employs 145 

water seeding or continuous flooding, and predominantly cultivates short- and medium-grain rice. 146 

Sowing typically occurs from April to May, with harvest from September to October. Due to ample water 147 

resources and precise field management, VV and VH backscatter coefficients remain at low levels during 148 

the early growth stages (VV around −22 dB). Consequently, differences in cultivation practices and water 149 

management between the two regions give rise to markedly distinct VV/VH temporal signatures (Yang 150 

et al., 2022). 151 

 152 

Fig. 2 Calendars and backscattering coefficients curves of rice in study areas. (a) The major calendar of 153 

rice. (b) VH Backscatter Coefficients (dB) for Rice in Arkansas and Sacramento. (c)VV Backscatter 154 

Coefficients (dB) for Rice in Arkansas and Sacramento. 155 
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2.2 Sentinel-1 data sets 156 

We chose Sentinel-1 data to monitor rice growth and its relationship with environmental factors 157 

(https://www.earthdata.nasa.gov/data). Sentinel-1 satellite has a revisit period of 12 days and can provide 158 

continuous multi-temporal information, which is essential for monitoring the dynamics of rice growth. 159 

In addition, its spatial resolution of 10 m is sufficiently detailed to show most of the rice area, ensuring 160 

the validity of the data. The interferometric wide-area (IW) mode of Sentinel-1 provides RS imagery 161 

with two polarizations (VV and VH). Different polarizations can be chosen to transmit and receive radar 162 

signals, allowing for the acquisition of various characteristics of rice features. Each polarization exhibits 163 

distinct attributes within the same scene at the same time, providing additional information for crop 164 

feature identification and classification. We collected radar images of the rice growth cycle from April to 165 

October in 2017, 2018, and 2019 for in-depth analysis. 166 

2.3 Reference datasets 167 

The Crop Data Layer (CDL) dataset is used as the reference data for training, validation and test. 168 

The CDL is generated based on Landsat Thematic Mapper imagery and combines Common Land Unit 169 

and United States Department of Agriculture (USDA) related ground survey data to form a reliable land 170 

cover class dataset which from https://croplandcros.scinet.usda.gov/. The dataset has a spatial resolution 171 

of 30 meters and uses the Alber Equal Area Conic projected coordinate system, which provides accurate 172 

information on the location of crop fields, the size of their area, and the class to which they belong. The 173 

CDL is updated annually through farmer reports, ensuring that the data are current and accurate, making 174 

it an important tool for agricultural monitoring and research. By using CDL as reference data, we are 175 

able to effectively conduct model training and validation, thus enhancing the reliability and application 176 

value of the research results. 177 

2.4 Structure of training, validation and test samples 178 

We cropped the mosaicked, multi-temporal Sentinel-1 imagery covering the study area into a 179 

set of small image patches with dimensions of 256 × 256 × C × T, where T denotes the length of the 180 

time series and C represents the number of feature channels derived from the multi-temporal 181 

Sentinel-1 data as described in Table 2. The selected multi-temporal Sentinel-1 images encompass 182 

the Arkansas during 2017–2019 and the Sacramento area in 2019. Using a non-overlapping sliding-183 
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window approach, we collected the Sentinel-1 image patches and their corresponding CDL samples, 184 

yielding a total of 3,026 input image samples of size 256×256×T×C along with their CDL labels. 185 

Subsequently, the 2017 and 2018 Arkansas data were split into training and test sets in an 6:4 ratio, 186 

while the 2019 Arkansas and Sacramento area images were reserved as test sets to investigate how 187 

model generalization across temporal and spatial dimensions affects the accuracy of crop area 188 

estimation. 189 

Table 2  190 

Detailed information of the heterogenous datasets 191 

Dataset Region Year Time Series Channels Size Number 

Train Arkansas 2017,2018 13 2 256×256 1061 

Validation Arkansas 2017,2018 13 2 256×256 706 

Temporal 

generalizability 
Arkansas 2019 13 2 256×256 884 

Spatiotemporal 

generalizability 
Sacramento 2019 13 2  256×256 375 

 192 

3. Models and experimental setup 193 

The experimental design focuses on three main aspects: VV–VH fusion schemes, the SimTA model, 194 

and feature fusion methods (Fig. 3). First, a VV–VH feature-level fusion scheme is proposed (Section 195 

3.1), along with four other fusion schemes for comparison. Next, the SimTA model is introduced, 196 

including two novel components—CDCSE Conv Block and TSA Block (Section 3.2)—and six 197 

additional DL models are selected for benchmarking. Rice mapping and temporal generalizability 198 

experiments are conducted under five fusion schemes and seven models to evaluate the robustness of the 199 

proposed VV–VH feature-level fusion scheme (Section 4.1) and assess the performance of SimTA 200 

(Section 4.2 and Section 4.3). Subsequently, a CGA deep feature fusion method is developed (Section 201 

3.3) to further enhance the accuracy of SimTA (Section 4.4). In addition, the study employs ablation 202 

studies, feature visualization, and Uniform Manifold Approximation and Projection to investigate and 203 

validate the proposed model’s innovations. 204 
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 205 

Fig. 3 Experimental design workflow, with the innovations of this study highlighted in box. 206 

 207 

3.1 VV-VH feature-level fusion scheme 208 

Given the superior performance of VV and VH polarization modes from Sentinel-1 data in 209 

monitoring rice growth conditions, we develop a VV-VH Feature-level Fusion scheme (Fig. 4(d)). In this 210 

scheme, representative features are extracted from the raw observations of each polarization, integrated 211 

into a unified feature vector, and subsequently processed using pattern recognition techniques to support 212 

decision-making. The feature fusion at this level can be achieved through channel-wise summation or 213 

concatenation, both of which align with the structure of data-level fusion and fully exploit the 214 

complementary information of dual-polarized data to improve feature expressiveness and diversity. More 215 

advanced and deeper feature fusion methods will be discussed in Section 3.3. 216 
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To verify the VV-VH Feature-level Fusion scheme's performance, we compare it with four other 217 

schemes. The VV polarization scheme (Fig. 4(a)) means that both receive and send signals are vertically 218 

polarized. Satellite image data mainly reflects the vertical structural characteristics of the target crop 219 

surface. In this paper, VV is directly input into the model according to the time series. The VH 220 

polarization scheme (Fig. 4(b)) is where the signal is sent vertically polarized and received horizontally 221 

polarized. This satellite image allows the model to capture richer features of the target surface and is 222 

generally used for scenes with diverse structures. This paper directly feeds the VH into the model in a 223 

time series. The VV-VH Data-level Fusion scheme (Fig. 4(c)) performs linear functions or concatenates 224 

on channels of raw observations for each polarization, where the most used is stacking on channels, and 225 

addition or division is also relatively more used. The VV-VH Decision-level Fusion scheme (Fig. 4(e)) 226 

combines model predictions from each polarization via a weighted sum. 227 

 228 

Fig. 4 Illustration of five comparative VV-VH fusion schemes. 229 
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3.2 SimTA model architecture 230 

 231 

Fig. 5 Overall architecture of the proposed SimTA model for rice mapping using Sentinel-1 VV and VH 232 

time-series data. The model first extracts multi-scale spatial features through CDCSE Conv Block, which 233 

are then fused with long-range temporal information via the TSA Block. The architecture emphasizes the 234 

integration of detailed spatial representations with long-range spatiotemporal dependencies to enhance 235 

rice mapping accuracy. 236 

The proposed SimTA (Spatiotemporal Attention) network, illustrated in Fig. 5, adopts a UNet-style 237 

encoder–decoder architecture tailored for rice mapping from SAR time series. The network leverages 238 

skip connections between corresponding encoder and decoder layers to facilitate multi-level feature 239 

fusion, enabling the integration of low-level texture and high-level semantic information. To enhance 240 

sensitivity to field boundaries, Central Difference Convolution (CDC) is incorporated into both encoder 241 

and decoder modules. By computing the intensity differences between central and neighboring pixels, 242 

CDC effectively captures edge details of rice fields. This hierarchical stacking of convolutional layers 243 

allows the model to progressively extract more abstract and complex spatial features, transitioning from 244 

shallow spatial cues to rich semantic representations. 245 

To model temporal dependencies, a Temporal-Spatial Attention (TSA) module is embedded in the 246 

bottleneck of the encoder. This module guides the network in identifying key temporal features across 247 

the SAR image sequence, allowing for deeper integration of temporal dynamics with spatial context. 248 

SimTA thus combines the spatial feature extraction capability of UNet with the dynamic temporal 249 
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modeling of attention mechanisms. By jointly optimizing spatial and temporal features, the model 250 

captures complex spatiotemporal patterns of rice growth while maintaining computational efficiency. 251 

3.2.1 Central Difference Convolution Spatial Extraction Block (CDCSE Conv Block) 252 

To enhance the model’s ability to capture complex spatial patterns and boundary details in rice fields, 253 

we design the CDCSE Conv Block, which combines standard convolution with central difference 254 

convolution through an adaptive weighting mechanism (Fig. 6). Time-series SAR images with 255 

dimensions (B, T, C, H, W) are input into the encoder using a 3×3 convolution (stride = 2), where T 256 

denotes 13 acquisition dates and spatial resolution is 256×256. For efficient spatial feature extraction, 257 

the temporal (T) and batch (B) dimensions are merged, enabling the model to learn inter-temporal 258 

dependencies while simplifying the input structure. Within each encoding layer, two blocks are employed: 259 

a standard ConvBlock for basic operations, and the CDCSE Conv Block for spatial enhancement. 260 

 261 

Fig. 6 Architecture of the proposed CDCSE Conv Block with ConvBlock with its convolution kernel 262 

schematic; (a) CDCSE Conv Block structure, (b) principle of the convolution kernel. 263 

Standard convolution kernels operate via local weighted summation, which can extract certain 264 

textures and features, but limits their ability to capture fine edge features—crucial for high-resolution 265 

land cover classification. The specific calculation function is as eq1, 266 

 
0 0 0( ) ( )( ( ) ( ))

nP n ny P R P x P P x P=  + −  (1) 267 
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where the region R denotes the receptive field or the neighborhood defined by the convolution kernel, 268 

which contains all offset positions relative to the center point P0. For every position Pn, compute the 269 

difference between the neighborhood point x(P0+Pn) and the center point x(P0)x(P0), multiply this 270 

difference by the corresponding weight ω(Pn) at that position. Finally, sum all the weighted differences 271 

to form the output of this operation. Center difference convolution, as illustrated in Fig. 6(b), enhances 272 

gradient sensitivity by computing pixel-wise differences, thus preserving boundary transitions and subtle 273 

variations. The adaptive weighting mechanism (He et al., 2024; Li et al., 2020) fuses standard and central 274 

difference convolution outputs, dynamically adjusting their contributions based on regional 275 

characteristics (Meng et al., 2024). This approach improves spatial detail representation and classification 276 

accuracy in heterogeneous agricultural scenes, particularly for rice mapping with intricate edge structures. 277 

3.2.2 Temporal Spatial Attention Block (TSA Block) 278 

To enhance spatiotemporal feature integration in SAR time series, we propose the Temporal-Spatial 279 

Attention (TSA) Block, adapted from the spatial attention module of DA-Net (Fu et al., 2019). The TSA 280 

Block decomposes attention into two complementary branches:  281 

Spatial Static Attention and Temporal Dynamic Attention, whose outputs are multiplicatively fused 282 

(Fig. 7). Spatial Static Attention captures long-range spatiotemporal dependencies using a large receptive 283 

field and models global context via the RepLK module (Ding et al., 2022), which applies large-kernel 284 

convolutions to capture multi-scale spatial semantics. The subsequent ConvNeXt module (Liu et al., 285 

2022) further refines spatial details and enhances representational capacity for subtle crop growth 286 

variations across time. 287 

Temporal Dynamic Attention captures key temporal characteristics by extending channel-wise 288 

attention through the SENet (Hu et al., 2020). Here, each time step encodes temporal crop status, and 289 

each channel corresponds to different polarimetric or feature dimensions. We follow (Tan et al., 2023) in 290 

using global average pooling to compress the feature tensor (T×C,H,W) into (T×C,1,1), then apply fully 291 

connected layers to generate reweighting coefficients, restoring it to the original shape. These adaptive 292 

weights reflect time-varying channel importance, enabling the model to dynamically focus on 293 

informative temporal and spectral responses. Spatiotemporal correlations dominate spatial-only 294 

information in remote sensing classification, and the TSA Block effectively exploits this for improved 295 
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discrimination across crop types with overlapping phenological stages. 296 

 297 

Fig. 7 Specific architecture of the proposed TSA Block. 298 

3.2.3 Loss functions and model settings 299 

This paper uses the cross-entropy loss function, which is well-suited for multi-crop classification 300 

tasks. The cross-entropy loss is the most commonly used loss function for pixel-level image semantic 301 

segmentation tasks, which seeks the probability of correct classification for each pixel category and 302 

pushes the actual labeling probability to one.  303 

1

1
log( )

M

ic ic

i c

L y p
N =

= −                         (2) 304 

In eq.2, which is the number of samples, C is the number of classes, yic is the actual class distribution 305 

of sample i, usually denoted as a one-shot coding vector indicating the actual classes, and pic is the 306 

predicted class probability distribution of sample i, usually a probability vector indicating the model's 307 

predicted probability for each class. 308 

To train SimTA, we used the AdamW optimizer with a learning rate, which includes a warm-up 309 

period from 0 to epoch 5 with a maximum value of 3 to 10, and then the learning rate decays to 5 × 10-4 310 

at the end of training. We trained with a batch size of 2 and in parallel without regularization on an Nvidia 311 
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3090 GPU. The entire network was built using the PyTorch deep learning framework with a total training 312 

cycle of 40. It takes about 12 minutes to complete a training cycle. 313 

3.2.4 Other models used for comparison 314 

To verify the SimTA's performance, we compare it with six other crop mapping models: ConvLSTM 315 

(Masolele et al., 2021), BiLSTM (Ma et al., 2024), Unet (Wei et al., 2021), TFBS (Yang et al., 2022), 316 

STMA (Han et al., 2023), and SimVP (Gao et al., 2022). The ConvLSTM and BiLSTM stack spatio-317 

temporal models for temporal image feature classification, using long and short-term memory units. The 318 

ConvLSTM uses full connectivity to capture spatiotemporal correlations, but the BiLSTM also improves 319 

the ability to capture temporal information through bi-directionality (processing both forward and 320 

backward sequences). The Unet, TFBS, STMA and SimVP models use Unet's "encoder-decoder" 321 

structure, the structure contains the texture information and semantic information of the image and is 322 

used for feature classification. Among them, LSTM is referenced in TFBS, which can be used to establish 323 

the dependency of long-range temporal information for each feature. STMA combines spatial self-324 

attention and temporal self-attention to effectively capture the correlations in temporal information and 325 

facilitate the fusion of spatiotemporal features. SimVP is used for CNN spatio-temporal modeling to 326 

extract multiple crop types from time-series images. This method decouples temporal and spatial 327 

information and utilizes a CNN-Inception architecture for crop extraction. 328 

3.3 Content-Guided Attention (GCA) feature fusion method 329 

Compared with traditional shallow fusion methods, we designed a deeper VV–VH Content-Guided 330 

Attention (CGA) feature fusion method (Fig. 8(e))(Chen et al., 2024) for improving rice mapping 331 

accuracy. CGA employs a content-aware attention mechanism, where an initial spatial attention map is 332 

generated for each channel and then refined based on the input feature maps. By leveraging the content 333 

of the input features, CGA enhances the network's focus on the unique and complementary characteristics 334 

of each polarization channel. This allows for more effective recalibration of the fused features and 335 

facilitates the learning of channel-specific attention maps, thereby capturing the distinct distributions and 336 

dynamics of VV and VH data more accurately. 337 

For comparison, we also implemented four commonly used feature-level fusion methods to evaluate 338 

the performance of our CGA-based fusion method. Add (Addition, Fig. 8(a)) method directly adds two 339 
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features in a linear manner. The Concat (Concatenation, Fig. 8(b)) method combines features by channel- 340 

wise concatenation. Attention Feature Fusion (AFF, Fig. 8(c))(Dai et al., 2021) uses a dual-branch 341 

attention module to extract both global and local features with multi-scale channel attention, while 342 

residual connections help preserve both shared and modality-specific information. Dynamic Adaptive 343 

Fusion (DFF, Fig. 8(d))(Xue and Marculescu, 2023), employs a global-local adaptive mechanism, where 344 

dynamic attention guides the selection of informative features, effectively enhancing feature quality by 345 

emphasizing useful details and suppressing redundancies.  346 

 347 

Fig. 8 Illustration of five different methods in Feature-Level Fusion scheme, (a) is Add, (b) is Concat, (c) 348 

is Attention Feature Fusion (AFF), (d) is Dynamic Feature Fusion (DFF), (e) is our Content-Guided 349 

Attention (CGA). 350 
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3.4 Evaluation metrics 351 

In this study, F1 scores, mean Intersection over Union (mIoU), and Overall Accuracy (OA) are used 352 

as evaluation metrics to assess model performance. These metrics are defined as follows: 353 
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TP (True Positive) denotes the number of correctly identified positive samples, specifically the instances 357 

where rice is accurately predicted as rice. TN (True Negative) represents the number of correctly 358 

identified negative samples, meaning the non-rice instances are correctly classified as non-rice. FN (False 359 

Negative) refers to the number of positive samples that are incorrectly classified as negative, i.e., rice 360 

samples misclassified as non-rice. FP (False Positive) indicates the number of negative samples 361 

mistakenly classified as positive, that is, non-rice samples erroneously predicted as rice. 362 

4. Experiment results and discussion 363 

4.1 Comparison of five fusion schemes  364 

4.1.1 Rice mapping results of five fusion schemes under different models 365 

To compare the rice mapping capability and accuracy of the five fusion schemes, experiments were 366 

conducted on the validation set using six different models (ConvLSTM, BiLSTM, Unet, TFBS, SimVP, 367 

STMA, and SimTA). The data-level and feature-level fusion schemes adopted the widely used 368 

concatenation (Concat) method, while the decision-level fusion schemes employed a weighted 369 

summation method. The data-level and feature-level fusion schemes adopted the widely used 370 

concatenation method, while the decision-level fusion schemes employed a weighted summation method. 371 

The results are shown in Table.B.1. 372 

As shown in Fig. 9, there are significant differences in OA, F1, and mIoU for different deep learning 373 

models with different fusion, which suggests that the fusion of VV and VH polarization information at 374 

the feature extraction stage is more effective than simple data splicing or decision-level fusion in deep 375 

learning analysis of remote sensing data. Among them, unpolarized inputs (VV or VH) perform poorly, 376 
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especially VV (dark blue), showing the worst results among all schemes (except for the extreme under 377 

Unet and TFBS decision-level fusion), the average OA, F1 and mIoU, respectively, while VH (light blue) 378 

is slightly better than VV (dark blue). The reason is that the VH polarization contains more information 379 

contributing to feature recognition than the VV polarization (Yang et al., 2021; Zhang et al., 2022). 380 

However, single-polarized inputs still have a significant performance disadvantage compared to dual-381 

polarization fusion methods. Both data-level fusion (pink) and decision-level fusion (yellow) are 382 

effective in improving accuracy (except for Unet and TFBS) but remain overall lower than feature-level 383 

fusion (red), which performs the best in all models, especially on TFBS, SimVP, and SimTA (our model). 384 

Compared to the suboptimal data-level fusion, the average OA, F1, and mIoU of feature-level fusion 385 

across all models increased by 0.7%, 0.9%, and 1.5%, while when the summation method was used, the 386 

difference between the two further expanded to improvements of 1.2%, 1.9%, and 3.2% in OA, F1, and 387 

mIoU (Fig.A.1; Table.A.1; Table.A.2). This indicates that in deep learning analysis of remote sensing 388 

data, the fusion of VV and VH polarization information at the feature extraction stage is more effective 389 

than simple data concatenation or decision-level fusion. 390 

Further observing the performance of different models, SimTA performs superiorly under all fusion 391 

schemes, especially reaching the highest OA, F1, and mIoU of 91.1%, 90.9%, and 83.2% in the VV-VH 392 

feature-level fusion (red) CGA mode, which is a clear advantage over other models. This indicates that 393 

SimTA is more robust in spatio-temporal feature extraction and deep fusion of polarized information. In 394 

addition, TFBS and Unet also perform relatively well in feature fusion mode, while ConvLSTM and 395 

BiLSTM have weaker generalizability, which may be related to their limited time series model capability. 396 

It is worth mentioning that the ConvLSTM, BiLSTM, Unet, TFBS, and STMA models involved in the 397 

comparison in Section 4.1 all used only the concatenation of data-level fusion in the original published 398 

study, and the version of SimTA used for the comparison here used only the same concatenation method 399 

of feature-level fusion. While in Section 4.3, more deep feature fusion methods will be further compared, 400 

which can further improve rice mapping accuracy; the highest OA, F1, and mIoU are achieved under 401 

SimTA with CGA feature fusion with 91.5%, 91.4%, and 84.2%, respectively, which compare to the 402 

original publish Unet model (Wei et al., 2021) improved by 1.1%, 1.4%, and 2.3%. 403 
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Fig. 9 Rice mapping results of different models under five different fusion schemes with (a) OA, (b) 404 

mIoU and (c) F1. 405 

4.1.2 Visualization of five fusion schemes under SimTA  406 

To visually show the differences in rice mapping performance under different fusion schemes, this 407 
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study analyzes the crop mapping results by visualization results of the SimTA model and combines them 408 

with feature heatmaps which shown in Fig. 10. The heatmaps analysis reveals significant differences in 409 

feature focus between the different fusion schemes: the VV-VH feature-level fusion exhibits the most 410 

superior performance, while the single-polarized inputs (VV and VH) show obvious limitations. 411 

 412 

Fig. 10 Visualization of rice mapping and feature comparison results based on the optimal SimTA model 413 

under five different fusion schemes, where (a) (d) are the classification result maps, (b) (e) are the heat 414 

maps, and (c) (f) are the error maps. The heat value of the heat map is closer to red, the higher the model 415 

focuses on this region. The VV–VH feature-level fusion yields clearer heat map boundaries, 416 

demonstrating its capability to reduce feature redundancy and conflicts at rice field edges and in 417 

heterogeneous areas. 418 

Specifically, the two single-polarization inputs (especially the VV polarization) show a focus on 419 

non-target regions in the heat map, a phenomenon that mainly stems from the incomplete information of 420 

the single-source data as well as the speckle noise interference inherent in the SAR data (Moreira et al., 421 

2013; Ye et al., 2022; Ye et al., 2024). This lack of information leads to difficulties for the model in fully 422 

capturing the features of the target region, which affects classification accuracy. In the VV-VH decision-423 

level fusion scheme (Fig. 10(b4)(e4)), there is a significant deficit in the allocation of the model's 424 
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attention to the rice-growing region as shown in the decision-level heatmaps, and this limitation not only 425 

affects the accurate identification of the rice area but also reduces its ability to discriminate crops with 426 

similar scattering characteristics. It is worth noting that in the decision-level fusion scheme, if the model's 427 

attentional weight distribution for rice and other crops tends to be close to each other, it will trigger a 428 

more serious model problem, which suggests that the model fails to learn discriminative feature 429 

representations among different crop classes adequately, and with the conclusion of (Long et al., 2018) 430 

that fusion at the decision level is close. 431 

To further investigate the learning effects of different fusion schemes, we utilize Uniform Manifold 432 

Approximation and Projection (UMAP) to visualize the features of different fusions 433 

(Mohammadimanesh et al., 2019; Zhao et al., 2025). The results are shown in Fig. 11. UMAP is a 434 

commonly used dimensionality reduction technique for visualizing high-dimensional data in two-435 

dimensional space. From Fig. 11, it can be observed that in the feature visualization learned under the 436 

SimTA model with different fusion schemes, the data combination of VV-VH significantly enhances the 437 

separability between categories. The combination of VV-VH fusion significantly enhances the degree of 438 

separation between categories, and classification using multiple fused data features outperforms that 439 

using a single polarization input. During VV–VH feature-level fusion, features of the same class tend to 440 

form a single cluster instead of interacting extensively with features from other classes. This result 441 

confirms that feature-level fusion not only integrates multiple sources of information effectively but also 442 

clearly highlights feature differences in complex environments. 443 

In comparison, both feature-level fusion and data-level fusion demonstrate a concentrated focus on 444 

rice-growing areas in the heatmaps (Fig. 10 (b3) (e3); (b5) (e5)). Notably, the VV-VH feature-level fusion 445 

scheme exhibits a more pronounced effect in classifying the target crops. This is due to the deep neural 446 

network structure's ability to learn complex feature representations. Through the fusion of deep network 447 

layers, features extracted at different levels can be effectively combined, making features of the same 448 

category easier to cluster in high-dimensional space and form distinct category boundaries. The adaptive 449 

feature selection and fusion across different network layers allow the model to focus more on selecting 450 

features relevant to the target crop while ignoring irrelevant information, effectively filtering out 451 

unrelated noise. Therefore, VV-VH feature-level fusion can efficiently integrate VV and VH polarization 452 

features, providing a more reliable feature representation foundation for subsequent fine-grained 453 
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classification tasks. These findings offer important methodological insights for improving the accuracy 454 

of rice mapping and also highlight the critical role of multi-source data fusion in crop classification tasks. 455 

 456 

Fig. 11 The UMAP visualization results of five fusion schemes based on SimTA. 457 

4.1.3 Temporal generalizability of five fusion schemes under different models 458 

In the study, the differences in the temporal generalizability of the five fusion schemes were tested 459 

and compared using data from 2019 which show in Fig. 12. From it can be seen that all the various fusion 460 

schemes exhibit some temporal generalizability. Among them, the feature-level fusion scheme has the 461 

best temporal generalizability, followed by data-level fusion, which is significantly better than the other 462 

fusion schemes. The average values of F1, mIoU and OA for feature-level fusion under different models 463 

are 89.4%, 78.5%, and 87.8%, respectively (Fig. 9-Avg). Compared to VV, VH, decision-level fusion, 464 

and data-level fusion, feature-level fusion provides 13.3%, 9.6%, 10.8%, and 0.9% improvement in 465 

mIoU. 466 
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 467 

Fig. 12 Temporal generalizability of different models tested in 2019 under five different fusion schemes, 468 

(a) OA values; (b) F1 values, (c) mIoU values; Avg: average of all model results. 469 

Notably, the segmentation results in 2019 (shown in Fig. 12) are generally lower than those in 2017 470 

and 2018 (Fig. 9). However, the performance degradation suffered by various fusion schemes is uneven. 471 
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For example, the temporal generalizability of VV, VH and decision-level fusion is significantly weaker 472 

than that of data-level fusion and feature-level fusion, with their mIoU decreasing by 6.3%,7.1% and 473 

5.0%respectively, compared to the validation set (Fig. 9-Avg) year. In comparison, the mIoU of data-474 

level fusion and feature-level fusion only decrease by 1.6% and 2.3%. This indicates that there are 475 

significant differences in the temporal generalizability of different fusion schemes and that VVVH data-476 

level fusion and feature-level fusion are able to utilize the information more comprehensively and retain 477 

more details and features, thus effectively capturing the diversity and complexity of the data, and 478 

consequently performing well in temporal generalization. 479 

4.2 Interpretability of SimTA 480 

The experimental results in Fig. 9 show that the SimTA model obtained the highest OA,mIoU and 481 

F1 under the same “Concat” fusion method. Further, to validate the validity of the model, in this paper, 482 

we visualized the comparative results of SimTA's rice mapping, temporal generalizability, and feature 483 

extraction (Fig. 13, Fig. 15), carried out the ablation experiments (Table 4), and counted the parameters 484 

of the model and the computational efficiency (Table 5). 485 

4.2.1 Rice mapping results and characteristic visualization 486 

Under all five fusion schemes, VV, VH, data-level fusion scheme, feature-level fusion and decision-487 

level fusion, SimTA has the highest classification accuracy, with OA, F1, and mIoU of 91.1%, 90.9%, 488 

and 83.2%. Its mIoU is improved by 3.1%, 3.7%, 1.3%, 1.4%, 1.7% compared to BiLSTM, ConvLSTM, 489 

Unet, TFBS, STMA with SimVP at feature-level fusion (Fig. 9). This demonstrates that SimTA has a 490 

more significant advantage than other models in crop mapping applications. Among these, in feature-491 

level fusion, SimTA’s results are close to those of TFBS, which uses skip connections in the semantic 492 

layers of the decoder to transmit semantic information while preserving shallow features, promoting 493 

more precise classification. However, in other fusion schemes, TFBS’s multi-scale fusion scheme does 494 

not show clear advantages, as these schemes only combine a single level, focusing more on the model’s 495 

performance with respect to two factors. In the field of SAR mapping, due to poor imaging quality, it is 496 

crucial to extract as much edge and texture information as possible in the shallow layers. SimTA 497 

significantly enhances feature extraction capability by adaptively weighting the combination of central 498 

difference convolution and standard convolution, suppressing noise influence while simultaneously 499 
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modeling both global and local information. This greatly reduces computational redundancy while 500 

ensuring high performance, making it especially suitable for task scenarios such as SAR image mapping, 501 

which involves complex noise and sparse information. 502 

 503 

Fig. 13 Visualization of the rice mapping comparison results between SimTA and other five models based 504 

on the best VV-VH Feature-Level Fusion. Six different models visualization of the rice mapping 505 

comparison results under the optimal VV-VH Feature-Level Fusion, where (a) and (d) are the 506 

classification result maps, (b) and (e) are the heat maps, and (c) and (f) are the error maps.  507 

As shown in Fig. 13, the visualization results clearly demonstrate the results of the two regions: (a) 508 

and (d) show the result plots of each model, (b) and (e) show the heat map, and (c) and (f) show the error 509 

map. The comparison shows that the heat maps of ConvLSTM, BiLSTM, STMA and TFBS show that 510 

these models are weak in distinguishing features with similar regions. In contrast, the performance result 511 

maps of SimVP, Unet, and SimTA perform better, especially the SimTA model, which is almost 512 

completely unconcerned with the rest of the region. SimTA enhances the ability to capture spatial details 513 

through the CDCSE Conv Block and strengthens the sequential representation of the spatio-temporal 514 

information through the TSA Block. In addition, SimTA combines RepLK with ConvNext, which can 515 

integrate the extraction of global and local features of time-series data at the spatial level, thus 516 

demonstrating greater adaptability when dealing with time-varying data. This design enables SimTA to 517 
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effectively capture dynamic changes when processing time-series image data of rice growth, and to form 518 

a stable and reliable feature representation by comprehensively analyzing the image features at different 519 

time points. As a result, SimTA is able to keenly perceive the small differences in rice regions when the 520 

growing environment changes, showing significant advantages. 521 

The UMAP results of different models in feature fusion are shown in Fig. 14. It shows an overlap 522 

between the rice region and other crop regions, while there is no overlap with non-crop regions. This 523 

indicates that the segmentation and discrimination of the rice region share similarities in growth 524 

characteristics and environmental conditions with those of other crop regions. In contrast, SimTA shows 525 

significantly fewer interactions. Other models exhibit substantial interactions between non-crop regions 526 

and other crop regions, which collectively reflect their insufficient sensitivity to edge details. The SimTA 527 

model, on the other hand, shows significantly fewer interactions. This observation is consistent with the 528 

heatmap results in Fig. 13, demonstrating that SimTA is more focused on the characteristics of the target 529 

crop area. 530 

  531 

Fig. 14 The UMAP visualization results for different models in feature fusion schemes. 532 

4.2.2 Temporal generalizability and characteristic visualization 533 

The temporal mobility experiment verifies the effectiveness of the SimTA models in terms of 534 

temporal generalizability (Table.B.2). Five models show some temporal generalizability, with the 535 

overall recognition F1s above 50% and the mIoU metrics all exceeding 50%. Although the time scale 536 
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changes and the pixel-level changes caused by agricultural activities still exist, the agricultural enclaves 537 

did not substantially change in this time span, so the models perform well in temporal generalizability. 538 

SimTA under the fusion of feature-level of VV-VH has the highest classification accuracy, with the F1 539 

score of rice reaching 81.7%. It increased by 2.8%, 6.3%, 2.8%, 1.2%, and 2.1% compared to ConvLSTM, 540 

BiLSTM, Unet, TFBS and SimVP, respectively. However, the accuracy of the model decreases over time 541 

due to the variability of spatial and radar backscatter in the time domain. 542 

 543 

Fig. 15 Visualization of the temporal generalizability comparison results between SimTA and other 544 

models based on the feature-level fusion scheme in 2019, where (a) and (d) are the result of crop mapping, 545 

(b) and (e) are the heat maps, and (c) and (f) are the error maps.  546 

Fig. 15 shows the visualization of the temporal mobility of the six models in two areas: (a) and (d) 547 

show the result plots of each model, (b) and (e) show the heat map, and (c) and (f) show the error map. 548 

The comparison shows that ConvLSTM, BiLSTM and Unet are not effective enough to extract features 549 

from the rice region compared to the results of the validation set, thus leaving out some rice information. 550 

While TFBS is able to extract enough rice information in the test set (shown in Fig. 15(d4)(e4)), it also 551 

focuses on irrelevant regions compared to the validation set, which leads to the small objects of crop 552 

regions. In contrast, the performance of SimVP and SimTA is much more impressive, especially for the 553 

SimTA model, which extracts the features of the rice region completely and pays almost no focus on the 554 
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other region. The high visual integrity of SimVP suggests that the model can be effectively applied to 555 

other time periods as well, as SimTA emphasizes edge detail and spatio-temporal relationships more than 556 

the other models. 557 

 558 

Fig. 16 Violin plot comparing over-segmentation rate with under-segmentation rate based on SimTA in 559 

2017,2018 and 2019. 560 

According to Fig. 16, the analysis of the segmentation error for the rice region between 2017 and 561 

2019 shows that the under-segment rate is always higher than the over-segment rate. This phenomenon 562 

mainly stems from the discrete nature of farmland distribution and the localized characteristics of small 563 

targets, which makes it difficult for the model to adequately learn its spatial expression law. Specifically, 564 

the over-segmentation rate did not change significantly between the three years, indicating that the model 565 

has good generalizability for a wide range of rice regions. In contrast, the median misdetection rate in 566 

2019 was significantly higher than that in the previous two years but the upper quartile remained stable. 567 

This result reveals a key limitation in the temporal generalizability test: the robustness of the model to 568 

extreme misdetection cases did not degrade significantly (upper quartile remained stable), but the shift 569 

in the median suggests a distributional bias (such as increased fragmentation of the farmland, adjustments 570 

in cropping patterns, or image features) between the 2019 environment and the training data (2017-2018). 571 

Inherent challenges such as discrete farmland and small sample targets are further amplified in temporal 572 

generalization, resulting in decreased model accuracy. 573 

4.2.3 Spatial generalizability and characteristic visualization 574 

Overall, all fusion schemes demonstrate temporal spatial generalization (see Table 3), with feature-575 

level fusion performing the best, followed by data-level fusion; both significantly outperform the other 576 
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schemes. Under feature-level fusion, the average F1 and OA are 91.3% and 92.5%, respectively, 577 

corresponding to improvements of 23.2%, 14.6%, 10.8%, 15.1% and 12.1% in F1 relative to VV, VH, 578 

decision-level fusion, and data-level fusion, respectively. VV–VH data-level fusion and VV–VH feature-579 

level fusion exhibit stronger generalization advantages when extracting time-series SAR imagery, 580 

whereas VV and VH, owing to their single-polarization nature, face difficulty capturing inter-regional 581 

differences in rice backscatter features, hindering the accommodation of subtle temporal changes in time-582 

series SAR data across diverse spatiotemporal contexts. 583 

Table 3  584 

Spatial generalization accuracy metrics for different fusion schemes under SimTA 585 

 VV VH Data Fusion Decision Fusion Feature Fusion 

OA 84.2% 86.2% 89.5% 87.5% 92.5% 

F1 68.1% 76.7% 79.4% 76.2% 91.3% 

Fig. 17 shows a comparative visualization of rice mapping and feature representations across the 586 

five fusion schemes for the optimal SimTA model, which (a) and (d) depict the classification outcomes, 587 

while (a) and (c) illustrate the error maps and (b) and (d) display the corresponding heat maps. VV and 588 

VH polarizations exhibit limited sensitivity to regional variations in rice backscatter, leading to the 589 

omission of rice areas with pronounced heterogeneity and consequently impacting classification 590 

performance. By contrast, both feature-level fusion and data-level fusion facilitate a more pronounced 591 

delineation of rice extent. This enhancement stems from the complementary sensitivities of VV and VH 592 

to the underlying scattering mechanisms; when fused, they provide a more comprehensive 593 

characterization of regional rice backscatter signatures, thereby improving spatial generalization and 594 

yielding more complete and higher-precision classifications. 595 
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 596 

Fig. 17 Visualization of rice mapping and feature comparison results based on the optimal SimTA 597 

model under five different fusion schemes, where (a) (c) are the error maps, (b) (d) are the heat maps. 598 

4.2.4 Ablation experiment 599 

In order to investigate the effectiveness of the two modules and assess their impact on the model 600 

performance, as shown in Table 4, we conducted ablation experiments on the base model SimTA. We 601 

systematically analyzed the performance changes under each configuration by gradually adding CDCSE 602 

Conv Block and TSA Block to the base model (Baseline). The experimental results show that the overall 603 

accuracy of the Baseline model is 88.6%, the average intersection and merger ratio is 77.3%, the OA 604 

reaches 90% after adding feature-level fusion, and the mIoU reaches 0.810. After CDCSE Conv Block 605 

is added, the overall accuracy is improved to 90.3%, and the mIoU increases to 0.816, which indicates 606 

that CDCSE Conv Block significantly enhances the performance. Further, when TSA Block is added, the 607 

model's performance is improved to 90.7% OA and 82.6% mIoU, showing that TSA Block is equally 608 

effective. Notably, the model performs best when both CDCSE Conv Block and TSA Block are used, 609 

with an overall accuracy of 91.1% and an improved mIoU of 83.3%, showing the synergistic effect of 610 

these two modules. In addition, the ablation experiments also show that the introduction of both CDCSE 611 

Conv Block and TSA Block can effectively improve the classification effect in different categories of 612 

IoU metrics, especially the significant enhancement on Rice IoU and OtherPaddy IoU, which further 613 

validates the effectiveness and complementarity of the modules.  614 
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Table 4  615 

Indicators of ablation experiments. 616 

 OA mIoU F1 RiceIoU 

BaseLine 90.3% 81.3% 89.7% 77.0% 

BaseLine+ Feature Fusion 90.4% 81.5% 89.8% 80.0% 

BaseLine+ CDCSE Conv Block 90.5% 81.9% 90.2% 80.7% 

BaseLine+ TSA Block 90.7% 82.6% 90.4% 81.6% 

SimTA (Ours) 91.1% 83.2% 90.9% 82.2% 

 617 

TSA Block: It refers to the proposed spatiotemporal attention module detailed in this study. 618 

Compared to the Inception module for spatiotemporal sequence extraction used in SimVP, its 619 

fundamental advancement lies in its enhanced spatiotemporal modeling capability and its dynamic 620 

temporal feature selection mechanism. While Inception solely employs multi-scale convolution to fuse 621 

spatial features within individual time steps—thus lacking sensitivity to the temporal dimension—it is 622 

unable to effectively capture the temporal patterns associated with crop phenology changes. In contrast, 623 

the TSA Block achieves precise modeling of crop growth dynamics through the integration of spatial 624 

static attention and temporal dynamic attention: static attention captures long-term spatial dependencies 625 

such as field structure, whereas dynamic attention accentuates feature variations across different growth 626 

stages. The RepLK module enables the network to attend to relationships among distant pixels within 627 

the same temporal period, and when combined with ConvNeXt, it effectively captures local detailed 628 

information, allowing for the identification of characteristic spatial distribution patterns during the rice 629 

growth cycle. The dynamic attention mechanism further emphasizes the feature disparities among 630 

various growth phases. 631 

CDCSEConv Block: Compared to conventional convolutional approaches and existing crop 632 

mapping models, this block exhibits notable advantages. Its core strength lies in enhancing the sensitivity 633 

to local feature variations and enabling adaptive feature fusion. Traditional convolutions rely on weighted 634 

summation for feature extraction, which can lead to blurred boundaries and loss of fine crop details. 635 

Center Difference Convolution (CDC) enhances edge sensitivity by computing pixel gradient differences, 636 

thereby strengthening the detection of boundary features such as ridges and ditches. Additionally, the 637 
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adaptive weighting strategy dynamically balances the contributions of local detail—primarily captured 638 

by CDC—and global contextual information—primarily derived from standard convolution. This 639 

configuration allows for precise detection of small-scale variations while maintaining boundary 640 

continuity in complex agricultural scenes. The design is optimized to address the characteristics prevalent 641 

in agricultural remote sensing, such as highly localized abrupt changes, critical boundary information, 642 

and complex noise conditions, resulting in significant improvements in small-plot identification and 643 

phenological period detection accuracy. 644 

4.2.5 Running efficiency 645 

The parameters and computational efficiencies of the models in this study are shown in Table 5. Our 646 

model (SimTA) has 8.48M and 47.08 in the number of parameters and FLOPs, respectively, with a 647 

slightly higher number of parameters compared to the baseline model, SimVP of 5.1M, which allows it 648 

to have a stronger feature representation. Although its FLOPs are also higher than the baseline model's 649 

28.59, the SimTA model remains within an acceptable range in terms of computational burden when 650 

compared to more complex models (TFBS's 50.98 FLOPs), thus proving its superiority in terms of 651 

performance and efficiency. 652 

Table 5  653 

Comparison of different model parameters and computational efficiency. 654 

Model ConvLSTM BiLSTM Unet TFBS STMA SimVP 
SimTA 

(Ours) 

Parameters(M) 0.06 50.41 32.08 7.7 304.6 5.1 8.89 

Flops(G) 20.22 26.41 57.58 50.98 51.6 28.59 47.83 

4.3 Comparison of five feature fusion methods 655 

To assess the performance differences of different feature-level fusion methods in rice crop mapping, 656 

this study systematically tested multiple fusion methods using a validation set on the SimTA dataset, and 657 

the experimental results are shown in Table 6. From the quantitative analysis results, it can be seen that 658 

the linear combination (Add) and channel concatenation (Concat) showed poor results. Especially Add 659 

showed the worst results with overall accuracy OA, F1, mIoU of 90.9%, 90.8% and 82.8%, which 660 

indicates that there are still some mismatched features in multi-scale fusion between Add and Concat. 661 

However, DFF does not have a significant increase compared to Concat, which may be due to the loss of 662 

some information due to the complex structure. Both IAFF and CGA can effectively improve the result 663 
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accuracy, especially the result accuracy of CGA reaches the highest OA, F1, and mIoU of 91.5%, 91.4%, 664 

and 84.2%, respectively. This demonstrates that choosing the right features on the channel and using a 665 

suitable scheme for fusing the two polarization modalities will be more effective than a simple fusion 666 

approach. 667 

Table 6  668 

Comparison of SimTA model rice mapping results under five different feature level fusion methods. 669 

Fusion Method OA mIoU F1 RiceIoU Parameter(M) 

Add 90.9% 82.8% 90.8% 82.0% 8.90 

Concat 91.1% 83.2% 90.9% 82.2% 8.89 

DFF 91.1% 83.3% 83.3% 82.3% 8.92 

AFF 91.4% 83.9% 91.2% 83.3% 8.90 

CGA 91.5% 84.2% 91.4% 83.6% 8.91 

Fig. 18 shows the visualization results of SimTA in this paper in the feature-level fusion task. The 670 

figure shows that different fusion methods show significant differences in the edge detail and small target 671 

detection task. Specifically, the AFF and CGA methods based on the attention mechanism perform 672 

particularly well in detecting edge details with small target regions. In contrast, the linear combination 673 

(Add) method lost some detailed information during the fusion process, failing to effectively detect edge 674 

details with small target rice regions (Fig. 10 (b1)(b2)). The channel concatenation (Concat) method 675 

outperforms the linear combination method in detail retention because it retains the complete feature 676 

information and reduces the neglect of small objects. However, the Concat method cannot dynamically 677 

adjust the importance of the features, resulting in some redundant information being retained, which 678 

affects the model's classification performance. In contrast, the AFF and CGA methods based on the 679 

attention mechanism not only can dynamically screen important features but also reduce the loss of 680 

shallow information through the residual structure, which shows block structure in (Fig. 8(d)(e)), thus 681 

achieving a better balance between detail retention and feature expressiveness. In particular, the CGA 682 

method, with its integration of global contextual information, not only preserves more detailed 683 

information but also significantly enhances the model's focus on the rice region (Fig. 10(g1)(g2)). The 684 

CGA method outperforms other fusion methods in small target detection and edge detail processing tasks. 685 

In summary, the CGA method demonstrates significant advantages in feature fusion tasks and provides 686 

more reliable technical support for rice crop mapping. 687 
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 688 

Fig. 18 Visualization of SimTA model rice extraction distribution under five different feature level fusion 689 

methods. 690 

5. Conclusion 691 

In this study, we propose a high-precision deep learning network SimTA developed based on 692 

Sentinel-1 time series images, and explore the effects of different polarization methods and fusion 693 

schemes on the accuracy of rice mapping. The SimTA network 's CDCSE Conv Block combines the 694 

advantages of center difference convolution and ordinary convolution, and is able to enhance the weight 695 

of the edge information features so as to recognize the size and shape of the rice crop area more accurately. 696 

Meanwhile, a TSA Block is introduced into the network design, including spatial static attention and 697 

temporal dynamic attention. Spatial static attention is used to capture the spatial global features at each 698 

time step, while temporal dynamic attention focuses on the change of temporal information, thus fully 699 

utilizing the dynamic characteristics of time series images. In the experiments with three different fusion 700 

schemes and single-polarization approaches, the OA, mIoU and F1 of SimTA under the feature-level 701 

fusion scheme reached 91.1%, 83.1% and 90.8%, respectively, which significantly improved over other 702 

models. In addition, the experimental results show that the feature-level fusion scheme outperforms data-703 

level fusion and decision-level fusion, while the dual-polarization approach outperforms the single-704 

polarization approach. This is due to the fact that feature-level fusion can fully combine spatial and 705 

temporal information of the dual-polarization data in the feature extraction stage, which can more 706 

accurately capture the boundary and shape features of the rice area. In more complex remote sensing 707 

tasks like crop classification or disaster monitoring or when optical data acquisition is difficult, VV-VH 708 

deep fusion of dual-polarization features will maximize the segmentation accuracy of the deep learning 709 
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model. However, due to the low resolution of SAR images and the presence of noisy patches, in the 710 

future we will combine SAR with optical data and thermal infrared data for mapping. 711 
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