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Abstract. The validity of a transfer learning-based hybrid machine learning (ML) in single-column model (SCM) of
Atmospheric general circulation For the Earth Simulator (AFES) version 4 is examined. The results of the SCM with and
without hybrid ML using transfer learning (i.e., the original and hybrid models) are compared against observational datasets
and they are evaluated in tropical and midlatitude intensive observation periods. The hybrid model produces better results
compared with the original model in all experiments, even when the period of training data is shifted from the target period.
However, seasonality is more important for the midlatitude cases than the tropical cases, i.e., training data from the same
month is necessary, even though the year of training data is different. The ML component of the hybrid model successfully
corrects the model’s bias, but the correction for temperature is greater than that for humidity, especially in the amplitude
rather than in the phase. If the temporal and spatial variability is significant, the ML component fails to correct the biases.
Analysis of the bias components reveals that the hybrid model can reduce the mean state bias, but it cannot reduce the high-
frequency components of the biases. The hybrid model slightly improves precipitation depending on the cases but does not
improve surface heat fluxes that cause biases in the low-level. This implies that further synchronisation is needed for surface
heat fluxes. In conclusion, transfer learning-based hybrid ML can better simulate atmospheric variability by reducing mean
state bias when the appropriate training data are used. Due to this advantage, the model has the potential to improve the

prediction skill of numerical models over longer periods with limited training data.

1 Introduction

Atmospheric general circulation models (AGCMs) are used to study the mechanisms of weather and climate and
have been employed for numerical weather prediction, seasonal prediction, and future projection. However, these numerical
models, especially those related to unresolved physical processes such as cloud physics, are known to have large
uncertainties (Long and Xie, 2016; Pathak et al., 2020; Schuh and Jacobson, 2023), and thus their faithfulness to nature as
well as their ability to predict weather and climate remain imperfect. To reduce these uncertainties and improve performance,
refinements to the numerical models have been developed, including new parameterisations and assimilation techniques
(Baba, 2023; Baba et al., 2024, Baba and Ujiie, 2025). Nevertheless, there are still unresolved model biases, requiring deeper

understandings of underlying mechanisms.
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Machine learning (ML) is becoming a useful tool for weather and climate prediction with low computational cost.
The major ML methods are based on a data-driven approach which trains the ML model using historical or previous time
series datasets and then attempts to predict the future states of weather or climate, without solving the underlying governing
equations of the natural processes (Bouallegue et al., 2024). Although several studies have demonstrated the superiority of
the methods compared with existing dynamical models, some limitations have been found, e.g., they are not effective for
long-range prediction or extreme events. To accurately capture such phenomena, huge and comprehensive training datasets
are required (De Burgh-Day and Leeuwenburg, 2023).

The limitations of the data-driven approach are partly originated from the fact that ML methods lack physical
constraints, and this leads to a violation of physical laws in the predictions. To address this, recent studies have constrained
ML methods by incorporating physical requirements, i.e., they adopted physics-informed ML (Karniadakis et al., 2021).
However, deciding which constraints are appropriate for the ML-based model remains uncertain and dependent on the
problem. Moreover, their applicability to climate and weather prediction, including extreme events, remains open question.

Therefore, to avoid relying on only data-driven models, some studies have developed hybrid ML methods that
partly employ both governing equations and reservoir computing (Pathak et al. 2018; Wikner et al., 2020; Arcomano et al.,
2022; 2023; Patel et al., 2025). Other hybrid models employed random forests, deep learning, and transformers (Watt-
Meyers et al., 2021; Rasp et al., 2019; Kochkov et al., 2024). Although they employ different hybrid approaches, such
methods commonly increase the accuracy of weather and climate simulations and reduce degradation in the performance of
long-range prediction.

Therefore, hybrid ML is a powerful tool to enhance the performance of dynamical models for predicting weather
and climate, avoiding the problems that stem from the data-driven approach. Despite this, there remain some questions about
hybrid ML regarding practical application, for instance, the configurations of parameters used in ML, how many prognostic
variables are synchronised in the ML, and the transfer of trained ML to different domains (called transfer learning, Weiss et
al., 2016). Of these issues, the validity of transfer learning for a hybrid model is important for practical application. If
transfer learning is practical for the hybrid model, then model can simulate various atmospheric conditions with less training
data. Moreover, it enables longer-range prediction, since the model will be valid for a longer period with limited training
data.

The purpose of this study is to examine the validity of the transfer learning-based hybrid ML model (hereafter
referred to as the hybrid model). Hybrid ML is implemented in a single-column model (SCM) of Atmospheric general
circulation For the Earth Simulator (AFES) version 4 to examine the above points in various configurations and situations.
Here, the SCM is chosen because it enables us to analyse the parameterisation-derived error in detail (e.g., Wang and Zhang,
2013; Gettelman et al., 2019; Bogenschutz et al., 2020). Since the error of simulated results affects the performance of
numerical weather and climate prediction, this study focuses on the reduction of bias by the ML component of the hybrid
model. In the evaluation, only the time difference in the training data is considered in the transfer learning. The remainder of

this manuscript is structured as follows. In Section 2, the hybrid ML used in the SCM is formulated. The model and
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experimental setup are described in Section 3. Results and discussion are presented in Section 4. Summary and conclusions

are provided in Section 5.

2 Hybrid ML
2.1 Formulation

To construct an SCM using hybrid ML, reservoir computing (RC hereafter, Lukosevicius and Jaeger, 2009) was
chosen for the ML component of the hybrid model and implemented in the SCM. RC is a type of recurrent neural network
(RNN) which has a relatively simpler structure compared with other RNNSs. It consists of an input layer, a reservoir, and an
output layer, the purpose of which is to predict targeted variables. In original RC, the reservoir state is updated using the
following equation

r(t + At) = tanh[Ar(¢t) + Bu(t)], ()]
where r(t) is the reservoir state vector with dimension D,., u(t) is the reservoir input state vector formed from the original
input vector v(t) (directly substituted in this study), and A and B are the input layer’s weight matrices. Here, A and B are
nonzero random matrices, which will be detailed later. The weight of the output layer is trained using the following equation

v(t + At) = Wr(t + At), @)
where W is the output layer’s weight matrix. If the input and output state vectors are given by observed data with a time
interval of At, then the output layer’s weight is trained for the observation. In general, this training is performed for time-
series data of v and r using a simple ridge regression. After the training, Eq. (2) gives an RC prediction model using r and
Eq. (1).

In the hybrid ML model, Eq. (1) was also used, and Eq. (2) was modified to include the knowledge-based (i.e.,
physics-based) variables, e.g., prognostic variables developed using the governing equations. The modified equation is given
by

VP (t + At)

vh(t+At)=W(r(t+At) Vp(t+At)),

) = (Winoa  Wres) < r(t + Ab)

3)

where v" is the hybrid output state vector, and v? is the physics-based input state vector. W,,,, and W, are the output
layer weights (model and reservoir components, respectively) for the hybrid model. For the training, Eq. (3) was solved for
the output weight using a ridge regression and the time-series data of the matrices on both sides. This training is equivalent

to minimising the following cost function (W), which is given by

0
JW) = Zk . V" (kAL) = vO (KA + Brmoa I Wimoall* + Bresl|Wres|I?, 4
=—K+1

where v© is the input state vector consisting of observational values, B,,,4 = 10° and B, ,; = 10™* are regularisation
parameters for ridge regression, and ||-||> denotes the sum of squared entries in a matrix. The direct solution to minimising

the cost function using ridge regression is given as (Arcomano et al., 2023)
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Vv,V + I V,R” \7'
p¥p Bmod P ) (5)

w= (Vng VORT) ( RV RR” + B,,]
where V,,, V), and R are vectors of which column k corresponds to v, (kAt), v, (kAt), and r(kAt), respectively.

The flowcharts for training and prediction of the hybrid model are shown in Fig. 1. First, the model was trained
following the flowchart in Fig. la. The input state vector v°(t) is defined by the observations. This vector is used as the
prognostic variable in the SCM and is converted to form the input state vector for the reservoir. When the vector is
converted, a small amount of white noise €(t) (random white noise, amplitude less than 1% of the prognostic value) is added
to the values to obtain a stable solution for the ML component. After the computation of the SCM and updating the reservoir
using Eq. (1), vP(t + At) and r(t + At) are used as input vectors in Eq. (3), and v (¢t + At) is replaced with v°(t + At),
and finally the output layer weight W is obtained.

Secondly, the model is used for prediction as shown in Fig. 1b. The prognostic variables are input as v (t) in the
SCM and are transformed into u”(t) for the input layer of the reservoir. Then, v?(t + At) and r(t + At) are outputs of the
SCM and the reservoir, and using the trained output layer weight, v* (¢t + At) is computed. This updated hybrid model value
is used as the prognostic variable in the next timestep. By repeating these computations, a solution using the hybrid model is

obtained.
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110 Figure 1: Flowcharts for training and prediction of the hybrid model. Red and black dotted boxes represent parts for

Eqgs. (1) and (3), respectively. The RC comprises of an input layer, reservoir, and output layer, and this behaves as the ML

component of the hybrid model.

2.2 Hyperparameters and configuration

115 The hyperparameters used in RC which affect the performance of the model are configured based on previous
studies (Pathak et al. 2018; Wikner et al., 2020; Arcomano et al., 2022). The time interval for training and synchronisation in
the prediction is At = 6 hours. The dimension of the reservoir state vector is set to D,, = 100. A preliminary experiment
using up to D,, = 1000 did not show clear improvements, so the smaller setting was used. Assuming that the average number
of connections per node in the RC structure is k = 6, the entries of A are randomly chosen so that they are nonzero with a

120 probability of k/D,.. The nonzero random number in this matrix is given range of [—0.5,0.5]. To determine the stability of

the model, the spectral radius of RC is set to p = 0.6 by scaling A with its eigenvalue. The entries of B are simply set to
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nonzero random numbers ranging from -1 to 1. The configuration of the hybrid ML in the SCM is based on that of
Arcomano et al. (2022). While their study adopted synchronised points for all model levels, the present study adopted points
limited to ten model levels corresponding to 1000 hPa to 100 hPa pressure levels with a 100 hPa interval. The temperature
and humidity were chosen to be synchronised and so the input state vector has a dimension of 20. This is a relatively sparse
synchronisation setting compared with that used by Arcomano et al. (2022). Preliminary experiments also showed that a
further increase of the synchronised points (e.g., levels with 50 hPa interval) did not significantly enhance the model’s
performance. When the prognostic variables are used for the input state vector, they are normalised following minimum-
maximum scaling so that the value can range from -1 to 1, which is considered suitable for the activation function employed

in the present RC.

3 Model, experimental setup, and training data
3.1 Single-column model

The present model is an atmospheric SCM of AFES version 4 (Ohfuchi et al., 2004; Enomoto et al., 2008;
Kuwano-Yoshida et al., 2010). The details of its parameterisation are summarized by Baba (2020). The vertical resolution is
48 sigma-levels which is identical to that used by Baba (2020). The default convection scheme of AFES is Emanuel scheme
(Emanuel, 1991; Emanuel and Zivkovié¢-Rothman, 1999) and this is used in this study, although a new convection scheme of
Baba (2019) is available for this AGCM. In the SCM, only temperature and humidity are solved in the SCM using the
governing equations with the fixed pressure levels (e.g., Randall and Cripe, 1999). The zonal and meridional winds are given
by external forcing data. For simplicity, vertical advection of the prognostic variables is not computed by the model, but

horizontal and vertical advection tendencies are given by the forcing data.

3.2 Experimental setup and training datasets

Several Intensive Observational Period (IOP) datasets were used to evaluate the SCM’s performance. Their names,
locations, periods, and references are summarised in Table 1. The IOP cases are broadly categorised into two types, i.c.,
tropical convection and midlatitude land convection cases (simply referred to as tropical and midlatitude cases, hereafter).
These different experiments were used to evaluate the validity of the present hybrid model across the different latitudes. The
IOP datasets also provide observed zonal winds, temperature, and humidity. The winds were used for the physical
parameterisations, while the temperature and humidity were used to evaluate the performance of the models. The SCMs
were forced using the horizontal and vertical advection tendencies of temperature and humidity at each pressure level. These
forcings were assigned to the SCMs regardless of training and prediction periods. To obtain robust model performance
regardless of the model’s uncertainty, four ensemble members were considered for the original model run by adding a small

perturbation to the initial condition (Hack and Pedretti, 2000; Davies et al., 2013; Bouttier et al., 2022). The preliminary
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experiments showed that the initial perturbation caused only a small spread, even when a larger number of ensemble

members was used.

For the training of the hybrid model, 6-hourly MERRA-2 (Gelaro et al., 2017) datasets were used. The datasets give

time-dependent vertical one-dimensional temperature and humidity as the true profiles, horizontal and vertical tendencies for

temperature and humidity, as well as sea surface temperature except for the midlatitude cases in which the skin temperature

was determined by the land scheme of the model. To evaluate the hybrid model, training data from one month before the

target month with two or five years shifted from the target year are used. For example, November 1987, 1990, 1994, and

1997 training data were used for the TOGA case (Table 1) which starts from December 1992, and the hindcast runs were

conducted using the trained hybrid models. In addition to the year shift of the training data, unshifted or 1-month shifted

training data were considered in the midlatitude cases (e.g., starting from June (1-month shifted) or July (unshifted) for

ARMY95). The reason for this setting will be explained later. Based on this setting, four ensemble members were considered

for the hybrid model runs.
Table 1: List of IOP cases used for the model evaluations. Here, lat and lon denote the centre location of latitude and
longitude of the SCM.
Name Full name Location Period (date, Reference Type
(lat, lon) length)
TOGA Tropical Ocean Global -2, 154 Dec 1992, 21 Webster and Tropical
Atmosphere days Lukas (1992) convection
TWP-ICE Tropical Western Pacific | -12, 131 Jan 2006, 26 May et al. (2008) | Tropical
Convection days convection
DYNAMO Dynamics of the -1,73 Oct 2011, 90 Yoneyama et al. Tropical
Madden Jullian days (2013) convection
Oscillation
ARMY5 ARM Southern Greate 36, 263 Jul 1995, 18 Zhang and Lin Midlatitude
Plains days (1997) land
convection
ARM97 ARM Southern Greate 36, 263 Jun 1997, 30 Zhang and Lin Midlatitude
Plains days (1997) land
convection
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4 Results and discussion
4.1 Vertical profile of temperature and humidity biases

The model bias of the SCM was measured using normalised L2 norms for temperature and humidity for the tropical
cases (Fig. 2). The L2 norms were measured using 6-hourly outputs during the IOP periods and they were normalised for the
periods. The original model indicates a large model bias at higher altitude for temperature and a large model bias at lower
altitude for humidity. The bias does not vary regardless of the initial small perturbation, because each member exhibits a
similar bias profile. These features are common for all three tropical cases. The hybrid model reduces the model biases for
temperature and humidity, although the degree of reduction is dependent on the case, and there are only small differences
regardless of the year of the training data. This result indicates that the transfer learning-based hybrid model is useful for
reducing model bias in the tropical cases and provides similar results even with different training data. Among the cases, the
hybrid model was found to greatly reduce the temperature and humidity biases in DYNAMO compared with TOGA and
TWP-ICE.

Figure 3 shows vertical profiles of the correlation coefficients and normalised standard deviation (STD) between the
observed and model values. For both temperature and humidity, the hybrid model produces correlation coefficients
comparable with the original models, but sometimes they are slightly degraded (TOGA and TWP-ICE), or they are improved
in the low to mid-levels (DYNAMO). Focusing on the normalised STD, it was found that the hybrid model reduces the
overestimated STD in the original model for all cases. Therefore, the results imply that the hybrid model does not work well

for reducing phase (correlation) error with the observation but does work well to reduce the amplitude error in these cases.
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Figure 2: Vertical profiles of normalised L2 norms for (a)-(c) temperature and (d)-(f) humidity in the tropical cases. The
black thin lines indicate the results of ensemble members (thick line is ensemble mean). In addition, the red thin lines indicate

results of the hybrid model using different training data from a different year (thick line is a mean of these results).
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Figure 3: Vertical profiles of correlation coefficients (solid lines, bottom horizontal axis) and normalised standard
deviation (STD, dashed lines, top horizontal axis) between observed and model values for (a)-(c) temperature and (d)-(f) humidity
in the tropical cases. The black and red (solid and dashed) lines correspond to the original and hybrid models, respectively. The
normalised STD is defined by the model value divided by the observed value. Only ensemble mean and mean of hybrid model

results were used to estimate the correlation coefficient and normalised STD.

The model bias of SCM in the midlatitude cases is compared as done for the tropical cases (Fig. 4). The degree of
bias reduction appears to be smaller than in the tropical cases for both temperature and humidity, but the hybrid model
reduces the biases regardless of the training data. Notably, the bias reduction is much more sensitive to the training periods

compared with the tropical cases. It is apparent from Fig. 4 that the hybrid model trained with unshifted training data exhibits

10
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smaller errors than the model trained with 1-month shifted training data, especially in ARM97. This means that the hybrid
model cannot reduce model bias if the training data are obtained from one month earlier. This also means that a
simultaneous training period is necessary, even if the year of the training data is shifted from the target period. Since the
hybrid model with unshifted data produces better results, the ensemble mean of this case will be used in the following
analyses in both tropical and midlatitude cases.

The correlation coefficients and normalised STD were estimated for the midlatitude cases as done for the tropical
cases (Fig. 5). The hybrid model presents slightly better correlation and better STD values than the original model for
temperature and humidity. It should be noted here that all normalised STDs of the cases are smaller than those of the tropical
cases, meaning that amplitude errors in these cases are initially smaller than those of the tropical cases. However, there are
large biases represented by the L2 norm at high altitude (Figs. 4a and 4b). These biases in the midlatitude cases are larger

than those appeared in the tropical cases at high altitudes.

(a) ARM95 temp (c) ARM95 humid
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Figure 4: As Fig. 2 but for midlatitude cases. The black lines indicate original model results, and red and grey lines
indicate hybrid model results, but their training data are different. The grey and red lines are hybrid model results using unshifted
and 1-month shifted training data, respectively. The thick red and grey lines indicate means of respective results using the hybrid

models with different training data.
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Figure 5: As Fig. 3 but for midlatitude cases.

4.2 Statistics of bias

A quantitative comparison of relative hybrid model bias with respect to the original model for the tropical cases is
shown in Fig. 6a which indicates overall relative error between the original and hybrid models. All relative biases were
found to be less than unity, meaning that the present hybrid model can successfully reduce the model bias compared with the
original model in the tropical cases. The bias reduction effect is the largest (smallest) in DYNAMO (TWP-ICE), and the bias
reduction of temperature is the larger than that of humidity. Indeed, in the DYNAMO case, the hybrid model reduces
excessive amplitude error compared with the original model (Fig. 3). The quantitative bias reductions for the midlatitude
cases are compared in Fig. 6b. Although all hybrid models reduce the model biases, this result apparently shows that the
model with unshifted training data is superior to that with 1-month shifted training data. This suggest that unshifted (but
different year) training data are more appropriate for learning the bias of midlatitude cases and can reduce the overall model
bias better.

Figure 7 summarises the performance of both models using Taylor diagrams (Talor, 2001). In the tropical cases, the
hybrid model greatly reduces the amplitude error for the temperature but not as much for the humidity. On the other hand,

there are only small amplitude improvements in the midlatitude cases compared with the tropical cases for both temperature

12
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235 and humidity. The reason for this is that the amplitude error of the original model is very significant in the tropics, but this is
highly mitigated in the midlatitude in the original model (Baba, 2020; 2021). Therefore, the degree of bias reduction is
strongly dependent on the features of the original model. In terms of correlation, the hybrid model slightly improves the
correlation coefficients in both temperature and humidity for all cases. Therefore, it can be concluded that the hybrid model
works well for reducing amplitude error and works slightly well for reducing the phase error.
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Figure 6: Quantitative comparison of relative hybrid model bias for temperature and humidity with respect to the
original model in (a) tropical cases and (b) midlatitude cases. The model bias for each variable was estimated from the vertically
integrated absolute difference between model and observed values, while the relative model bias is defined as the ratio between

245  original and hybrid model biases (i.e., hybrid model bias divided by the original model bias). The total bias in the comparison was

estimated by averaging the temperature and humidity biases.
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Figure 7: Taylor diagrams for temperature (circles) and humidity (squares) for all cases. Red and blue coloured circles
(or squares) correspond to the original and hybrid model, respectively. The standard deviation (STD) of the model results was

normalised using the observed values. The Taylor diagrams are drawn for the vertically averaged normalised STD and correlation
coefficient.

4.3 Bias reduction effect

The above results revealed that the hybrid model can reduce model bias in both tropical and midlatitude cases.
However, the degree of bias reduction varies with the cases. In particular, the effect is greater in tropical cases than in
midlatitude cases especially in the amplitude error. To understand the bias reduction effect, time-dependent temperature and
humidity biases are compared.

The temporal variations of the temperature and humidity biases for tropical cases are compared (Fig. 8). In all three
cases, the hybrid model reduces temperature biases, especially in the mid to upper levels. The bias reduction effect is the
greatest in the DYNAMO case because the strong cold bias in the original model is removed by the hybrid model. This
feature is derived from the original cold model bias. The employed convection scheme in the model tends to cause cold bias
in the upper levels in the tropics (Baba, 2020; 2021). The dry bias in humidity mainly appears in the lower levels in all cases
and is also considered to stem from the original model bias (Baba, 2020; 2021). In the TOGA and DYNAMO cases, the
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strong dry biases are highly mitigated compared with the original model. In contrast, the dry bias is not as reduced in the
TWP-ICE case.

A similar comparison for the model biases was conducted for the midlatitude cases (Fig. 9). The original model also
exhibits cold biases in the mid to upper levels also in these midlatitude cases and shows dry biases in the low levels. The
hybrid model with 1-month shifted training data shows a clear bias reduction for the cold bias in both cases. The biases are
further reduced if the unshifted training data are used in ARM97 but not significantly reduced in ARM95. These results
indicate that the hybrid model with appropriate training data can further improve the model bias. Although there is no clear
difference in ARMOS5 using different training data, the unshifted training data can reduce the overall error (Fig. 6), so this

finding is consistent with the result of ARM95.
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Figure 8: Time evolution of temperature bias (shading, unit: K) and humidity bias (contour line, unit: g kg!, positive and
negative values are shown using black and grey lines) compared with the observed values in the tropical cases. The original and

hybrid model biases were estimated from the ensemble means minus the observed values.
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Figure 9: As Fig. 8 but for the midlatitude land convection cases. Note that left and right column panels are for (a)

ARMDIS and (b) ARM97, respectively, and each row corresponds to different models.

The reduction in bias is produced by the corrections made by the ML component of the hybrid model. Thus, it is
worth investigating the time evolution of these corrections to understand how the ML component makes these
improvements. Figure 10 shows the time evolution of the hybrid model’s corrections for temperature and humidity in the
tropical cases. The hybrid model provides a positive temperature tendency when the original model exhibits cold biases,
meaning that the correction compensated for the original model’s cold bias. Since the areas of cold bias and positive
temperature tendency in the time-altitude coordinates are well correlated, the correction is considered to have a significant
effect on the temperature bias. The hybrid model also provides a positive humidity tendency in the area where the original
model simulated a dry bias. However, there are some discrepancies. For example, the hybrid model produces a negative
humidity tendency despite there being no clear wet bias in the TOGA and TWP-ICE cases. In the DYNAMO case, the
hybrid model computed a negative humidity tendency, despite the dry biases occurring in the low to mid-levels. Therefore, it
appears that the bias correction effect by the hybrid model is less effective for humidity than for temperature.

Similar bias correction effects were also observed in the midlatitude cases (Fig. 11) with positive temperature
corrections occurring in the low to upper levels in the ARM95 and ARM97 cases. Unlike the tropical cases, negative

temperature corrections can coexist owing to the higher atmospheric variability compared to the tropical cases. The humidity
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correction tendencies are more complicated than those for temperature, as seen in the tropical cases. Similar to the tropical
cases, negative humidity correction appears even though the original model shows dry biases.

300 These results suggest that the hybrid model efficiently reduces temperature biases since the temperature bias
profiles have relatively continuous large-scale temporal and spatial variation, while the humidity bias does not have such
variation and the ML component appears to be poor at compensating for such bias. This leads to only a small reduction in
bias for the humidity. However, the temperature bias profile varies depending on the latitude, so the reduction is also
dependent on the latitude, with the reduction being smaller in the midlatitude than that in the tropics. These features strongly

305 influence the effectiveness of bias reduction by the hybrid model.
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Figure 10: Temporal variation of the hybrid model’s correction tendency for temperature (left, shading, unit: 10 K s)
and humidity (right, shading, unit: 10 g kg'! s'!) in the tropical cases. The temperature and humidity biases from the original

310 model are shown by black (positive bias) and grey (negative bias) contour lines.
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Figure 11: As Fig. 10 but for the midlatitude cases.

4.4 Reduced bias components

To evaluate which kind of bias is reduced by the hybrid model, the power spectra of temperature and humidity
biases in the tropical cases are compared for the original and hybrid models (Fig. 12). In all cases, the hybrid model yields
lower power spectra than the original model for periods longer than around 3 days (90% significance level in all levels for
temperature but only low level for humidity). This means that the hybrid model reduces long-range biases more effectively
than it does short-range biases. In addition, this bias reduction occurs in low, mid, and upper levels. These reduced long-term
biases imply that systematic model bias is effectively reduced, i.e., it is effective at reducing the mean state bias. Since
improving the mean state bias mitigates anomalous fields (e.g., Baba and Giorgetta, 2020), this feature of the hybrid model is
beneficial for predicting weather and climate variability in the long term. In contrast to the other cases, the DYNAMO case
does not display a clear power decrease in ranges shorter than 3 days, but does yields a large bias reduction (e.g., Fig. 2).
This result is consistent with the above assumption that the bias reduction is due mainly to the mean state bias reduction. A
similar comparison is conducted for the midlatitude cases (Fig. 13). Although the hybrid model reduces the overall power
spectra longer than 3 days (90% significance level in all levels for temperature but upper and low or mid levels for
humidity), the degree of reduction is smaller than observed in the tropical cases. There are slightly large power reductions in
the long term, and this feature occurs for both temperature and humidity.

These results demonstrate that bias reduction by the hybrid model tends to result mainly from mean state bias
reduction rather than reduction in the high-frequency components. Due to the temperature features, the hybrid model tends to
reduce temperature bias better than it does humidity, but the effect is dependent on the latitude, as seen in Figs. 10 and 11.

When the vertical profiles of STD for temperature and humidity are compared (Fig. 14), the midlatitude cases show an
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apparently larger temporal deviation, especially for temperature, in contrast to the tropical cases. Such large variability in the

335 prognostic variables causes decrease of bias reduction and this explains the poorer bias reduction in the midlatitude cases.
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Figure 12: Power spectra in terms of period in the tropical cases (a)-(c) for temperature biases and (d)-(f) humidity
biases. Black and red lines correspond to the power spectra of the original model’s bias and the hybrid model’s bias, respectively.
340 The solid, dashed, and dotted lines represent the temperature biases at low (850 hPa), mid (500 hPa), and upper (200 hPa) levels,

respectively.
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Figure 13: As Fig. 12 but for the midlatitude cases.
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4.5 Diagnostic variables

A model’s ability to simulate precipitation is important for numerical weather and seasonal predictions since
precipitation is closely related to the extreme events that cause significant losses or damage to infrastructure, economics, or
human life. To evaluate the prediction ability of the hybrid model, 6-hourly accumulated precipitation is compared with the
observed value for all cases (Fig. 15). It was found that, regardless of the models and cases, the simulated and observed
precipitations agree well. This means that external forcing is the key factor in determining the accumulated precipitation
rather than differences between the models. However, since the cases used here are limited to an SCM simulation, this
finding may change in a multi-column (i.e., three-dimensional) simulation. In such a case, the ability of the hybrid model to
simulate the horizontal and vertical advection tendencies will be important. Although the accumulated precipitation is well
simulated and both models present comparable performance, there is a difference between the models. The correlation
coefficients and root-mean square error (RMSE) between the model results and the observed values are slightly different
depending on the model. The hybrid model generally shows higher value of the correlation coefficients while it shows larger

RMSE than the original model depending on the cases.
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Figure 15: Comparison of temporal variations of 6-hourly accumulated precipitation (mm) for all cases. The value shown
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in parenthesis in the legends indicates the correlation coefficient (between observed and model results in time) and RMSE. The

original and hybrid model results were obtained from their ensemble means.
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Since the total energy of the system is controlled not only by advection tendency but also by the model’s top and
bottom heat fluxes, it is worth investigating the features of these fluxes in terms of energy conservation (Baba, 2015). Figure
16 compares the temporal variations of the fluxes at the model’s top and bottom. Generally, the original and hybrid models
simulate similar features in the temporal variation, and they simulate outgoing longwave radiation (OLR) in good agreement
with observations (Figs. 16a-16c). However, the normalised RMSE (nRMSE) especially for surface heat fluxes is different
(Figs. 16f-16h). In TOGA, the hybrid model simulates surface heat fluxes slightly more accurately than the original model,
as shown by the small error with respect to the observed values. However, TWP-ICE and DYNAMO show much larger
nRMSE especially for the latent heat flux and show large deviation from the observed value. Therefore, it is speculated that
the limited bias reduction in TWP-ICE (Fig. 6) may be derived from the latent heat flux error, which does not arise as a
problem in DYNAMO since the error is mainly derived from the upper-level cold bias in this case. In the midlatitude cases,
similar features are not seen, as the original and hybrid models show comparable and small nRMSEs with respect to the
observed values (Figs. 16i-16j). This means that the error of surface heat flux is less significant in the midlatitude cases than
in the tropical cases.

Consequently, in all cases, OLR is accurately simulated while the surface heat flux is generally not as accurately
simulated, although there is clear reduction in bias in the temperature and humidity. This is believed to be because the OLR
is greatly influenced by atmospheric conditions, while the surface heat flux is dominated by only the near-surface
atmospheric conditions. If the surface heat flux is large and there is a large deviation from the observed, it does affect the
bias reduction of the hybrid model. In such cases, the surface heat flux should be synchronized in the ML component of the

hybrid model.
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Figure 16: (a)-(e) Temporal variation of 6-hourly outgoing longwave radiation (OLR, black line), sensible heat flux (blue
line), and latent heat flux (red line). Units for these values are W m. Solid, dashed, and dotted lines correspond to IOP value,
original model, and hybrid model. (f)-(j) Normalised root-mean square error (nRMSE) of original and hybrid models using the
observed values for each variable (OLR: outgoing longwave radiation, Sens: sensible heat flux, Evap: latent heat flux). The RMSE

was normalised using a STD of the observed value.

5. Summary and conclusions

The hybrid machine-learning (ML) model was utilised in an atmospheric single-column model (SCM) to examine
the validity of a transfer learning-based hybrid model because transfer learning is useful for a hybrid model which lacks
sufficient training data near the target period, thus enabling a longer-range prediction with limited training data. This was
examined for both tropical convection and midlatitude land convection cases using intensive observational period (IOP)
datasets. To evaluate transfer learning, two- or five-year shifted training data, i.e., similar period but different year to the
target period, were used for the hybrid model. Bias reduction due to the ML component of the hybrid model was particular

focus of the evaluations.
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In the tropical cases, the hybrid model using transfer learning generally made significant reductions in temperature
and humidity biases, although the degree of reduction depended on the IOP cases. This result indicates that the hybrid model
with transfer learning works well for tropical convection. On the other hand, although the biases are reduced by the hybrid
model, degree of the bias reduction is smaller in the midlatitude cases than in the tropical cases. Specifically, the midlatitude
cases required unshifted training data in order to learn the correct model bias during the target period, although the year of
the training data is different from the target year. This implies that seasonality of the learning data is more important for the
midlatitude than for tropics. The statistics of the bias showed that the bias reduction is more significant for the amplitude of
temperature than for humidity, and the reduction is greater than that for phase error. It was also found that the reduction is
greater in the tropical cases than in the midlatitude cases.

In the temporal variation of temperature and humidity biases, the hybrid model reduced the cold biases in the mid to
upper levels, and the dry biases in the low levels better than the original model. These are known biases originating mainly
from the employed convection scheme and are reduced by the ML component of the hybrid model, taking the form of a bias
correction tendency. When the temporal variation of the correction tendency was analysed, it was found that the tendency is
temporally and spatially continuous for the temperature bias but not continuous for the humidity bias. In the midlatitude
cases, the bias has larger temporal and spatial variability, and the corresponding correction tendency is more complicated, so
it is not as effective in areas where the model exhibits large biases.

Analysis of the power spectra of biases for the temporal component showed that bias reduction occurred mainly in
the mean state, i.e., the low-frequency (long-range) part rather than the high-frequency (short-range) part. The hybrid model
mainly reduces the biases which have periods longer than 3 days, but in some cases does not reduce the biases which have
periods shorter than 3 days. These results demonstrate that the hybrid model can reduce the systematic model bias which
originates from the mean state, but it is poor at reducing short-range variability.

Finally, ability of the hybrid model for simulating diagnostic variables, such as precipitation, OLR, and surface heat
fluxes is evaluated. It is found that the hybrid model simulates slightly improved or comparable accumulated precipitation,
while it does not improve the surface heat fluxes. Both original and hybrid models show large deviation in the surface heat
fluxes depending on the cases, and this is assumed to cause the model biases in the low levels. Therefore, synchronization
for the surface heat fluxes may be necessary for further improvements.

In conclusion, the transfer learning-based hybrid ML model was found to be practically useful even when the
training period was shifted from the target period. The bias reduction was more notable for temperature than for humidity,
owing to its relatively continuous temporal and spatial profiles. Moreover, the hybrid model reduced mean state bias,
particularly for temperature, in the tropics more than that in the midlatitude. However, it should be noted that the
effectiveness of bias reduction may be related to the degree of bias in the original model. The hybrid model is effective in
reducing the mean state bias, so it is effective in reducing the biases in relatively long-range atmospheric variability. Since
seasonal and intraseasonal predictions which predict anomalous fields greatly rely on the model’s means state bias and

climate drift (Baba and Giorgetta, 2020; Baba, 2023b), such features will contribute to enhance these prediction systems.
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The present findings are useful for enhancing the existing dynamical prediction models (e.g., Baba, 2023a; 2025a) if the
hybrid ML is incorporated in the models (e.g., Patel et al., 2025). The performance evaluation for the prediction systems
with the transfer learning-based hybrid ML should be conducted in a future study.

Code and data availability

The source code of the AFES v4 is available at https://gitlab.com/aosg_public/afes under a 2-clause BSD license.

The exact version of the model used to produce the results in this paper is archived on Zenodo under DOI:
10.5281/zenodo.17060903 (Baba, 2025b), including input data and scripts to run the model. Figures, visualised data, and
analysis scripts are archived on Figshare under DOI: 10.6084/m9.figshare.30060628 (Baba, 2025¢).
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