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Abstract 21 

Hydraulic redistribution (HR), the movement of water via plant root systems that connect soil 22 

compartments with different water potential, should influences soil moisture dynamics 23 

particularly in water-limited ecosystems. Realistic representation of HR in ecosystem models is 24 

essential to improve the ability of these models to predict ecosystem function in dryland regions. 25 

In this study, we integrated HR into the Terrestrial ECOsystem model and employed a Bayesian 26 

Markov Chain Monte Carlo technique to optimize soil hydraulic parameters and root 27 

conductance using four years of soil moisture observations from a piñon-juniper woodland. We 28 

found that (i) integrating HR generally improved model prediction of soil moisture during dry 29 

periods, particularly in the top 30 cm of the soil profile, where more than 50% of root biomass 30 

exists, mostly during dry periods; (ii) HR increased surface soil moisture by up to 60% during 31 

dry periods; (iii) HR decreased with increasing precipitation magnitude and frequency, however, 32 

the length of dry spells between rainfall events also influenced HR rates; and (iv) upward HR in 33 

the top 60 cm soil profile became more pronounced as dry conditions progressed, with rates 34 

ranging from 0.10 to 0.50 mm d⁻¹. These findings highlight that HR plays a likely role in 35 

sustaining soil moisture during extended dry periods and has a limited effect during precipitation 36 

events. Future research should investigate the effect of HR on other ecosystem processes, such as 37 

net ecosystem exchange of carbon and evapotranspiration under varying climatic conditions. 38 

 39 
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1. Introduction 43 

Drylands, cover over 40% of Earth's terrestrial surface and support more than 38% of the 44 

global population (Prăvălie, 2016). Ecosystem function in these regions is likely to be limited by 45 

altered precipitation in the changing climate (Beer et al., 2010; Ukkola et al., 2021). 46 

Understanding the ability of plants to mitigate the potential negative impacts of alter 47 

precipitation is therefore critical for predicting ecosystem stability. Hydraulic redistribution (HR) 48 

is the passive movement of water through plant roots, usually at night, from wet to dry regions of 49 

the plant rooting volume driven by differences in water potential. This passive process can favor 50 

plant survival during droughts by tapping into deep soil layers having relatively higher water 51 

potential and redistributing water to the shallow root zone (upward HR) (Barron‐Gafford et al., 52 

2017; Brooks et al., 2002; Dawson, 1993; Domec et al., 2010; Nadezhdina et al., 2015; Nicola et 53 

al., 2020; Nicola & Ram, 2022; Prieto et al., 2012). During wet seasons, HR can redistribute 54 

water from wet surface soil into deeper, drier soil (downward HR), supplementing the infiltration 55 

process in recharging deeper soil layers (Bleby et al., 2010; Fu et al., 2016; Hultine et al., 2003; 56 

Scott et al., 2008). Despite its potential role in regulating plant and ecosystem productivity, 57 

nutrient cycling and soil microbial activity (Grünzweig et al., 2022; Sardans & Peñuelas, 2014), 58 

HR is often ignored in ecosystem models. 59 

Hydraulic redistribution has been observed across diverse ecosystems and plant species 60 

(Nadezhdina et al., 2010; Neumann & Cardon, 2012; Priyadarshini et al., 2016; Yu et al., 2013), 61 

and has been interpreted as structuring dryland plant communities, regulating ecosystem 62 

productivity, and enhancing resilience to climate extremes (Barron‐Gafford et al., 2021; 63 

Barron‐Gafford et al., 2017; Hafner et al., 2020; Lee et al., 2018). The dynamics of HR are 64 

influenced by various biotic (rooting architecture, plant capacitance, transpiration demand, 65 
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senescence, and dormancy), abiotic factors (soil hydraulic characteristics, soil moisture status), 66 

and climatic conditions (precipitation) (Katul & Siqueira, 2010; Prieto et al., 2012; Wei et al., 67 

2022). While several studies have examined HR in deserts and semi-arid ecosystems and 68 

reported upward HR during dry events (Xing‐Ming Hao et al., 2013; Lee et al., 2018; Scott et 69 

al., 2008; Yu et al., 2013) and downward HR following precipitation {Hultine, 2003 #2122}, 70 

studies focusing on fine-scale temporal variations in HR across different soil depths and multiple 71 

years remain limited. Additionally, a quantitative understanding of how precipitation magnitude 72 

and frequency influence HR rates, key limiting factors in dryland ecosystems, remain poorly 73 

understood.  74 

In this study, we explicitly test two hypotheses: (1) Direction of HR: Upward HR should be 75 

the dominant form of HR in dryland ecosystem. This is due to the recharge of deeper soil layers 76 

from precipitation which can retain moisture for longer periods, and during dry periods roots 77 

facilitate the movement of this retained water to the drier surface soils. (2) HR-precipitation 78 

relationship: upward HR should decline following precipitation events, reaching its maximum 79 

rates during prolonged dry periods as the drought create steep water potential gradients between 80 

deeper, moist soil layers and the drier surface layers, facilitating the upward movement of water.  81 

Soil moisture dynamics are governed by a complex interplay of forces that drive water 82 

movement through the soil profile. The primary drivers include matric potential (capillary and 83 

adsorptive forces binding water to soil particles), gravitational potential (driving downward 84 

drainage), and potential gradients that induce processes like HR (Caldwell et al., 1998). These 85 

forces collectively determine water retention, redistribution, and plant availability (Hillel, 2003). 86 

Isolating their individual contributions from field soil moisture data is challenging, as their 87 

effects are concurrent and modulated by soil properties, root activity, and atmospheric 88 
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conditions. Consequently, data-model fusion approach, integrating process-based model with soil 89 

moisture data, provides a robust framework to isolate and quantify HR, offering a more 90 

mechanistic and quantitative understanding. 91 

Several modeling studies have incorporated various HR schemes into process-based models 92 

to improve understanding of hydrological and ecological processes (Amenu & Kumar, 2008; Fu 93 

et al., 2016; Lee et al., 2018; Quijano & Kumar, 2015; Ryel et al., 2002; Tang et al., 2015; Wu et 94 

al., 2020; Zheng & Wang, 2007). However, realistic representation and estimation of parameters 95 

related to HR remains a challenge, as neither the magnitude of HR nor its associated parameters 96 

can be directly observed in the soil (Quijano & Kumar, 2015; Ryel et al., 2002). As a result, most 97 

models rely on default HR parameter values from Ryel et al. (2002) (Fabian et al., 2010; Zheng 98 

& Wang, 2007) or estimated parameters using soil moisture data during specific periods of time 99 

when upward or downward HR is assumed negligible, such as wet or dry season (Amenu & 100 

Kumar, 2008; Fu et al., 2018; Fu et al., 2016; Yan & Dickinson, 2014). The challenges in direct 101 

measurements, and reliance on assumed parameter values, constitute key gaps in our 102 

understanding of HR dynamics. 103 

To address these gaps, we focused on piñon-juniper (PJ) woodlands, the most widespread 104 

semiarid ecosystem in the US. PJ woodlands are spatially widespread, ecologically important, 105 

temporally dynamic, and structurally unique dryland ecosystem in the western US, spanning 10 106 

US states and 40 million hectares across the American Southwest (Eastburn et al., 2024; Romme 107 

et al., 2009). Despite their importance, HR has not been previously reported in PJ woodlands. 108 

However, our continuous root sap flux measurements provided direct evidence of HR in both 109 

piñon and juniper roots, indicated by sustained negative root sap flux during nighttime at the 110 

study site (Fig. S.1). 111 
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In this study, we used the process-based Terrestrial ECOsystem (TECO) model to (i) develop 112 

and implement a data assimilation approach to incorporate HR into the TECO model; (ii) 113 

quantify and characterize the magnitude and dynamics of HR across multiple soil depths; and 114 

(iii) analyze the temporal patterns of HR and its relationship with precipitation magnitude and 115 

frequency. The TECO model is a well-established ecosystem model that integrates ecological 116 

processes to simulate carbon, water, and energy fluxes within terrestrial ecosystems (Weng & 117 

Luo, 2008). We employed data assimilation to constrain the TECO model including HR using 118 

four years of soil moisture data measured at multiple soil depths, encompassing both wet and dry 119 

periods. 120 

2. Data and Methods 121 

2.1 Study site and data 122 

Our modeling study utilized data from a PJ woodland plot (Lat. 35.642, Long. -104.607, 123 

elevation 1925 m) located in New Mexico, USA, and previously described in Schwinning et al. 124 

(2020).  The site is a private ranch covering an area of over 6800 hectares that was ungrazed 125 

from 2012 through the measurement period used for this study and is characterized by a semi-126 

arid climate. Mean annual precipitation of the site is approximately 460 mm, with the majority 127 

falling between May and October, and a mean annual temperature of 10.5 °C. The soil texture at 128 

the site varies with depth, ranging from loam to clay loam. The vegetation consists of distinct 129 

tree clusters dominated by piñon pine (Pinus edulis (Englem.)) and juniper (Juniperus 130 

monosperma (Englem.) Sarg.) separated by open areas of bare soil and herbaceous cover. 131 

SWC was continuously monitored using multi-sensor frequency domain capacitance probes 132 

(Decagon EC-5) installed at four depths (5, 15, 30 and 60 cm), in four soil pits under the tree 133 

canopies. All sensors were monitored every minute by a datalogger (model CR6, Campbell 134 
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Scientific), storing 15-minute averages were stored by a data logger. For this study, we used the 135 

average SWC across all four pits. Each sensor was calibrated in the lab before installation for 136 

both air and water frequency. Significant shifts in soil temperature can affect both soil 137 

permittivity and the response of capacitance sensors, potentially confounding the small 138 

fluctuations in VWC caused by HR. Therefore, temperature correction factors were applied to 139 

the measured VWC at each depth, using the nearest measured temperature, following the method 140 

described by Saito et al. (2009). 141 

2.2 Modeling framework 142 

TECO is a process-based ecosystem model (Hou et al., 2021; Jiang et al., 2018; Weng & 143 

Luo, 2008), and has evolved from the TCS model (Luo & Reynolds, 1999). The model has four 144 

major components: canopy photosynthesis, plant growth, soil water dynamics, and soil carbon 145 

transfers. The canopy photosynthesis and soil water dynamics submodels run at the hourly time 146 

step whereas the plant growth and soil carbon submodels run at the daily time step. The model is 147 

driven by seven environmental variables, including precipitation (mm), wind speed (m s-1), solar 148 

radiation (W m-2), air and soil temperature (C), relative humidity (%), and vapor pressure deficit 149 

(kPa). The detailed description of TECO model is available (Weng & Luo, 2008) and only the 150 

brief description of soil water dynamics is provided here.  151 

The soil profile is divided into 10 layers, with varying thickness: 5 cm for the first layer, 10, 152 

15, and 30 cm for the second, third, and fourth layers respectively, and 20 cm for the fifth to 153 

tenth layers. SWC in each layer results from the mass balance between influx and efflux, with 154 

changes primarily attributed to vertical unsaturated flow, transpiration, precipitation, runoff, and 155 

drainage. Evaporation depletes water from the first two soil layers, while transpiration depletes 156 

water from all soil layers containing roots, allocated based on root fraction in each layer (Eq. 8). 157 
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Given the predominantly arid conditions of the study site, runoff and drainage were found 158 

negligible. Thus, water movement between soil layers is simulated as follows: 159 

𝑑𝑊𝑖

𝑑𝑡
 = 

𝑑𝐹𝑖

𝑑𝑧
 - 𝐸𝑖 - 𝑇𝑖    (1) 160 

where Wi is the water storage (cm) in layer i, t is time (h), Fi is net unsaturated flow of water into 161 

layer i (cm h-1), z is vertical thickness, Ei and Ti are evaporation and transpiration water loss from 162 

layer i (cm h-1).  163 

The unsaturated soil water movement is simulated vertically according to modified form of 164 

Buckingham-Darcy’s law (Campbell, 1985) (Eq. 2), with Brooks (1965) equation (Eq. 4) 165 

estimating hydraulic conductivity and soil water retention curve (SWRC) to simulate soil water 166 

potential (Ψ). 167 

𝑑𝐹𝑖

𝑑𝑧
 = K(𝜃𝑖)(

𝑑𝛹𝑖

𝑑𝑧
+ 1)    (2) 168 

where K(𝜃𝑖) is the unsaturated soil hydraulic conductivity (cm h-1) for SWC θ (cm3 cm-3) in layer 169 

i, Ψi is soil water matric potential (MPa) in layer i, and z is the vertical thickness (cm) of the soil. 170 

K(𝜃𝑖) = 𝐾𝑠 [
𝜃𝑖− 𝜃𝑟

𝜃𝑠−𝜃𝑟
]

(2𝑚+3)

   (3) 171 

where, Ks is the soil saturated hydraulic conductivity (cm h-1), m is the pore size distribution 172 

index, θs and θr are saturated and residual SWC (cm3 cm-3) 173 

𝜃− 𝜃𝑟

𝜃𝑠−𝜃𝑟
 = (

Ψ

Ψ𝑏
)

−1/𝑚

    (4) 174 

𝛹b is the soil air entry water potential.  175 

To quantify the direction and magnitude of HR, we integrated the HR model by Ryel et al. 176 

(2002) into equation 1 of TECO model (presented in equation 5). This HR model empirically 177 

describes HR flux based on the soil water potential gradient between two soil layers (Eq. 6). HR 178 

was assumed to occur only at night, with its occurrence controlled by solar radiation instead of 179 
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fixed day and night hours. Daytime starts as solar radiation exceeds 10 W m-2, thereby inhibiting 180 

HR since the water potential gradient typically favors water movement from roots to canopy to 181 

meet transpiration demand during the day. This pattern is evident in Fig. S1, where under low or 182 

zero solar radiation, root sap flux was found to be negative, indicating water movement away 183 

from the root zone which is an indicator of occurrence of HR at the study site. Using these 184 

assumptions, the net water movement into soil layer i from other soil layers can be expressed as: 185 

𝑑𝑊𝑖

𝑑𝑡
 = 

𝑑𝐹𝑖

𝑑𝑧
  - 𝐸𝑖 - 𝑇𝑖+ 𝐻𝑖   (5) 186 

Hi = CRT ∑(𝛹𝑗 − 𝛹𝑖)𝑚𝑎𝑥 (𝑐𝑖, 𝑐𝑗)
𝑅𝑖𝑅𝑗

1−𝑅𝑥
𝐷𝑡𝑟𝑎𝑛   (6) 187 

ci = 
1

1+ (
𝛹𝑖

𝛹50
)

𝑏     (7) 188 

Ri = 
𝑅0

1+ (
𝑑

𝑑50
)

𝑎     (8) 189 

Where in Eq 6, Hi is the net water redistributed by roots into layer i (cm h-1), CRT is the 190 

maximum radial soil-root conductance of the entire active root system for water (cm MPa-1 h-1), 191 

Ψ is soil matric potential (MPa), ci is a factor reducing soil-root conductance based on Ψi, Ri is 192 

the fraction of active roots in layer i, R0 is the average vertically summed root dry mass from the 193 

bottom to the root zone to the soil surface, and Dtran is a factor reducing water movement among 194 

layers by roots while plant is transpiring and is assumed to be 1.0 during the night when 195 

transpiration is minimal and 0.0 during day. Rx = Ri when θi > θj or Rx = Rj when θj > θi. In Eq 7, 196 

𝛹50 is the soil water potential (MPa) where conductance is reduced by 50% and b is an empirical 197 

constant. In Eq 8, d is soil depth (cm), and d50 is the soil depth at the median of the root 198 

distribution and a is a shape parameter (Table 1). The Brooks (1965) model for SWRC was 199 

utilized to simulate soil water potential (Ψ), facilitating the development of soil water potential 200 
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gradients necessary for HR by tree roots (Eq. 4). Due to lack of site-specific parameters, the 201 

default values of b and 𝛹50 were used as 3.22 and -1 MPa, respectively (Ryel et al., 2002).  202 

2.3 Data assimilation for parameters estimation  203 

We used Bayesian probabilistic inversion to calibrate parameters associated with soil 204 

hydraulics, where posterior probability density functions of parameters are obtained from prior 205 

knowledge about the parameters and the error between model and observations. According to 206 

Mosegaard and Sambridge (2002), Bayesian inversion can be summarized by the following 207 

equation: 208 

p(c|Z) ∝ p(Z|c) p(c)     (9) 209 

where p(c|Z) is posterior probability density function of model parameters c; p(Z|c) is a 210 

likelihood function of parameters c; p(c) is prior probability density function of parameters c. We 211 

assumed that the prediction errors were normally distributed and uncorrelated, hence, the 212 

likelihood function, p(Z|c), was calculated as follows: 213 

p(Z|c) ∝ exp{− ∑
(𝑍𝑖− 𝑋𝑖)2

2𝜎𝑖
2

𝑘
𝑖=1 }    (10) 214 

where Zi is observed VWC at ith soil layer, Xi is VWC simulated by TECO at a corresponding 215 

soil depth; 𝜎𝑖
2 is the variance of a measurement at a soil layer; k is the total number of soil layers. 216 

To generate the posterior distributions, we first specified the priors of the parameters to be 217 

uniformly distributed over the intervals specified in Table 1. We put constraints on parameters 218 

based on the literature. The initial set of parameters was randomly selected within the prior 219 

parameter ranges. Once we specified parameter ranges, we used the Metropolis-Hastings (M-H) 220 

algorithm (Hastings, 1970; Metropolis et al., 1953), a Markov chain Monte Carlo method, to 221 
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sample from the posterior parameter distribution. To generate a parameter set, we ran M-H 222 

algorithm in two steps: proposing step and a moving step. In the proposing step, a new parameter 223 

set cnew was generated from a previously accepted parameter set ck-1 through a proposal 224 

distribution (cnew|ck-1):  225 

cnew = ck-1 + r ×  
𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛

𝐷
     (11) 226 

The value of P(ck-1|cnew) was then compared with a random number U from 0 to 1. Parameter set 227 

cnew was accepted if P(ck-1|cnew) ≥ U, otherwise ck was set to ck-1. In the moving step, a 228 

probability of acceptance P(ck-1|cnew) was calculated as in the following (Marshall et al., 2004): 229 

P(ck-1|cnew) =𝑚𝑖𝑛 {1,
𝑝(𝑍|𝑐𝑛𝑒𝑤)𝑝(𝑐𝑛𝑒𝑤)

𝑝(𝑍|𝑐𝑘−1)𝑝(𝑐𝑘−1)
}   (12) 230 

The M-H algorithm was repeated for 50,000 simulations, and then all accepted parameters 231 

values were used to generate the probability distribution functions (Xu et al., 2006). Finally, 232 

before each model simulation with optimized parameters, we ran the model for 200 years, a spin-233 

up period that was long enough to obtain stable carbon stock as an initial condition for these 234 

simulations. 235 

To evaluate the impact of HR on soil moisture dynamics in a PJ woodland, we conducted 236 

two multi-year simulations using two configurations of the TECO model: TECO+HR (with HR) 237 

and default TECO (HR turned off). To distinguish the influence of HR from soil hydraulic 238 

properties, we adopted a data assimilation approach focused on calibrating only the TECO+HR 239 

model. We calibrated TECO+HR model using soil moisture data measured at 5, 15, 30, and 60 240 

cm depths over a four-year period. The range of prior parameter values was informed by 241 

available soil texture data for the study site (Brooks, 1965; Carsel & Parrish, 1988). Within this 242 
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range, we optimized depth-specific soil hydraulic parameters to achieve a close match between 243 

modeled and observed soil moisture (Table 1).  244 

After calibrating the TECO+HR model, we deactivated the HR process and ran simulations 245 

with the same optimized parameters to generate the default TECO scenario. This approach 246 

allowed us to ensure that differences in soil moisture dynamics between TECO+HR and default 247 

TECO simulations were attributable solely to the presence or absence of HR. The motivation to 248 

calibrate only TECO+HR model, rather than the default TECO is to avoid parameter 249 

compensation for unresolved processes (Luo & Schuur, 2020), in which the absence of HR could 250 

lead to unrealist adjustments of soil hydraulic parameters to indirectly capture its effects. 251 

2.4 Statistical analyses 252 

Model performance was assessed by comparing simulated outputs with observed data during 253 

full simulation periods (2018- 2021), dry, and wet periods, defined as days without and with 254 

rainfall events, respectively. Evaluation was conducted using statistical metrics, including root 255 

mean square error (RMSE), and absolute mean error (MAE). 256 

RMSE = √
1

𝑛
∑ (𝑚𝑖 −  𝑜𝑖)2𝑛

𝑖=1      (13) 257 

MAE = 
1

𝑛
∑ |𝑚𝑖 −  𝑜𝑖|2𝑛

𝑖=1      (14) 258 

Where: 𝑜𝑖  represents observed values, 𝑚𝑖 represents modeled values, and n represents the 259 

number of data points. 260 
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3. Results 263 

3.1 Parameter estimation via data assimilation and water mass balance 264 

The data assimilation approach, using observational SWC data to constrain the model, 265 

yielded well-constrained soil hydraulic parameters (Table 1; Fig. S2 and S3). The resulting 266 

posterior probability density functions, characterized by sharp peaks, narrow spread, and 267 

consistency across soil depth support the reliability and accuracy of these calibrated parameter 268 

values. Additionally, soil water mass balance of soil profile was conserved before and after 269 

incorporating the HR process into the TECO model (Fig. S4). The key components of the water 270 

budget: precipitation, evapotranspiration, and changes in soil water content remained balanced, 271 

ensuring that the model accounted for all water fluxes. Furthermore, the sum of HR across all 272 

soil layers (10 layers) was consistently equal to zero, further ensuring that no water was 273 

artificially introduced or lost from the system. 274 

 275 

 276 

 277 

 278 

 279 

 280 

 281 

 282 

 283 
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3.2 Observed and simulated soil moisture  284 

 285 

 286 

 287 

 288 

 289 

 290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

Figure 1a-d: Observed and simulated soil volumetric water content for the year 2019 (January 1, 2018 to 

December 31, 2021) at soil depths of 5 cm (a), 15 cm (b), 30 cm (c), and 60 cm (d). Vertical bars indicate 

daily precipitation. 
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The data assimilation-constrained models, generally captured both the magnitude and 298 

dynamics of observational data, reproducing seasonal variations in soil moisture across four soil 299 

depths. While TECO+HR simulation showed an improvement in the overall model performance, 300 

the impact of HR was mostly pronounced during dry periods (Fig. 1 and 2). We further examined 301 

diurnal soil moisture fluctuations (Fig. S5) and found that TECO+HR successfully reproduced 302 

the observed diurnal cycles, whereas the default TECO failed to capture this pattern, suggesting 303 

that the observed diurnal variability was likely driven by HR. Additionally, we compared min-304 

max normalized soil matric potential at 15, 30, and 60 cm with simulations derived from Eq. (4) 305 

(Fig. S6). Both models reproduced the general trends of the observations, suggesting that the 306 

simulated soil water potential gradients were consistent with measurement. 307 

Moreover, during periods of limited precipitation, the TECO+HR (blue lines) consistently 308 

maintained higher soil moisture compared to default TECO (red lines), aligning closer to 309 

observation particularly in the topsoil layers (Fig. 1a-c). Following precipitation events, the 310 

Figure 2: Model performance for soil moisture across different depths (5, 15, 30, and 60 cm, and 0-60 cm integrated 

soil profile), considering temporal variations in soil moisture conditions. Root Mean Square Error (RMSE) and 

Mean Absolute Error (MAE) are presented for the complete time series (a, b), dry periods (c, d), and wet periods (e, 

f). 
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default TECO and TECO+HR simulations converged, suggesting the minimal influence of HR 311 

under wet conditions at the study site. However, as surface soil moisture decreased following 312 

precipitation, the two simulations diverged again, with TECO+HR maintaining higher moisture 313 

levels in the topsoil layers, highlighting the role of HR in maintaining soil moisture during 314 

prolonged drought. 315 

The incorporation of HR into TECO resulted in reductions in model errors. During dry 316 

periods, the RMSE decreased by 25, 43, and 52% at 5, 15, and 30 cm soil depths, respectively. 317 

However, limited improvement was observed at 60 cm soil depth. Correspondingly, the MAE 318 

was reduced by 30, 53, and 60% at 5, 15, and 30 cm, respectively. Over the entire study period, 319 

RMSE decreased by 24, 25, and 47% at 5, 15, and 30 cm, with MAE reductions were 29, 34, and 320 

55% at the same depths (Fig. 2a-d). Overall soil profile performance improved as well, with 321 

RMSE and MAE reductions over 40% for both the four-year simulation and dry periods. These 322 

improvements during dry periods are especially important, as roots are most vulnerable to 323 

drought. By mitigating soil water deficits in surface layers, HR could reduce the risk of hydraulic 324 

failure, thereby supporting plant species survival and it could enable better prediction of 325 

ecosystem responses to water stress, such as carbon uptake (Domec et al., 2010), and 326 

evapotranspiration (Zhu et al., 2017). In contrast, during wet periods, HR had minimal influence 327 

on soil moisture (Fig. 2e, f). 328 

 329 

 330 

https://doi.org/10.5194/egusphere-2025-4608
Preprint. Discussion started: 17 November 2025
c© Author(s) 2025. CC BY 4.0 License.



18 

 

3.3  HR simulations  331 

Model simulation revealed 332 

distinct patterns of HR dynamics 333 

across soil depths and temporal 334 

scales. Fig. 3 illustrates these patterns 335 

over two timescales: a short-term, 336 

diurnal pattern (Fig. 3a), and a long-337 

term perspective from 2018 to 2021 338 

(Fig. 3b). HR is a process with both a 339 

source and a sink for water 340 

movement. In the Fig. 3, positive HR 341 

suggest that a soil layer is gaining 342 

water (sink), whereas negative HR 343 

values suggest that the layer is losing 344 

water (source). 345 

The short-term modeling analysis 346 

highlights diurnal pattern of HR during dry conditions and a precipitation event (Fig. 3a). For 347 

instance, on July 23, 2018, during a dry period, upward HR occurred, moving water from deeper 348 

(> 100 cm) to shallower (0-30 cm) soil layers. However, following a precipitation event on July 349 

24, 2018 (12 mm), this pattern shifted. The top 5 and 15 cm layers showed negative HR and a 350 

decrease in the upward HR rate, respectively, acting as a water source for deeper layers. At the 351 

same time, deeper soil layers showed a decline in negative HR rates, suggesting signs of 352 

receiving water likely from the topsoil layers. The sum of HR across all soil layers remained 353 

(a) 

(b) 

Figure 3: Temporal dynamics of hydraulic redistribution 

(HR).  (a) diurnal pattern of modeled hydraulic 

redistribution across soil depths from July 22-24, 2018. The 

graph illustrates HR patterns during a dry period followed 

by a precipitation event. Colored lines represent different 

soil depths. (b) long-term daily HR trends and precipitation 

from January 2018 to December 2021. The blue shaded 

area represents precipitation (right y-axis). 

(a) 
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zero, confirming that HR redistributed water rather than adding to the system. Consequently, 354 

downward HR from the topsoil supplemented infiltration, enhancing water movement into 355 

deeper soil layers, reflected by a decrease in the negative HR rates at depths and an increase in 356 

the positive HR rate at 30 cm (Fig. 3a). 357 

While our model simulates HR across 10 soil layers, we present long-term results for only 358 

the top four soil layers (5, 15, 30, and 60 cm) to enable direct comparison with the available 359 

observed soil moisture data. A clear seasonal pattern emerged, with HR generally intensifying 360 

during dry periods (Fig. 3b).  361 

Our model showed that upward HR was predominantly occurring in up to top 30 cm of soil 362 

profile, with values ranging from -0.066 to 0.29 mm d⁻¹ in each soil layer and an average of 0.30 363 

mm d-1 across the top 30 throughout the study period. Downward HR, while less pronounced, 364 

moved water only from the 5 cm soil layer during monsoon seasons and large precipitation 365 

events (e.g., July 2018, 2019, 2020, and 2021; Fig. 3b). In contrast, 60 cm soil layer typically 366 

exhibits a negative HR during dry periods, acting as a water source for upper layers, and positive 367 

HR during wet periods, suggesting occasional water input from surface layers ranging from -368 

0.096 to 0.059 mm d⁻¹ (mean 0.0015 mm d⁻¹). Moreover, integrated soil profile (top 60 cm of 369 

soil profile), showed that upward HR was the dominant form of HR throughout the year, ranging 370 

from 0.10 to 0.53 mm d-1 with a mean value 0.31 mm d-1 (Fig. S7).  371 

 372 

 373 

 374 

 375 
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3.4  Precipitation influences on HR  376 

The model results showed a significant linear relationship between weekly HR and 377 

precipitation (mm week-1) (Fig. 4a-b). In the topsoil layers (5 cm and 15 cm), negative 378 

correlations were observed (R2 = 0.40 and 0.28 respectively, both p-values < 0.001). At the depth 379 

of 30 cm, a weak negative correlation exists (R2 = 0.07, p-value <0.05), suggesting a less 380 

pronounced reduction in HR rates with increasing precipitation. Interestingly, at 60 cm depth, 381 

HR was positively correlated (R2 = 0.16, p-value < 0.001) with precipitation. 382 

Additionally, when considering total HR across the soil profile (0-60 cm), the modeled data 383 

showed a significant negative correlation with precipitation was observed (R2 = 0.31, p-values < 384 

0.001, Fig. 4b). This suggests that overall HR activity decreased as precipitation increases, 385 

highlighting the stronger potential impact of HR on soil moisture during drier conditions.  386 

However, we observed a considerable variability in HR was observed across the range of 387 

precipitation (Fig. 4a-b), which could be attributed to the rainfall frequency, event size, and the 388 

duration of dry periods between rainfall events (Fig. 5). These results suggest that HR may 389 

increase not only with reduced precipitation frequency but also as the interval between 390 

Figure 4: Relationships between HR and precipitation. (a) Weekly HR rates versus weekly precipitation 

amounts at different soil depths (5, 15, 30, and 60 cm). Trend lines and R² values are shown for each 

depth. (b) Weekly HR (0–60 cm) versus weekly precipitation, with trend line and R² value. 
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consecutive rainfall events lengthen (Fig. 5). 391 

HR was lowest under conditions of high 392 

rainfall frequency and shorter dry spells, 393 

progressively increasing to its peak in the 394 

absence of rainfall. However, as the drought 395 

period extended beyond 30 days, HR 396 

declined, suggesting potential limitation on 397 

availability of deeper water to sustain HR. 398 

This variability is further illustrated through 399 

three scenarios (Fig. S7): 1) Following a 400 

rainfall event (28 mm on July 5, 2018), HR in the top 60 cm of soil profile was minimal at 0.13 401 

mm d⁻¹, indicating limited driving force for water redistribution when soil moisture was 402 

abundant. 2) During a transition period between rainfall events (July 5-10, 2018), HR gradually 403 

increased but remained moderate, ranging from 0.13 to 0.20 mm d⁻¹, suggesting a progressive 404 

activation of the redistribution process as soil began to dry. 3) During a prolonged dry period 405 

(November 23-30, 2018), HR peaked at 0.20-0.52 mm d⁻¹, demonstrating enhanced 406 

redistribution activity in response to the development of soil moisture gradients. 407 

4. Discussion 408 

4.1 Patterns of hydraulic redistribution  409 

Our findings support the hypothesis that upward HR is the dominant form of HR in dryland 410 

ecosystems due to limited precipitation amount and sporadic rainfall events (Fig. S7). This 411 

prevalence of upward water movement is characteristic of semi-arid regions, where deep-rooted 412 

plants often redistribute water from moist deeper layers to drier surface soils during periods of 413 

Figure 5: Relationship between weekly mean hydraulic 

redistribution (mm d⁻¹), dry spell length between two 

rainfall events (log10(days+1)). The color scale indicates 

the number of rainfall events per week, while marker size 

represents the weekly precipitation amount (mm week⁻¹). 

Dry spell length denotes the number of rainless days 

between two consecutive precipitation events. 
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water stress (Caldwell et al., 1998; Ryel et al., 2002). Notably, the most pronounced HR 414 

occurred in the topsoil layer (5, 15, and 30 cm), (Fig. 3b), which can be attributed to vertical root 415 

distribution, with over 50% of root biomass concentrated in the top 30 cm (D50 = 25 cm) of the 416 

soil profile (Fig. S8). This pattern aligns with findings of  Xing Ming Hao et al. (2013), which 417 

suggest that deeper root distributions extend HR to deeper soil layers, while shallower root 418 

systems enhance HR in the topsoil layers due to higher root density and activity (Fig. S8). 419 

Our model simulations estimated HR rates in range 0.10-0.53 mm d-1 for top 60 cm soil 420 

depth (Fig. S7), values that fall within the broader range of 0.04 to 3.2 mm d-1 reported in the 421 

comprehensive review by Neumann and Cardon (2012) but exceed the upper limit of the 95% 422 

confidence interval of 0.014-0.475 mm d-1 reported by Yang et al. (2022) for desert or sparsely 423 

vegetated ecosystems, which synthesized empirical observations and modeling estimates of 424 

average water movement attributed to HR. 425 

The direct impact of HR on hydrological processes should be evident in the soil profile water 426 

content. We tested this by comparing SWC model simulations in TECO with and without HR 427 

processes, to observed SWC time series at four depths (Fig. 6). We found that cumulative effects 428 

of HR on soil moisture vary with depth, primarily due to the non-uniform root biomass 429 

distribution throughout the soil profile (Fig. S8). The most pronounced effects of HR were 430 

observed in the topsoil layers (5, 15, and 30 cm), where average daily water content increased by 431 

up to 60% compared to simulation without HR. This increase was driven by upward HR, 432 

especially during dry-down periods (Fig. 3b, and 6). 433 

 434 

 435 
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4.2 Effects of precipitation variability on HR 436 

Our findings support the hypothesis that the precipitation pattern significantly (p-value < 437 

0.001) influences the magnitude and variability of HR (Figs. 3a-b, and S7). The rate of HR in the 438 

topsoil profile (<60 cm) exhibited a consistent response pattern to precipitation events, 439 

characterized by sharp decreases following large rainfall, and gradual recovery to pre-rain levels. 440 

These dynamics were particularly evident during years with frequent large precipitation events 441 

(2018-2019), where HR rates oscillated between 0.04- and 0.20-mm d⁻¹. For instance, after an 18 442 

mm rainfall event on July 24, 2018, HR rates dropped below 0.15 mm d⁻¹ before recovering to 443 

0.30 mm d⁻¹ within 10 days. This pattern suggests a recharging effect: initially, infiltrating 444 

rainwater increases soil water potential in both shallow and deep layers, reducing the gradient 445 

between shallow and deep layers and temporarily suppressing HR (Xing Ming Hao et al., 2013). 446 

Figure 6: Relative change in soil water content (SWC) (%) compared to observed SWC at 5, 15, 

30, and 60 cm depths. The color gradient represents the magnitude of relative change in SWC, 

calculated as (HR−No HR)/No HR×100, with HR and No HR indicating simulations with and 

without hydraulic redistribution." 
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However, as water redistributes through the soil profile, new hydraulic gradients develop, 447 

leading to enhanced HR activity. In this phase, roots actively redistribute water from newly 448 

moistened deep layers to drier shallow layers, consistent with findings from Yu and D'Odorico 449 

(2014) and (Ryel et al., 2002). 450 

Our model predicted that HR rates were generally higher during rainless periods compared to 451 

rainfall periods within a given year. For instance, during the prolonged dry period in 2020 (driest 452 

year with few small precipitation events), HR rates remained consistently high, 0.17-0.40 mm d-453 

1, with minimal fluctuations. The consistent high HR rates, likely arises from more pronounced 454 

soil water potential gradients derived from sustained plant water demand and surface evaporation 455 

in the absence of frequent precipitation (Fu et al., 2016; Meinzer et al., 2004). 456 

Seasonal trends include higher HR rates (0.12-0.53 mm d-1) during the drier periods 457 

(typically November to May) and lower rates (0.10-0.30 mm d-1) during the monsoon season 458 

(usually June to October) (Fig. S7). This seasonality underscores the influence of both 459 

precipitation patterns and potential evapotranspiration on HR dynamics, highlighting that HR is 460 

likely more pronounced during drier seasons when soil moisture gradients are likely to be more 461 

substantial due to reduced precipitation and potentially higher evaporative demand (Fu et al., 462 

2016; Scott et al., 2008; Yu & D'Odorico, 2014). 463 

4.3 Limitation and future perspectives 464 

While our modeling study provides valuable insights into HR dynamics in PJ woodlands, 465 

several limitations should be noted: (1) The model does not account for inter-annual changes in 466 

vegetation cover or species composition. Variations in plant functional types and leaf area index 467 

may influence soil moisture and HR, and incorporating these dynamics could improve long-term 468 

simulations. (2) We focused on dominant tree species at our study site, but other plants may 469 
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benefit from water redistributed by these trees, affecting ecosystem water dynamics. (3) We did 470 

not include stem water refilling or nighttime transpiration reported by Howard et al. (2009); 471 

Neumann et al. (2014) which could influence the magnitude of HR. (4) Finally, future studies 472 

could explore the role of HR in regulating ecosystem functions, such as carbon exchange and 473 

evapotranspiration, and examine whether incorporating HR improves predictions of ecosystem 474 

carbon dynamics proportionally to its effects on soil water. 475 

5. Conclusions 476 

This study demonstrates the role of hydraulic redistribution (HR) in soil water dynamics in 477 

piñon-juniper woodlands. By integrating HR processes and observations into the Terrestrial 478 

Ecosystem Model (TECO) via data assimilation, we successfully constrained model soil 479 

hydraulics parameters and improved simulations of soil water content across multiple depths, 480 

particularly in shallow soil layers (0–30 cm) and during dry periods. Our model results showed 481 

that HR rates vary with the length of dry spells between rainfall events, generally decreasing 482 

with increasing precipitation magnitude and frequency, with HR rates ranging from 0.10 to 0.50 483 

mm d⁻¹ as conditions transitioned from wet to dry. Consequently, HR increased soil moisture in 484 

topsoil layers by up to 60% during dry periods, with upward HR emerging as the dominant flux, 485 

especially in the top 30 cm. These findings underscore the potential influence of HR during dry 486 

periods and highlight its role in sustaining soil water availability for vegetation. Future research 487 

should explore how HR-mediated water redistribution affects ecosystem functions including 488 

carbon exchange, and evapotranspiration.  489 
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