https://doi.org/10.5194/egusphere-2025-4608
Preprint. Discussion started: 17 November 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

1 Hydraulic Redistribution Decreases with Precipitation Magnitude and Frequency in a
2 Dryland Ecosystem: A Data-Model Fusion Approach

3 Aneesh Kumar Chandel', Mitra Cattry®, Yu Zhou*, Hang Duong?®, Marcy Litvak?, William

4 Pockman? and Yiqi Luo'

5  !School of Integrative Plant Science, Cornell University, Ithaca, NY, USA

6  University of New Mexico, Albuquerque, NM, USA

7  3Department of Earth and Environmental Engineering, Columbia University, USA
8  “Department of Environmental Systems Science, ETH Zurich, Switzerland

9  SVietnam National University of Agriculture, Hanoi, Vietnam

10 Corresponding Authors: Aneesh Kumar Chandel (akc76(@cornell.edu), Yiqi Luo

11 (y12735@cornell.edu)

12

13

14

15

16

17

18

19

20



https://doi.org/10.5194/egusphere-2025-4608
Preprint. Discussion started: 17 November 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

21 Abstract

22 Hydraulic redistribution (HR), the movement of water via plant root systems that connect soil

23 compartments with different water potential, should influences soil moisture dynamics

24 particularly in water-limited ecosystems. Realistic representation of HR in ecosystem models is
25  essential to improve the ability of these models to predict ecosystem function in dryland regions.
26 In this study, we integrated HR into the Terrestrial ECOsystem model and employed a Bayesian
27  Markov Chain Monte Carlo technique to optimize soil hydraulic parameters and root

28  conductance using four years of soil moisture observations from a pifion-juniper woodland. We
29  found that (i) integrating HR generally improved model prediction of soil moisture during dry
30  periods, particularly in the top 30 cm of the soil profile, where more than 50% of root biomass
31  exists, mostly during dry periods; (ii) HR increased surface soil moisture by up to 60% during
32 dry periods; (iii) HR decreased with increasing precipitation magnitude and frequency, however,
33 the length of dry spells between rainfall events also influenced HR rates; and (iv) upward HR in
34 the top 60 cm soil profile became more pronounced as dry conditions progressed, with rates

35 ranging from 0.10 to 0.50 mm d'. These findings highlight that HR plays a likely role in

36  sustaining soil moisture during extended dry periods and has a limited effect during precipitation
37  events. Future research should investigate the effect of HR on other ecosystem processes, such as

38  net ecosystem exchange of carbon and evapotranspiration under varying climatic conditions.
39
40
41
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43 1. Introduction

44 Drylands, cover over 40% of Earth's terrestrial surface and support more than 38% of the

45  global population (Pravilie, 2016). Ecosystem function in these regions is likely to be limited by
46  altered precipitation in the changing climate (Beer et al., 2010; Ukkola et al., 2021).

47  Understanding the ability of plants to mitigate the potential negative impacts of alter

48  precipitation is therefore critical for predicting ecosystem stability. Hydraulic redistribution (HR)
49  is the passive movement of water through plant roots, usually at night, from wet to dry regions of
50  the plant rooting volume driven by differences in water potential. This passive process can favor
51  plant survival during droughts by tapping into deep soil layers having relatively higher water

52 potential and redistributing water to the shallow root zone (upward HR) (Barron - Gafford et al.,

53  2017; Brooks et al., 2002; Dawson, 1993; Domec et al., 2010; Nadezhdina et al., 2015; Nicola et
54 al., 2020; Nicola & Ram, 2022; Prieto et al., 2012). During wet seasons, HR can redistribute

55  water from wet surface soil into deeper, drier soil (downward HR), supplementing the infiltration
56  process in recharging deeper soil layers (Bleby et al., 2010; Fu et al., 2016; Hultine et al., 2003;
57  Scott et al., 2008). Despite its potential role in regulating plant and ecosystem productivity,

58  nutrient cycling and soil microbial activity (Griinzweig et al., 2022; Sardans & Pefiuelas, 2014),

59  HR s often ignored in ecosystem models.

60 Hydraulic redistribution has been observed across diverse ecosystems and plant species

61  (Nadezhdina et al., 2010; Neumann & Cardon, 2012; Priyadarshini et al., 2016; Yu et al., 2013),
62 and has been interpreted as structuring dryland plant communities, regulating ecosystem

63  productivity, and enhancing resilience to climate extremes (Barron - Gafford et al., 2021;

64  Barron - Gafford et al., 2017; Hafner et al., 2020; Lee et al., 2018). The dynamics of HR are

65  influenced by various biotic (rooting architecture, plant capacitance, transpiration demand,
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66  senescence, and dormancy), abiotic factors (soil hydraulic characteristics, soil moisture status),
67  and climatic conditions (precipitation) (Katul & Siqueira, 2010; Prieto et al., 2012; Wei et al.,
68  2022). While several studies have examined HR in deserts and semi-arid ecosystems and

69  reported upward HR during dry events (Xing - Ming Hao et al., 2013; Lee et al., 2018; Scott et

70 al., 2008; Yu et al., 2013) and downward HR following precipitation {Hultine, 2003 #2122},

71  studies focusing on fine-scale temporal variations in HR across different soil depths and multiple
72 years remain limited. Additionally, a quantitative understanding of how precipitation magnitude
73  and frequency influence HR rates, key limiting factors in dryland ecosystems, remain poorly

74  understood.

75 In this study, we explicitly test two hypotheses: (1) Direction of HR: Upward HR should be
76  the dominant form of HR in dryland ecosystem. This is due to the recharge of deeper soil layers
77  from precipitation which can retain moisture for longer periods, and during dry periods roots

78  facilitate the movement of this retained water to the drier surface soils. (2) HR-precipitation

79  relationship: upward HR should decline following precipitation events, reaching its maximum
80  rates during prolonged dry periods as the drought create steep water potential gradients between

81  deeper, moist soil layers and the drier surface layers, facilitating the upward movement of water.

82 Soil moisture dynamics are governed by a complex interplay of forces that drive water

83  movement through the soil profile. The primary drivers include matric potential (capillary and
84  adsorptive forces binding water to soil particles), gravitational potential (driving downward

85  drainage), and potential gradients that induce processes like HR (Caldwell et al., 1998). These
86  forces collectively determine water retention, redistribution, and plant availability (Hillel, 2003).
87  Isolating their individual contributions from field soil moisture data is challenging, as their

88  effects are concurrent and modulated by soil properties, root activity, and atmospheric



https://doi.org/10.5194/egusphere-2025-4608
Preprint. Discussion started: 17 November 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

89  conditions. Consequently, data-model fusion approach, integrating process-based model with soil
90  moisture data, provides a robust framework to isolate and quantify HR, offering a more

91  mechanistic and quantitative understanding.

92 Several modeling studies have incorporated various HR schemes into process-based models
93  to improve understanding of hydrological and ecological processes (Amenu & Kumar, 2008; Fu
94  etal., 2016; Lee et al., 2018; Quijano & Kumar, 2015; Ryel et al., 2002; Tang et al., 2015; Wu et
95  al., 2020; Zheng & Wang, 2007). However, realistic representation and estimation of parameters
96 related to HR remains a challenge, as neither the magnitude of HR nor its associated parameters
97  can be directly observed in the soil (Quijano & Kumar, 2015; Ryel et al., 2002). As a result, most
98  models rely on default HR parameter values from Ryel et al. (2002) (Fabian et al., 2010; Zheng
99 & Wang, 2007) or estimated parameters using soil moisture data during specific periods of time

100  when upward or downward HR is assumed negligible, such as wet or dry season (Amenu &

101  Kumar, 2008; Fu et al., 2018; Fu et al., 2016; Yan & Dickinson, 2014). The challenges in direct

102  measurements, and reliance on assumed parameter values, constitute key gaps in our

103 understanding of HR dynamics.

104 To address these gaps, we focused on pifion-juniper (PJ) woodlands, the most widespread
105  semiarid ecosystem in the US. PJ woodlands are spatially widespread, ecologically important,
106  temporally dynamic, and structurally unique dryland ecosystem in the western US, spanning 10
107  US states and 40 million hectares across the American Southwest (Eastburn et al., 2024; Romme
108  etal., 2009). Despite their importance, HR has not been previously reported in PJ woodlands.
109  However, our continuous root sap flux measurements provided direct evidence of HR in both
110  pifion and juniper roots, indicated by sustained negative root sap flux during nighttime at the

111 study site (Fig. S.1).
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112 In this study, we used the process-based Terrestrial ECOsystem (TECO) model to (i) develop
113 and implement a data assimilation approach to incorporate HR into the TECO model; (ii)

114  quantify and characterize the magnitude and dynamics of HR across multiple soil depths; and
115  (iii) analyze the temporal patterns of HR and its relationship with precipitation magnitude and
116  frequency. The TECO model is a well-established ecosystem model that integrates ecological
117  processes to simulate carbon, water, and energy fluxes within terrestrial ecosystems (Weng &
118  Luo, 2008). We employed data assimilation to constrain the TECO model including HR using
119  four years of soil moisture data measured at multiple soil depths, encompassing both wet and dry

120 periods.

121 2. Data and Methods

122 2.1 Study site and data

123 Our modeling study utilized data from a PJ woodland plot (Lat. 35.642, Long. -104.607,

124 elevation 1925 m) located in New Mexico, USA, and previously described in Schwinning et al.
125 (2020). The site is a private ranch covering an area of over 6800 hectares that was ungrazed
126  from 2012 through the measurement period used for this study and is characterized by a semi-
127  arid climate. Mean annual precipitation of the site is approximately 460 mm, with the majority
128  falling between May and October, and a mean annual temperature of 10.5 °C. The soil texture at
129  the site varies with depth, ranging from loam to clay loam. The vegetation consists of distinct
130  tree clusters dominated by pifion pine (Pinus edulis (Englem.)) and juniper (Juniperus

131  monosperma (Englem.) Sarg.) separated by open areas of bare soil and herbaceous cover.

132 SWC was continuously monitored using multi-sensor frequency domain capacitance probes
133 (Decagon EC-5) installed at four depths (5, 15, 30 and 60 cm), in four soil pits under the tree

134 canopies. All sensors were monitored every minute by a datalogger (model CR6, Campbell
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135  Scientific), storing 15-minute averages were stored by a data logger. For this study, we used the
136 average SWC across all four pits. Each sensor was calibrated in the lab before installation for
137  both air and water frequency. Significant shifts in soil temperature can affect both soil

138  permittivity and the response of capacitance sensors, potentially confounding the small

139 fluctuations in VWC caused by HR. Therefore, temperature correction factors were applied to
140  the measured VWC at each depth, using the nearest measured temperature, following the method

141  described by Saito et al. (2009).

142 2.2 Modeling framework

143 TECO is a process-based ecosystem model (Hou et al., 2021; Jiang et al., 2018; Weng &

144 Luo, 2008), and has evolved from the TCS model (Luo & Reynolds, 1999). The model has four
145  major components: canopy photosynthesis, plant growth, soil water dynamics, and soil carbon
146  transfers. The canopy photosynthesis and soil water dynamics submodels run at the hourly time
147  step whereas the plant growth and soil carbon submodels run at the daily time step. The model is
148  driven by seven environmental variables, including precipitation (mm), wind speed (m s™), solar
149 radiation (W m™), air and soil temperature (C), relative humidity (%), and vapor pressure deficit
150  (kPa). The detailed description of TECO model is available (Weng & Luo, 2008) and only the
151  brief description of soil water dynamics is provided here.

152 The soil profile is divided into 10 layers, with varying thickness: 5 cm for the first layer, 10,
153 15, and 30 cm for the second, third, and fourth layers respectively, and 20 cm for the fifth to

154  tenth layers. SWC in each layer results from the mass balance between influx and efflux, with
155  changes primarily attributed to vertical unsaturated flow, transpiration, precipitation, runoff, and
156  drainage. Evaporation depletes water from the first two soil layers, while transpiration depletes

157  water from all soil layers containing roots, allocated based on root fraction in each layer (Eq. 8).
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158  Given the predominantly arid conditions of the study site, runoff and drainage were found
159  negligible. Thus, water movement between soil layers is simulated as follows:
aw; _ dF;

160 S-S g T, (1)

161  where W;is the water storage (cm) in layer i, ¢ is time (h), F; is net unsaturated flow of water into
162 layeri(cm h'), z is vertical thickness, E; and 7; are evaporation and transpiration water loss from
163 layeri(cmh™).

164 The unsaturated soil water movement is simulated vertically according to modified form of
165  Buckingham-Darcy’s law (Campbell, 1985) (Eq. 2), with Brooks (1965) equation (Eq. 4)

166  estimating hydraulic conductivity and soil water retention curve (SWRC) to simulate soil water

167  potential (V).
aF; av;
168 Siok@)(E+1) )
169  where K(8;) is the unsaturated soil hydraulic conductivity (cm h!) for SWC 6 (cm® cm™) in layer

170 1, ¥;is soil water matric potential (MPa) in layer i, and z is the vertical thickness (cm) of the soil.

8;- 9r] (2m+3)

171 K(0) = K | s

3)
172 where, K is the soil saturated hydraulic conductivity (cm h™), m is the pore size distribution
173 index, 6 and 6, are saturated and residual SWC (cm® cm™)

0- o,

e -1/m
174 —=(3) “
175  Wyis the soil air entry water potential.
176 To quantify the direction and magnitude of HR, we integrated the HR model by Ryel et al.

177  (2002) into equation 1 of TECO model (presented in equation 5). This HR model empirically
178  describes HR flux based on the soil water potential gradient between two soil layers (Eq. 6). HR

179  was assumed to occur only at night, with its occurrence controlled by solar radiation instead of
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180  fixed day and night hours. Daytime starts as solar radiation exceeds 10 W m™, thereby inhibiting
181  HR since the water potential gradient typically favors water movement from roots to canopy to
182  meet transpiration demand during the day. This pattern is evident in Fig. S1, where under low or
183  zero solar radiation, root sap flux was found to be negative, indicating water movement away
184  from the root zone which is an indicator of occurrence of HR at the study site. Using these

185  assumptions, the net water movement into soil layer i from other soil layers can be expressed as:

aw; _ dF;

186 2t dz -E;-T;+ H; %)
RiR;
187 Hi = Crr X(¥; — ¥i)max (i, ;) 77 Deran (6)
1

188 Ci = e \b (7)

1+ (73,)
189 Ri=—"— 8)

1+ (35)
190 Where in Eq 6, H; is the net water redistributed by roots into layer i (cm h™), Crr is the

191  maximum radial soil-root conductance of the entire active root system for water (cm MPa'h™),
192 Vis soil matric potential (MPa), ¢; is a factor reducing soil-root conductance based on ¥;, R; is
193  the fraction of active roots in layer i, Ry is the average vertically summed root dry mass from the
194  bottom to the root zone to the soil surface, and Dy, 1s a factor reducing water movement among
195 layers by roots while plant is transpiring and is assumed to be 1.0 during the night when

196  transpiration is minimal and 0.0 during day. Rx = R; when 6; > 6, or R, = R; when §; > 0;. In Eq 7,
197 W5, is the soil water potential (MPa) where conductance is reduced by 50% and b is an empirical
198  constant. In Eg 8, d is soil depth (cm), and ds is the soil depth at the median of the root

199  distribution and a is a shape parameter (Table 1). The Brooks (1965) model for SWRC was

200  utilized to simulate soil water potential (¥), facilitating the development of soil water potential
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201  gradients necessary for HR by tree roots (Eq. 4). Due to lack of site-specific parameters, the

202  default values of b and W5, were used as 3.22 and -1 MPa, respectively (Ryel et al., 2002).

203 2.3 Data assimilation for parameters estimation

204 We used Bayesian probabilistic inversion to calibrate parameters associated with soil

205  hydraulics, where posterior probability density functions of parameters are obtained from prior
206  knowledge about the parameters and the error between model and observations. According to
207  Mosegaard and Sambridge (2002), Bayesian inversion can be summarized by the following

208  equation:

209 p(clZ) xp(Zc) p(c) )

210  where p(c|Z) is posterior probability density function of model parameters c; p(Z|c) is a
211  likelihood function of parameters c; p(c) is prior probability density function of parameters c. We
212 assumed that the prediction errors were normally distributed and uncorrelated, hence, the

213 likelihood function, p(Z|c), was calculated as follows:

—X)2
214 p(Zle) e~ Bl P2 (10)

20{

215  where Z is observed VWC at i’ soil layer, X; is VWC simulated by TECO at a corresponding

216 soil depth; o is the variance of a measurement at a soil layer; k is the total number of soil layers.

217 To generate the posterior distributions, we first specified the priors of the parameters to be
218  uniformly distributed over the intervals specified in Table 1. We put constraints on parameters
219  based on the literature. The initial set of parameters was randomly selected within the prior

220  parameter ranges. Once we specified parameter ranges, we used the Metropolis-Hastings (M-H)

221  algorithm (Hastings, 1970; Metropolis et al., 1953), a Markov chain Monte Carlo method, to

10
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222 sample from the posterior parameter distribution. To generate a parameter set, we ran M-H
223 algorithm in two steps: proposing step and a moving step. In the proposing step, a new parameter
224 set ¢"" was generated from a previously accepted parameter set ¢/ through a proposal

225  distribution (¢""|c*):

cmax _ omin

226 =+ x

(11)

227  The value of P(cF!|c"") was then compared with a random number U from 0 to 1. Parameter set
228 " was accepted if P(cX!|c"") > U, otherwise ¢ was set to /. In the moving step, a

229  probability of acceptance P(c*|c"") was calculated as in the following (Marshall et al., 2004):

~ newy . 7 new new
230 P ") =min {1, %} (12)

231 The M-H algorithm was repeated for 50,000 simulations, and then all accepted parameters
232 values were used to generate the probability distribution functions (Xu et al., 2006). Finally,

233 before each model simulation with optimized parameters, we ran the model for 200 years, a spin-
234 up period that was long enough to obtain stable carbon stock as an initial condition for these

235  simulations.

236 To evaluate the impact of HR on soil moisture dynamics in a PJ woodland, we conducted
237  two multi-year simulations using two configurations of the TECO model: TECO+HR (with HR)
238  and default TECO (HR turned off). To distinguish the influence of HR from soil hydraulic

239  properties, we adopted a data assimilation approach focused on calibrating only the TECO+HR
240  model. We calibrated TECO+HR model using soil moisture data measured at 5, 15, 30, and 60
241  cm depths over a four-year period. The range of prior parameter values was informed by

242 available soil texture data for the study site (Brooks, 1965; Carsel & Parrish, 1988). Within this

11
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243  range, we optimized depth-specific soil hydraulic parameters to achieve a close match between

244  modeled and observed soil moisture (Table 1).

245 After calibrating the TECO+HR model, we deactivated the HR process and ran simulations
246  with the same optimized parameters to generate the default TECO scenario. This approach

247  allowed us to ensure that differences in soil moisture dynamics between TECO+HR and default
248  TECO simulations were attributable solely to the presence or absence of HR. The motivation to
249  calibrate only TECO-+HR model, rather than the default TECO is to avoid parameter

250  compensation for unresolved processes (Luo & Schuur, 2020), in which the absence of HR could

251  lead to unrealist adjustments of soil hydraulic parameters to indirectly capture its effects.

252 2.4 Statistical analyses

253 Model performance was assessed by comparing simulated outputs with observed data during
254  full simulation periods (2018- 2021), dry, and wet periods, defined as days without and with
255 rainfall events, respectively. Evaluation was conducted using statistical metrics, including root

256  mean square error (RMSE), and absolute mean error (MAE).

1
257 RMSE = J;Z?zl(mi — 0;)? (13)

1
258 MAE ==Y Im; — o;l? (14)

259  Where: o; represents observed values, m; represents modeled values, and » represents the

260  number of data points.

12
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263 3. Results

264 3.1 Parameter estimation via data assimilation and water mass balance

265 The data assimilation approach, using observational SWC data to constrain the model,

266  yielded well-constrained soil hydraulic parameters (Table 1; Fig. S2 and S3). The resulting

267  posterior probability density functions, characterized by sharp peaks, narrow spread, and

268  consistency across soil depth support the reliability and accuracy of these calibrated parameter
269  values. Additionally, soil water mass balance of soil profile was conserved before and after

270  incorporating the HR process into the TECO model (Fig. S4). The key components of the water
271  budget: precipitation, evapotranspiration, and changes in soil water content remained balanced,
272  ensuring that the model accounted for all water fluxes. Furthermore, the sum of HR across all
273 soil layers (10 layers) was consistently equal to zero, further ensuring that no water was

274  artificially introduced or lost from the system.
275
276
277
278
279
280
281
282

283
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284 3.2 Observed and simulated soil moisture

285
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Figure la-d: Observed and simulated soil volumetric water content for the year 2019 (January 1, 2018 to
December 31, 2021) at soil depths of 5 cm (a), 15 cm (b), 30 cm (c), and 60 cm (d). Vertical bars indicate
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Figure 2: Model performance for soil moisture across different depths (5, 15, 30, and 60 cm, and 0-60 cm integrated
soil profile), considering temporal variations in soil moisture conditions. Root Mean Square Error (RMSE) and
Mean Absolute Error (MAE) are presented for the complete time series (a, b), dry periods (c, d), and wet periods (e,
7.

298 The data assimilation-constrained models, generally captured both the magnitude and

299  dynamics of observational data, reproducing seasonal variations in soil moisture across four soil
300  depths. While TECO+HR simulation showed an improvement in the overall model performance,
301  the impact of HR was mostly pronounced during dry periods (Fig. 1 and 2). We further examined
302  diurnal soil moisture fluctuations (Fig. S5) and found that TECO+HR successfully reproduced
303  the observed diurnal cycles, whereas the default TECO failed to capture this pattern, suggesting
304  that the observed diurnal variability was likely driven by HR. Additionally, we compared min-
305 max normalized soil matric potential at 15, 30, and 60 cm with simulations derived from Eq. (4)
306  (Fig. S6). Both models reproduced the general trends of the observations, suggesting that the

307  simulated soil water potential gradients were consistent with measurement.

308 Moreover, during periods of limited precipitation, the TECO+HR (blue lines) consistently
309  maintained higher soil moisture compared to default TECO (red lines), aligning closer to
310  observation particularly in the topsoil layers (Fig. 1a-c). Following precipitation events, the

16
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311  default TECO and TECO+HR simulations converged, suggesting the minimal influence of HR
312  under wet conditions at the study site. However, as surface soil moisture decreased following
313 precipitation, the two simulations diverged again, with TECO+HR maintaining higher moisture
314  levels in the topsoil layers, highlighting the role of HR in maintaining soil moisture during

315  prolonged drought.

316 The incorporation of HR into TECO resulted in reductions in model errors. During dry

317  periods, the RMSE decreased by 25, 43, and 52% at 5, 15, and 30 cm soil depths, respectively.
318  However, limited improvement was observed at 60 cm soil depth. Correspondingly, the MAE
319  was reduced by 30, 53, and 60% at 5, 15, and 30 cm, respectively. Over the entire study period,
320 RMSE decreased by 24, 25, and 47% at 5, 15, and 30 cm, with MAE reductions were 29, 34, and
321  55% at the same depths (Fig. 2a-d). Overall soil profile performance improved as well, with

322  RMSE and MAE reductions over 40% for both the four-year simulation and dry periods. These
323  improvements during dry periods are especially important, as roots are most vulnerable to

324  drought. By mitigating soil water deficits in surface layers, HR could reduce the risk of hydraulic
325  failure, thereby supporting plant species survival and it could enable better prediction of

326  ecosystem responses to water stress, such as carbon uptake (Domec et al., 2010), and

327  evapotranspiration (Zhu et al., 2017). In contrast, during wet periods, HR had minimal influence

328  on soil moisture (Fig. 2e, ).
329

330
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331 3.3 HR simulations
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339  (Fig. 3b). HR is a process with both a g . X 34 e fESI% - ,E
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Suggest that 4 Soll layer 15 gaining Figure 3: Temporal dynamics of hydraulic redistribution

(HR). (a) diurnal pattern of modeled hydraulic
redistribution across soil depths from July 22-24, 2018. The
graph illustrates HR patterns during a dry period followed
by a precipitation event. Colored lines represent different
soil depths. (b) long-term daily HR trends and precipitation
from January 2018 to December 2021. The blue shaded
area represents precipitation (vight y-axis).

343  water (sink), whereas negative HR
344  values suggest that the layer is losing

345  water (source).

346 The short-term modeling analysis

347  highlights diurnal pattern of HR during dry conditions and a precipitation event (Fig. 3a). For
348  instance, on July 23, 2018, during a dry period, upward HR occurred, moving water from deeper
349 (> 100 cm) to shallower (0-30 cm) soil layers. However, following a precipitation event on July
350 24,2018 (12 mm), this pattern shifted. The top 5 and 15 cm layers showed negative HR and a
351  decrease in the upward HR rate, respectively, acting as a water source for deeper layers. At the
352 same time, deeper soil layers showed a decline in negative HR rates, suggesting signs of

353 receiving water likely from the topsoil layers. The sum of HR across all soil layers remained

18



https://doi.org/10.5194/egusphere-2025-4608
Preprint. Discussion started: 17 November 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

354  zero, confirming that HR redistributed water rather than adding to the system. Consequently,
355 downward HR from the topsoil supplemented infiltration, enhancing water movement into
356  deeper soil layers, reflected by a decrease in the negative HR rates at depths and an increase in

357  the positive HR rate at 30 cm (Fig. 3a).

358 While our model simulates HR across 10 soil layers, we present long-term results for only
359 the top four soil layers (5, 15, 30, and 60 cm) to enable direct comparison with the available
360 observed soil moisture data. A clear seasonal pattern emerged, with HR generally intensifying

361  during dry periods (Fig. 3b).

362 Our model showed that upward HR was predominantly occurring in up to top 30 cm of soil
363  profile, with values ranging from -0.066 to 0.29 mm d™' in each soil layer and an average of 0.30
364 mm d'across the top 30 throughout the study period. Downward HR, while less pronounced,
365 moved water only from the 5 cm soil layer during monsoon seasons and large precipitation

366  events (e.g., July 2018, 2019, 2020, and 2021; Fig. 3b). In contrast, 60 cm soil layer typically
367  exhibits a negative HR during dry periods, acting as a water source for upper layers, and positive
368  HR during wet periods, suggesting occasional water input from surface layers ranging from -
369  0.096 to 0.059 mm d™' (mean 0.0015 mm d™'). Moreover, integrated soil profile (top 60 cm of
370  soil profile), showed that upward HR was the dominant form of HR throughout the year, ranging

371 from 0.10 to 0.53 mm d"! with a mean value 0.31 mm d"! (Fig. S7).
372
373
374

375
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376 3.4 Precipitation influences on HR
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Figure 4: Relationships between HR and precipitation. (a) Weekly HR rates versus weekly precipitation
amounts at different soil depths (5, 15, 30, and 60 cm). Trend lines and R? values are shown for each
depth. (b) Weekly HR (0—-60 cm) versus weekly precipitation, with trend line and R? value.

377 The model results showed a significant linear relationship between weekly HR and

378  precipitation (mm week™!) (Fig. 4a-b). In the topsoil layers (5 cm and 15 cm), negative

379  correlations were observed (R* = 0.40 and 0.28 respectively, both p-values < 0.001). At the depth
380  of 30 cm, a weak negative correlation exists (R? = 0.07, p-value <0.05), suggesting a less

381  pronounced reduction in HR rates with increasing precipitation. Interestingly, at 60 cm depth,

382  HR was positively correlated (R? = 0.16, p-value < 0.001) with precipitation.

383 Additionally, when considering total HR across the soil profile (0-60 cm), the modeled data
384  showed a significant negative correlation with precipitation was observed (R? = 0.31, p-values <
385  0.001, Fig. 4b). This suggests that overall HR activity decreased as precipitation increases,

386  highlighting the stronger potential impact of HR on soil moisture during drier conditions.

387 However, we observed a considerable variability in HR was observed across the range of
388  precipitation (Fig. 4a-b), which could be attributed to the rainfall frequency, event size, and the
389  duration of dry periods between rainfall events (Fig. 5). These results suggest that HR may

390 increase not only with reduced precipitation frequency but also as the interval between
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391  consecutive rainfall events lengthen (Fig. 5).
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395  absence of rainfall. However, as the drought

S
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396  period extended beyond 30 days, HR Dry spell length (log10(days+1))

397  declined, suggesting potential limitation on ~ Figure 5: Relationship between weekly mean hydraulic

redistribution (mm d™'), dry spell length between two

398  availability of deeper water to sustain HR. rainfall events (logio(days+1)). The color scale indicates
the number of rainfall events per week, while marker size

399  This variability is further illustrated through ~ represents the weekly precipitation amount (mm week™).
Dry spell length denotes the number of rainless days

400  three scenarios (Fig. S7): 1) Following a between two consecutive precipitation events.

401  rainfall event (28 mm on July 5, 2018), HR in the top 60 cm of soil profile was minimal at 0.13

402 mm d, indicating limited driving force for water redistribution when soil moisture was

403  abundant. 2) During a transition period between rainfall events (July 5-10, 2018), HR gradually

404  increased but remained moderate, ranging from 0.13 to 0.20 mm d', suggesting a progressive

405 activation of the redistribution process as soil began to dry. 3) During a prolonged dry period

406  (November 23-30, 2018), HR peaked at 0.20-0.52 mm d™', demonstrating enhanced

407  redistribution activity in response to the development of soil moisture gradients.

408 4. Discussion

409 4.1 Patterns of hydraulic redistribution

410 Our findings support the hypothesis that upward HR is the dominant form of HR in dryland
411  ecosystems due to limited precipitation amount and sporadic rainfall events (Fig. S7). This

412  prevalence of upward water movement is characteristic of semi-arid regions, where deep-rooted

413  plants often redistribute water from moist deeper layers to drier surface soils during periods of
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414  water stress (Caldwell et al., 1998; Ryel et al., 2002). Notably, the most pronounced HR

415  occurred in the topsoil layer (5, 15, and 30 cm), (Fig. 3b), which can be attributed to vertical root
416  distribution, with over 50% of root biomass concentrated in the top 30 cm (Dsg = 25 cm) of the
417  soil profile (Fig. S8). This pattern aligns with findings of Xing Ming Hao et al. (2013), which
418  suggest that deeper root distributions extend HR to deeper soil layers, while shallower root

419  systems enhance HR in the topsoil layers due to higher root density and activity (Fig. S8).

420 Our model simulations estimated HR rates in range 0.10-0.53 mm d! for top 60 ¢cm soil
421  depth (Fig. S7), values that fall within the broader range of 0.04 to 3.2 mm d™! reported in the
422  comprehensive review by Neumann and Cardon (2012) but exceed the upper limit of the 95%
423 confidence interval of 0.014-0.475 mm d! reported by Yang et al. (2022) for desert or sparsely
424  vegetated ecosystems, which synthesized empirical observations and modeling estimates of

425  average water movement attributed to HR.

426 The direct impact of HR on hydrological processes should be evident in the soil profile water
427  content. We tested this by comparing SWC model simulations in TECO with and without HR
428  processes, to observed SWC time series at four depths (Fig. 6). We found that cumulative effects
429  of HR on soil moisture vary with depth, primarily due to the non-uniform root biomass

430  distribution throughout the soil profile (Fig. S8). The most pronounced effects of HR were

431  observed in the topsoil layers (5, 15, and 30 cm), where average daily water content increased by
432 up to 60% compared to simulation without HR. This increase was driven by upward HR,

433 especially during dry-down periods (Fig. 3b, and 6).
434

435
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Figure 6: Relative change in soil water content (SWC) (%) compared to observed SWC at 5, 15,
30, and 60 cm depths. The color gradient represents the magnitude of relative change in SWC,
calculated as (HR—No HR)/No HRx100, with HR and No HR indicating simulations with and
without hydraulic redistribution."
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436 4.2 Effects of precipitation variability on HR

437 Our findings support the hypothesis that the precipitation pattern significantly (p-value <

438  0.001) influences the magnitude and variability of HR (Figs. 3a-b, and S7). The rate of HR in the
439  topsoil profile (<60 cm) exhibited a consistent response pattern to precipitation events,

440  characterized by sharp decreases following large rainfall, and gradual recovery to pre-rain levels.
441  These dynamics were particularly evident during years with frequent large precipitation events
442  (2018-2019), where HR rates oscillated between 0.04- and 0.20-mm d™'. For instance, after an 18
443 mm rainfall event on July 24, 2018, HR rates dropped below 0.15 mm d' before recovering to
444 0.30 mm d! within 10 days. This pattern suggests a recharging effect: initially, infiltrating

445  rainwater increases soil water potential in both shallow and deep layers, reducing the gradient

446  between shallow and deep layers and temporarily suppressing HR (Xing Ming Hao et al., 2013).
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447  However, as water redistributes through the soil profile, new hydraulic gradients develop,
448  leading to enhanced HR activity. In this phase, roots actively redistribute water from newly
449  moistened deep layers to drier shallow layers, consistent with findings from Yu and D'Odorico

450  (2014) and (Ryel et al., 2002).

451 Our model predicted that HR rates were generally higher during rainless periods compared to
452 rainfall periods within a given year. For instance, during the prolonged dry period in 2020 (driest
453  year with few small precipitation events), HR rates remained consistently high, 0.17-0.40 mm d
454 !, with minimal fluctuations. The consistent high HR rates, likely arises from more pronounced
455  soil water potential gradients derived from sustained plant water demand and surface evaporation

456  in the absence of frequent precipitation (Fu et al., 2016; Meinzer et al., 2004).

457 Seasonal trends include higher HR rates (0.12-0.53 mm d™'") during the drier periods

458  (typically November to May) and lower rates (0.10-0.30 mm d™') during the monsoon season
459  (usually June to October) (Fig. S7). This seasonality underscores the influence of both

460  precipitation patterns and potential evapotranspiration on HR dynamics, highlighting that HR is
461  likely more pronounced during drier seasons when soil moisture gradients are likely to be more
462  substantial due to reduced precipitation and potentially higher evaporative demand (Fu et al.,

463  2016; Scott et al., 2008; Yu & D'Odorico, 2014).

464 4.3 Limitation and future perspectives

465 While our modeling study provides valuable insights into HR dynamics in PJ woodlands,
466  several limitations should be noted: (1) The model does not account for inter-annual changes in
467  vegetation cover or species composition. Variations in plant functional types and leaf area index
468  may influence soil moisture and HR, and incorporating these dynamics could improve long-term

469  simulations. (2) We focused on dominant tree species at our study site, but other plants may

24



https://doi.org/10.5194/egusphere-2025-4608
Preprint. Discussion started: 17 November 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

470  Dbenefit from water redistributed by these trees, affecting ecosystem water dynamics. (3) We did
471  not include stem water refilling or nighttime transpiration reported by Howard et al. (2009);
472 Neumann et al. (2014) which could influence the magnitude of HR. (4) Finally, future studies
473 could explore the role of HR in regulating ecosystem functions, such as carbon exchange and
474  evapotranspiration, and examine whether incorporating HR improves predictions of ecosystem

475  carbon dynamics proportionally to its effects on soil water.

476 5. Conclusions

477 This study demonstrates the role of hydraulic redistribution (HR) in soil water dynamics in
478  pifion-juniper woodlands. By integrating HR processes and observations into the Terrestrial
479  Ecosystem Model (TECO) via data assimilation, we successfully constrained model soil

480  hydraulics parameters and improved simulations of soil water content across multiple depths,
481  particularly in shallow soil layers (0-30 cm) and during dry periods. Our model results showed
482  that HR rates vary with the length of dry spells between rainfall events, generally decreasing
483  with increasing precipitation magnitude and frequency, with HR rates ranging from 0.10 to 0.50
484 mm d' as conditions transitioned from wet to dry. Consequently, HR increased soil moisture in
485  topsoil layers by up to 60% during dry periods, with upward HR emerging as the dominant flux,
486  especially in the top 30 cm. These findings underscore the potential influence of HR during dry
487  periods and highlight its role in sustaining soil water availability for vegetation. Future research
488  should explore how HR-mediated water redistribution affects ecosystem functions including

489  carbon exchange, and evapotranspiration.
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