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1 Abstract

15 Rainfall variability in West Africa, driven by the West African Monsoon, poses significant chal-
16 lenges to agricultural productivity and livelihoods. In this context, understanding root-zone soil
17 moisture (RZSM) dynamics is crucial since it serves as the primary water source for crops. While
18 surface soil moisture (SSM) has been widely studied, research on RZSM remains limited. This
19 study investigates RZSM dynamics across West Africa from 2003 to 2019 using multiple satellite-
20 derived and model-based datasets, including ESA CCI v0.81, GLWS2.0, WaterGAP, CLM5.0, and
21 in-situ observations. Results indicate that ESA CCI exhibits the strongest temporal and spatial
2 alignment with ground measurements, whereas CLMb5.0 and GLWS2.0 effectively capture latitu-
23 dinal soil moisture gradients associated with climatic zones. A novel application of an analytical
24 solution to Richards’ equation was employed to translate surface moisture signals to deeper soil
25 layers, demonstrating GLWS2.0’s superior ability to reproduce seasonal patterns at various depths,
26 notably in Benin and Niger. Despite challenges posed by sparse in-situ data and vegetation-induced
27 signal attenuation, the study highlights the significant benefits of GRACE/-FO data assimilation
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in enhancing model accuracy. The proposed depth-projection methodology improves the vertical
representation of soil moisture, offering new insights into the dynamics of surface and subsurface
water storage. These findings have important implications for agricultural forecasting, sustain-
able water resource management, and climate adaptation strategies in regions where accurate soil

moisture data are essential for resilience planning.
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Highlights

e Comprehensive assessment of root-zone soil moisture (RZSM) dynamics across West Africa

(2003-2019) using multiple satellite- and model-based datasets.

e Novel depth-projection approach based on Richards’ equation translates surface soil moisture

signals to deeper layers, enhancing geodetic representation of subsurface water storage.

e ESA CCI shows the strongest temporal alignment with in-situ observations, while GLWS2.0 and

CLMS5.0 capture latitudinal and seasonal SM patterns effectively.

e Integration of GRACE/-FO satellite gravimetry improves GLWS2.0 accuracy, supporting geodetic-

based monitoring of water resources and hydrological forecasting.

e Methodological framework advances understanding of surface and subsurface water mass redistri-
bution, contributing to geodesy-informed sustainable water management and climate adaptation

strategies.
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s 1 Introduction

4 Rainfall in West Africa is largely driven by the West African Monsoon (WAM), characterized by
so significant spatial and temporal variability (Diatta & Fink, 2014). This variability, often sporadic
51 and unpredictable, increases the region’s vulnerability to droughts and floods, severely impacting
sz agricultural productivity and leading to crop failures in rainfed systems (Sonwa et al., 2017; Galle
53 et al., 2018; Myeni et al., 2019). As a result, smallholder farmers, reliant on rainfed agriculture and
s« constrained by financial limitations, face heightened risks to their livelihoods (IPCC, 2023). These
55 challenges significantly hinder economic development and exacerbate poverty in this already vulnerable
ss region, which relies on agriculture for the livelihoods of around 70% of its estimated 420 million people,
57 with a rapidly growing population at an annual rate of 2.2 — 2.8% (UN Department of Economic and
ss Social Affairs, 2020). Root-zone soil moisture (RZSM) which refers to the amount of water stored in the
5o soil within the root zone of vegetation, typically the top 1-2 meters serve as the primary water source
60 for crops (Helman et al., 2019). RZSM directly influences plant growth, agricultural productivity,
61 and water availability for ecosystems (Pegram et al., 2010; Seneviratne et al., 2010; Chartzoulakis &
2 Bertaki, 2015; Helman et al., 2019). Unlike surface soil moisture (SSM), which can quickly change due
63 to weather conditions, RZSM represents the longer-term water storage available to plants, playing a
6« key role in determining drought resilience and crop yields (Chartzoulakis & Bertaki, 2015). Given that
s approximately 75% of the total crop area harvested globally consists of non-irrigated crops (Portmann
6 et al,, 2010; Grillakis et al., 2021), the importance of RZSM in global food production and food
67 security becomes even more pronounced. Monitoring RZSM is essential for understanding the water
¢ balance (Koster et al., 2004), drought and flood warning (Gavahi et al., 2020; Watson et al., 2022),
¢ managing irrigation (Rodriguez-Iturbe & Porporato, 2007; Brocca et al., 2017), and modeling climate
70 impacts on agriculture and natural vegetation (Ruichen et al., 2023). It potentially enhances forecasts
7 and climate projections, guides water resources management, and supports precision agriculture by
7 optimizing water usage.

73 Currently, soil moisture products (SSM or RZSM) can be generated using three different key
7+ approaches: in situ observations, remote sensing, and modelling (Brocca et al., 2017). In situ ob-
75 servations involve ground-based sensors that measure soil moisture directly at specific points using
76 gravimetric, tensiometric and nuclear methods (Myeni et al., 2019). These measurements are reason-
77 ably accurate and can capture soil moisture at different depths. However, while in situ observations
78 offer precision, they are labor-intensive and expensive to maintain, and their limited spatial coverage
7o makes them difficult to scale across large regions (Dorigo et al., 2013). This poses challenges in using

g0 them for extensive, long-term monitoring over large areas. Nevertheless, the point-scale ground ob-
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g1 servations are often used as a benchmark for calibrating and validating soil moisture estimates from
&2 remote sensing and model simulations (Su et al., 2014; Brocca et al., 2017; Myeni et al., 2019). In
83 recent years, significant efforts have been made to establish in situ soil moisture monitoring networks
s across Africa, particularly exemplified by the AMMA-CATCH (African Monsoon Multi-disciplinary
s Analysis—Couplage de I’Atmosphere Tropicale et du Cycle Hydrologique) observatory (Galle et al.,
s 2018). Some of the data collected from these networks have been integrated into the International Soil
&7 Moisture Network (ISMN)(https://ismn.geo.tuwien.ac.at/) (Dorigo et al., 2013). These sparse in situ
ss monitoring networks have played a crucial role in validating remotely sensed and simulated soil mois-
8o ture estimates over extended periods in various African regions (Jung et al., 2019). Remote sensing
90 utilizes various methods, such as microwave, optical, and thermal satellite sensors, to estimate surface
o1 soil moisture across large areas (Brocca et al., 2017; Myeni et al., 2019). It is an effective technique for
92 detecting the dynamic patterns of soil moisture on regional and global scales. Various satellite instru-
s ments, including the Soil Moisture Active Passive (SMAP), Soil Moisture and Ocean Salinity (SMOS),
o« METOP-A/B Advanced Scatterometer (ASCAT), Advanced Microwave Scanning Radiometer—-EOS
s (AMSR-E), and products from the European Space Agency’s Climate Change Initiative (ESA CCI),
o have been successfully utilized to retrieve SSM at a global scale with a temporal resolution of 2 to 3
o7 days (Njoku et al., 2003; Bartalis et al., 2007; Kerr et al., 2012; Entekhabi et al., 2010; Dorigo et al.,
e 2017; Montzka et al., 2017; Chen et al., 2018). While the remote sensing approach offers broad spatial
9 coverage and frequent updates, it primarily measures soil moisture in the uppermost few centimeters
100 (0-5 cm), often missing the deeper root zone dynamics. Additionally, its accuracy can be impacted by
w1 factors such as vegetation, weather conditions, radio frequency interference (RFI), and topography,
102 which can reduce measurement reliability. In contrast, the GRACE (Gravity Recovery and Climate
103 Experiment) mission captures changes in total water storage by mapping variations in Earth’s gravity
w4 field (Tapley et al., 2004). It has been demonstrated that GRACE-observed Total Water Storage
105 Anomalies (TWSA) can be translated into surface or root zone soil moisture (SSM or RZSM) using
106 a physically based approach (Grippa et al., 2011; Sadeghi et al., 2020). Although GRACE-based soil
107 moisture data have lower spatial resolution ~ 3° vs. 40 km for microwave data) and less frequent
108 temporal sampling (monthly vs. daily), data assimilation and downscaling algorithms can be applied
100 to make these two approaches comparable (Gerdener et al., 2023). Additionally, GRACE data are not
o affected at all by vegetation density and RFI. This study will incorporate this approach. The modelled
m  data approach uses simulations that integrate climatic, soil, and vegetation information to estimate
112 both surface and root zone soil moisture across various spatial and temporal scales. Whether based

us  on hydrological or land surface models, both approaches rely on similar equations to simulate soil
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14 moisture according a water balance approach (Famiglietti & Wood, 1994). Modelling allows for soil
15 moisture estimates to be generated at high spatial and temporal resolution, offering detailed insights
16 into soil moisture dynamics. However, while models provide comprehensive coverage and long-term
u7 predictions, their accuracy is highly dependent on the quality of meteorological input data and the
us assumptions made in parameterization, which can introduce significant uncertainties. As a result,
19 each modelling approach has its strengths and limitations, and combining multiple methods can pro-
120 vide a more robust and reliable understanding of soil moisture dynamics. While numerous studies
121 have focused on monitoring remotely sensed and modeled surface soil moisture data over West Africa
122 (Pellarin et al., 2009a,b; Gruhier et al., 2010; Baup et al., 2011; Fatras et al., 2012; Louvet et al.,
123 2015; Faridani et al., 2017) using in situ data, there has been little to no research, to our knowledge,
122 specifically examining root-zone soil moisture in this region. Furthermore, while the remote sensing
125 products monitored in this area primarily involve AMSR-E satellite data (Pellarin et al., 2009a,b;
16 Gruhier et al., 2010), the SMOS satellite mission (Louvet et al., 2015; Jung et al., 2019), and ASCAT
17 satellite data (Jung et al., 2019), soil moisture products based on ESA CCI, CLM5.0, and GRACE/-
128 FO assimilated data have not been comprehensively validated in this region. However, while many
129 physically-based land surface models (e.g., CLM5.0) simulate the soil moisture patterns at different
130 depths by numerically solving Richard’s equation, this remains a challenge for conceptual hydrological
131 models. This study aims to retrieve the root-zone soil moisture from a conceptual model, WaterGAP,
12 as well as the GRACE/-FO-based global assimilation model GLWS2.0 which is based on WaterGAP.
133 The dynamics of these estimates will be validated against in-situ measurements, while additional soil
13« moisture products, including ESA CCI and CLMS5.0, will be used for comparative analysis across the
135 West Africa region.

136 Our main research questions are:

137 1. What is the correlation between the SM from the GRACE/-FO-based global assimilation model

138 (GLWS2.0) and ESA CCI, in-situ data, and other land surface models in the region?
139 2. How can the water content in the single soil moisture reservoir from the conceptual hydrological
140 models be translated to a soil moisture vertical profile ?

141 3. How does the root-zone soil moisture (RZSM) changes at each retrieval depth over 2003—2019 in
142 this region? What is the correlation of its dynamics with the physically-based model (CLMS5.0),

143 ESA CCI products, and in-situ data?

us The analytical solution of Richards’ equation (Sadeghi et al., 2020) will be used to translate water

s content from the single soil moisture reservoir in GLWS2.0 and WaterGAP to different depths. Our
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us approach offers a distinct advantage over that of Sadeghi et al. (2020), who assumes that GRACE
w7 TWSA (Total Water Storage Anomaly) data have minimal contributions from sources such as ground-
us water, surface water, or lateral groundwater flow. In their case, any TWSA variation not physically
1o attributable to soil moisture and incompatible with their model is classified as error. By contrast, we
150 work directly with the soil moisture anomaly derived from GLWS2.0 (or WaterGAP), where non-soil
151 moisture components have already been filtered out, offering a cleaner signal for analysis. However,
152 it is important to note that complete separation of these additional hydrological signals from soil
153 moisture may still be imperfect within the assimilation or WaterGAP model. WaterGAP (and thus
152 GLWS2.0) represents soil moisture via a single layer that extends to the root zone. The model simu-
155 lates varying surface water storages (lakes, wetlands, rivers, and reservoirs) and includes a conceptual
16 groundwater representation. Human water use, i.e. surface and groundwater abstractions, are in-
157 cluded in WaterGAP. This approach provides a promising solution to not only expand the shallow
158 vertical support of the microwave satellites with good spatial resolution but also to better isolate the
19 groundwater storage dynamics from the GRACE/-FO-based assimilated signal. This is particularly
160 relevant in West Africa, where soil moisture has been shown to be the dominant component of Total

161 Water Storage (TWS) (Getirana et al., 2017; Jung et al., 2019; Jensen et al., 2024).

w 2  Study area and datasets

3 2.1 Study area

164 The study area encompasses West Africa, spanning from 17°W to 17°E and 2°N to 21°N (Fig. 1). The
165 terrain in this region is predominantly low and flat (Tappan et al., 2016). The area is characterized
166 by a latitudinal gradient that includes three bioclimatic regions, progressing from north to south: the
167 Sahelian, Sudanian, and Guinean zones (Galle et al., 2018). This gradient results in varying vegetation
18 patterns (Fig.2), with the arid north experiencing a single rainy season and sparse vegetation, while
160 the south has two rainy seasons and dense vegetation (Fink et al., 2010). Three meso-scale sites
10 located at different latitudes in Benin, Niger, and Senegal, where AMMA SM observations have
i1 undergone advanced quality control procedures by the ISMN, have been selected for analysis in this
12 study (Fig. 1). The Benin site, situated in the Sudanian climate zone, features sandy clay loam soils,
173 woody savanna vegetation, and gently undulating topography (630-225 m asl), with about 1200 mm
i7s  of annual rainfall concentrated in a single rainy season from April to October (Galle et al., 2018).
175 Both the Niger and Senegal sites are located in the Sahel region characterized by a single rainy season

176 between June and October. The Niger site experiences a semi-arid tropical climate, characterized by
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177 a long dry season from October to May, with an average yearly temperature of 29.2°C and 520 mm of
s annual rainfall (1990-2007)(Galle et al., 2018). The landscape features flat lateritic plateaus and sandy
179 valleys within the Tullemmeden sedimentary basin, which has endorheic hydrology and a continental
180 terminal aquifer. Soils are sandy and weakly structured, contributing to erosion. Additionally, the
181 original woody savannah has transformed into a mosaic of rainfed millet fields and shrubby savannah,
12 mixed with degraded tiger bush vegetation (Cappelaere et al., 2009). The Senegal site, situated in the
183 Dahra region (15.432°W — 15.403°N), has a Sahelian climate with a mean yearly temperature of 29°C,
184 peaking in May, and an annual precipitation of approximately 420 mm. The area features herbaceous
185 vegetation dominated by annual grasses and a tree cover of about 3%, with most water bodies being

186 temporary, except for a few permanent ponds (Soti et al., 2010; Guilloteau et al., 2014).

Cameroon |

¢
i

Vaoundé

Douala
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Figure 1: Location of the three meso-scale sites in Benin, Niger, and Senegal where in situ SM stations
are installed. Purple boxes of 0.5° pixel of size include the in situ soil moisture stations illustrated with
green dots (04 for Benin site, 03 for Niger site, and 01 for Senegal site). The red rectangular region is
where the grid validation (ESA CCI versus CLM5.0, GLWS2.0 and WaterGap) is done. Photos used
in this figure are adapted from (Louvet et al., 2015)

w7 2.2 Datasets

18 2.2.1 WaterGAP and GLWS2.0

189 This study utilizes version 2.2e of the WaterGAP global hydrology model (Miiller Schmied et al.,
190 2021), which simulates daily water fluxes and storage on a 0.5° grid by solving water balance equa-
101 tions across ten water compartments. These compartments represent different storage components

192 within the hydrological cycle, including surface water (rivers, lakes, reservoirs, wetlands), soil mois-
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13 ture, groundwater, snow, glaciers, canopy water, and river floodplains. The model’s vertical water
14 balance includes components such as the canopy, snow, and soil moisture, while the lateral water
105 balance accounts for storage in groundwater, lakes, artificial reservoirs, wetlands, and rivers. The
196 vertical water balance is expressed in terms of water height (measured in millimeters), whereas the
197 lateral water balance is calculated using volumetric units (in cubic meters) (Miiller Schmied et al.,
108 2021). Unlike many land surface models, WaterGAP incorporates human water use for various pur-
199 poses, including irrigation, livestock, industry, domestic consumption, and cooling of thermal power
200 plants, and is calibrated against long-term annual river discharge. A significant update in this ver-
201 sion is the enhanced algorithm for surface and groundwater abstraction. The model employs forcing
202 data from the homogenized GSWP3-W5ES5 reanalysis dataset, which includes precipitation, temper-
203 ature, long-wave radiation, and shortwave radiation (Lange et al., 2022), as well as information on
2 the characteristics of surface water bodies (lakes, reservoirs, and wetlands), land cover, soil type,
205 topography, and irrigated areas. Since its inception in 1996, WaterGAP has been instrumental in
206 assessing the dynamic development of the human-water system, both historically and into the future,
207 particularly in the context of climate change. The model has significantly improved our understanding
208 of changes in continental water storage, with a particular emphasis on the overuse and depletion of
200 water resources (Miiller Schmied et al., 2021). GLWS 2.0, or the Global Land Water Storage dataset
210 version 2.0, is developed by assimilating monthly Total Water Storage Anomaly (TWSA) maps from
a1 GRACE and GRACE-FO into the WaterGAP global hydrological model. The Ensemble Kalman
212 Filter (EnKF) (Evensen, 2003) was used for assimilation, which is implemented through the Parallel
213 Data Assimilation Framework (PDAF) (Nerger & Hiller, 2013). The assimilation process includes
as vertical disaggregation to optimally combine GRACE/GRACE-FO data with inputs from the hy-
25 drological model, resulting in ten distinct water compartments. GLWS 2.0 covers global land areas,
26 excluding Greenland and Antarctica, with a spatial resolution of 0.5° and spans the period from 2003
a7 to 2019, ensuring no gaps in the data. It also incorporates monthly uncertainty quantification at the
28 grid cell level. Key improvements in GLWS 2.0 compared to its predecessor, GLWS 1.0, include the
210 integration of the updated WaterGAP version 2.2e and minor bug fixes in the assimilation process.

20 Comprehensive details about the development of GLWS 2.0 can be found in Gerdener et al. (2023).

21 2.2.2 CLM5.0

222 In this study, we use CLM5.0, the latest version of the Community Land Model (CLM), which operates
23 in land-only mode over the CORDEX-Africa domain (Bayat et al., 2023; ?). This configuration uses

24 atmospheric reanalysis datasets as external forcings rather than coupling CLM5.0 with an atmospheric
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225 model. CLM5.0 simulates key biophysical and biogeochemical processes, such as the interaction be-
26 tween incoming radiation and the canopy/soil, and the exchange of sensible heat, latent heat, and
27 carbon with the atmosphere (Lawrence et al., 2019). Additionally, the model incorporates snow accu-
»s mulation and melting, along with water and energy transport in the soil. It captures processes such
29 as infiltration, surface runoff, deep percolation, stomatal physiology, and photosynthesis. To account
230 for land surface variability, CLM5.0 divides each grid cell into multiple land units with unique soil or
231 snow columns and plant functional types (PFTs), allowing for a more nuanced representation of surface
22 heterogeneity (Lawrence et al., 2019). Compared to earlier versions like CLM4.5, CLM5.0 provides
233 enhanced accuracy in simulating hydrological and ecological processes and introduces a more explicit
234 representation of human land management, making it a powerful tool for analyzing land-atmosphere
235 interactions and land-use impacts (Lawrence et al., 2019). The model relies on a comprehensive set of
26 atmospheric forcing data, including precipitation, air temperature, shortwave and longwave radiation,
237 specific humidity, surface air pressure, and wind speed. This data is available at different temporal
238 resolutions: every 6 hours for CRUNCEP, every 3 hours for GSWP, and hourly for WFDES5. It oper-
230 ates at a high horizontal resolution of approximately 0.027° (around 3 km) with a 30-minute time step,
20 and output data are further aggregated to a monthly scale for the analysis. Soil moisture in CLM5.0
2a s expressed in volumetric units (cm®/cm?) for each soil layer, structured through a 25-layer soil model
22 extending to a depth of 42 meters. Of these, 20 layers are hydrologically and biogeochemically ac-
23 tive, providing the simulation of vertical soil moisture transport through the numerical solution of the
24 Richards equation (Zeng & Decker, 2009). This layered approach improves the model’s capacity to
s capture the vertical distribution of water in the soil, critical for understanding root-zone hydrological
26 processes. For further details on CLM5.0’s methods for simulating processes, surface characterization,

27 and vertical soil discretization, refer to Lawrence et al. (2019) and Oloruntoba et al. (2025).

us  2.2.3 In-situ soil moisture data

29 Soil moisture observations from three meso-scale sites in Benin, Niger, and Senegal (Figure 1) span-
20 ning from 2003 to 2019 were sourced from the International Soil Moisture Network (ISMN) (Dorigo
1 et al., 2011) to evaluate the accuracy of model-simulated soil moisture in both surface soil mois-
2 ture (SSM) and root zone soil moisture (RZSM). Table 1 details the geographical coordinates of the
253 soil moisture stations, land-cover types, and the depths of the available soil moisture probes. The
24 locations of the soil moisture stations within the 0.25° satellite pixels are illustrated in Figure 1.
25 Specifically, there are four stations in Benin (Belefoungou-top, Belefoungou-middle, Nalohou-top, and

26 Nalohou-middle), three stations in Niger (Banizoumbou, Tondikiboro, and Wankama), and one sta-
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257 tion in Senegal (Dahra). Each soil moisture dataset includes hourly observations in volumetric units
8 (cm®/cm?) at various depths, as outlined in Table 1. Only observations that have undergone rigor-
250 ous quality control procedures and were flagged as ”Good” by the ISMN, were selected for analysis
20 (Dorigo et al., 2013). This ensures that the in-situ data used is of the highest reliability, having passed
261 through stringent checks for accuracy, consistency, and completeness. By focusing exclusively on these
262 high-quality observations, we aim to minimize errors and uncertainties in the results, leading to more
263 robust and credible findings. Additional information regarding the instruments used and the data
264 quality control procedures for the observations can be found in the network reports and the associated

references, which are accessible at https://ismn.geo.tuwien.ac.at.

Table 1: Geographic coordinates, stations grouped by site, probe depths, and land-cover types where
the probes are installed.

[sites  [Stations Latitude Longitude  Probes depths (cm) Land-cover
Benin  Nalohou (top) 9.743° N 1.606° E 5,10, 20, 40, 60, 100 Mixed crops
|Nalohou (middle) 9.745° N 1.605° E 5,10, 20, 40, 120 Mixed crops
Belefoungou (top) 9.790° N 1.710°E 5, 10, 20, 40, 60, 100 Forest
‘Belefoungou (middle) 9.795° N 1.715°E 5, 10, 20, 40, 50, 100 Forest
Niger |Wankama 13.646° N 2632°E 5, 10-40, 40-70, 70-100, 100-130  Millet
|Banizoumbou 13.532° N 2.660° E 5 Fallow
| Tondikiboro 13.548° N 2.696° E 5, 10-40, 40-70, 70-100, 100-130  Fallow
Senegal |DAHRA 15.403°N 15.432°W 5, 10, 30, 50, 100 shrubland

%6 2.2.4 ESA-CCI soil moisture

27 The ESA-CCI is a global satellite-observed soil moisture (SM) dataset developed under the European
s Space Agency’s Climate Change Initiative (CCI). The ESA-CCI SM v0.81 is the latest version data
260 used in this study, providing daily estimates of global surface soil moisture, covering the top 2-
20 5 cm of soil, over a long term (1978-2022) at a spatial resolution of 0.25°. The ESA-CCI SSM
ann v0.81 dataset is generated by merging SM data from 12 single-sensor active and 5 passive microwave
272 sensors. For detailed information on the key features of these active and passive microwave sensors,
a3 please refer to Gruber et al. (2020). Despite some limitations associated with the chosen merging
274 algorithm and the quality of individual data sources, the v0.81 version has shown significant promise
215 for assessing model performance (Hirschi et al., 2023; Palagiri et al., 2024). In this study, the combined
26 product, which integrates soil moisture retrievals from both active and passive microwave sensors, is
277 selected, as it benefits from the strengths of both types of observations and generally outperforms
215 products that rely solely on single-sensor input (Gruber et al., 2020; Hirschi et al., 2023). The dataset
79 is available free of charge from the ESA website and other platforms, provided in volumetric units

20 (cm?®/cm®) and in NetCDF format, making it accessible for long-term climate and hydrological studies.

10
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A detailed description of the ESA-CCI SSM product can be found at: http://www.esa-soilmoisture-

ccl.org/node/139.

2.2.5 Land cover

The land cover data used in this study is sourced from versions v2.0.7cds and v2.1.1 of the Euro-
pean Space Agency’s Climate Change Initiative Land Cover (ESA CCI-LC) dataset, accessed from
https://www.esa-landcover-cci.org (ESA, 2024; last access: 31 August 2024). Version v2.0.7cds covers
the period 1992-2015, while v2.1.1 provides data for 2016-2019. However, for this research, the version

v2.0.7cds is used for the period 2003-2015, and v2.1.1 for 2016-2019.

ESA CCI Land Cover Map for West Africa(flags applied)
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Figure 2: Land cover map over the study area.

The ESA CCI-LC dataset offers global annual land cover maps at a 300-meter spatial resolution
in NetCDF format, spanning 1992 to 2019. These maps are produced by integrating observations
from multiple satellite sensors (e.g., MERIS, SPOT-VGT, PROBA-V) using time-series analysis and
supervised machine learning classification based on the Land Cover Classification System (LCCS)

(Defourny et al., 2023). The dataset’s accuracy has been validated by several studies (Defourny et al.,

11
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200 2023; Chisanga et al., 2024). The land cover map for this study (Figure 2) was generated by processing
205 NetCDF files, clipping the data to the West Africa region, and calculating the dominant land cover
206 class per pixel for the period 2007-2019, with key land cover types including cropland, tree cover,

207 shrubland, grassland, urban areas, and bare areas.

P Methods

200 The methods are organized into four main steps. The detailed procedure for retrieving root-zone
30 soil moisture from conceptual models (GLWS2.0 and WaterGap) is outlined in Section 3.1, while the
31 approach for assessing spatial footprint is discussed in Section 3.2. Data pre-processing procedure is

302 covered in Section 3.3, and the performance validation approach is presented in Section 3.4.

;s 3.1 Projecting root zone soil moisture to specific depth

3¢ An approach based on the analytical solution of Richards’ equation is used to translate the water
305 content from the single soil moisture reservoir in the conceptual hydrological models to different
ss  depths. Equation (1) below was applied to retrieve the soil moisture (SM) signal at any given depth,
sor  following the procedure outlined in (Sadeghi et al., 2020) :

00 920 00

308 a = D@ - k@ (1)

300 Where:

310 e 0 is the volumetric soil moisture content (cm?/cm?)

311 e { is the time (month),

312 e 2 is the soil depth (positive downward) (cm),

313 e D is the effective soil water diffusivity (an average value over the entire saturation range)
314 (cm? /month),

315 e k is the average slope of the soil hydraulic conductivity function, which describes the relationship
316 between unsaturated hydraulic conductivity K (cm/month) and volumetric soil moisture 6.

317 The soil hydraulic parameters D and K vary with soil type and are calibrated at each site according to
ais  the methodology outlined in Sadeghi et al. (2020). The equation (1) illustrates how the soil moisture
39 content, represented by prescribed boundary conditions, changes over time and depth due to soil water

a0 diffusion and conductivity. The closed-form solution for determining soil moisture at any arbitrary

12
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51 depth during the N*® time step with time intervals of AT (as shown in Equation (2)) is derived by
a2 utilizing Warrick (1975) approach to solve Equation (1). This solution is developed while following

33 the boundary and initial conditions specified in Sadeghi et al. (2020). This equation (2) is given by:

exp(—0.5Z + 0.25T)FiU(Z,T) for N=1
On(Z) =
exp(—0.5Z + 0.257T) {FlU(Z, T+ SN (B - F_)U(Z[N-i+ 1}AT)} for N > 1
328 (2a)
26 U(Z,T) = —=0.5exp(Z) (Z + T + 1) erfe [0.5 (% + ﬁ)]

27 + \/gexp ( {0,5 (% — \/T)} 2) + 0.5erfc [0.5 (% - ﬁ)] (2b)

328 where erfc is the complementary error function and T, Z and F are dimensionless representations

320 of time ¢, soil depth z, and net water flux f given by:

z-k
2=
t-k?
330 T= D (3)
_(f_k'eoo)
=)

31 A closed-form solution is obtained by assuming a stepwise surface flux input F defined as follows:
F for0<T < AT
Fy, for AT < T < 2AT

332 F(T) = . (4)

Fy for (N—-1)AT <T < NAT

333 O as defined in F', represents the long-term temporal mean of relative soil moisture at a given site. The
334 implementation of this approach in our research assumes that the time derivative of the soil moisture
35 component, derived from either the GLWS 2.0 or WaterGAP models, approximates the net water
356 flux f as shown in Eq. (3). Central differencing is employed to avoid introducing a phase lag. This
37 approximation yields the dimensionless flux F', which is used in Eq. (2a). The analytical formulation
s of Eq. (2) enables the computation of the soil moisture profile from GLWS 2.0 or WaterGAP at
339 monthly intervals, eliminating the risk of “truncation error” that can arise in numerical solutions of

o Richards’ equation (Zeng & Decker, 2009). The soil moisture profile at any desired depth, aligned

13
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s with the node depths of CLM5 for subsequent comparison, is calculated using Eq. (2).

w2 3.2 Spatial footprint

a3 Spatial footprint, or spatial representativeness, refers to the area surrounding a soil moisture (SM)
344 station within which temporal soil moisture dynamics closely align with those observed in nearby
s regions, as captured in model outputs or remote sensing data. This metric is critical for evaluating a
36 model’s ability to accurately reflect local soil moisture dynamics around each station, thereby support-
37 ing robust model validation. To understand spatial patterns of soil moisture dynamics in the study
us  area, an insightful approach based on the spatial representativeness is used (Nicolai-Shaw et al., 2015;
a9 Orlowsky & Seneviratne, 2014; Molero et al., 2018). This approach quantifies the area surrounding
350 a SM station of interest for which its temporal dynamics are representative, i.e., its spatial footprint.
351 This area is determined by first calculating Spearman’s rank-based correlation coefficient between the
352 time-series of the station under investigation and the surrounding pixels of the studied models and
353 then iteratively removing the furthest pixels away from the station of interest, focusing on keeping
ssa  only those pixels that have a correlation above a predefined threshold (denoted as rcut). The spa-
355 tial representativeness is ultimately defined by the area covered by the convex hull surrounding these
36 stations that exhibit a correlation above rcut threshold (Molero et al., 2018). A convex hull is the

357 smallest polygon that can enclose all the stations that meet the correlation criteria.

s 3.3 Pre-processing and performance validation approach of SM products

350 The soil moisture products used in this study vary in spatial and temporal resolution, layer depths,
30 and units. Consequently, these datasets undergo preprocessing to standardize their specifications for

s effective comparison through the following steps:

2 3.3.1 Scaling

363 To ensure consistency across the different soil moisture products used in this study, a few scaling

364 procedures are applied:

365 e The soil moisture products have varying spatial resolutions, such as 0.5° for WaterGAP and
366 GLWS2.0, 0.25° for ESA CCI, and 0.2° for CLM5.0. To enable consistent analysis, the outputs
367 from CLMS5.0 and ESA CCI are aggregated to match the 0.5° spatial resolution of WaterGAP
368 and GLWS2.0. In addition to this spatial scaling, all datasets are also aggregated to a monthly
369 temporal resolution to align with the standard resolution of GLWS2.0.
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e Furthermore, soil moisture is known to exhibit significant spatial variability. This presents
challenges in using single station measurements to accurately represent model simulations across
an entire soil moisture (SM) grid, which is set to 0.5° in this study. Direct comparisons between
grid-based simulations and point-based observations can introduce substantial errors (Bi et al.,
2016). To mitigate this, the study utilizes multiple in situ measurements at each site, which
are grouped within the 0.5°x0.5° model pixel resolution area, covering three sites (Benin, Niger,
and Senegal). The average of all SM measurements within each site is computed to provide the
best possible approximation of the soil moisture at ground level. This approach, adopted by
many authors such as Louvet et al. (2015), Bi et al. (2016), and Zhang et al. (2024), ensures
a more reliable comparison. To further refine the process, model values are interpolated to the

corresponding in situ points using the nearest neighbor method.

e Another challenge in the validation process is the mismatch in depths between the model-based
soil moisture (SM) estimates and the SM observations. The ESA CCI captures only near-surface
soil moisture, whereas CLM5.0 and in situ data provide soil moisture measurements at various
depths, including those within the root zone. In contrast, WaterGAP and GLWS2.0 represent the
water content within a single soil moisture reservoir spanning the entire root zone. Consequently,
these products are not directly comparable in terms of magnitude (Koster et al., 2009). This

issue is addressed in the first subsection.

3.3.2 Normalization

The soil water simulated by the GLWS2.0 and WaterGAP models, expressed as water depth (in mil-
limeters), cannot be directly compared to in-situ measurements, ESA CCI data, or CLM5.0 outputs,
which are reported in volumetric fraction. For validation purposes, numerous previous studies have
used a range of normalization techniques to address the inconsistencies among SM estimates derived
from global hydrological models, satellite-based retrievals, and in situ observations (Jung et al., 2019;
Tian et al., 2019). Common methods include percentile-based normalization, moving-window anoma-
lies, and statistical rescaling to standardize datasets, improving alignment across diverse sources and
enhancing the accuracy of validation analyses. In this study, we employed a percentile-based normal-

ization method using the 2nd and 98th percentiles (Eq. 4).

91& — ewt

we =
9fc - Owt
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399 In this approach, each data point in the time series 6; is normalized by subtracting the 2nd percentile
200 of the entire time series from individual monthly values 6., followed by dividing the resulting series
a1 by the difference between the 98th 6. and 2nd percentiles of the original time serie 6,,;. This method,
w2 referred to as "relative wetness” by Tian et al. (2019) and applied in previous studies (e.g., Tian et al.
a3 (2019) and references therein), is robust and less sensitive to outliers, making it particularly suitable
204 for our analysis. By normalizing in this way, the approach eliminates information about the original
205 scale, enabling comparisons to focus exclusively on the relative seasonal patterns within each dataset.
26 This avoids biases introduced by absolute magnitudes or imposed statistical alignments, as seen in

w7 methods like Raoult et al. (2018), ensuring meaningful comparisons across datasets.

208 3.3.3 Performance validation approach for SM products

a0 After converting soil moisture simulated in the model and derived from satellites into relative wetness,
410 quantitative evaluations were performed on the refined datasets. The seasonality of different SSM time
a1 series is analyzed by applying a 12-month rolling boxcar filter. This approach smooths out short-term
412 fluctuations, effectively isolating long-term variations with periods longer than one year. Subtracting
413 this smoothed, long-term component from the original time series reveals the residual signal, which
414 captures the episodic and seasonal variations occurring on timescales shorter than one year. For the
a5 validation of surface soil moisture (SSM) and the ESA CCI grid, only soil moisture probes located at
a6 depths < 5 cm were considered to ensure consistency. It was assumed that the microwave retrievals
a7 from ESA CCI represent moisture content within the top 0-5 cm of the soil column. Three performance
sis metrics were applied in this study: the Pearson correlation coefficient (R), bias, and root-mean-square
a9 error (RMSE) for validating with the in situ data, as well as R and RMSE for grid-based validation
a0 using the ESA CCI soil moisture data. R is a key statistical metric in this study, as it assesses how well
41 the temporal variability of in situ and soil moisture product time series align. It remains unaffected
42 by differences in mean or variance, which can arise from varying soil properties or scale discrepancies
223 between in situ data and model or satellite footprints (Koster et al., 2009; Gruber et al., 2020; Beck

w2s et al., 2021).

»s 4 Results and Discussion

w2 4.1 Performance validation of SSM products

«27  In this study, we employed two validation approaches. First, we validated surface soil moisture (SSM)

428 products specifically, ESA CCI, GLWS2.0, WaterGAP, and CLM5.0 by comparing model-soil moisture
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429 with in situ measurements taken at a depth of 5 cm across different study sites in Benin, Niger, and
a0 Senegal. Our analysis emphasized the temporal correspondence between the datasets (e.g., time/phase
a1 lags, dry and wet spell event periods) rather than the magnitudes. Additionally, deseasonalized
422 and episodic time series were compared with the corresponding in situ time series to further assess
433 consistency and alignment. Second, we compared the GLWS2.0, WaterGAP, and CLM5 models against
43¢ the ESA CCI gridded soil moisture data.

a5 4.1.1 In situ-based data validation of different SSM products

43 The normalized soil moisture time series from ESA CCI, GLWS2.0, WaterGAP, and CLM5.0, along

a7 with the in situ time series at each study site are overlaid and presented in Figure 3.
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Figure 3: Normalized soil moisture time series for in situ measurements, ESA CCI, GLWS2.0, Water-
GAP, and CLM5.0 at three distinct study sites at a depth of 5 cm.
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The ESA CCI, GLWS2.0 and CLM5.0 SM products effectively replicate the seasonal dynamics of
monthly surface soil moisture (SSM) observed in ground-based measurements across different sites,
demonstrating their robustness in capturing the effects of varying land cover and climate conditions

in the region. The seasonal changes in soil moisture at a depth of 5 cm show marked variability, likely
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42 driven by the influence of the monsoon across the West African region. Similar dynamics are observed
a3 over the Tibetan Plateau, where soil moisture cycles are shaped significantly by the South Asian
ss  summer monsoon (Bi et al., 2016). These patterns underscore the importance of regional monsoon
w5 systems in determining soil moisture fluctuations across distinct climatic zones. In situ observations
a6 in Niger and Senegal reveal a typical Sahelian seasonal cycle, marked by a distinct wet season from
47 June to October, while the Benin site, located in the Sudanian climate zone, experiences a rainy
wg  season extending from April to October, along with a longer monsoon period. The statistics from
49 the normalized SSM signals, as presented in Table 2, highlight the performance of various datasets in
w0 terms of synchronization and correlation with in-situ measurements. In Benin, ESA, GLWS2.0, and
st WaterGap generally exhibit strong synchronization, with time lags close to 0 months. These datasets
a2 also demonstrate high correlations (ESA: 0.894, WaterGap: 0.856, GLWS2.0: 0.752). In Senegal,
a3 these same datasets show minimal time lag (ranging from 0 to 1 month), though the correlations
s are somewhat weaker (ESA: 0.646, WaterGap: 0.637, GLWS2.0: 0.574). In Niger, ESA remains
ss5 well-aligned with in-situ measurements (0-month lag and a 0.864 correlation), while both GLWS2.0
w6 and WaterGap experience slight delays (1-month lag), accompanied by weaker correlations (0.655 and

w7 0.515, respectively).

s 4.1.2 SSM seasonality

as9 To better highlight events in the time series, a deseasonalization method is applied. The seasonal

460 maps derived from this process are presented in Fig. 4.
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Figure 4: Episodic and Deseasonalized time series for soil moisture across study sites.

461 The analysis of episodic and deseasonalized time series for soil moisture across Senegal, Niger,

a2 and Benin reveals distinct regional patterns influenced by the West African Monsoon (WAM). In the

463 Sahelian zones of Niger and Senegal, typical seasonal cycles show sharp increases in soil moisture during

s+ the monsoon (June to October) and declines in the dry season (November to May). Deseasonalized

465 data highlight anomalies, such as unseasonal rainfall or dry spells, which suggest shifts in the timing

466 or intensity of the monsoon and potential impacts of climate variability, such as droughts or flooding.

ss7  In Benin, located in the Sudanian climate zone, a longer rainy season (April to October) leads to a

468 more extended period of increased soil moisture, with anomalous events like flooding or unexpected

40 dry spells reflecting changes in rainfall distribution. Overall, deseasonalizing the time series reveals

470 how soil moisture is sensitive to shifts in the monsoon, with delayed rains in the Sahel potentially

an1 causing droughts, while early or heavy rains in Benin could lead to flooding or soil saturation. The

a2 correlation between the seasonality of the ESA CCI product and the in situ data is generally high,

a3 exceeding 0.9 for episodic time series across all sites. At the Benin site, ESA CCI demonstrates the

474 strongest performance, followed by the assimilation-based model GLWS2.0. Meanwhile, at the Niger

a5 and Senegal sites, WaterGAP also performs well, ranking closely behind ESA CCI.
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Table 2: Statistics from the normalized SSM time series.

Benin Niger Senegal
Lag (month) corr bias  rmse  |Lag (month) corr bias rmse [Lag (month) corr  bias  rmse
Insitu - ESA 0 0.894 -0120 0178 0 0.864 -0073 0.164 0 0646 0046 0214
Insitu - GLWS2.0 0 0752 0161 0.284 1 0.655 012 0.276 0 0574 op222 0356
Insitu - WaterGap 0 0.856 0.060 0211 1 0515 op.ae1 0312 1 0637 0241 0351
Insitu - CLM5 6 0618 -0.168 0.548 -18 0.497 0183 0464 17 0437 -0.112 0470

Table 3: Statistics from the normalized SSM time series.

Benin Niger Senegal
corr bias rmse  |corr bias rmse |[corr bias  rmse

Episodic time series

Insitu - ESA 0932 -0.003 0128 0926 -0.006 0123 0.900 -0.033 0158
Insitu - GLWS2.0 0762 0002 0225 0617 o000 0234 0661 -p.o14 0215
Insitu - WaterGap 0.861 0002 0200 0.509 o000 0251 0702 0008 0201

Insitu - CLM5 0710 -0.006 0.240 0505 -p.002 0224 0345 0017 0256

Deseasonalized time series
Insitu - ESA 0765 -0.117 0123 -0.182 -0.067 0.108 0340 0082 0178

Insitu - GLWS2.0 0400 0158 0174 0043 0119 0145 0470 o0.238 0309
Insitu - WaterGap 0588 0098 0079 -0.287 o0.161 0.188 0412 0246 0308

Insitu - CLMS 0.096 -0.175 0.208 0046 -0.168 0.188 0350 -p.172 0280

a6 4.1.3 ESA CCI grid based evaluation of the different models

s To evaluate the accuracy and performance of the global models used in this study (GLWS2.0, Wa-
sz terGAP, and CLM5.0) a grid-based comparison was conducted using remotely sensed surface soil
a9 moisture (SSM) data from ESA CCI. Figure 4 displays the Pearson correlation coefficient (R) and
a0 root-mean-square error (RMSE) metrics, providing insights into how well the GLWS2.0, WaterGAP,
41 and CLM5.0 models perform relative to the ESA CCI grid. In this figure, gaps in the data particu-
sz larly noticeable in forested and densely vegetated areas (shown as white regions near the coastline)
ss3  highlight areas where soil moisture estimates are challenging. This data masking in the ESA CCI
s8¢ SSM datasets occurs because microwave-based observations typically exclude areas with moderate to
a5 dense vegetation due to the strong attenuation of soil signals by the vegetation canopy (Dorigo et al.,
s 2017).

487 The figure also reveals that the patterns in RMSE and correlation metrics vary with land cover
a8 type, demonstrating that land cover exerts a clear influence on the performance of these models.

a0  GLWS2.0 shows a notably lower RMSE than the other models across the region and exhibits strong
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a0 spatial consistency across various land cover types. The lowest RMSE values for GLWS2.0 are observed
401 in the semi-arid Sahel regions, likely due to its effective assimilation process that better captures soil

moisture dynamics in these environments.
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Figure 5: Pearson correlation coefficient (R) and RMSE metrics illustrating the performance of
GLWS2.0, WaterGAP, and CLM5 models relative to the ESA CCI grid.

492

403 The figure underscores the complexities of soil moisture modeling across the diverse climates and
a0a land covers of the West African region, where model performance and error metrics vary significantly.
a5 While GLWS2.0 demonstrates spatial consistency across different land-cover types with relatively low
a6 RMSE values, this consistency is not as evident in other models. RMSE values are generally lower in
a7 the northern part of West Africa but higher in the southern regions. This variation may be attributed
28 to the sporadic nature of soil moisture in these areas, where conditions are highly dependent on
499 occasional rainfall events. In these regions, soil moisture levels can shift rapidly, with dry conditions

so0 prevailing and only brief, intense increases in moisture following rainfall. Both the satellite data
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s (ESA CCI) and the hydrological models encounter challenges in accurately capturing these short-lived,
s02  extreme moisture events. However, because arid and semi-arid regions experience prolonged dry spells,
s03  the overall RMSE between model predictions and satellite observations remains relatively low, despite
so4  the missed short-term fluctuations. This pattern underscores the inherent challenges of modeling soil
s05 moisture in arid and semi-arid regions, where infrequent but intense moisture changes add complexity
s6  to the dynamics. Additionally, the figures show that GLWS2.0 demonstrates stronger correlation with
soo ESA CCI data compared to other models, particularly WaterGAP, which does not show dependency
ss on land-cover types. This correlation is generally higher in southern West Africa and weaker in the
s00 north, where low soil moisture values make it difficult to discern clear patterns. In the southern regions,
510 more frequent and consistent rainfall leads to stable soil moisture levels, allowing moisture dynamics
s to be easier to predict. Consequently, the spatial correlation pattern between GLWS2.0 and ESA CCI
512 soil moisture data reveals a clear latitudinal gradient aligned with annual rainfall and climate zones.
513 This pattern is particularly evident in semi-arid regions that serve as transition zones between wet and
sie dry climates, where the highest correlation values are observed (i.e. area between 9.5°N and 15°N).
55 Such transitional regions, including the Indian subcontinent, the North American Great Plains, and
s16  southeastern Brazil, also exhibit increased correlation values due to pronounced seasonal and inter-
si7 - annual variability in soil moisture (SM) measurements (Al-Yaari et al., 2014). Similar findings were
sis reported by Jung et al. (2019) over West Africa, where an evaluation of spatial correlations between
s9 GRACE-based assimilation, SSM simulations and satellite-derived SSM products (ASCAT, SMOS,
s0  and SMAP) indicated strong correlation patterns in transitional zones. This consistency suggests that
521 SM measurements in these regions are particularly sensitive to seasonal dynamics and the distinct
52 cycles of wet and dry phases. Moreover, GLWS2.0 effectively captures the general pattern of soil

523 moisture in the south, where soils retain moisture better and vegetation moderates fluctuations.

s2 4.2  Spatial Representativeness

sss Figure 5 illustrates the Spatial Representativeness (SR) of ESA CCI, GLWS2.0, WaterGAP, and
526 CLMS5.0 using a cutoff Spearman correlation of 0.6, which effectively highlights how well each soil
527 moisture product reflects observed soil moisture dynamics at each study site. This similarity threshold
58 distinguishes between datasets that demonstrate moderate to strong agreement with in situ observa-
s20  tions, categorizing them as performing well (correlation > 0.6) or less effectively (correlation < 0.6) in
s3 capturing real-world variations. Notably, only ESA CCI and GLWS2.0 exhibit Spearman correlations
s31 greater than 0.6 with in situ data, indicating that these models accurately capture the spatial and

522 temporal dynamics of soil moisture within their respective spatial footprints. This alignment suggests
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533 that their soil moisture estimates correlate quite well with the observed time series. Furthermore,
s34 the efficacy of the GLWS2.0 assimilation process likely enhances its ability to reflect real-world soil
s moisture conditions, particularly in arid and semi-arid regions characterized by sporadic moisture
s3 changes. In contrast, the lower correlations observed for WaterGAP and CLMS5.0 point to limitations
537 in these models’ capacity to represent soil moisture variability at finer spatial scales. Overall, these
53  findings underscore the importance of integrating observational data to enhance model accuracy in
539 representing high-resolution soil moisture dynamics, suggesting that ESA CCI and GLWS2.0 are bet-
se0  ter suited for regional applications requiring high spatial sensitivity. Although the SR approach has
sa not previously been applied to the satellite/model SM products examined in this study, it has proven
sz effective for validating other SM products across various regions worldwide. For example, in the Little
53 Washita watershed in the United States and the Yanco area in Australia, spatial representativeness
saa  has been used to explore the connections between SM spatial scales and timescales within the 50
sis km satellite footprint of SMOS, AMSR2, and ECMWF SM products (Molero et al., 2018). These
se6  authors demonstrate that the spatial representativeness of surface soil moisture increases with longer
se7  timescales, but with greater variability in these regions. Nicolai-Shaw et al. (2015) showcased the
ss robustness and effectiveness of this approach for selecting appropriate soil moisture products. By
se9  applying it to analyze the temporal dynamics of absolute soil moisture across North America, they
ss0 compared in situ observations with the European Space Agency’s ECV-SM and ERA-Land datasets.
st Orlowsky & Seneviratne (2014) demonstrating the robustness of this parameter-free method in cli-
s52 matology to quantify the spatial footprint of weather stations across Europe. Their findings show
553 that temperature data generally exhibit greater representativeness than precipitation, with significant

554 seasonal changes influenced by atmospheric circulation patterns, particularly in boreal winter.
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High Correlation Points (rcut = 0.6) and Convex Hulls at Niger site
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Figure 6: Spatial footprint of soil moisture products represented by a blue circle with a radius of 5°
around each site, indicated in red. The convex hulls in light and dark blue represent the areas for
which ESA CCI and GLWS2.0 exceed the specified cutoff threshold of 0.6, respectively.
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ss5 4.3 Retrieving the root-zone soil moisture from GLWS2.0 and WaterGap and

556 validating its dynamics using in-situ and CLM5

ss7 - An analytical solution to Richards’ equation is used to convert water content from GLWS2.0 and
555 WaterGAP to different depths, enabling comparison of model-derived root zone soil moisture with

s in-situ observations across depths (Figures 6 to 9).
560 e Projection depth (node depth) = 5 cm

561 GLWS2.0, which incorporates GRACE/FO data, demonstrates superior performance than Wa-
s2 terGAP and yields results comparable to those of CLM5.0 in capturing the monthly root zone soil
s6s moisture (RZSM) dynamics at the Niger and Benin sites at this depth (Figure 6). However, the
se¢  temporal dynamics at the Senegal site are less consistent, particularly during the initial two years
s6s  (2004-2006) of the in situ observation system. This discrepancy can be partially attributed to the
se6  Senegal site being represented by a single station, unlike Niger and Benin, which have at least three
se7  stations at different locations. The limited data from a single station poses challenges in accurately
s representing model simulations over a broader 0.5° soil moisture grid study (Louvet et al., 2015). Fur-
seo  thermore, the WaterGAP model struggles to capture long-term (2006-2018) seasonal dynamics at all
s sites as recorded by in situ sensors. At a depth of 5 cm, a comparison of model performances in cap-
571 turing seasonal soil moisture dynamics shows that the ESA CCI model aligns most closely with in situ
s measurements. ESA CCI achieves the lowest RMSE and the highest R? values across all study sites:
55 Benin (RMSE = 0.194, R? = 0.714), Niger (RMSE = 0.166, R? = 0.663), and Senegal (RMSE = 0.213,
s R2 = 0.533). The GLWS2.0 assimilation-based model ranks second in accuracy, with corresponding
s values in Benin (RMSE = 0.336, R? = 0.224), Niger (RMSE = 0.317, R? = -0.031), and Senegal
s (RMSE = 0.307, R? = 0.403). CLMS5.0 provides performance metrics similar to those of GLWS2.0,
s77 - with values in Benin (RMSE = 0.339, R? = 0.229), Niger (RMSE = 0.339, R? = -0.351), and Senegal
ss (RMSE = 0.386, R? = 0.257). These results indicate that ESA CCI demonstrates the highest accuracy
579 in reflecting seasonal soil moisture patterns, while GLWS2.0 and CLM5.0 show comparable but lower

ss0 precision in fitting observed in situ measurements across all sites.
581 e Projection depth (node depth) = 10 cm, 40 cm, 100 cm

s2  Asillustrated in figures 7, 8, and 9, which represent RZSM at depths of 10, 40, and 100 cm respectively,
s3 both GLWS2.0 and CLM5.0 capture reasonably the seasonal dynamics of soil moisture at the Niger
ss¢  and Benin sites. These models show good alignment with in situ measurements across different

ses  depths, demonstrating their ability to reflect seasonal moisture changes as recorded by the local
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ss  sensors. However, the WaterGAP model does not reflect this seasonality effectively. At the Senegal
ss7  site, these seasonal patterns are notably absent, likely due to previously mentioned issues with the
s limited data from a single station, which may not fully represent local soil moisture variability at the
s model’s grid scale (0.5° resolution). Furthermore, seasonal consistency in GLWS2.0 projections across
s0 depths is less reliable at the Senegal site, situated near the coastline. This discrepancy could stem
sor  from coastal regions’ unique characteristics, such as tidal influences and potential signal interference
se2 from the nearby ocean, which may impact the accuracy of GRACE/-FO-based observations used
503 in the model’s assimilation process. In comparing RZSM estimates retrieved from GLWS2.0 and
s0a WaterGAP to in situ observations and the physically based model CLM5.0 at depths of 10 cm and 40
s05  cm, CLM5.0 demonstrates slightly better performance. This is reflected in CLM5.0’s smaller RMSE
sos  and higher R2 values across the study sites, indicating a closer alignment with observed moisture
so7  dynamics. However, at a depth of 100 cm, GLWS2.0 performs marginally better than CLM5.0, with
ses  slightly lower RMSE and higher R? metrics, suggesting a potential advantage of GLWS2.0 in capturing
s0 RZSM dynamics at this depth. Overall, while GLWS2.0 exhibits solid performance, particularly in
60 comparison to WaterGAP, WaterGAP’s RZSM estimates show more significant discrepancies from
601 both in situ measurements and the results provided by CLM5.0, especially at all depths observed. In
602 addition, CLM5.0 performed quite poor at 5cm, but relatively good at greater depths. This might
603 be related to inclusion of measurement data by ESA CCI at 5cm., while CLM5.0 did not have data
604 assimilation at this depth. The influence of 5 cm soil moisture measurements diminishes at greater
605 depths, while apparently the model for vertical soil moisture transport scheme that CLM5.0 uses is
606 better than for the other models. GLWS2.0, on the other hand, benefits from GRACE-based data

607 assimilation at depth, which likely explains its comparatively stronger performance at 100 cm.

« D Conclusions and implications

60 This study assessed root-zone soil moisture (RZSM) dynamics across West Africa between 2003 and
610 2019 using multiple data products, including GLWS2.0, WaterGAP, CLM5.0, ESA CCI v0.81 product,
611 and in-situ measurements. Results show that ESA CCI, CLM5.0 and GLWS2.0 effectively capture
612 the seasonal soil moisture dynamics, while WaterGAP performs less reliably. ESA CCI demonstrates
613 the strongest temporal alignment with in-situ observations, characterized by near-zero time lags and
614 high correlation across all regions. CLM5.0 and GLWS2.0 show moderate to good performance, with
615 ESA CCI remaining the most reliable overall in terms of both synchronization and correlation.

616 A grid-based validation of GLWS2.0, WaterGAP, and CLM5.0 models against ESA CCI data which

617 has shown high accuracy in the region reveals that CLM5.0 and GLWS2.0 correlate more strongly with
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s1s ESA CCI across West Africa, displaying a distinct latitudinal gradient aligned with annual rainfall
619 and climate zones. This gradient, particularly strong in the transition zones between wet and dry
60 climates (9.5°N to 15°N) as similarly noted by Jung et al. (2019), highlights their capacity to capture
621 spatial patterns in SM dynamics. In contrast, WaterGAP lacks this dependency on land-cover types,
62 suggesting its limitations in capturing regional SM variations.

623 To evaluate how well each product captures spatially coherent soil moisture (SM) dynamics, a
62« Spearman correlation threshold of 0.6 was applied. This helped identify the extent to which temporal
625 SM variations at a given location resemble those in surrounding areas. The results show that ESA
626 CCI, GLWS2.0, and WaterGAP consistently meet this threshold around the studied sites, indicating
627 that these models accurately capture the spatial and temporal dynamics of SM within their respective
s spatial footprints. Although this approach has not previously been applied to the satellite/model SM
620 products examined in this study, it has proven effective for validating other SM products across various
630 regions worldwide (Orlowsky & Seneviratne, 2014; Nicolai-Shaw et al., 2015; Molero et al., 2018).
631 However, it is important to acknowledge several limitations that may affect both the in-situ and grid-
632 based validation, as well as the spatial footprint analysis. First, the limited number of in-situ probes at
633 each study site may not adequately capture the local variability in soil moisture (SM), especially when
63 compared to the coarser 0.5° spatial resolution of the models. Additionally, the availability of ESA
635 CCI data is often restricted in forested and densely vegetated regions due to the strong attenuation
63 of microwave signals by vegetation canopies, as noted by Dorigo et al. (2017). Another source of
637 uncertainty lies in the mismatch between the spatial representativeness of point-based observations
e3s and the model grid size, which can introduce discrepancies in the validation process. Moreover, the
630 normalization applied to the datasets, while useful for comparative purposes, may have masked true
es0 differences in SM magnitudes across products. Finally, temporal gaps in data coverage—whether in
641 in-situ records or satellite-derived products—can affect the consistency and reliability of the validation
642 Outcomes.

643 An analytical solution of Richards’ equation was applied to translate water content from the
644 single soil moisture reservoir from WaterGAP and GLWS2.0 to various depths. At 5 cm soil depth,
65 ESA CCI consistently shows the closest alignment with in situ SM data, achieving the lowest RMSE
s and the highest R? values across all study sites. The GLWS2.0 and CLM5.0 models rank next in
a7 accuracy, with GLWS2.0 showing RMSE values around 0.317-0.336 and R? values from -0.031 to
es  0.403, while CLM5.0 demonstrates similar metrics, indicating that both provide comparable but less
640 precise tracking of observed soil moisture dynamics. The findings reinforce prior in situ and grid-based

eso validation results and spatial footprint analysis, which highlight GLWS2.0’s sensitivity to the top 0-5
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61 cm soil layer. At greater depths (10, 40, and 100 c¢m), the GLWS2.0 model reasonably captures the
652 seasonal SM dynamics observed in both in situ measurements and CLM5.0 outputs at the Benin and
653 Niger sites. However, these seasonal patterns are notably absent at the Senegal site, likely due to the
es+ limited number of probes and signal contamination from the nearby ocean.

655 Overall, GLWS2.0 performs better than WaterGAP at various depths, largely due to the advantages
66 provided by the GRACE/-FO data assimilation process, which enhances its accuracy in capturing root
67 zone soil moisture dynamics. Additionally, even without GRACE/-FO data assimilation, CLM5.0
ess  shows substantially better performance than WaterGAP across all study sites, reflecting its stronger
650 capability to track soil moisture variations in West Africa.

660 The novel application of this depth-translation approach, based on analytical solutions of Richards’
661 equation, enabled the projection of water content from a single soil moisture reservoir to various depths
62 across West Africa, providing insights that go beyond traditional SM analysis in the region. This
663 methodology not only extends the shallow vertical range typically captured by microwave satellite
664 sensors, but it also offers a way to differentiate surface and groundwater storage variations within the
o5 GRACE/-FO data, potentially expanding our understanding of water storage dynamics in complex
ess hydrological settings. By enhancing the representation of SM across different depths, this framework
667 can improve agricultural forecasting and deepen our understanding of water cycle interactions across
ess diverse landscapes, especially in regions where accurate SM data are essential for sustainable water

660 Inanagement.
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Figure 7: Soil moisture time series for in situ measurements, ESA CCI, GLWS2.0, WaterGAP, and
CLMS5.0 at three distinct study sites, projected at a depth of 5 cm.
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Figure 8: Soil moisture time series for in situ measurements, ESA CCI, GLWS2.0, WaterGAP, and
CLMS5.0 at three distinct study sites, projected at a depth of 10 cm.
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Figure 9: Soil moisture time series for in situ measurements, ESA CCI, GLWS2.0, WaterGAP, and
CLMS5.0 at three distinct study sites, projected at a depth of 40 cm.

43



https://doi.org/10.5194/egusphere-2025-4600
Preprint. Discussion started: 14 October 2025
(© Author(s) 2025. CC BY 4.0 License.

e Node depth = 100 cm

time series of in-situ data, CLM5 and GLWS projected at 1 m at Niger station

10| RMSD:GLWS (0.415), W WaterGap
R3: GLIS (-2 4Q7) Water = CLM5 Signalatlm
Bias: T. S (0.344), Wa%_ = In-Situ Soil Moisture at 1 m of depth
IS T
o8 LY [
| Ryl
o b ighy T IR
g HINRE A -0 !
A T
S liphy il i
g i i !g—!’.’n RN I
Pt iy I
af PN TTHETAR AR .
i Gt ik
. i \‘_ H l'\-)'-,j Y Y4\ \":‘_'IJ‘I\
10'05 ZObB 20‘10 20‘12 2014 ]OIlE 2018
Date
(a) Niger study site
time series of in-situ data, CLM5 and GLWS projected at 1 m at Benin station
10 WiaterGap P -t - " y -
1 ignalat1m > H P A kR . 3
i SO TRETACE N A
—_ GLWSSlwgnal Iy i !!L AN ! ‘l! i i 1 || ,” .\ ir
R N R
i H | I \ v Ry | ;
I NN !‘i,,-,f-,‘.'-n_ Mk IEL 1A
H !]\_./.H R \ YH |||\ 1 \'ﬂ III|”li "
E| i j i ‘.'l !!!'l il ,'l_!‘\_ﬂi WY M
RN PR U TR W N TR TP
ookt Li L. (RN IR (RIS
i ittt TR I R R A
of A iE L IR
; \ ',l R?}:‘: GLW\;&‘::BLWaterﬁap(o.aau].c 7 0469\ | "\l 1\:' \'\,l | :
ol N R B0 imerng oan) cils 0 ss 4w/ N
ZU‘UB ZUhB Zﬂlll} 20'[2 20‘14 IUIIE ZUIIE
Date
(b) Benin study site
time series of in-situ data, CLM5 and GLWS projected at 1 m at Senegal station
o AL A e
o8 I 7 PAY "iH T’“y’ Ihﬁ
7 TR I
| v Iy i
s 4 N NN
== CLMS Signal at 1 m ,/ r' l |l H |I |II | | .
—  In-Situ Soil Maisturs at 1 m of depth * il 1 | -] ‘| 1: l ELE
- GL\:\ISS\gnaI | - 1 " [T 'I i
| 4 SR T
| 7 Pre i 1!! s
i % - v il AL
02 '\_ 7 /',"’ H q\ll \H\“' ]
"""-K;wﬂilsn;ﬁl.wsm,mm WaterGap (0.419), CLM 1d !?zi) i
A R2 GLWS (-1 107); WaterGap-(-0.600), CLMb (- ,nr)
00 °a Bias: GLWS (0.342), WaterGap (0.2641, L5 (0001)
EObE EObB 20'10 20‘12 20‘14 20‘15

Date

(c) Senegal study site

EGUsphere\

Figure 10: Soil moisture time series for in situ measurements, ESA CCI, GLWS2.0, WaterGAP, and

CLM5.0 at three distinct study sites, projected at a depth of 100 cm.
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