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Abstract14

Rainfall variability in West Africa, driven by the West African Monsoon, poses significant chal-15

lenges to agricultural productivity and livelihoods. In this context, understanding root-zone soil16

moisture (RZSM) dynamics is crucial since it serves as the primary water source for crops. While17

surface soil moisture (SSM) has been widely studied, research on RZSM remains limited. This18

study investigates RZSM dynamics across West Africa from 2003 to 2019 using multiple satellite-19

derived and model-based datasets, including ESA CCI v0.81, GLWS2.0, WaterGAP, CLM5.0, and20

in-situ observations. Results indicate that ESA CCI exhibits the strongest temporal and spatial21

alignment with ground measurements, whereas CLM5.0 and GLWS2.0 effectively capture latitu-22

dinal soil moisture gradients associated with climatic zones. A novel application of an analytical23

solution to Richards’ equation was employed to translate surface moisture signals to deeper soil24

layers, demonstrating GLWS2.0’s superior ability to reproduce seasonal patterns at various depths,25

notably in Benin and Niger. Despite challenges posed by sparse in-situ data and vegetation-induced26

signal attenuation, the study highlights the significant benefits of GRACE/-FO data assimilation27
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in enhancing model accuracy. The proposed depth-projection methodology improves the vertical28

representation of soil moisture, offering new insights into the dynamics of surface and subsurface29

water storage. These findings have important implications for agricultural forecasting, sustain-30

able water resource management, and climate adaptation strategies in regions where accurate soil31

moisture data are essential for resilience planning.32
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Highlights36

• Comprehensive assessment of root-zone soil moisture (RZSM) dynamics across West Africa37

(2003–2019) using multiple satellite- and model-based datasets.38

• Novel depth-projection approach based on Richards’ equation translates surface soil moisture39

signals to deeper layers, enhancing geodetic representation of subsurface water storage.40

• ESA CCI shows the strongest temporal alignment with in-situ observations, while GLWS2.0 and41

CLM5.0 capture latitudinal and seasonal SM patterns effectively.42

• Integration of GRACE/-FO satellite gravimetry improves GLWS2.0 accuracy, supporting geodetic-43

based monitoring of water resources and hydrological forecasting.44

• Methodological framework advances understanding of surface and subsurface water mass redistri-45

bution, contributing to geodesy-informed sustainable water management and climate adaptation46

strategies.47
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1 Introduction48

Rainfall in West Africa is largely driven by the West African Monsoon (WAM), characterized by49

significant spatial and temporal variability (Diatta & Fink, 2014). This variability, often sporadic50

and unpredictable, increases the region’s vulnerability to droughts and floods, severely impacting51

agricultural productivity and leading to crop failures in rainfed systems (Sonwa et al., 2017; Galle52

et al., 2018; Myeni et al., 2019). As a result, smallholder farmers, reliant on rainfed agriculture and53

constrained by financial limitations, face heightened risks to their livelihoods (IPCC, 2023). These54

challenges significantly hinder economic development and exacerbate poverty in this already vulnerable55

region, which relies on agriculture for the livelihoods of around 70% of its estimated 420 million people,56

with a rapidly growing population at an annual rate of 2.2− 2.8% (UN Department of Economic and57

Social Affairs, 2020). Root-zone soil moisture (RZSM) which refers to the amount of water stored in the58

soil within the root zone of vegetation, typically the top 1-2 meters serve as the primary water source59

for crops (Helman et al., 2019). RZSM directly influences plant growth, agricultural productivity,60

and water availability for ecosystems (Pegram et al., 2010; Seneviratne et al., 2010; Chartzoulakis &61

Bertaki, 2015; Helman et al., 2019). Unlike surface soil moisture (SSM), which can quickly change due62

to weather conditions, RZSM represents the longer-term water storage available to plants, playing a63

key role in determining drought resilience and crop yields (Chartzoulakis & Bertaki, 2015). Given that64

approximately 75% of the total crop area harvested globally consists of non-irrigated crops (Portmann65

et al., 2010; Grillakis et al., 2021), the importance of RZSM in global food production and food66

security becomes even more pronounced. Monitoring RZSM is essential for understanding the water67

balance (Koster et al., 2004), drought and flood warning (Gavahi et al., 2020; Watson et al., 2022),68

managing irrigation (Rodŕıguez-Iturbe & Porporato, 2007; Brocca et al., 2017), and modeling climate69

impacts on agriculture and natural vegetation (Ruichen et al., 2023). It potentially enhances forecasts70

and climate projections, guides water resources management, and supports precision agriculture by71

optimizing water usage.72

Currently, soil moisture products (SSM or RZSM) can be generated using three different key73

approaches: in situ observations, remote sensing, and modelling (Brocca et al., 2017). In situ ob-74

servations involve ground-based sensors that measure soil moisture directly at specific points using75

gravimetric, tensiometric and nuclear methods (Myeni et al., 2019). These measurements are reason-76

ably accurate and can capture soil moisture at different depths. However, while in situ observations77

offer precision, they are labor-intensive and expensive to maintain, and their limited spatial coverage78

makes them difficult to scale across large regions (Dorigo et al., 2013). This poses challenges in using79

them for extensive, long-term monitoring over large areas. Nevertheless, the point-scale ground ob-80
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servations are often used as a benchmark for calibrating and validating soil moisture estimates from81

remote sensing and model simulations (Su et al., 2014; Brocca et al., 2017; Myeni et al., 2019). In82

recent years, significant efforts have been made to establish in situ soil moisture monitoring networks83

across Africa, particularly exemplified by the AMMA-CATCH (African Monsoon Multi-disciplinary84

Analysis–Couplage de l’Atmosphère Tropicale et du Cycle Hydrologique) observatory (Galle et al.,85

2018). Some of the data collected from these networks have been integrated into the International Soil86

Moisture Network (ISMN)(https://ismn.geo.tuwien.ac.at/) (Dorigo et al., 2013). These sparse in situ87

monitoring networks have played a crucial role in validating remotely sensed and simulated soil mois-88

ture estimates over extended periods in various African regions (Jung et al., 2019). Remote sensing89

utilizes various methods, such as microwave, optical, and thermal satellite sensors, to estimate surface90

soil moisture across large areas (Brocca et al., 2017; Myeni et al., 2019). It is an effective technique for91

detecting the dynamic patterns of soil moisture on regional and global scales. Various satellite instru-92

ments, including the Soil Moisture Active Passive (SMAP), Soil Moisture and Ocean Salinity (SMOS),93

METOP-A/B Advanced Scatterometer (ASCAT), Advanced Microwave Scanning Radiometer–EOS94

(AMSR-E), and products from the European Space Agency’s Climate Change Initiative (ESA CCI),95

have been successfully utilized to retrieve SSM at a global scale with a temporal resolution of 2 to 396

days (Njoku et al., 2003; Bartalis et al., 2007; Kerr et al., 2012; Entekhabi et al., 2010; Dorigo et al.,97

2017; Montzka et al., 2017; Chen et al., 2018). While the remote sensing approach offers broad spatial98

coverage and frequent updates, it primarily measures soil moisture in the uppermost few centimeters99

(0–5 cm), often missing the deeper root zone dynamics. Additionally, its accuracy can be impacted by100

factors such as vegetation, weather conditions, radio frequency interference (RFI), and topography,101

which can reduce measurement reliability. In contrast, the GRACE (Gravity Recovery and Climate102

Experiment) mission captures changes in total water storage by mapping variations in Earth’s gravity103

field (Tapley et al., 2004). It has been demonstrated that GRACE-observed Total Water Storage104

Anomalies (TWSA) can be translated into surface or root zone soil moisture (SSM or RZSM) using105

a physically based approach (Grippa et al., 2011; Sadeghi et al., 2020). Although GRACE-based soil106

moisture data have lower spatial resolution ∼ 3◦ vs. 40 km for microwave data) and less frequent107

temporal sampling (monthly vs. daily), data assimilation and downscaling algorithms can be applied108

to make these two approaches comparable (Gerdener et al., 2023). Additionally, GRACE data are not109

affected at all by vegetation density and RFI. This study will incorporate this approach. The modelled110

data approach uses simulations that integrate climatic, soil, and vegetation information to estimate111

both surface and root zone soil moisture across various spatial and temporal scales. Whether based112

on hydrological or land surface models, both approaches rely on similar equations to simulate soil113
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moisture according a water balance approach (Famiglietti & Wood, 1994). Modelling allows for soil114

moisture estimates to be generated at high spatial and temporal resolution, offering detailed insights115

into soil moisture dynamics. However, while models provide comprehensive coverage and long-term116

predictions, their accuracy is highly dependent on the quality of meteorological input data and the117

assumptions made in parameterization, which can introduce significant uncertainties. As a result,118

each modelling approach has its strengths and limitations, and combining multiple methods can pro-119

vide a more robust and reliable understanding of soil moisture dynamics. While numerous studies120

have focused on monitoring remotely sensed and modeled surface soil moisture data over West Africa121

(Pellarin et al., 2009a,b; Gruhier et al., 2010; Baup et al., 2011; Fatras et al., 2012; Louvet et al.,122

2015; Faridani et al., 2017) using in situ data, there has been little to no research, to our knowledge,123

specifically examining root-zone soil moisture in this region. Furthermore, while the remote sensing124

products monitored in this area primarily involve AMSR-E satellite data (Pellarin et al., 2009a,b;125

Gruhier et al., 2010), the SMOS satellite mission (Louvet et al., 2015; Jung et al., 2019), and ASCAT126

satellite data (Jung et al., 2019), soil moisture products based on ESA CCI, CLM5.0, and GRACE/-127

FO assimilated data have not been comprehensively validated in this region. However, while many128

physically-based land surface models (e.g., CLM5.0) simulate the soil moisture patterns at different129

depths by numerically solving Richard’s equation, this remains a challenge for conceptual hydrological130

models. This study aims to retrieve the root-zone soil moisture from a conceptual model, WaterGAP,131

as well as the GRACE/-FO-based global assimilation model GLWS2.0 which is based on WaterGAP.132

The dynamics of these estimates will be validated against in-situ measurements, while additional soil133

moisture products, including ESA CCI and CLM5.0, will be used for comparative analysis across the134

West Africa region.135

Our main research questions are:136

1. What is the correlation between the SM from the GRACE/-FO-based global assimilation model137

(GLWS2.0) and ESA CCI, in-situ data, and other land surface models in the region?138

2. How can the water content in the single soil moisture reservoir from the conceptual hydrological139

models be translated to a soil moisture vertical profile ?140

3. How does the root-zone soil moisture (RZSM) changes at each retrieval depth over 2003–2019 in141

this region? What is the correlation of its dynamics with the physically-based model (CLM5.0),142

ESA CCI products, and in-situ data?143

The analytical solution of Richards’ equation (Sadeghi et al., 2020) will be used to translate water144

content from the single soil moisture reservoir in GLWS2.0 and WaterGAP to different depths. Our145
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approach offers a distinct advantage over that of Sadeghi et al. (2020), who assumes that GRACE146

TWSA (Total Water Storage Anomaly) data have minimal contributions from sources such as ground-147

water, surface water, or lateral groundwater flow. In their case, any TWSA variation not physically148

attributable to soil moisture and incompatible with their model is classified as error. By contrast, we149

work directly with the soil moisture anomaly derived from GLWS2.0 (or WaterGAP), where non-soil150

moisture components have already been filtered out, offering a cleaner signal for analysis. However,151

it is important to note that complete separation of these additional hydrological signals from soil152

moisture may still be imperfect within the assimilation or WaterGAP model. WaterGAP (and thus153

GLWS2.0) represents soil moisture via a single layer that extends to the root zone. The model simu-154

lates varying surface water storages (lakes, wetlands, rivers, and reservoirs) and includes a conceptual155

groundwater representation. Human water use, i.e. surface and groundwater abstractions, are in-156

cluded in WaterGAP. This approach provides a promising solution to not only expand the shallow157

vertical support of the microwave satellites with good spatial resolution but also to better isolate the158

groundwater storage dynamics from the GRACE/-FO-based assimilated signal. This is particularly159

relevant in West Africa, where soil moisture has been shown to be the dominant component of Total160

Water Storage (TWS) (Getirana et al., 2017; Jung et al., 2019; Jensen et al., 2024).161

2 Study area and datasets162

2.1 Study area163

The study area encompasses West Africa, spanning from 17°W to 17°E and 2°N to 21°N (Fig. 1). The164

terrain in this region is predominantly low and flat (Tappan et al., 2016). The area is characterized165

by a latitudinal gradient that includes three bioclimatic regions, progressing from north to south: the166

Sahelian, Sudanian, and Guinean zones (Galle et al., 2018). This gradient results in varying vegetation167

patterns (Fig.2), with the arid north experiencing a single rainy season and sparse vegetation, while168

the south has two rainy seasons and dense vegetation (Fink et al., 2010). Three meso-scale sites169

located at different latitudes in Benin, Niger, and Senegal, where AMMA SM observations have170

undergone advanced quality control procedures by the ISMN, have been selected for analysis in this171

study (Fig. 1). The Benin site, situated in the Sudanian climate zone, features sandy clay loam soils,172

woody savanna vegetation, and gently undulating topography (630–225 m asl), with about 1200 mm173

of annual rainfall concentrated in a single rainy season from April to October (Galle et al., 2018).174

Both the Niger and Senegal sites are located in the Sahel region characterized by a single rainy season175

between June and October. The Niger site experiences a semi-arid tropical climate, characterized by176
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a long dry season from October to May, with an average yearly temperature of 29.2°C and 520 mm of177

annual rainfall (1990–2007)(Galle et al., 2018). The landscape features flat lateritic plateaus and sandy178

valleys within the Iullemmeden sedimentary basin, which has endorheic hydrology and a continental179

terminal aquifer. Soils are sandy and weakly structured, contributing to erosion. Additionally, the180

original woody savannah has transformed into a mosaic of rainfed millet fields and shrubby savannah,181

mixed with degraded tiger bush vegetation (Cappelaere et al., 2009). The Senegal site, situated in the182

Dahra region (15.432°W – 15.403°N), has a Sahelian climate with a mean yearly temperature of 29°C,183

peaking in May, and an annual precipitation of approximately 420 mm. The area features herbaceous184

vegetation dominated by annual grasses and a tree cover of about 3%, with most water bodies being185

temporary, except for a few permanent ponds (Soti et al., 2010; Guilloteau et al., 2014).186
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Figure 1: Location of the three meso-scale sites in Benin, Niger, and Senegal where in situ SM stations
are installed. Purple boxes of 0.5° pixel of size include the in situ soil moisture stations illustrated with
green dots (04 for Benin site, 03 for Niger site, and 01 for Senegal site). The red rectangular region is
where the grid validation (ESA CCI versus CLM5.0, GLWS2.0 and WaterGap) is done. Photos used
in this figure are adapted from (Louvet et al., 2015)

.

2.2 Datasets187

2.2.1 WaterGAP and GLWS2.0188

This study utilizes version 2.2e of the WaterGAP global hydrology model (Müller Schmied et al.,189

2021), which simulates daily water fluxes and storage on a 0.5° grid by solving water balance equa-190

tions across ten water compartments. These compartments represent different storage components191

within the hydrological cycle, including surface water (rivers, lakes, reservoirs, wetlands), soil mois-192
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ture, groundwater, snow, glaciers, canopy water, and river floodplains. The model’s vertical water193

balance includes components such as the canopy, snow, and soil moisture, while the lateral water194

balance accounts for storage in groundwater, lakes, artificial reservoirs, wetlands, and rivers. The195

vertical water balance is expressed in terms of water height (measured in millimeters), whereas the196

lateral water balance is calculated using volumetric units (in cubic meters) (Müller Schmied et al.,197

2021). Unlike many land surface models, WaterGAP incorporates human water use for various pur-198

poses, including irrigation, livestock, industry, domestic consumption, and cooling of thermal power199

plants, and is calibrated against long-term annual river discharge. A significant update in this ver-200

sion is the enhanced algorithm for surface and groundwater abstraction. The model employs forcing201

data from the homogenized GSWP3-W5E5 reanalysis dataset, which includes precipitation, temper-202

ature, long-wave radiation, and shortwave radiation (Lange et al., 2022), as well as information on203

the characteristics of surface water bodies (lakes, reservoirs, and wetlands), land cover, soil type,204

topography, and irrigated areas. Since its inception in 1996, WaterGAP has been instrumental in205

assessing the dynamic development of the human-water system, both historically and into the future,206

particularly in the context of climate change. The model has significantly improved our understanding207

of changes in continental water storage, with a particular emphasis on the overuse and depletion of208

water resources (Müller Schmied et al., 2021). GLWS 2.0, or the Global Land Water Storage dataset209

version 2.0, is developed by assimilating monthly Total Water Storage Anomaly (TWSA) maps from210

GRACE and GRACE-FO into the WaterGAP global hydrological model. The Ensemble Kalman211

Filter (EnKF) (Evensen, 2003) was used for assimilation, which is implemented through the Parallel212

Data Assimilation Framework (PDAF) (Nerger & Hiller, 2013). The assimilation process includes213

vertical disaggregation to optimally combine GRACE/GRACE-FO data with inputs from the hy-214

drological model, resulting in ten distinct water compartments. GLWS 2.0 covers global land areas,215

excluding Greenland and Antarctica, with a spatial resolution of 0.5° and spans the period from 2003216

to 2019, ensuring no gaps in the data. It also incorporates monthly uncertainty quantification at the217

grid cell level. Key improvements in GLWS 2.0 compared to its predecessor, GLWS 1.0, include the218

integration of the updated WaterGAP version 2.2e and minor bug fixes in the assimilation process.219

Comprehensive details about the development of GLWS 2.0 can be found in Gerdener et al. (2023).220

2.2.2 CLM5.0221

In this study, we use CLM5.0, the latest version of the Community Land Model (CLM), which operates222

in land-only mode over the CORDEX-Africa domain (Bayat et al., 2023; ?). This configuration uses223

atmospheric reanalysis datasets as external forcings rather than coupling CLM5.0 with an atmospheric224
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model. CLM5.0 simulates key biophysical and biogeochemical processes, such as the interaction be-225

tween incoming radiation and the canopy/soil, and the exchange of sensible heat, latent heat, and226

carbon with the atmosphere (Lawrence et al., 2019). Additionally, the model incorporates snow accu-227

mulation and melting, along with water and energy transport in the soil. It captures processes such228

as infiltration, surface runoff, deep percolation, stomatal physiology, and photosynthesis. To account229

for land surface variability, CLM5.0 divides each grid cell into multiple land units with unique soil or230

snow columns and plant functional types (PFTs), allowing for a more nuanced representation of surface231

heterogeneity (Lawrence et al., 2019). Compared to earlier versions like CLM4.5, CLM5.0 provides232

enhanced accuracy in simulating hydrological and ecological processes and introduces a more explicit233

representation of human land management, making it a powerful tool for analyzing land-atmosphere234

interactions and land-use impacts (Lawrence et al., 2019). The model relies on a comprehensive set of235

atmospheric forcing data, including precipitation, air temperature, shortwave and longwave radiation,236

specific humidity, surface air pressure, and wind speed. This data is available at different temporal237

resolutions: every 6 hours for CRUNCEP, every 3 hours for GSWP, and hourly for WFDE5. It oper-238

ates at a high horizontal resolution of approximately 0.027° (around 3 km) with a 30-minute time step,239

and output data are further aggregated to a monthly scale for the analysis. Soil moisture in CLM5.0240

is expressed in volumetric units (cm³/cm³) for each soil layer, structured through a 25-layer soil model241

extending to a depth of 42 meters. Of these, 20 layers are hydrologically and biogeochemically ac-242

tive, providing the simulation of vertical soil moisture transport through the numerical solution of the243

Richards equation (Zeng & Decker, 2009). This layered approach improves the model’s capacity to244

capture the vertical distribution of water in the soil, critical for understanding root-zone hydrological245

processes. For further details on CLM5.0’s methods for simulating processes, surface characterization,246

and vertical soil discretization, refer to Lawrence et al. (2019) and Oloruntoba et al. (2025).247

2.2.3 In-situ soil moisture data248

Soil moisture observations from three meso-scale sites in Benin, Niger, and Senegal (Figure 1) span-249

ning from 2003 to 2019 were sourced from the International Soil Moisture Network (ISMN) (Dorigo250

et al., 2011) to evaluate the accuracy of model-simulated soil moisture in both surface soil mois-251

ture (SSM) and root zone soil moisture (RZSM). Table 1 details the geographical coordinates of the252

soil moisture stations, land-cover types, and the depths of the available soil moisture probes. The253

locations of the soil moisture stations within the 0.25° satellite pixels are illustrated in Figure 1.254

Specifically, there are four stations in Benin (Belefoungou-top, Belefoungou-middle, Nalohou-top, and255

Nalohou-middle), three stations in Niger (Banizoumbou, Tondikiboro, and Wankama), and one sta-256
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tion in Senegal (Dahra). Each soil moisture dataset includes hourly observations in volumetric units257

(cm³/cm³) at various depths, as outlined in Table 1. Only observations that have undergone rigor-258

ous quality control procedures and were flagged as ”Good” by the ISMN, were selected for analysis259

(Dorigo et al., 2013). This ensures that the in-situ data used is of the highest reliability, having passed260

through stringent checks for accuracy, consistency, and completeness. By focusing exclusively on these261

high-quality observations, we aim to minimize errors and uncertainties in the results, leading to more262

robust and credible findings. Additional information regarding the instruments used and the data263

quality control procedures for the observations can be found in the network reports and the associated264

references, which are accessible at https://ismn.geo.tuwien.ac.at.

Table 1: Geographic coordinates, stations grouped by site, probe depths, and land-cover types where
the probes are installed.

Sites Stations Latitude Longitude Probes depths (cm) Land-cover 

Benin Nalohou (top) 9.743° N 1.606° E 5, 10, 20, 40, 60, 100 Mixed crops 
Nalohou (middle) 9.745° N 1.605° E 5, 10, 20, 40, 120 Mixed crops 
Belefoungou (top) 9.790° N 1.710° E 5, 10, 20, 40, 60, 100 Forest 
Belefoungou (middle) 9.795° N 1.715° E 5, 10, 20, 40, 50, 100 Forest 

Niger Wankama 13.646° N 2.632° E 5, 10–40, 40–70, 70–100, 100–130 Millet 
Banizoumbou 13.532° N 2.660° E 5 Fallow 
Tondikiboro 13.548° N 2.696° E 5, 10–40, 40–70, 70–100, 100–130 Fallow 

Senegal DAHRA                        15.403° N 15.432° W 5, 10, 30, 50, 100 shrubland

265

2.2.4 ESA-CCI soil moisture266

The ESA-CCI is a global satellite-observed soil moisture (SM) dataset developed under the European267

Space Agency’s Climate Change Initiative (CCI). The ESA-CCI SM v0.81 is the latest version data268

used in this study, providing daily estimates of global surface soil moisture, covering the top 2-269

5 cm of soil, over a long term (1978-2022) at a spatial resolution of 0.25°. The ESA-CCI SSM270

v0.81 dataset is generated by merging SM data from 12 single-sensor active and 5 passive microwave271

sensors. For detailed information on the key features of these active and passive microwave sensors,272

please refer to Gruber et al. (2020). Despite some limitations associated with the chosen merging273

algorithm and the quality of individual data sources, the v0.81 version has shown significant promise274

for assessing model performance (Hirschi et al., 2023; Palagiri et al., 2024). In this study, the combined275

product, which integrates soil moisture retrievals from both active and passive microwave sensors, is276

selected, as it benefits from the strengths of both types of observations and generally outperforms277

products that rely solely on single-sensor input (Gruber et al., 2020; Hirschi et al., 2023). The dataset278

is available free of charge from the ESA website and other platforms, provided in volumetric units279

(cm³/cm³) and in NetCDF format, making it accessible for long-term climate and hydrological studies.280
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A detailed description of the ESA-CCI SSM product can be found at: http://www.esa-soilmoisture-281

cci.org/node/139.282

2.2.5 Land cover283

The land cover data used in this study is sourced from versions v2.0.7cds and v2.1.1 of the Euro-284

pean Space Agency’s Climate Change Initiative Land Cover (ESA CCI-LC) dataset, accessed from285

https://www.esa-landcover-cci.org (ESA, 2024; last access: 31 August 2024). Version v2.0.7cds covers286

the period 1992–2015, while v2.1.1 provides data for 2016–2019. However, for this research, the version287

v2.0.7cds is used for the period 2003–2015, and v2.1.1 for 2016–2019.288

Figure 2: Land cover map over the study area.

The ESA CCI-LC dataset offers global annual land cover maps at a 300-meter spatial resolution289

in NetCDF format, spanning 1992 to 2019. These maps are produced by integrating observations290

from multiple satellite sensors (e.g., MERIS, SPOT-VGT, PROBA-V) using time-series analysis and291

supervised machine learning classification based on the Land Cover Classification System (LCCS)292

(Defourny et al., 2023). The dataset’s accuracy has been validated by several studies (Defourny et al.,293
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2023; Chisanga et al., 2024). The land cover map for this study (Figure 2) was generated by processing294

NetCDF files, clipping the data to the West Africa region, and calculating the dominant land cover295

class per pixel for the period 2007–2019, with key land cover types including cropland, tree cover,296

shrubland, grassland, urban areas, and bare areas.297

3 Methods298

The methods are organized into four main steps. The detailed procedure for retrieving root-zone299

soil moisture from conceptual models (GLWS2.0 and WaterGap) is outlined in Section 3.1, while the300

approach for assessing spatial footprint is discussed in Section 3.2. Data pre-processing procedure is301

covered in Section 3.3, and the performance validation approach is presented in Section 3.4.302

3.1 Projecting root zone soil moisture to specific depth303

An approach based on the analytical solution of Richards’ equation is used to translate the water304

content from the single soil moisture reservoir in the conceptual hydrological models to different305

depths. Equation (1) below was applied to retrieve the soil moisture (SM) signal at any given depth,306

following the procedure outlined in (Sadeghi et al., 2020) :307

∂θ

∂t
= D

∂2θ

∂z2
− k

∂θ

∂z
(1)308

Where:309

• θ is the volumetric soil moisture content (cm3/cm3) ,310

• t is the time (month),311

• z is the soil depth (positive downward) (cm),312

• D is the effective soil water diffusivity (an average value over the entire saturation range)313

(cm2/month),314

• k is the average slope of the soil hydraulic conductivity function, which describes the relationship315

between unsaturated hydraulic conductivity K (cm/month) and volumetric soil moisture θ.316

The soil hydraulic parameters D and K vary with soil type and are calibrated at each site according to317

the methodology outlined in Sadeghi et al. (2020). The equation (1) illustrates how the soil moisture318

content, represented by prescribed boundary conditions, changes over time and depth due to soil water319

diffusion and conductivity. The closed-form solution for determining soil moisture at any arbitrary320
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depth during the N th time step with time intervals of ∆T (as shown in Equation (2)) is derived by321

utilizing Warrick (1975) approach to solve Equation (1). This solution is developed while following322

the boundary and initial conditions specified in Sadeghi et al. (2020). This equation (2) is given by:323

θN (Z) =





exp(−0.5Z + 0.25T )F1U(Z, T ) for N = 1

exp(−0.5Z + 0.25T )
{

F1U(Z, T ) +
∑N

i=2(Fi − Fi−1)U (Z, [N − i + 1]∆T )
}

for N > 1

(2a)324325

U(Z, T ) = −0.5 exp(Z) (Z + T + 1) erfc
[
0.5
(

Z√
T

+
√

T

)]
326

+

√
T

π
exp

(
−
[
0.5
(

Z√
T
−
√

T

)]2
)

+ 0.5erfc
[
0.5
(

Z√
T
−
√

T

)]
(2b)327

where erfc is the complementary error function and T, Z and F are dimensionless representations328

of time t, soil depth z, and net water flux f given by:329

Z =
z · k
D

,

T =
t · k2

D
,

F =
(f − k · θ∞)

(k · θ∞)
.

(3)330

A closed-form solution is obtained by assuming a stepwise surface flux input F defined as follows:331

F (T ) =





F1 for 0 < T < ∆T

F2 for ∆T < T < 2∆T

...

FN for (N − 1)∆T < T < N∆T

(4)332

θ∞ as defined in F , represents the long-term temporal mean of relative soil moisture at a given site. The333

implementation of this approach in our research assumes that the time derivative of the soil moisture334

component, derived from either the GLWS 2.0 or WaterGAP models, approximates the net water335

flux f as shown in Eq. (3). Central differencing is employed to avoid introducing a phase lag. This336

approximation yields the dimensionless flux F , which is used in Eq. (2a). The analytical formulation337

of Eq. (2) enables the computation of the soil moisture profile from GLWS 2.0 or WaterGAP at338

monthly intervals, eliminating the risk of “truncation error” that can arise in numerical solutions of339

Richards’ equation (Zeng & Decker, 2009). The soil moisture profile at any desired depth, aligned340
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with the node depths of CLM5 for subsequent comparison, is calculated using Eq. (2).341

3.2 Spatial footprint342

Spatial footprint, or spatial representativeness, refers to the area surrounding a soil moisture (SM)343

station within which temporal soil moisture dynamics closely align with those observed in nearby344

regions, as captured in model outputs or remote sensing data. This metric is critical for evaluating a345

model’s ability to accurately reflect local soil moisture dynamics around each station, thereby support-346

ing robust model validation. To understand spatial patterns of soil moisture dynamics in the study347

area, an insightful approach based on the spatial representativeness is used (Nicolai-Shaw et al., 2015;348

Orlowsky & Seneviratne, 2014; Molero et al., 2018). This approach quantifies the area surrounding349

a SM station of interest for which its temporal dynamics are representative, i.e., its spatial footprint.350

This area is determined by first calculating Spearman’s rank-based correlation coefficient between the351

time-series of the station under investigation and the surrounding pixels of the studied models and352

then iteratively removing the furthest pixels away from the station of interest, focusing on keeping353

only those pixels that have a correlation above a predefined threshold (denoted as rcut). The spa-354

tial representativeness is ultimately defined by the area covered by the convex hull surrounding these355

stations that exhibit a correlation above rcut threshold (Molero et al., 2018). A convex hull is the356

smallest polygon that can enclose all the stations that meet the correlation criteria.357

3.3 Pre-processing and performance validation approach of SM products358

The soil moisture products used in this study vary in spatial and temporal resolution, layer depths,359

and units. Consequently, these datasets undergo preprocessing to standardize their specifications for360

effective comparison through the following steps:361

3.3.1 Scaling362

To ensure consistency across the different soil moisture products used in this study, a few scaling363

procedures are applied:364

• The soil moisture products have varying spatial resolutions, such as 0.5° for WaterGAP and365

GLWS2.0, 0.25° for ESA CCI, and 0.2° for CLM5.0. To enable consistent analysis, the outputs366

from CLM5.0 and ESA CCI are aggregated to match the 0.5° spatial resolution of WaterGAP367

and GLWS2.0. In addition to this spatial scaling, all datasets are also aggregated to a monthly368

temporal resolution to align with the standard resolution of GLWS2.0.369
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• Furthermore, soil moisture is known to exhibit significant spatial variability. This presents370

challenges in using single station measurements to accurately represent model simulations across371

an entire soil moisture (SM) grid, which is set to 0.5° in this study. Direct comparisons between372

grid-based simulations and point-based observations can introduce substantial errors (Bi et al.,373

2016). To mitigate this, the study utilizes multiple in situ measurements at each site, which374

are grouped within the 0.5°x0.5° model pixel resolution area, covering three sites (Benin, Niger,375

and Senegal). The average of all SM measurements within each site is computed to provide the376

best possible approximation of the soil moisture at ground level. This approach, adopted by377

many authors such as Louvet et al. (2015), Bi et al. (2016), and Zhang et al. (2024), ensures378

a more reliable comparison. To further refine the process, model values are interpolated to the379

corresponding in situ points using the nearest neighbor method.380

• Another challenge in the validation process is the mismatch in depths between the model-based381

soil moisture (SM) estimates and the SM observations. The ESA CCI captures only near-surface382

soil moisture, whereas CLM5.0 and in situ data provide soil moisture measurements at various383

depths, including those within the root zone. In contrast, WaterGAP and GLWS2.0 represent the384

water content within a single soil moisture reservoir spanning the entire root zone. Consequently,385

these products are not directly comparable in terms of magnitude (Koster et al., 2009). This386

issue is addressed in the first subsection.387

3.3.2 Normalization388

The soil water simulated by the GLWS2.0 and WaterGAP models, expressed as water depth (in mil-389

limeters), cannot be directly compared to in-situ measurements, ESA CCI data, or CLM5.0 outputs,390

which are reported in volumetric fraction. For validation purposes, numerous previous studies have391

used a range of normalization techniques to address the inconsistencies among SM estimates derived392

from global hydrological models, satellite-based retrievals, and in situ observations (Jung et al., 2019;393

Tian et al., 2019). Common methods include percentile-based normalization, moving-window anoma-394

lies, and statistical rescaling to standardize datasets, improving alignment across diverse sources and395

enhancing the accuracy of validation analyses. In this study, we employed a percentile-based normal-396

ization method using the 2nd and 98th percentiles (Eq. 4).397

wt =
θt − θwt

θfc − θwt
(4)398
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In this approach, each data point in the time series θt is normalized by subtracting the 2nd percentile399

of the entire time series from individual monthly values θwt, followed by dividing the resulting series400

by the difference between the 98th θfc and 2nd percentiles of the original time serie θwt. This method,401

referred to as ”relative wetness” by Tian et al. (2019) and applied in previous studies (e.g., Tian et al.402

(2019) and references therein), is robust and less sensitive to outliers, making it particularly suitable403

for our analysis. By normalizing in this way, the approach eliminates information about the original404

scale, enabling comparisons to focus exclusively on the relative seasonal patterns within each dataset.405

This avoids biases introduced by absolute magnitudes or imposed statistical alignments, as seen in406

methods like Raoult et al. (2018), ensuring meaningful comparisons across datasets.407

3.3.3 Performance validation approach for SM products408

After converting soil moisture simulated in the model and derived from satellites into relative wetness,409

quantitative evaluations were performed on the refined datasets. The seasonality of different SSM time410

series is analyzed by applying a 12-month rolling boxcar filter. This approach smooths out short-term411

fluctuations, effectively isolating long-term variations with periods longer than one year. Subtracting412

this smoothed, long-term component from the original time series reveals the residual signal, which413

captures the episodic and seasonal variations occurring on timescales shorter than one year. For the414

validation of surface soil moisture (SSM) and the ESA CCI grid, only soil moisture probes located at415

depths ≤ 5 cm were considered to ensure consistency. It was assumed that the microwave retrievals416

from ESA CCI represent moisture content within the top 0–5 cm of the soil column. Three performance417

metrics were applied in this study: the Pearson correlation coefficient (R), bias, and root-mean-square418

error (RMSE) for validating with the in situ data, as well as R and RMSE for grid-based validation419

using the ESA CCI soil moisture data. R is a key statistical metric in this study, as it assesses how well420

the temporal variability of in situ and soil moisture product time series align. It remains unaffected421

by differences in mean or variance, which can arise from varying soil properties or scale discrepancies422

between in situ data and model or satellite footprints (Koster et al., 2009; Gruber et al., 2020; Beck423

et al., 2021).424

4 Results and Discussion425

4.1 Performance validation of SSM products426

In this study, we employed two validation approaches. First, we validated surface soil moisture (SSM)427

products specifically, ESA CCI, GLWS2.0, WaterGAP, and CLM5.0 by comparing model-soil moisture428
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with in situ measurements taken at a depth of 5 cm across different study sites in Benin, Niger, and429

Senegal. Our analysis emphasized the temporal correspondence between the datasets (e.g., time/phase430

lags, dry and wet spell event periods) rather than the magnitudes. Additionally, deseasonalized431

and episodic time series were compared with the corresponding in situ time series to further assess432

consistency and alignment. Second, we compared the GLWS2.0, WaterGAP, and CLM5 models against433

the ESA CCI gridded soil moisture data.434

4.1.1 In situ-based data validation of different SSM products435

The normalized soil moisture time series from ESA CCI, GLWS2.0, WaterGAP, and CLM5.0, along436

with the in situ time series at each study site are overlaid and presented in Figure 3.437
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(a) Niger Study Site

(b) Benin Study Site

(c) Senegal Study Site

Figure 3: Normalized soil moisture time series for in situ measurements, ESA CCI, GLWS2.0, Water-
GAP, and CLM5.0 at three distinct study sites at a depth of 5 cm.

The ESA CCI, GLWS2.0 and CLM5.0 SM products effectively replicate the seasonal dynamics of438

monthly surface soil moisture (SSM) observed in ground-based measurements across different sites,439

demonstrating their robustness in capturing the effects of varying land cover and climate conditions440

in the region. The seasonal changes in soil moisture at a depth of 5 cm show marked variability, likely441
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driven by the influence of the monsoon across the West African region. Similar dynamics are observed442

over the Tibetan Plateau, where soil moisture cycles are shaped significantly by the South Asian443

summer monsoon (Bi et al., 2016). These patterns underscore the importance of regional monsoon444

systems in determining soil moisture fluctuations across distinct climatic zones. In situ observations445

in Niger and Senegal reveal a typical Sahelian seasonal cycle, marked by a distinct wet season from446

June to October, while the Benin site, located in the Sudanian climate zone, experiences a rainy447

season extending from April to October, along with a longer monsoon period. The statistics from448

the normalized SSM signals, as presented in Table 2, highlight the performance of various datasets in449

terms of synchronization and correlation with in-situ measurements. In Benin, ESA, GLWS2.0, and450

WaterGap generally exhibit strong synchronization, with time lags close to 0 months. These datasets451

also demonstrate high correlations (ESA: 0.894, WaterGap: 0.856, GLWS2.0: 0.752). In Senegal,452

these same datasets show minimal time lag (ranging from 0 to 1 month), though the correlations453

are somewhat weaker (ESA: 0.646, WaterGap: 0.637, GLWS2.0: 0.574). In Niger, ESA remains454

well-aligned with in-situ measurements (0-month lag and a 0.864 correlation), while both GLWS2.0455

and WaterGap experience slight delays (1-month lag), accompanied by weaker correlations (0.655 and456

0.515, respectively).457

4.1.2 SSM seasonality458

To better highlight events in the time series, a deseasonalization method is applied. The seasonal459

maps derived from this process are presented in Fig. 4.460
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(a) Niger study site

(b) Benin study site
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(a) Senegal study site

Figure 4: Episodic and Deseasonalized time series for soil moisture across study sites.

The analysis of episodic and deseasonalized time series for soil moisture across Senegal, Niger,461

and Benin reveals distinct regional patterns influenced by the West African Monsoon (WAM). In the462

Sahelian zones of Niger and Senegal, typical seasonal cycles show sharp increases in soil moisture during463

the monsoon (June to October) and declines in the dry season (November to May). Deseasonalized464

data highlight anomalies, such as unseasonal rainfall or dry spells, which suggest shifts in the timing465

or intensity of the monsoon and potential impacts of climate variability, such as droughts or flooding.466

In Benin, located in the Sudanian climate zone, a longer rainy season (April to October) leads to a467

more extended period of increased soil moisture, with anomalous events like flooding or unexpected468

dry spells reflecting changes in rainfall distribution. Overall, deseasonalizing the time series reveals469

how soil moisture is sensitive to shifts in the monsoon, with delayed rains in the Sahel potentially470

causing droughts, while early or heavy rains in Benin could lead to flooding or soil saturation. The471

correlation between the seasonality of the ESA CCI product and the in situ data is generally high,472

exceeding 0.9 for episodic time series across all sites. At the Benin site, ESA CCI demonstrates the473

strongest performance, followed by the assimilation-based model GLWS2.0. Meanwhile, at the Niger474

and Senegal sites, WaterGAP also performs well, ranking closely behind ESA CCI.475
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Table 2: Statistics from the normalized SSM time series.

Table 3: Statistics from the normalized SSM time series.

4.1.3 ESA CCI grid based evaluation of the different models476

To evaluate the accuracy and performance of the global models used in this study (GLWS2.0, Wa-477

terGAP, and CLM5.0) a grid-based comparison was conducted using remotely sensed surface soil478

moisture (SSM) data from ESA CCI. Figure 4 displays the Pearson correlation coefficient (R) and479

root-mean-square error (RMSE) metrics, providing insights into how well the GLWS2.0, WaterGAP,480

and CLM5.0 models perform relative to the ESA CCI grid. In this figure, gaps in the data particu-481

larly noticeable in forested and densely vegetated areas (shown as white regions near the coastline)482

highlight areas where soil moisture estimates are challenging. This data masking in the ESA CCI483

SSM datasets occurs because microwave-based observations typically exclude areas with moderate to484

dense vegetation due to the strong attenuation of soil signals by the vegetation canopy (Dorigo et al.,485

2017).486

The figure also reveals that the patterns in RMSE and correlation metrics vary with land cover487

type, demonstrating that land cover exerts a clear influence on the performance of these models.488

GLWS2.0 shows a notably lower RMSE than the other models across the region and exhibits strong489
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spatial consistency across various land cover types. The lowest RMSE values for GLWS2.0 are observed490

in the semi-arid Sahel regions, likely due to its effective assimilation process that better captures soil491

moisture dynamics in these environments.

(a) Correlation between ESA CCI and GLWS2.0 (b) RMSE between ESA CCI and GLWS2.0

(c) Correlation between ESA CCI and WaterGAP (d) RMSE between ESA CCI and WaterGAP

(e) Correlation between ESA CCI and CLM5 (f) RMSE between ESA CCI and CLM5

Figure 5: Pearson correlation coefficient (R) and RMSE metrics illustrating the performance of
GLWS2.0, WaterGAP, and CLM5 models relative to the ESA CCI grid.

492

The figure underscores the complexities of soil moisture modeling across the diverse climates and493

land covers of the West African region, where model performance and error metrics vary significantly.494

While GLWS2.0 demonstrates spatial consistency across different land-cover types with relatively low495

RMSE values, this consistency is not as evident in other models. RMSE values are generally lower in496

the northern part of West Africa but higher in the southern regions. This variation may be attributed497

to the sporadic nature of soil moisture in these areas, where conditions are highly dependent on498

occasional rainfall events. In these regions, soil moisture levels can shift rapidly, with dry conditions499

prevailing and only brief, intense increases in moisture following rainfall. Both the satellite data500
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(ESA CCI) and the hydrological models encounter challenges in accurately capturing these short-lived,501

extreme moisture events. However, because arid and semi-arid regions experience prolonged dry spells,502

the overall RMSE between model predictions and satellite observations remains relatively low, despite503

the missed short-term fluctuations. This pattern underscores the inherent challenges of modeling soil504

moisture in arid and semi-arid regions, where infrequent but intense moisture changes add complexity505

to the dynamics. Additionally, the figures show that GLWS2.0 demonstrates stronger correlation with506

ESA CCI data compared to other models, particularly WaterGAP, which does not show dependency507

on land-cover types. This correlation is generally higher in southern West Africa and weaker in the508

north, where low soil moisture values make it difficult to discern clear patterns. In the southern regions,509

more frequent and consistent rainfall leads to stable soil moisture levels, allowing moisture dynamics510

to be easier to predict. Consequently, the spatial correlation pattern between GLWS2.0 and ESA CCI511

soil moisture data reveals a clear latitudinal gradient aligned with annual rainfall and climate zones.512

This pattern is particularly evident in semi-arid regions that serve as transition zones between wet and513

dry climates, where the highest correlation values are observed (i.e. area between 9.5°N and 15°N).514

Such transitional regions, including the Indian subcontinent, the North American Great Plains, and515

southeastern Brazil, also exhibit increased correlation values due to pronounced seasonal and inter-516

annual variability in soil moisture (SM) measurements (Al-Yaari et al., 2014). Similar findings were517

reported by Jung et al. (2019) over West Africa, where an evaluation of spatial correlations between518

GRACE-based assimilation, SSM simulations and satellite-derived SSM products (ASCAT, SMOS,519

and SMAP) indicated strong correlation patterns in transitional zones. This consistency suggests that520

SM measurements in these regions are particularly sensitive to seasonal dynamics and the distinct521

cycles of wet and dry phases. Moreover, GLWS2.0 effectively captures the general pattern of soil522

moisture in the south, where soils retain moisture better and vegetation moderates fluctuations.523

4.2 Spatial Representativeness524

Figure 5 illustrates the Spatial Representativeness (SR) of ESA CCI, GLWS2.0, WaterGAP, and525

CLM5.0 using a cutoff Spearman correlation of 0.6, which effectively highlights how well each soil526

moisture product reflects observed soil moisture dynamics at each study site. This similarity threshold527

distinguishes between datasets that demonstrate moderate to strong agreement with in situ observa-528

tions, categorizing them as performing well (correlation > 0.6) or less effectively (correlation ≤ 0.6) in529

capturing real-world variations. Notably, only ESA CCI and GLWS2.0 exhibit Spearman correlations530

greater than 0.6 with in situ data, indicating that these models accurately capture the spatial and531

temporal dynamics of soil moisture within their respective spatial footprints. This alignment suggests532
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that their soil moisture estimates correlate quite well with the observed time series. Furthermore,533

the efficacy of the GLWS2.0 assimilation process likely enhances its ability to reflect real-world soil534

moisture conditions, particularly in arid and semi-arid regions characterized by sporadic moisture535

changes. In contrast, the lower correlations observed for WaterGAP and CLM5.0 point to limitations536

in these models’ capacity to represent soil moisture variability at finer spatial scales. Overall, these537

findings underscore the importance of integrating observational data to enhance model accuracy in538

representing high-resolution soil moisture dynamics, suggesting that ESA CCI and GLWS2.0 are bet-539

ter suited for regional applications requiring high spatial sensitivity. Although the SR approach has540

not previously been applied to the satellite/model SM products examined in this study, it has proven541

effective for validating other SM products across various regions worldwide. For example, in the Little542

Washita watershed in the United States and the Yanco area in Australia, spatial representativeness543

has been used to explore the connections between SM spatial scales and timescales within the 50544

km satellite footprint of SMOS, AMSR2, and ECMWF SM products (Molero et al., 2018). These545

authors demonstrate that the spatial representativeness of surface soil moisture increases with longer546

timescales, but with greater variability in these regions. Nicolai-Shaw et al. (2015) showcased the547

robustness and effectiveness of this approach for selecting appropriate soil moisture products. By548

applying it to analyze the temporal dynamics of absolute soil moisture across North America, they549

compared in situ observations with the European Space Agency’s ECV-SM and ERA-Land datasets.550

Orlowsky & Seneviratne (2014) demonstrating the robustness of this parameter-free method in cli-551

matology to quantify the spatial footprint of weather stations across Europe. Their findings show552

that temperature data generally exhibit greater representativeness than precipitation, with significant553

seasonal changes influenced by atmospheric circulation patterns, particularly in boreal winter.554
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(a) Niger site

(b) Benin site

(c) Senegal site

Figure 6: Spatial footprint of soil moisture products represented by a blue circle with a radius of 5°
around each site, indicated in red. The convex hulls in light and dark blue represent the areas for
which ESA CCI and GLWS2.0 exceed the specified cutoff threshold of 0.6, respectively.
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4.3 Retrieving the root-zone soil moisture from GLWS2.0 and WaterGap and555

validating its dynamics using in-situ and CLM5556

An analytical solution to Richards’ equation is used to convert water content from GLWS2.0 and557

WaterGAP to different depths, enabling comparison of model-derived root zone soil moisture with558

in-situ observations across depths (Figures 6 to 9).559

• Projection depth (node depth) = 5 cm560

GLWS2.0, which incorporates GRACE/FO data, demonstrates superior performance than Wa-561

terGAP and yields results comparable to those of CLM5.0 in capturing the monthly root zone soil562

moisture (RZSM) dynamics at the Niger and Benin sites at this depth (Figure 6). However, the563

temporal dynamics at the Senegal site are less consistent, particularly during the initial two years564

(2004–2006) of the in situ observation system. This discrepancy can be partially attributed to the565

Senegal site being represented by a single station, unlike Niger and Benin, which have at least three566

stations at different locations. The limited data from a single station poses challenges in accurately567

representing model simulations over a broader 0.5° soil moisture grid study (Louvet et al., 2015). Fur-568

thermore, the WaterGAP model struggles to capture long-term (2006–2018) seasonal dynamics at all569

sites as recorded by in situ sensors. At a depth of 5 cm, a comparison of model performances in cap-570

turing seasonal soil moisture dynamics shows that the ESA CCI model aligns most closely with in situ571

measurements. ESA CCI achieves the lowest RMSE and the highest R2 values across all study sites:572

Benin (RMSE = 0.194, R2 = 0.714), Niger (RMSE = 0.166, R2 = 0.663), and Senegal (RMSE = 0.213,573

R2 = 0.533). The GLWS2.0 assimilation-based model ranks second in accuracy, with corresponding574

values in Benin (RMSE = 0.336, R2 = 0.224), Niger (RMSE = 0.317, R2 = -0.031), and Senegal575

(RMSE = 0.307, R2 = 0.403). CLM5.0 provides performance metrics similar to those of GLWS2.0,576

with values in Benin (RMSE = 0.339, R2 = 0.229), Niger (RMSE = 0.339, R2 = -0.351), and Senegal577

(RMSE = 0.386, R2 = 0.257). These results indicate that ESA CCI demonstrates the highest accuracy578

in reflecting seasonal soil moisture patterns, while GLWS2.0 and CLM5.0 show comparable but lower579

precision in fitting observed in situ measurements across all sites.580

• Projection depth (node depth) = 10 cm, 40 cm, 100 cm581

As illustrated in figures 7, 8, and 9, which represent RZSM at depths of 10, 40, and 100 cm respectively,582

both GLWS2.0 and CLM5.0 capture reasonably the seasonal dynamics of soil moisture at the Niger583

and Benin sites. These models show good alignment with in situ measurements across different584

depths, demonstrating their ability to reflect seasonal moisture changes as recorded by the local585
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sensors. However, the WaterGAP model does not reflect this seasonality effectively. At the Senegal586

site, these seasonal patterns are notably absent, likely due to previously mentioned issues with the587

limited data from a single station, which may not fully represent local soil moisture variability at the588

model’s grid scale (0.5° resolution). Furthermore, seasonal consistency in GLWS2.0 projections across589

depths is less reliable at the Senegal site, situated near the coastline. This discrepancy could stem590

from coastal regions’ unique characteristics, such as tidal influences and potential signal interference591

from the nearby ocean, which may impact the accuracy of GRACE/-FO-based observations used592

in the model’s assimilation process. In comparing RZSM estimates retrieved from GLWS2.0 and593

WaterGAP to in situ observations and the physically based model CLM5.0 at depths of 10 cm and 40594

cm, CLM5.0 demonstrates slightly better performance. This is reflected in CLM5.0’s smaller RMSE595

and higher R² values across the study sites, indicating a closer alignment with observed moisture596

dynamics. However, at a depth of 100 cm, GLWS2.0 performs marginally better than CLM5.0, with597

slightly lower RMSE and higher R² metrics, suggesting a potential advantage of GLWS2.0 in capturing598

RZSM dynamics at this depth. Overall, while GLWS2.0 exhibits solid performance, particularly in599

comparison to WaterGAP, WaterGAP’s RZSM estimates show more significant discrepancies from600

both in situ measurements and the results provided by CLM5.0, especially at all depths observed. In601

addition, CLM5.0 performed quite poor at 5cm, but relatively good at greater depths. This might602

be related to inclusion of measurement data by ESA CCI at 5cm., while CLM5.0 did not have data603

assimilation at this depth. The influence of 5 cm soil moisture measurements diminishes at greater604

depths, while apparently the model for vertical soil moisture transport scheme that CLM5.0 uses is605

better than for the other models. GLWS2.0, on the other hand, benefits from GRACE-based data606

assimilation at depth, which likely explains its comparatively stronger performance at 100 cm.607

5 Conclusions and implications608

This study assessed root-zone soil moisture (RZSM) dynamics across West Africa between 2003 and609

2019 using multiple data products, including GLWS2.0, WaterGAP, CLM5.0, ESA CCI v0.81 product,610

and in-situ measurements. Results show that ESA CCI, CLM5.0 and GLWS2.0 effectively capture611

the seasonal soil moisture dynamics, while WaterGAP performs less reliably. ESA CCI demonstrates612

the strongest temporal alignment with in-situ observations, characterized by near-zero time lags and613

high correlation across all regions. CLM5.0 and GLWS2.0 show moderate to good performance, with614

ESA CCI remaining the most reliable overall in terms of both synchronization and correlation.615

A grid-based validation of GLWS2.0, WaterGAP, and CLM5.0 models against ESA CCI data which616

has shown high accuracy in the region reveals that CLM5.0 and GLWS2.0 correlate more strongly with617
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ESA CCI across West Africa, displaying a distinct latitudinal gradient aligned with annual rainfall618

and climate zones. This gradient, particularly strong in the transition zones between wet and dry619

climates (9.5°N to 15°N) as similarly noted by Jung et al. (2019), highlights their capacity to capture620

spatial patterns in SM dynamics. In contrast, WaterGAP lacks this dependency on land-cover types,621

suggesting its limitations in capturing regional SM variations.622

To evaluate how well each product captures spatially coherent soil moisture (SM) dynamics, a623

Spearman correlation threshold of 0.6 was applied. This helped identify the extent to which temporal624

SM variations at a given location resemble those in surrounding areas. The results show that ESA625

CCI, GLWS2.0, and WaterGAP consistently meet this threshold around the studied sites, indicating626

that these models accurately capture the spatial and temporal dynamics of SM within their respective627

spatial footprints. Although this approach has not previously been applied to the satellite/model SM628

products examined in this study, it has proven effective for validating other SM products across various629

regions worldwide (Orlowsky & Seneviratne, 2014; Nicolai-Shaw et al., 2015; Molero et al., 2018).630

However, it is important to acknowledge several limitations that may affect both the in-situ and grid-631

based validation, as well as the spatial footprint analysis. First, the limited number of in-situ probes at632

each study site may not adequately capture the local variability in soil moisture (SM), especially when633

compared to the coarser 0.5° spatial resolution of the models. Additionally, the availability of ESA634

CCI data is often restricted in forested and densely vegetated regions due to the strong attenuation635

of microwave signals by vegetation canopies, as noted by Dorigo et al. (2017). Another source of636

uncertainty lies in the mismatch between the spatial representativeness of point-based observations637

and the model grid size, which can introduce discrepancies in the validation process. Moreover, the638

normalization applied to the datasets, while useful for comparative purposes, may have masked true639

differences in SM magnitudes across products. Finally, temporal gaps in data coverage—whether in640

in-situ records or satellite-derived products—can affect the consistency and reliability of the validation641

outcomes.642

An analytical solution of Richards’ equation was applied to translate water content from the643

single soil moisture reservoir from WaterGAP and GLWS2.0 to various depths. At 5 cm soil depth,644

ESA CCI consistently shows the closest alignment with in situ SM data, achieving the lowest RMSE645

and the highest R2 values across all study sites. The GLWS2.0 and CLM5.0 models rank next in646

accuracy, with GLWS2.0 showing RMSE values around 0.317–0.336 and R2 values from -0.031 to647

0.403, while CLM5.0 demonstrates similar metrics, indicating that both provide comparable but less648

precise tracking of observed soil moisture dynamics. The findings reinforce prior in situ and grid-based649

validation results and spatial footprint analysis, which highlight GLWS2.0’s sensitivity to the top 0–5650
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cm soil layer. At greater depths (10, 40, and 100 cm), the GLWS2.0 model reasonably captures the651

seasonal SM dynamics observed in both in situ measurements and CLM5.0 outputs at the Benin and652

Niger sites. However, these seasonal patterns are notably absent at the Senegal site, likely due to the653

limited number of probes and signal contamination from the nearby ocean.654

Overall, GLWS2.0 performs better than WaterGAP at various depths, largely due to the advantages655

provided by the GRACE/-FO data assimilation process, which enhances its accuracy in capturing root656

zone soil moisture dynamics. Additionally, even without GRACE/-FO data assimilation, CLM5.0657

shows substantially better performance than WaterGAP across all study sites, reflecting its stronger658

capability to track soil moisture variations in West Africa.659

The novel application of this depth-translation approach, based on analytical solutions of Richards’660

equation, enabled the projection of water content from a single soil moisture reservoir to various depths661

across West Africa, providing insights that go beyond traditional SM analysis in the region. This662

methodology not only extends the shallow vertical range typically captured by microwave satellite663

sensors, but it also offers a way to differentiate surface and groundwater storage variations within the664

GRACE/-FO data, potentially expanding our understanding of water storage dynamics in complex665

hydrological settings. By enhancing the representation of SM across different depths, this framework666

can improve agricultural forecasting and deepen our understanding of water cycle interactions across667

diverse landscapes, especially in regions where accurate SM data are essential for sustainable water668

management.669
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coin, S., Balsamo, G., Ottlé, C., Decharme, B., Saux-Picart, S., & Ramillien, G. (2011). Land797

water storage variability over West Africa estimated by Gravity Recovery and Climate Experiment798

(GRACE) and land surface models. Water Resources Research, 47(5). https://doi.org/10.1029/799

2009WR008856. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2009WR008856800

34

https://doi.org/10.5194/egusphere-2025-4600
Preprint. Discussion started: 14 October 2025
c© Author(s) 2025. CC BY 4.0 License.



Gruber, A., De Lannoy, G., Albergel, C., Al-Yaari, A., Brocca, L., Calvet, J. C., Colliander, A., Cosh,801

M., Crow, W., Dorigo, W., Draper, C., Hirschi, M., Kerr, Y., Konings, A., Lahoz, W., McColl,802
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Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat,877

E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T.,878
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(a) Niger study site

(b) Benin study site

(c) Senegal study site

Figure 7: Soil moisture time series for in situ measurements, ESA CCI, GLWS2.0, WaterGAP, and
CLM5.0 at three distinct study sites, projected at a depth of 5 cm.
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• Node depth = 10 cm

(a) Niger study site

(b) Benin study site

(c) Senegal study site

Figure 8: Soil moisture time series for in situ measurements, ESA CCI, GLWS2.0, WaterGAP, and
CLM5.0 at three distinct study sites, projected at a depth of 10 cm.
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• Node depth = 40 cm

(a) Niger study site

(b) Benin study site

Figure 9: Soil moisture time series for in situ measurements, ESA CCI, GLWS2.0, WaterGAP, and
CLM5.0 at three distinct study sites, projected at a depth of 40 cm.
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• Node depth = 100 cm

(a) Niger study site

(b) Benin study site

(c) Senegal study site

Figure 10: Soil moisture time series for in situ measurements, ESA CCI, GLWS2.0, WaterGAP, and
CLM5.0 at three distinct study sites, projected at a depth of 100 cm.
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