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Short summary. The DP3 model of leaf coloring, formulated according to the leaf development process, considerably

contrasts previous models and allows to set up new hypotheses, e.g.,  regarding earlier onset and longer duration of

senescence predicted for warmer conditions. Comparing the accuracy of the DP3 model to that of previous models and

the Null model (average observed date of leaf coloring) suggests that leaf coloring data are noisy, which is why obser-

vation protocols and methods should be revised.

Abstract. Leaf senescence ends the growing season of deciduous trees, affecting the amount of atmospheric CO2 se-

questered by forests. Therefore, some climate models integrate projected leaf senescence dates to simulate the carbon

cycle. Here, we developed a process-oriented model of leaf senescence (the ‘DP3 model’) by testing 34 formulations of

the leaf development process based on the latest findings on the regulation of leaf aging and senescence. The period be-

tween leaf unfolding and leaf senescence was separated into the subsequent young, mature, and old leaf phases, with

particular reactions to leaf aging and cold stress, photoperiod stress, and dry stress. The DP3 model simulates daily rates

of aging and stress to predict dates of transition from young to mature to old leaf, senescence induction dates, and leaf

senescence dates. This allows new hypotheses regarding the regulation of leaf senescence to be tested. For example, the

DP3 model predicted an earlier onset of senescence in warmer conditions, likely due to earlier leaf unfolding (aging)

and increased cold and dry stress in spring, together with longer-lasting senescence, likely due to the later accumulation

of photoperiod stress relative to leaf development and decreased cold stress in summer and fall, which can be validated

through experiments and in situ observations.  The DP3 model and compared previous models were equally accurate,

but less accurate than the Null model (average senescence date observed in the calibration sample). This lower accuracy

of the DP3 and compared models is likely due to noise in the visually observed leaf senescence data, which blurs the

signal of the leaf senescence process, and to incorrect model formulations. The model errors were similarly affected by

climate conditions and location among compared models (including the Null model) and varied mostly due to the leaf

senescence data. Noisy leaf senescence data likely force the models to resort to the mean observation, impeding infer-

ences from accuracy-based model comparisons about the leaf senescence  process. This calls for revised observation

protocols and methods that measure rather than estimate different senescence stages, such as senescence induction and

50% of the  leaves  have  changed color,  e.g.,  based on greenness,  involving  digital  cameras  and  automated image

assessment.
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1 Introduction

Leaf senescence involves several processes and regulation pathways, but the most important process is the degradation

of chlorophyll and breakdown of chloroplasts to retrieve nutrients, especially nitrogen, and to mobilize them in new

leaves in spring (Cooke and Weih, 2005; Keskitalo et al., 2005; Lim et al., 2007; Rogers, 2017). A side effect of this nu-

trient resorption is the change in leaf color from green to yellow, orange, or red (Keskitalo et al., 2005; but see Wheeler

and Dietze, 2023). There have been many studies of how the timing of leaf coloring is influenced by climatic conditions

(e.g., Bigler and Vitasse, 2021; Liu et al., 2018; Meier et al., 2021). As these studies usually used the term ‘leaf color-

ing’ or ‘leaf senescence’ to refer to a particular stage of leaf senescence, we use ‘leaf senescence’ as a collective term for

the stages when a given relative amount of leaves have changed color or have fallen, unless stated otherwise.

Leaf senescence marks the end of a process that has been better understood over the last ten years, mainly

thanks to studies in cell and molecular biology and in environmental sciences. These studies have shown that leaf senes-

cence relates to leaf development state (e.g., Jan et al., 2019; Jibran et al., 2013; Lim et al., 2007). On the one hand, the

development state of leaves depends on their age and thus on the time since leaf unfolding and the state of carbohydrate

sinks  (Jibran et al.,  2013), which relates to photosynthetic activity and nutrient availability  (Paul and Foyer, 2001).

While earlier leaf unfolding was related to earlier leaf senescence  (Fu et al., 2014, 2019), an intense discussion has

started about the possibility of earlier leaf senescence due to increased photosynthetic activity (Kloos et al., 2024; Lu

and Keenan, 2022; Marqués et al., 2023; Norby, 2021; Zohner et al., 2023). On the other hand, the development state of

leaves is influenced by hormone levels  (Addicott, 1968; Jan et al., 2019; Jibran et al., 2013; Lim et al., 2007), which

are, among others, stimulated by environmental stress caused by cold (Kloos et al., 2024; Wang et al., 2022; Xie et al.,

2015, 2018), drought (Bigler and Vitasse, 2021; Mariën et al., 2021; Tan et al., 2023; but see Kloos et al., 2024; Xie et

al., 2015, 2018), heat (Bigler and Vitasse, 2021; Mariën et al., 2021; Tan et al., 2023; Xie et al., 2015, 2018), heavy rain

(Kloos et al., 2024; Xie et al., 2015, 2018), short days (Addicott, 1968; Keskitalo et al., 2005; Singh et al., 2017; Tan et

al., 2023; Wang et al., 2022), and lack of nutrients (Fu et al., 2019; Tan et al., 2023). In the early phase of leaf develop-

ment (‘young leaf’), senescence cannot be induced, whereas aging and stress induce it in later phases (‘mature leaf’ and

‘old leaf’) and regulate the rate of senescence (Fig. 1; Jan et al., 2019; Jibran et al., 2013; Lim et al., 2007; Paul and

Foyer, 2001; Tan et al., 2023).

Figure 1. Leaf development. Starting with leaf unfolding, the young leaf develops first into a mature leaf and then into an old leaf.
During the three phases of the young, mature, and old leaf, the leaf ages continuously. With the transition from young to mature leaf,
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Earlier onset of leaf senescence in warmer years

the leaf becomes ready for senescence induction through environmental stress (e.g., cold days). If senescence is not induced through
stress in the mature leaf, it certainly is through aging with the transition from mature to old leaf. Thus, senescence cannot be induced
during the phase of the young leaf and the onset of senescence (i.e., the senescence induction date) depends on the time since leaf un-
folding and on the environmental conditions since the transition from young to mature leaf. Adapted from Figure 1 in Jibran et al.
(2013).

As senescence induction depends on environmental conditions, leaf senescence of deciduous trees shifts as

climate changes, which influences the timing and length of their growing season and thus affects the amount of CO2 ab-

sorbed from the atmosphere (Meier et al., 2021; Menzel et al., 2020; Piao et al., 2019; but see Mariën et al., 2021). This

links the feedback loop between atmospheric CO2 concentration and climate to the feedback loop between climate and

forests and more generally to terrestrial ecosystems  (Luo, 2007; Richardson et al., 2013). Further, the amount of ab-

sorbed CO2 relates to the amount of sugars available for tree growth, defense, and reproduction (Herms and Mattson,

1992; Tan et al., 2023). Therefore, accurate projections of leaf senescence dates under a changing climate are necessary

for accurate forecasts of both climate change and future species composition of temperate forests.

Leaf senescence dates are often projected using process-oriented models. These models are usually based on

the results of experiments testing the effect of various environmental cues, that are translated mathematically (Chuine et

al., 2013; Chuine and Régnière, 2017). Various process-oriented models of leaf senescence have been proposed over the

last twenty years  (Liu et al., 2020; Meier and Bigler, 2023). They generally formulate leaf senescence as a one-way

process that starts shortly after summer solstice by accumulating a daily rate of senescence until a threshold is reached

(but see Wheeler and Dietze, 2023). The daily rate is usually dependent on temperature and day length, and the thresh-

old is either a constant or depends on leaf unfolding dates or on environmental conditions during the growing season

(e.g., Delpierre et al., 2009; Keenan and Richardson, 2015; Liu et al., 2019; Zani et al., 2020).

Previous studies have shown that these leaf senescence models are heavily biased towards the mean of the

calibration sample (Meier et al., 2023) and are less efficient relatively to leaf unfolding models (e.g., Liu et al., 2020;

Meier and Bigler, 2023). However, it is not yet clear whether this is due to noisy phenological data and/or an incomplete

process formulation.

The phenological data used to train leaf senescence models have often been recordings of visual observa-

tions, which cover long time periods and are species-specific (e.g., ongoing since 1951 in the Swiss phenology network,

2025). However, the observations are noisy due to different observers and small sample sizes. For leaf senescence, Liu

et al. (2021) showed for example that the observer bias was 15 days (d; median) and the sampling bias was 10 d (me-

dian) for 10 trees observed per population. These biases not only lead to noise between sites, but also within sites when

observers and samples change. Such changes can lead to sudden changes in the mean in the time series, as was found

for some Swiss sites  (Auchmann et al., 2018; Swiss phenology network, 2025). Moreover, the observation protocols

may differ between the meteorological institutes and citizen science based networks that are responsible for the record-

ing in the different European countries (Menzel, 2013).

Current models formulate leaf senescence as the result of an accumulated stress caused by cold and short

days after summer solstice  (Delpierre et al., 2009; Dufrêne et al.,  2005; Keenan and Richardson, 2015; Lang et al.,

2019; Liu et al., 2019; Zani et al., 2020). Two models further consider environmental conditions before summer sol-

stice, either through temperature and precipitation during the growing season  (Liu et al., 2019) or through photosyn-

thetic activity during the growing season (Zani et al., 2020), while one model considers age through leaf unfolding dates

(Keenan and Richardson, 2015). However, in these models, environmental  conditions and age affect the amount of
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stress needed for leaf senescence rather than senescence induction. In other words, according to current models, senes-

cence induction depends only on stress caused by cold and short days after summer solstice, which considerably con-

trasts with current knowledge (see above). None of the current models allows for senescence induction due to aging or

stress before summer solstice. While two models consider stress that occurred before summer solstice, senescence is al-

ways induced after summer solstice. Finally, we are unaware if aging, stress caused by other than cold and short days,

and different stress effects among the phases of leaf development have been tested, as none of the corresponding studies

mentioned tested but discarded model formulations.

Here, we developed a new process-oriented model that predicts leaf senescence dates based on the latest

knowledge of the physiological processes and drivers of leaf senescence. Leaf senescence was formulated through a leaf

development process that starts at leaf unfolding and is driven by aging and various types of abiotic stress. We tested 34

model formulations of this process. Finally, the most accurate formulation was evaluated with a particular focus on the

differences  between  the  predicted  and  observed  dates  (i.e.,  ‘model  errors’).  We  addressed  the  following  research

questions:

(1) Which model formulation yields the most accurate predictions of leaf senescence dates?

(2) How accurately does this model predict leaf senescence dates compared to previous models?

(3) How do the model errors relate to the phenological data, climate, and site conditions?

2 Data and methods

2.1 Phenological data

The model was developed and evaluated with leaf phenology data of common beech (Fagus sylvatica, L.), which was

visually observed in Austria, Germany, Great Britain, and Switzerland between 1950 and 2022 (Fig. 2, Table 1, Sect.

S1.1; PEP725, 2024; Swiss phenology network, 2025; Templ et al., 2018). We used the phenological stages 50% of the

leaves have unfolded as well as 50% and 100% of the leaves have changed color or have fallen (hereafter referred to as

‘leaf  unfolding’ [LU],  ‘leaf  senescence50’ [LS50],  and  ‘leaf  senescence100’ [LS100],  respectively;  corresponding  to

BBCH15, BBCH95, and BBCH97 according to Meier, 2018). The LS100 data were recorded in Austria and Great Britain

only.

We checked all site-years with regards to the order and completeness of the phenological observations. Ob-

servations of LS50 and LS100 that occurred between the day of year (doy) 60 and 151 were discarded, as were observa-

tions of LU that occurred after doy 180 or after LS50 or LS100. Thus, we considered only site-years with an observation

for LU that was followed by either LS50 or LS100, or by both LS50 and later LS100, leaving 5018 sites.

From these sites, we made a pre-selection so that the phenological and geographical range of the LS50 obser-

vations was evenly covered and all LS100 observations were included. This involved splitting all 5018 sites into 8–10

bins with equal spans for the average and standard deviation of LS50 as well as for latitude, longitude, and elevation, so

that each bin contained at least two sites (e.g., the range between doy 232 and 328 for the average LS50 was split into ten

bins of 9.7 days). From each bin, we chose the site with the most LS50 observations, with random choice if this applied

to more than one site. These sites were completed by all sites with an LS100 observation, resulting in a pre-selection of

7137 LS50 and 850 LS100 observations recorded at 244 and 106 sites, respectively.
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Figure 2. Selected phenological sites. Panel (a) locates the selected sites and indicates corresponding elevation [meters above sea
level (m a.s.l.)]. In (b), the histograms illustrate the distributions of the site-specific average day of year (doy; left) and corresponding
standard deviation (right) per leaf senescence stage [i.e., 50% and 100% of the leaves have changed color or have fallen (LS50 and
LS100, respectively); rows]. Panel (c) plots the site-specific average doy of LS50 and LS100 (grey and black circles, respectively) in re-
lation to site latitude [°N] (left), longitude [°E] (middle), and elevation [m a.s.l.] (right), together with the linear regression lines and
corresponding 99% confidence intervals. The linear regression explained site-specific average LS50 and average LS100 by latitude,
longitude, and elevation (Sect. S1.1.2). Corresponding estimates were plotted against latitude for mean longitude and mean elevation
(left), against longitude for mean latitude and mean elevation (middle), and against elevation for mean latitude and mean longitude.

Table 1. Observations of spring and fall leaf phenology.
Stage Country Sites Total number of site-years 

(min.–max. per site)
Observation 
period

Range of 
observations [doy]

Source

LS50 Austria 51 1011 (5–54) 1950–2015 209–321 PEP725
Germany 68 3238 (14–65) 1951–2015 196–331 PEP725
Great Britain 64 303 (2–6) 1999–2005 258–337 PEP725
Switzerland 61 2585 (6–72) 1951–2022 197–344 SPN

LS100 Austria 43 578 (1–34) 1950–1986 263–335 PEP725
Great Britain 63 272 (1–6) 1999–2005 286–365 PEP725
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LU Austria 51 1020 (5–54) 1950–2015 80–166 PEP725
Germany 68 3238 (14–65) 1951–2015 80–175 PEP725
Great Britain 64 331 (5–6) 1999–2005 85–140 PEP725
Switzerland 61 2585 (6–72) 1951–2022 67–161 SPN

Note: LU refers to the stage when 50% of the leaves are unfolded. LS50 and LS100 refer to the stages when 50% and 100% of the
leaves, respectively, have changed color or have fallen. The timing of these stages is given by the day of year (doy). A site-year is a
year for which an observation of both LU and LS50 or LS100 was recorded at a given site. Two data sources were considered: PEP725
(Templ et al., 2018) and the Swiss phenological network (SPN; Swiss phenology network, 2025).

2.2 Driver data

For each phenological  site,  weather  variables,  elevation,  and the leaf  area index (LAI) were approximated by the

weighted averages from octagons with a radius of 2.5 km around the phenological sites, and combined with the atmo-

spheric CO2 concentration. Daily weather variables and elevation were derived for each site from the E-OBS dataset

(Copernicus Climate Change Service, Climate Data Store, 2020; Cornes et al., 2018), which contains interpolated data

from a 100-member ensemble driven with meteorological observations. We extracted and approximated site elevation,

maximum temperature, mean temperature, minimum temperature, precipitation, relative humidity, and surface short-

wave down welling radiation for 1950–2022. These temperature variables were corrected through day- and site-specific

lapse rates to account for elevational differences between the octagon averages and sites (i.e., the elevation according to

the phenology datasets or, if missing, according to EU-DEM, 2024, with a resolution of 25 m, and the location accord-

ing to the phenology datasets). These laps rates were linearly regressed from the grid cell of a particular site and the

eight neighboring grid cells, assuming an elevation of 0 meters above sea level (m a.s.l.) for grid cells over the sea. Oc-

casional gaps in the regressed lapse rates were interpolated with site-specific cubic splines. LAI per site was taken from

the remote sensed monthly LAI (1981–2015) in the GIMMS-LAI3g dataset (version 2; Mao and Yan, 2019). LAI is av-

eraged among years in this dataset, and thus we also used these monthly LAI values for the years 1950–1980. Atmo-

spheric  CO2 concentrations were taken from a reconstructed dataset for the years 1950–2013 and a remote sensed

dataset for the years 2002–2022 (Cheng et al., 2022; Copernicus Climate Change Service, Climate Data Store, 2018).

Both datasets provide monthly data, which we distilled into annual averages. These averages were combined through

weighted means over the years 2002–2013 to assure a smooth transition between the datasets. As some monthly CO2

observations between 2002–2022 were missing, we used modeled CO2 values derived from site-specific cubic splines

based on the remote sensed data (Copernicus Climate Change Service, Climate Data Store, 2018).

We further calculated for each site day length, daily photosynthetic activity, and the daily Keetch and Byram

drought index (KBDI). Day length was calculated following Brock (1981), using the latitude of each site (Sect. S1.2.1).

Daily sink limited photosynthetic activity was calculated following Farquhar et al. (1980) and Collatz et al. (1991), us-

ing daily surface shortwave down welling radiation, day length, and mean temperature together with monthly LAI aver-

aged among years and annual atmospheric CO2 concentration (Sect. S1.2.2). The daily KBDI was calculated following

Keetch and Byram (1968), using precipitation and maximum temperature (Sect. S1.2.3).

2.3 Model conceptualization

Based on the process of leaf development according to Jibran et al. (2013), we defined our model as a one-way process

that may be formulated with either two or three phases of leaf development, namely either the phases mature and old

leaf or the phases young, mature, and old leaf (Figs. 1 and 3). After leaf unfolding, the young leaf is insensitive to stress
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and ages until it becomes a mature leaf (Fu et al., 2014; Jibran et al., 2013; Keenan and Richardson, 2015). The mature

leaf can be affected by stress and ages until it becomes an old leaf (Jan et al., 2019; Jibran et al., 2013; Lim et al., 2007).

Senescence induction may be caused by stress in the mature leaf or by aging, in the case of which it coincides with the

transition from mature to old leaf, causing the leaf to change color and to fall off (Jan et al., 2019; Jibran et al., 2013;

Lim et al., 2007).

Figure 3. Conceptualization of  the leaf development model. The process of leaf development is defined by three subsequent
phases of leaf development, i.e., ‘young leaf’, ‘mature leaf’, and ‘old leaf’ [light green, dark green, and orange horizontal arrows, re-
spectively; panel (a) and (c)]. Alternatively, the process is simplified into two subsequent development phases, i.e., ‘mature leaf’, and
‘old leaf’ (panel b and d). Senescence may be induced by stress during the phase of the mature leaf [grey rhombuses; panels (a) and
(b)] or by aging on the day of transition from the mature to the old leaf [dm→o; panels (c) and (d), respectively]. The state of aging,
stress, and senescence (y-axes; SAging,i, SStress,i, and SSenescence,i; Eq. 1; solid green, red, and brown lines, respectively) for day i are derived
from the corresponding daily rates (Eqs. 3, 4, and 8) accumulated over time [x-axis; day of year (doy)]. Starting from the leaf unfold-
ing date (LU), these states simulate the leaf development, marked by transitions from the young to the mature leaf (dy→m) and dm→o as
well as by the dates of senescence induction (SI) and of the phenological stages 50% and 100% leaf coloring or fall (LS50 and LS100,
respectively). These transitions and stages occur when SAging,i, SStress,i, and SSenescence,i reach corresponding thresholds (YAging,1, YAging,2, YStress,
YLS50, and YLS100). SI is defined as the first day on which either YStress or YAging,2 is reached [panels (a) and (b) versus panels (c) and (d), re-
spectively] and marks the onset of senescence (grey horizontal arrow), during which the daily senescence rate accumulates. If SI re-
sults from YAging,2  being reached, it coincides with dm→o. Dotted lines are auxiliary lines.

Based on these definitions, we formulated the leaf development process under following assumptions. Aging

may be simulated either by photosynthetic activity (Jibran et al., 2013; Paul and Foyer, 2001; Zohner et al., 2023) or

more simply by a number of days. Stress may be simulated by a combination of sudden or gradual responses to the

stressors cold, shortening day length, drought, heat, frost, heavy rain, and nutrient depletion (Bigler and Vitasse, 2021;

Jan et al., 2019; Jibran et al., 2013; Kloos et al., 2024; Mariën et al., 2021; Tan et al., 2023; Wang et al., 2022; Xie et al.,

2015, 2018; Zohner et al., 2023). Senescence may be simulated in linear, convex, or sigmoidal dependence on com-

bined aging and stress (Tan et al., 2023; Xie et al., 2015).
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All formulations are based on daily states of aging, stress, and senescence (Eq. 1), which are compared to

corresponding thresholds (Eq. 2):

Sk , j=∑
i=t 0 , k

j

Rk , i (1)

Sk , j⩾Y k (2)

Here, Sk.j is the state on day j of either aging, stress, or senescence (k). This state is formulated as the sum of

the corresponding rates on day i (Rk,i), which accumulated between the starting day t0,k and j, until the threshold  Yk is

reached. In other words, the daily aging rate (RAging,i) accumulates from LU (t0,Aging = LU). The transition from young leaf

to mature leaf occurs when SAging,j reaches YAging,1. Thus, day j becomes t0,Stress and the accumulation of the daily stress rate

(RStress,i) starts, while RAging,i continues to accumulate. While the transition from mature leaf to old leaf occurs when SAging,j

reaches  YAging,2, senescence is either induced with this transition or already earlier due to  SStress,j reaching  YStress. Upon

senescence induction, day j becomes t0,Senescence and the daily senescence rate (RSenescence,i) starts to accumulate. Eventually,

SSenescence,j reaches YLS50 and YLS100, and respective LS50 and LS100 are marked by the corresponding days j.

RAging,i was either set equal to the daily net photosynthetic activity or to one (i.e., Anet [mol C d–1] or 1 [d d–1],

respectively), depending on the formulation (Eq. 3):

RAging ,i={Anet , i

1
(3)

RStress,i was formulated as the sum of three to seven weighted stressors (Dstress; Eqs. 4–6), always considering

(1) cold days (derived from minimum temperature;  Tn [°C]), (2) shortening days (derived from the difference in day

length;  δL [h], with  δLi = Li – Li–1), and (3) dry days (approximated by KBDI;  Q). In addition, some formulations of

RStress also considered (4) periods of heavy rainfall (approximated by the five-days precipitation; P5 [mm], with P5i be-

ing the sum of Pi–4 to Pi), (5) heat days (derived from maximum temperature; Tx [°C]), (6) nutrient depletion (approxi-

mated by the accumulated Anet since LU, due to the absence of soil data), and/or (7) frost days (through a response to Tn

with lower thresholds than for cold days; Table S3):

RStress , i=∑ wDStress
×f (DStress , i) (4)

DStress , i ∈ {Tni , δ Li , Qi , P 5i , Tx i , ∑
l=dLU

i

Anet , l , Tni} (5)

f (x)={g (x)h(x)
(6)

Here, wDStress is the weight for the response [f(x)] to DStress, calculated according to g(x) or h(x) (Eqs. 7 and 8):
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g (x)={1 , if x≥a
0 , if x<a

(7)

h(x)={
1 , if x<b0

b1−x

b1−b0

, if b0≤x≤b1

0 , if x>b1

(8)

While a marks the sudden boundary between an unstressed and stressed state, b0 and b1 mark the lower and

upper bounds, respectively, between which stress gradually increases (Fig. 4). Because stress results when x ≥ a and

x ≥ b0, the response to δL and Tn was formulated as g(–δL) and g(–Tn) as well as h(–δL) and h(–Tn). This translates in

stress if δL ≤ –a, δL ≤ –b0, Tn ≤ –a, and Tn ≤ –b0. For example, if stress occurs suddenly or gradually when δL ≤ –0.01

h, then a = 0.01 h and b0 = 0.01 h, respectively. Note that these are examples, see Table 3 for the calibrated values.

Figure 4. Response functions (solid red lines) of g(x) and h(x). In (a), a marks the boundary value of x at which g(x) suddenly
changes from 0 to 1 (i.e., from no effect to an effect). In (b), b0 and b1 mark the lower and upper bounds of x, respectively, between
which f(x) gradually increases from 0 to 1. Dotted lines are auxiliary lines.

RSenescence,i was either formulated as the sum, product, or exponential function of RAging,i and RStress,i or of SAging,i

and RStress,i, which yield linear, convex, and sigmoid curves, respectively (Eq. 9):

RSenescence ,i={
w A R Aging , i+wSRStress , i

sX (RAging ,i×RStress , i
x S )

sX
1

ec SAging , i(d−RStress ,i)

(9)

wA and wS are the weights of RAging and RStress, respectively, and sX is a scaling factor, all of which allowed us to

hard code YLS50 = 1, xS is the range bounded exponent of RStress, while c and d are the parameters of the sigmoid curve that

relates RStress and SAging (Lang et al., 2019).
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2.4 Model calibration and validation

We selected the observations for the calibration and validation samples with different procedures. To have a low risk of

overfitting (i.e., the bias–variance trade-off; Sect. 2.2.2 in James et al., 2017), each calibration sample contained at least

ten observations per calibrated parameter (Meier and Bigler, 2023). We defined two calibration datasets: one to calibrate

a model that predicts both LS50 and LS100 simultaneously, and one to calibrate a model that predicts LS50 only. For the

two datasets, we identified the site-years with the most extreme conditions during the growing season, i.e., the hottest,

coldest, driest ten day periods observed between LU and LS50 as well as the shortest and longest growing season ob-

served in the pre-selected data (Sect. 2.1). For the first dataset, hereafter called ‘LS50-LS100 sample’, we randomly se-

lected 250 of these site-years containing an observation for both LS50 and LS100. For the second dataset, hereafter re-

ferred to as ‘LS50 sample’, we randomly selected 250 of these site-years containing observations for LS50. These calibra-

tion samples were paired with validation samples that contained all remaining LS50 and LS100 observations or all remain-

ing LS50 observations, respectively. We drew twice both the LS50 and LS50-LS100 samples. While model development

was based on the LS50-LS100 samples, model evaluation was based on the LS50 sample to allow for a comparison with

previously published models. All models were calibrated five times per drawn sample (i.e., ten ‘calibration runs’ per

model and LS50 sample or LS50-LS100 sample) by minimizing the root mean squared error (RMSE; Eq. S44) with gener-

alized simulated annealing and optimal, model-specific controls (see Sect. S2.2; Xiang et al., 1997, 2017).

2.5 Model development

We based our model on the most accurate formulation of the leaf development process after testing different formula-

tions in several iterations (Fig. 5; see Table S3 for parameter ranges). First, we defined the process structure based on

sudden responses [g(x); Eq. 7] to the stressors for cold days, shortening days, and dry days. In iteration 1, we tested the

definition of the aging rate (RAging) and of the senescence rate (RSenescence) based on the two phases of leaf development

‘mature leaf’ and ‘old leaf’ (Figs. 3b and 3c). RAging was formulated as a function of either the net photosynthetic activity

(Anet) or of the number of days (Eq. 3). RSenescence was formulated in linear, convex, or sigmoidal dependence on combined

aging and stress [through RAging or the state of aging (SAging) and through the stress rate (RStress)] in either a sum, product,

or exponential function (Eq. 9). In iteration 2, we tested the number of phases of leaf development and added the phase

‘young leaf’ (Figs. 3a and 3d). Thus, we formulated RStress with with gradual responses [h(x); Eq. 8] to the initial stres-

sors and a forward selection of additional stressors. In iteration 3, we considered each stressor for cold days, shortening

days, and dry days through h(x) rather than g(x). In iteration 4, we considered one additional stressor, i.e., heavy rain pe-

riods, heat days, nutrient  depletion, or frost days through  g(x).  In iteration 5, we considered the additional stressor

through h(x) rather than g(x). In iteration 6, the procedure of iterations 4 and 5 was repeated as long as they resulted in a

formulation that was selected for further development.

The formulations to be further developed were selected according to the accuracy of the corresponding model

in predicting LS50 and LS100, i.e., through calibration with the LS50-LS100 sample. This accuracy was assessed with the

Akaike information criterion corrected for small samples (AICc; Eq. S41; Akaike, 1974; Burnham and Anderson, 2004),

which accounts for both the goodness-of-fit between the predicted and observed leaf senescence dates and the number

of free parameters. The AICc was calculated for each calibration run (see Sect. 2.4) and the run with the highest AICc

per model was excluded. We further developed the formulations of the two models with the lowest median AICc across

the  given  and  all  previous  iterations.  Finally,  the  model  with  the  lowest  median  AICc  was  selected  and  further

evaluated.
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Earlier onset of leaf senescence in warmer years

Figure 5. Model development. The iterations of model development are symbolized with rectangles. Selection of the best formu-
lated models (ellipses) was based on the Akaike information criterion corrected for small samples  (AICc; Eq. S41; Akaike, 1974;
Burnham and Anderson, 2004) and the final selection is marked grey. For the response functions g(x) and h(x), see Eqs. 7 and 8.
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2.6 Model evaluation

First, we evaluated the functionality of the selected model. We were particularly interested in the causes of senescence

induction that could be due to aging or stress (Fig. 3). We counted how often aging versus stress induced senescence,

and we quantified the relative amount of accumulated stress caused by each stressor at the time of senescence induction.

We compared both aging- and stress-induced senescence as well as the relative amounts of stress across mean annual

temperature (MAT; °C), mean annual KBDI (MAQ), latitude (LAT; °N), and elevation (ELV; m a.s.l.) for the given year

and site. While MAT and MAQ were assumed to directly affect cold and dry stress, LAT relates to day length through

the inclination angle of the Earth (Brock, 1981), and ELV relates to dry stress through decreasing nutrients with eleva-

tion (Huber et al., 2007; Loomis et al., 2006). The evaluation was based on the calibration runs that resulted in the high-

est modified Kling-Gupta efficiency (KGE’; Eq. S45; Gupta et al., 2009; Kling et al., 2012), which combines bias, vari-

ability, and correlation of the predicted and observed leaf senescence dates.

Second,  we compared the  accuracy between the selected model  and  three previously published models,

namely the CDD, DM2, and PIA model. Because these models simulate only one stage of leaf senescence, which usu-

ally is LS50, we based our comparison on this stage (Delpierre et al., 2009; Dufrêne et al., 2005; Zani et al., 2020). The

CDD model determines LS50 by the time the cold degree-days reaches a particular threshold (Dufrêne et al., 2005). The

DM2 model accumulates the product of temperature differences and day length ratios to corresponding thresholds until

the threshold that determines LS50 is reached (Delpierre et al., 2009). The PIA model accumulates temperatures and day

lengths that are combined in an exponential function, and derives the threshold to determine LS50 from the photosyn-

thetic activity during the growing season (Zani et al., 2020). All these models were compared based on the calibration

run that resulted in the highest KGE’. Further, we compared the RMSE and AICc as well as the Pearson correlation (ρ)

across the entire validation sample (ρOverall), across space (ρSpatial), and across time (ρTemporal). ρSpatial was calculated across

sites based on their mean predicted and observed LS50.  ρTemporal was calculated for each site, based on the yearly pre-

dicted and observed LS50.

Third, we estimated the extent to which the model error (i.e., predicted minus observed LS50) was affected by

data structure as well as by climatic and spatial deviations from the LS50 calibration sample, using a linear mixed-effects

model (LMM; Pinheiro and Bates, 2000) and an analysis of variance (ANOVA; Sect. S2.4; Fox, 2016). In the LMM, the

response variable ‘model error’ was explained by the factor variable ‘country’ as well as the interaction of the factor

variable ‘model’ with each of the differences between a site-year and the average of the calibration sample in MAT

(δMAT), MAQ (δMAQ), the accumulated Anet between LU and summer solstice (δAnet), latitude (δLAT), and elevation

(δELV). The random intercept was grouped by ‘site’. The LMM was fitted with fast restricted maximum likelihood

(Wood, 2011), and served as basis for the ANOVA. This type-III ANOVA (Yates, 1934) quantified the impact of the ex-

planatory variables on the variance of the model error that was explained by the LMM. The impact attributable to data

structure was caused by the fixed effects of ‘country’ and the standard deviation in the random intercepts grouped by

‘site’, while the impacts attributable to climatic versus spatial deviations from the calibration sample was caused by the

effects of δMAT, δMAQ, and δAnet versus the effects of δLAT and δELV, respectively.

2.7 Statistical software and reporting of results

We used the programming language R, together with the R package data.table for data processing (Barrett et al., 2024).

In R, data from xslx files were extracted with the R package readr (Wickham et al., 2024), and data from netCDF files

were extracted and averaged with the R packages ncdf4  (Pierce, 2023), raster  (Hijmans, 2023), sf  (Pebesma, 2018;
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Pebesma and Bivand, 2023), and sp (Bivand et al., 2013; Pebesma and Bivand, 2005). Leap years were identified with

the function leap_year in the R package lubridate (Grolemund and Wickham, 2011). Gaps in the regressed lapse rates

were filled with the function na.spline in zoo (Zeileis and Grothendieck, 2005). Seasonal splines of atmospheric CO2

concentrations were calculated with the function sm in npreg (Helwig, 2024). The leaf senescence models were cali-

brated with the R package GenSA (Xiang et al., 2013), while the LMM was fitted with the R package mgcv (Wood,

2017) and the ANOVA was calculated with the R package stats (R Core Team, 2025). LMM estimates and 99% confi-

dence intervals (i.e., significance level ɑ = 0.01) for combined coefficients, e.g., the effect of δMAT for a given model,

were calculated with the Delta method (Chpt. 5.1.4 in Fox and Weisberg, 2019; Chpt. 9.9 in Wasserman, 2004) through

the function deltaMethod in the R package car (Fox and Weisberg, 2019). For each LMM coefficient and ANOVA im-

pact, we expressed the most optimistic change of odds between the null hypothesis (being zero; H0) and alternative hy-

pothesis (being different from zero or greater than zero, respectively; H1) with the minimum Bayes factor (BF01), label-

ing H0:H1 ratios of 1/1000 and 1/100 as ‘decisive’ and ‘very strong’, respectively (Held and Ott, 2018; Johnson, 2005).

BF01 was calculated from the  p-values and number of data with the function tCalibrate in the R package pCalibrate

(Held and Ott, 2018). For the visualizations, we used the R packages ggplot and ggpubr (Kassambara, 2020; Wickham,

2016), as well as the R packages ggspatial and rnaturalearth for the maps (Dunnington, 2023; Massicotte and South,

2023).

3 Results

3.1 Model formulation – the DP3 model

We tested 34 formulations of the leaf development process through 1428 calibration runs, and found that three subse-

quent leaf development phases resulted in the most accurate model (according to the AICc; Figs. 3a, 3c, 6 and S1–S2).

In this model, the phase ‘young leaf’ starts with leaf unfolding. As a daily aging rate RAging accumulates (Eq. 10), the

simulated state of aging increases by one day per day. When this state reaches the threshold YAging,1 (Eqs. 1 and 2), the

phase ‘mature leaf’ begins. During this phase, the leaf continues to age and is also sensitive to stress caused by cold

days, shortening days, and dry days, to which we hereafter refer to as ‘cold stress’, ‘photoperiod stress’, and ‘dry stress’,

respectively. This stress is summarized in a daily stress rate (RStress; Eq. 11) and thus accumulated to determine the state

of stress. The first day that either the state of stress or the state of aging reaches the respective thresholds YStress or YAging,2

(Eqs. 1 and 2), senescence is induced, while the phase ‘old leaf’ starts only when the state of aging reaches YAging,2. Once

senescence is induced, a daily senescence rate (RSenescence) in convex dependence on stress accumulates (Eq. 12) and de-

termines the state of senescence. The days this state reaches the thresholds YLS50 and YLS100 (Eqs. 1 and 2) correspond to

the predicted dates of LS50 and LS100, respectively. Hereafter, we refer to this model as ‘DP3’ model (Tables 2 and 3;

Meier, 2025b, coded in R).

RAging ,i=1 (10)

RStress , i=wC g (−Tni)+wP g (−δ Li)+wD g (Qi) (11)

RSenescence ,i=sX RStress , i
xS (12)
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Here, wC, wP, and wD are the weights for the response functions g(x) (Eq. 7) to the minimum temperature (Tn),

difference in day length (δL), and KBDI (Q) on day i, respectively [e.g., wP g(–δLi) results in the photoperiod stress on

day i]. sX is the scaling factor for RStress, which is shaped by xS.

Figure 6. Tested model formulations. The tested formulations differed in their number of leaf development phases (i.e., two or three
phases), in their driver of the aging rate [i.e., days or photosynthetic activity (Anet)], their stress rate in response [i.e., g(x) or h(x)] to
the stressors cold, shortening, dry, heat, and frost days, heavy rain periods, and nutrient depletion, and their dependence of the senes-
cence rate on aging and stress (i.e., linear, convex, or sigmoid dependence as a the result of a sum, product, or exponential function,
respectively). After each iteration, we identified the two most accurate formulations across the given and all previous iterations (Fig.
5, Sect. 2.5). These formulation were further developed through the next iteration. As soon as an iteration did not produce any new
model formulations, we selected the more accurately formulated model (‘top formulation’; i.e., the ‘DP3’ model). All formulations
were tested for beech based on the LS50-LS100 sample (Sect. 2.4).

Table 2. Input and output variables of the DP3 model
Collective list Name Definition Unit Format

Input - par Model parameters (see Table 3) - Vector
data LU Observed leaf unfolding dates doy Vector

id Unique identifier of each LU (character) - Vector

Meier M., Bigler C., and Chuine I. (2025) 14 / 33
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Di Daily number of days (i.e., 1 per day) - Matrix
Tni Daily minimum temperature °C Matrix
δLi Daily difference in day length to previous day h Matrix
Qi Daily Keetch and Byram drought index - Matrix

- stages Leaf senescence stages to be predicted (character, defaults to LSDefault) - Vector
Output - LS Predicted leaf senescence dates, including senescence induction (SI) doy Matrix

transitions dy→m Predicted timing of transition from young to mature leaf doy Vector
dm→o Predicted timing of transition from mature to old leaf doy Vector

aging RAging,i Daily rate of aging - Matrix
SAging,i State of aging (i.e., accumulated RAging,i since LU) - Matrix

stress XCold,i Daily cold stress [i.e., wC g(–Tni)] - Matrix
XPhotoperiod,i Daily photoperiod stress [i.e., wP g(–δLi)] - Matrix
XDry,i Daily dry stress [i.e., wD g(–Qi)] - Matrix
RStress,i Daily rate of stress - Matrix
SStress,i State of stress (i.e., accumulated RStress,i since dy→m) - Matrix

senescence RSenescence,i Daily rate of senescence - Matrix
SSenescence,i State of senescence (i.e., accumulated RSenescence,i since SI) - Matrix

Note: Daily variables refer to day i, and accumulated variables refer to the period until day i. The vector par contains the model pa-
rameters listed in Table 3. In the collective lists data, aging, stress, and senescence, the rows of the matrices refer to the days of the
year, while the columns refer to site-years and are ordered identically between all matrices. This order matches the order of the vec-
tors in the collective lists data and transition. For the LS matrix, the rows refer to the site-years and the columns refer to the senes-
cence induction date and the dates of the leaf senescence stages indicated by the vector stages. LU, LS, dy→m, and dm→o are given in
day of year (doy; Meier, 2025b).

Table 3. Fitted parameters of the DP3 model
Fitted value

Parameter Meaning LS50-LS100 LS50

–aC Boundary below which cold stress is 1 versus 0 (referring to Tni) 2.55 °C 0.06 °C
–aP Boundary below which photoperiod stress is 1 versus 0 (referring to δLi) –0.0587 h –0.0016 h
aD Boundary above which dry stress is 1 versus 0 (referring to Qi) 176.94 183.82
wC Weight of cold stress 0.14 0.29
wP Weight of photoperiod stress 0.02 0.52
wD Weight of dry stress 0.22 0.05
sX Scaling factor of the senescence rate 0.59 0.35
xS Shape parameter of the stress rate 0.21 5.67
YAging,1 Age threshold for the transition from young to mature leaf 41.59 d 1.57 d
YAging,2–Aging,1 The threshold of aging during the mature leaf phase 137.31 d 71.58 d
YAging,2 Theoretical age threshold for the transition from mature to old leaf 178.90 d 73.14 d
YLS100 Senescence threshold for LS100 (all leaves have changed color or have fallen) 5.95 -
Note: The parameters refer to the equations 7 and 9–11 and were fitted for beech with the LS50 and LS50-LS100 samples (Sect. 2.4). All
parameters were calibrated within the initial ranges (Table S3) to their fitted value. To avoid fitted values of YAging,1 > YAging,2, we used
and calibrated YAging,2–Aging,1 instead of YAging,2. The theoretical threshold YAging,2 was not calibrated but calculated from YAging,1 + YAging,2–Aging,1

and displayed for easier interpretation. The thresholds for stress (YStress) and LS50 (YLS50; i.e., the time when 50% of the leaves have
changed color or have fallen) were hard coded with YStress = 1 and YLS50 = 1. The shortening of day length of 0.0016 h (aP; correspond-
ing to 0.1 minutes) based on the LS50 calibration is reached on doy 175, 174, and 174 (i.e., June 24, 23, and 23) at the exemplary min-
imum, median, and maximum latitudes of our samples (i.e., 45.9° N, 47.8° N, and 58.0° N), respectively. Alternatively, the shorten-
ing of 0.0587 h (3.5 minutes) based on the LS50-LS100 calibration is reached on doy 252 and 202 (i.e., September 9 and July 21) at the
median and maximum latitudes of our samples, respectively, whereas it is never reached at the minimum latitude.

According to the DP3 model, leaf senescence was generally induced earlier during warmer years and at lower

elevations (Fig. 7; Tables S5–S8). In average, senescence was induced a month earlier when mean annual temperatures

were 13–15 °C than when they were 4–6 °C (i.e., May 29 versus June 22 and April 20 versus May 12 when the DP3
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model was calibrated with the LS50-LS100 and LS50 samples, respectively; hereafter referred to as ‘DP3LS50-LS100 model’ and

‘DP3LS50 model’; Sect. 2.4). Accordingly, senescence induction was 20 days earlier below 288 m a.s.l. than above 1150

m a.s.l. (i.e., June 5 versus June 25 and April 26 versus May 16 based on the DP3LS50-LS100 and DP3LS50 model, respec-

tively). Both the DP3LS50-LS100 model and DP3LS50 model predicted generally longer-lasting senescence (i.e., the duration

between senescence induction and LS50 or LS100) during years of higher mean annual temperatures (Fig. S3; Tables

S5–S8).

Figure 7. Senescence induction. Panel (a) and (b) are based on simulations by the DP3 model calibrated with the LS50-LS100 versus
LS50 samples, respectively (Sect. 2.4). The top row of each panel shows the number of site-years in the bins, which were equally dis -
tributed among mean annual temperature (MAT; °C), mean annual Keetch and Byram drought index (MAQ), latitude (LAT; °N), and
elevation (ELV; m a.s.l.). The second row of each panel visualizes the senescence induction (SI) dates in day of year (doy). While the
mean and median dates are marked with black dots and grey lines, respectively, the most extreme values are indicated with dots if
outside ±1.5 times the inner quartile range from the 1st and 3rd quartile, and with whiskers otherwise. The third row of each panel il-
lustrates the relative number of site-years during which senescence was induced by stress versus aging or by both stress and aging
(i.e., both the accumulated stress and aging rates reached their thresholds for SI on the same date). The bottom row of each panel
shows the relative amounts of cold stress, photoperiod stress (Photop.), and dry stress that accumulated at stress-caused SI.
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Stress induced senescence two times and 40 times more often than aging according to the  DP3LS50-LS100 and

DP3LS50 model, respectively (Fig. 7, Tables S5–S8). Thus, while aging was of negligible importance to senescence in-

duction according to the  DP3LS50 model, it mattered according to the  DP3LS50-LS100 model, particularly during years of

medium mean annual temperature (6–13° C) as well as at sites of medium latitude (48.3–55.6 °N) and of low elevation

(below 576 m a.s.l.). At the time of senescence induction due to stress, the amounts of accumulated photoperiod stress

and cold stress relative to total stress were 56% versus 44% (DP3LS50-LS100 model) and 77% versus 23% (DP3LS50 model),

respectively, while the corresponding amounts of dry stress were 0.5% and 0.0%. Photoperiod stress dominated mostly

in warm years and medium-elevation sites according to the DP3LS50-LS100 model, whereas it did so in cool years and high-

elevation sites according to the DP3LS50 model. In summary, photoperiod stress rather than cold and dry stress induced

leaf senescence, but the importance of these stressors and their dependency on climatic conditions and location differed

between the DP3LS50-LS100 and DP3LS50 model.

Accordingly, the relative importance of these stressors for the duration of senescence differed between the

DP3LS50-LS100 and DP3LS50 model (Fig. S3; Tables S5–S8). Photoperiod stress clearly dominated the progress from senes-

cence induction to LS50 according to the DP3LS50 model. However, according to the DP3LS50-LS100 model and especially dur-

ing cool years, cold stress was most important between senescence induction and LS50, whereas photoperiod stress was

most important between senescence induction and LS100.

3.2 Model accuracy

Leaf senescence dates were predicted with similar accuracy by the DP3 model as by previous models (Fig. 8; Table 4).

All models calibrated with the LS50 sample resulted in an RMSE of ~15 d, with the lowest RMSE for the Null model

(i.e., constant prediction of each the average LS50 and LS100 observations in the calibration sample). The LS50-LS100 sam-

ple yielded considerable higher RMSE for both the DP3LS50-LS100 and Null model, namely 23–25 d and 18–21 d, respec-

tively. Nevertheless, the DP3LS50-LS100 model resulted in the highest overall correlation (ρOverall of 0.2 for LS100). The highest

correlation across space was obtained with the PIA model (ρSpatial of 0.4), while the DP3 model resulted in the highest

correlation across time (average ρTemproal of 0.05 according to DP3LS50 and according to DP3LS50-LS100 for LS100).

Table 4. Model accuracy
Model Sample Stage KGE' RMSE AICc ρOverall ρSpatial ρTemporal n
CDD LS50 LS50 -0.13 16.1 57797 0.01 -0.09 0.04 6887
DM2 LS50 LS50 -0.26 15.0 56862 0.02 -0.12 0.00 6887
PIA LS50 LS50 -0.19 14.8 56701 0.10 0.44 -0.04 6887
DP3LS50 LS50 LS50 -0.23 15.2 57083 0.02 -0.02 0.05 6887
Null LS50 LS50 NA 14.8 NA NA NA NA 6887
DP3LS50-LS100 LS50-LS100 LS50 -0.01 25.0 63911 0.04 -0.06 0.03 6887
DP3LS50-LS100 LS50-LS100 LS100 0.14 23.2 NA 0.22 0.17 0.05 600
Null LS50-LS100 LS50 NA 18.1 NA NA NA NA 6887
Null LS50-LS100 LS100 NA 21.7 NA NA NA NA 600
Note: The Null model constantly predicts the average observation in the calibration sample (i.e., either the stage when 50% or 100%
of the leaves have changed color or have fallen; LS50 or LS100, respectively). The modified Kling-Gupta efficiency (KGE’), root mean
squared error (RMSE), Akaike information criterion for small samples (AICc), and Pearson correlation overall, across space, and
across time [ρOverall, ρSpatial, and average ρTemporal (ρTemporal), respectively] are explained in Sect. 2.6, S2.1, and S2.2. All these metrics were
calculated for the predicted and observed dates in the validation samples LS50 and LS50-LS100 (Sect. 2.4). Except the RMSE, they re-
sult in NA if the variance of the predicted dates is zero, which is the case for the Null model. In addition, the AICc for the stage LS100

according to the model DP3LS50-LS100 was omitted because n, i.e., the number of observations in the validation sample, differed between
LS100 and LS50.
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Figure 8. Temporal Pearson correlation (ρTemporal). The distribution of ρTemporal per site between predicted and observed leaf senes-
cence [the dates when 50% and 100% of the leaves have changed color or have fallen (LS 50 and LS100, respectively)] is displayed for
each model. The DP3 model was calibrated twice, namely with the LS50-LS100 sample (DP3LS50-LS100) and with the LS50 sample (DP3LS50;
Sect. 2.4), the latter of which was also used to calibrate the CDD, DM2, and PIA model. The mean ρTemporal (black rhombuses) is indi-
cated above each box (ρ). The boxes indicate the inner quartile range and the median (middle line). The most extreme values are indi-
cated with dots if outside ±1.5 times the inner quartile range from the 1st and 3rd quartile, and with whiskers otherwise.

3.3 Model error

The model errors according to the DP3 model and previous models were similarly affected by data structure and cli-

matic and spatial deviations from the calibration sample as the Null model (Fig. 9a). The data structure was described

by the fixed effects of countries and the random intercepts grouped by sites. The countries altered the model error by –

18 to +8 d, depending on the model (Tables S9–S10). The standard deviation in the model error due to the random inter-

cepts was 9 d. Depending on the model, the fixed effects of the climatic deviations ranged from –22 to –19 d 10°C–1

(δMAT), from +3.6 to +9.0 d 100–1 (δMAQ), and from +4.1 to +4.6 d 10mol C–1 (δAnet), respectively. The model-specific

effects of the spatial deviations δLAT and δELV ranged from +2.0 to +2.1 d °N–1 and from +1.0 to +1.1 d 100m–1, re-

spectively. While the evidence in the data was decisive (BF01 < 1/1000; Sect. 2.7) and significant (p < 0.005) for an ef-

fect of the CDD model on the model error different from zero as well as for the individual climatic deviations and

δLAT, it was significant for corresponding effects of the DM2 model as well as for δELV and all individual countries.

The evidence was neither decisive nor significant for any effect different from zero of the interaction terms between the

models and the climatic or spatial deviations. The LMM explained the model error with an adjusted R2 of 0.44. Differ-

ences among sites attributed for 92% of the variance in the model error explained by the LMM, followed by the effects

of δAnet and δMAT (6% and 2%, respectively), whereas the effects of the models accounted for 0.3% (Fig. 9b; Table

S11). In general, the model errors according to the DP3 model and previous models behaved as those of the Null model

and mainly varied due to data structure.
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Figure 9. Model error versus data structure and climatic and spatial deviations. Panel (a) visualizes the LMM-based, model-
specific estimated fixed effects (dots) and 99% confidence intervals (bars) of data structure described by ‘country’, climatic devia-
tions described by mean annual temperature (δMAT; d 10°C–1), mean annual Keetch and Byram drought index (δMAQ; d 100–1), and
accumulated net photosynthetic activity between leaf unfolding and summer solstice (δAnet; d 10mol C–1), and spatial deviations de-
scribed by latitude (δLAT; d °N–1)  and elevation (δELV; d 100m–1). These deviations were calculated as the difference between a
given site-year and the average in the calibration sample. The colors indicate the countries Austria (AUT), Great Britain (GBR), Ger-
many (GER), and Switzerland (SUI) as well as estimates across countries (AC). The model error was calculated as the predicted mi-

nus the observed timing (xp,i – xo,i). Panel (b) shows, based on the ANOVA, the relative impact of the explanatory variables on the
variance in the model error as explained by the LMM. The random intercepts in the LMM were grouped by ‘site’, also describing
data structure. The bars indicate the impact of individual variables, while the connected dots show the accumulated impact. The num-

bers above each bar state the impact, being bold in case of combined significance and decisiveness (i.e., p ≤ 0.01 and BF01 ≤ 1/1000).

4 Discussion

4.1 Model formulation

The DP3 model predicts leaf senescence dates through a novel formulation that differs considerably from the formula-

tion of current models. This novel formulation may change the way we see leaf senescence, namely as a consequence of

leaf development that relates to both aging and stress. Current models start their simulation with the onset of senes-

cence, i.e., the senescence induction date, which they determine from day length and temperature (e.g., Delpierre et al.,

2009; Dufrêne et al., 2005; Keenan and Richardson, 2015; Lang et al., 2019; Liu et al., 2019; Zani et al., 2020). This

date is calibrated such that leaf senescence dates are predicted most accurately. In the DP3 model and in addition to this

prerequisite, accumulated aging or accumulated stress since leaf unfolding must have reached a given threshold (i.e.,

YAging,2 and YStress as well as Figs. 3c and 3a, respectively; Table 3). In other words, while current models define the senes-

cence induction date backward, the DP3 model defines it both backward and forward, arguably resulting in a more ro-

bust definition. Moreover, as current models generally ignore aging  (but see the model by Keenan and Richardson,

2015, which considers the leaf unfolding date in the stress threshold for leaf senescence), their formulation partially ig-

nores current knowledge (e.g., Field and Mooney, 1983; Guo et al., 2021; Jibran et al., 2013; Lim et al., 2007). In addi-

tion, the models by Liu et al. (2019) and Zani et al. (2020) postulate an effect of the conditions before senescence induc-

tion on senescence duration, which remains speculative. However, these conditions likely affect senescence induction

dates, possibly through photosynthetic activity (Zohner et al., 2023) or through aging and stress (DP3 model).

The novel formulation of the DP3 model supports the advancement of leaf senescence research by postulat-

ing new hypotheses. To our knowledge, it is the first process-based leaf senescence model that (a) predicts leaf senes-

cence dates through daily leaf development status, (b) starts the simulation with leaf unfolding, (c) differentiates be-

tween daily aging and stress rates, and (d) predicts the dates of transition between the leaf developmental phases young,

mature, and old leaf as well as the senescence induction date. This allows the development of several new hypotheses

(Carley, 1999; Hauke et al., 2020), which may relate to the currently disputed effect of climate change on productivity

(Lu and Keenan, 2022; Norby, 2021; Zani et al., 2020; Zohner et al., 2023) and can be tested by controlled experiments.

In particular, these hypotheses may concern (1) the duration of the young leaf phase during which stress cannot induce

senescence, (2) the timing and cause (i.e., aging versus stress) of senescence induction, and (3) the relative importance

of the stressors in relationship to climate and location, all of which are further elaborated here below.

The duration of the young leaf phase differed considerably between the DP3LS50-LS100 and DP3LS50 model (i.e.,

the DP3 models calibrated with the LS50-LS100 versus LS50 samples; Sect. 2.4), namely 41 d versus 1 d, respectively. Be-
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cause the DP3 assumes that stress during this phase is irrelevant for senescence induction, the duration of this phase af-

fects the induction and end of senescence (see below). Moreover, corresponding projections under future climate sce-

narios are also likely affected, as the probability of late spring frost events likely will change under climate warming

(Bigler and Bugmann, 2018; Meier et al., 2018; Sangüesa-Barreda et al., 2021). Therefore, duration and characteristic

of this young leaf phase should be examined further, e.g., with controlled experiments that apply continuous stress right

after leaf unfolding to determine until when stress is either completely irrelevant for senescence induction or accumu-

lates without inducing senescence.

Senescence was induced in late spring/early summer and more often by stress than by aging, but the induc-

tion dates and the stress:aging ratios differed notably between the DP3LS50-LS100 and DP3LS50 model. Senescence induction

dates predicted by the DP3LS50-LS100 and DP3LS50 models differed by 40 d, which matches the difference in the predicted du-

ration of the young leaf phase (see above). As stress during the young leaf phase does not affect the predicted leaf senes-

cence dates by definition (Figs. 1, 3a, and 3c), this result illustrates the importance of studying the effects of stress after

leaf unfolding (see above). It also shows that different combinations of calibrated model parameters eventually yield

similar predictions. Such compensating effects between different model parameters have also been reported in previous

studies (Chuine and Régnière, 2017; Van der Meersch and Chuine, 2025), and explain the different stress:aging ratios as

well as the earlier senescence induction during warmer years and at lower elevations. On the one hand, the ratio of

stress to aging induced senescence shifts in favor of stress with shorter young leaf phases, because more cold stress can

accumulate in spring. On the other hand, senescence must be induced earlier when senescence lengthens to predict leaf

senescence dates that are close to the average observation in the calibration sample, as suggested by model accuracy and

model error (see below). Longer senescence, in turn, results from arguably reduced cold stress in fall in warmer years

and at lower sites. Nevertheless, earlier induction and longer duration of senescence in warmer years may also be a

valid description of reality (Yu et al., n.d.; Zohner et al., 2023). However, Zohner et al. (2023) argued that senescence

induction dates relate negatively to pre-solstice productivity (see also Zani et al., 2020), whereas we showed that these

dates relate to particular interactions between aging and stress rather than to productivity (see below; Eqs. 3 & 10; Lu

and Keenan, 2022; Marqués et al., 2023; Norby, 2021). Because such different mechanisms very likely affect leaf senes-

cence projections under climate warming, they certainly need further investigations.

How do aging and stress interact to predict earlier induction and longer duration of senescence in warmer

years and at lower sites? The aging requirement for the transition from mature to old leaf (i.e.,  YAging,2; Table 3) repre-

sents the longest possible duration from leaf unfolding to senescence induction. Earlier senescence induction is only

possible through sufficient stress between the transition from young to mature leaf and senescence induction (i.e., YStress;

Table 3), whereas stress after senescence induction relates negatively to the duration of senescence. Thus, according to

the DP3 model, both earlier leaf unfolding and increased stress in spring advance senescence induction, while reduced

stress in summer and fall lengthens senescence, which corresponds to observed patterns. Leaves unfold earlier at lower

sites in general (Vitasse et al., 2009, 2013) and in warm springs in particular (given that the buds have been sufficiently

chilled; Asse et al., 2018; Meier et al., 2021; Menzel et al., 2020). Warmer years have been shown to increase cold stress

in spring (i.e., through leaves unfolding overly early in comparison to late frost; Asse et al., 2018; Meier et al., 2018;

Sangüesa-Barreda et al., 2021) and relate positively to dry stress  (i.e., through evapotranspiration; Allen et al., 1994;

Berdanier and Clark, 2018; Wu et al., 2022), but leave photoperiod stress unaffected (Brock, 1981). Thus, earlier senes-

cence induction is likely due to earlier leaf unfolding, and thus aging, and increased cold and dry stress in spring, while
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the longer senescence duration is likely due to the later accumulation of photoperiod stress relative to leaf development

and reduced cold stress in summer and fall.

Surprisingly at first, the DP3LS50-LS100 model postulated photoperiod rather than cold and dry stress of being the

most important stressor for senescence induction during warmer years, whereas the  DP3LS50 model saw photoperiod

stress of being most important during cooler years. By definition, stress only matters when it occurs after the transition

from young to mature leaf (Figs. 1, 3a, and 3c). Photoperiod stress occurs, if at all, after this transition (i.e., after July 21

to September 9 in the DP3LS50-LS100 model and after June 23–24 in the DP3LS50 model, depending on latitude; Table 3), and

gains in importance quickly after the first occurrence unless senescence is induced soon by either cold or dry stress.

Cold stress likely occurs in spring and fall, both before and after the transition from young to mature leaf. Thus, cold

days in spring are less likely to affect senescence induction the later the young leaf phase ends, and vice versa. In addi-

tion, more cold days in fall can be accumulated the later the young leaf phase ends and the later photoperiod stress starts

to accumulate, and vice versa. Therefore, on the one hand, the long young leaf phase and late accumulation of photope-

riod stress in the  DP3LS50-LS100 model favor the accumulation of cold stress in fall, which arguably decreases in warmer

years, making photoperiod stress relatively more important. On the other hand, the short young leaf phase in the DP3LS50

model favors the accumulation of cold stress in spring, which likely decreases in cooler years through leaves unfolding

overly late in comparison to late frost  (Asse et al., 2018; Meier et al., 2018; Sangüesa-Barreda et al., 2021), making

photoperiod stress relatively more important.

4.2 Model accuracy

We compared the DP3 model to three previous models  of leaf senescence  (i.e.,  the models  CDD, DM2, and PIA;

Delpierre et al., 2009; Dufrêne et al., 2005; Zani et al., 2020) based on the LS50 calibration sample and found the RMSE

of all compared models to be above the RMSE for the Null model. This may be explained by unrealistic model formula-

tions, poor model calibrations, and noisy data to drive and calibrate the models, all of which we discuss here below.

While the formulations of the compared models differ, they all build on the results of previous studies. For

example, according to all compared models, the leaf senescence date advances due to cold temperatures, which was also

observed by Kloos et al. (2024), Wang et al. (2022), Wang and Liu (2023), and Xie et al. (2015, 2018). Moreover, in all

but one model, shorter days cause earlier leaf senescence, which is is in agreement with Addicott (1968), Keskitalo et al.

(2005), Singh et al. (2017), Tan et al. (2023), and Wang et al. (2022). Therefore, while the Null model predicted the leaf

senescence dates more accurately according to the RMSE, it is unlikely that it is more realistically formulated than the

compared models. The currently most realistic model is arguably the DP3 model (Jan et al., 2019; Jibran et al., 2013;

Lim et al., 2007), which makes it the first choice to study the leaf senescence process (see above). Moreover, while the

Null model could be a good choice for predictions of leaf senescence dates (i.e., accuracy), the most suited models for

predictions of leaf senescence trends (i.e., precision) may have to be identified yet.

We calibrated the compared models with the generalized simulated annealing algorithm and with model-spe-

cific controls (Sect. 2.4 and S2.1; Xiang et al., 1997, 2017). Algorithm and controls affect the accuracy of the calibrated

models (Meier and Bigler, 2023). Therefore, we used generalized simulated annealing, which was shown to yield accu-

rate models of leaf phenology (Chuine et al., 1998; Meier and Bigler, 2023) and has been used by many studies to cali-

brate such models (e.g., Basler, 2016; Liu et al., 2019; Meier et al., 2018; Zani et al., 2020). In addition, we used model-

specific controls selected to most accurately predict leaf senescence dates for same the validation samples (Sect. S2.2)

as the comparison to the Null model was based on. Possible overfitting  (James et al., 2017) through this procedure
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would have benefited the compared models and is unlikely, as the number of observations in the calibration samples

was large enough (Sect. 2.4; Jenkins and Quintana-Ascencio, 2020; Meier and Bigler, 2023). Therefore, it is highly im-

probable that this procedure caused the models to be calibrated so poorly that they are outperformed by the Null model.

All compared models were driven with daily weather data from the E-OBS dataset (Cornes et al., 2018) and

calibrated and validated with leaf senescence data from the datasets of Meteo Swiss and PEP725 (Swiss phenology net-

work, 2025; Templ et al., 2018). The E-OBS dataset has been used by many studies (e.g., Bowling et al., 2024; Meng et

al., 2021; Schwaab et al., 2021; Zeng and Wolkovich, 2024), and we are unaware of any difficulties concerning the

daily weather data used here. The Meteo Swiss and PEP725 datasets, however, compile visually observed leaf senes-

cence data, and such data is noisy due to different observers and small sample sizes (Liu et al., 2021): estimates of the

leaf senescence dates for individual trees varied by 15 d (median, spreading from 2–53 d) between observers, and in-

creased to 28 d (median) for different samples of ten trees. The data become even noisier if the observers follow differ-

ent protocols from various institutions and countries  (Menzel, 2013), eventually blurring the signal of the leaf senes-

cence process. Arguably the more this signal is blurred, the closer the simulations will follow the mean observation in

the data. Here, we used leaf senescence data from 244 sites (i.e., probably at least 244 observers) and four countries

(Sect. 2.1), which implies considerable noise and thus a blurred signal of the leaf development process. This data very

likely forced the compared models  to predict leaf  senescence dates close to  the mean observation,  impairing their

accuracy.

4.3 Model error

While climatic and spatial deviations from the calibration sample generally affected the model error, their model-spe-

cific effects only differed insignificantly from the Null model. In other words, the model error in the compared models

reacted similarly to climatic and spatial deviations as the model error of the Null model. This implies that the compared

models predicted leaf senescence dates closely to the mean observation of the calibration sample and thus were heavily

biased to the mean (i.e.,  as the Null model). Possible explanations for this are  unrealistic model formulations, poor

model calibrations, and noisy data. Interestingly, Meier et al. (2023), who reported a heavy bias towards the mean for 21

process-oriented models of leaf senescence, based their study on leaf senescence data from 500 sites (i.e., probably at

least 500 observers) and at least three countries from the PEP725 dataset (Templ et al., 2018). This supports our infer-

ence that the compared models resorted to the mean observation due to the used leaf senescence data rather than to

model formulations and model calibrations.

Moreover, leaf senescence data was most relevant for the model error in the compared models, which was il-

lustrated by the fixed effects of countries and the variation caused by the random intercepts grouped by sites. These ef-

fects  of  countries  differed considerably  between countries,  demonstrating how different  observation protocols  (see

above; Menzel, 2013) add noise to leaf senescence data, which to our knowledge has not yet been investigated. The ran-

dom intercepts grouped by sites varied considerably, and corresponding differences among sites were attributed to a

substantial amount of the explained variance in the model error  (Chpt. 23.3.2 in Fox, 2016). Meier et al.  (2023) also

noted a large amount of the explained variance in the RMSE being attributed to differences among sites. They reasoned

that this was caused by, among others, noisy leaf senescence data (see above) and different inter-annual variability of

observations between the sites (Cole and Sheldon, 2017; Čufar et al., 2015; Li et al., 2022; Liu et al., 2020). It remains

to be seen if such site-specific inter-annual variability as well as inter-site variability in leaf senescence dates would be

predicted correctly by models calibrated with noise-free data.
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4.4 Ways forward

While the DP3 model is likely the currently most realistic process-oriented model of leaf senescence, it may be devel-

oped further by (1) testing other drought indices, (2) considering nutrient depletion in combination with drought, and (3)

ameliorating the formulation of the senescence rate. First, while various indices summarize drought differently (Speich,

2019; Zargar et al., 2011), the KBDI used here can be calculated from few data, being based on precipitation and tem-

perature. It should be tested, however, if other indices, such as the standardized precipitation evapotranspiration index

(based on precipitation and temperature; Vicente-Serrano et al., 2010) or the ratio of actual to potential evapotranspira-

tion (based on precipitation, temperature, and soil moisture; Bugmann and Cramer, 1998), may approximate the effects

of dry stress on leaf senescence more accurately. Second, despite more accurate predictions of LS50 and LS100 when nu-

trient depletion was disregarded (Figs. 6 and S1), model errors indicated earlier observed than predicted LS50 and LS100

dates due to nutrient depletion as approximated by elevation (Fig. 9; Tables S9–S10). This can be explained by higher

elevation relating to increased nutrient depletion, which in turn fuels dry stress  (Fu et al., 2014; Huber et al., 2007;

Loomis et al., 2006; Tan et al., 2023). Consequently, drought indices that consider nutrient depletion should be tested.

Third, the DP3LS50-LS100 model was considerably less accurate than the DP3LS50 model, implying difficulties in the accurate,

simultaneous prediction of LS50 and LS100. This points to an incorrectly formulated dependency of the senescence rate

on aging and stress (Eqs. 1 and 12), and corresponding new formulations should be evaluated.

In addition, because noisy data blur the signal of the leaf development process, (1) alternative data may be

used, (2) observation protocols may be revised, and (3) visually observed data may be carefully selected. First, alterna-

tive data to calibrate and validate models of leaf senescence include data recorded with phenocams and remote sensed

data in which leaf senescence dates are identified through the measured greenness, machine learning algorithms, and

vegetation indices (Donnelly et al., 2022; Dronova and Taddeo, 2022; Gong et al., 2024; Richardson, 2023; Zeng et al.,

2020). While these data are species-specific if recorded with phenocams, this may not be the case for remote sensed

data (Joiner et al., 2016; Tang et al., 2016). Second, revised observation protocols should describe how to determine

dates of leaf senescence stages (i.e., senescence induction, LS50, and LS100 at least) based on the measured, rather than

estimated, state of leaf senescence. Such a measurement could be based on the greenness derived from images taken

with consumer-grade digital cameras (Ide and Oguma, 2013; Richardson et al., 2018; Toomey et al., 2015; Zimmerman

and Richardson, 2024). Moreover, a given observational time series should be based on at least 25 trees which are mea-

sured every other week (Liu et al., 2021; Morellato et al., 2010). Third, visually observed leaf senescence data should be

selected primarily from the point of view of precision, for example by ensuring identical observation protocols and by

sampling from cleaned data with a minimum of breakpoints (i.e., sudden changes in the mean). For this, the time series

may be cleaned from outliers  (Schaber et al., 2010) and separated  through a breakpoint analysis  (Auchmann et al.,

2018), before being sampled, preferably through spatially and climatologically stratified sampling, according to the re-

search focus (e.g., gaining insight in the underlying processes or producing most accurate or most precise predictions

Meier and Bigler, 2023).

5 Conclusion

The DP3 model builds on three subsequent phases of leaf development: the young, mature, and old leaf phase. The

young leaf is insensitive to stress and transfers into a mature leaf solely due to aging. The mature leaf answers to aging

and stress, both of which may induce senescence. While aging induces senescence with the transition from mature to

old leaf, stress may already does so during the mature leaf phase through combining cold stress, photoperiod stress, and
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dry stress. The output of the DP3 model includes daily rates of aging rates as well as of cold, photoperiod, and dry stress

along with the dates of transition from young to mature to old leaf, senescence induction dates, and the leaf senescence

dates. Thus, the DP3 model allows to develop testable hypotheses about the leaf senescence process, for example re-

garding the effect of site conditions on the induction and duration of senescence: the DP3 model predicted earlier onset

of senescence (i.e., senescence induction) under warmer conditions, likely due to earlier leaf unfolding and thus aging,

and increased cold and drought stress in spring, as well as longer-lasting senescence, likely due to the later accumula-

tion of photoperiod stress relative to leaf development and reduced cold stress in summer and fall. Both these predic-

tions and their implied relationships with aging and stress can be tested through experiments and in situ observations.

This makes the DP3 model an important tool in the research of leaf senescence.

The accuracy of the DP3 model and of previous models of leaf senescence was lower than the accuracy of

the Null model (i.e. the constant prediction of the average observation in the calibration sample). This was probably due

to model formulations that do not fully reflect the leaf senescence process and, more importantly, to the leaf senescence

data used for calibration and validation. Visually observed leaf senescence data are susceptible to observer bias and

based on observation protocols that are partly inconsistent between countries. Such noisy data blur the signal of the leaf

senescence process, thereby probably forcing the models to resort to the average observation. This leads to low accu-

racy, regardless from the model formulation, which hinders the necessary further development of process-oriented mod-

els of leaf senescence.

The model error of the compared models was similarly affected by climatic and spatial deviations from the

calibration sample across models, and varied mainly due to the leaf senescence data. The similar effect of climatic and

spatial deviations on the model error across models (including the Null model) illustrates that these models were heavily

biased towards the mean. Moreover, the degree of noise in the used leaf senescence data is exemplified by these data ac-

counting for over 90% of the explained variance in the model error. Therefore, these data should be selected with partic-

ular attention to precision, e.g., by using time series without sudden changes in the mean. Moreover, revised observation

protocols should include senescence induction dates and rely on measurements rather than visual estimates. Such mea-

surements may be based on the greenness of leaves to identify the degree of color change, involving digital cameras and

automated image assessment.

Code and data availability

The R code for the DP3 model is openly available on Zenodo (Meier, 2025b, https://doi.org/10.5281/zenodo.14749339),

together with the R code for the 2-phased version of the DP3 model (‘DP2 model’), i.e., the DP3 model without young

leaf phase. While all raw data used are publicly available and referenced in section 2, the predicted leaf senescence

dates analyzed and compared are openly accessible under https://doi.org/10.5061/dryad.tht76hf97 (Meier, 2025a).
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