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Abstract 7 

Geomagnetic storms disrupt the Global Navigation Satellite System (GNSS) and 8 

transionospheric links through rapid asymmetric ionospheric variability. In this study, three 9 

widely used empirical models (IRI-2016, IRI-Plas, and NeQuick2) were used against GNSS-10 

derived Total Electron Content (TEC) at two magnetic conjugate pairs (mid- and low-latitude) 11 

during the geomagnetic storm of August 25–27, 2018. Rather than assessing storm-time 12 

predictability, these models were employed as quiet-time reference baselines to quantify storm-13 

time deviations and hemispheric asymmetry. Model performance was evaluated using the Mean 14 

Absolute Error (MAE), Root Mean Square Error (RMSE), and distribution-aware Kullback–15 

Leibler divergence (KLD). This study introduces a novel conjugate-point validation framework 16 

augmented by KLD that uniquely captures both magnitude errors and structural distributional 17 

mismatches between hemispheres. This is a critical aspect of GNSS reliability that is 18 

overlooked by conventional metrics. The results indicate a phase-dependent performance: all 19 

models exhibit degradation during the main phase, with the largest errors and structural 20 

mismatches occurring at the equator. KLD reveals distributional distortions (variance, 21 

skewness, tails) that MAE and RMSE cannot, particularly at the storm onset. NeQuick2 22 

demonstrates superior performance only during the recovery phase, which is consistent with its 23 

solar-flux-driven parameterization but limited topside representation. By integrating a 24 

conjugate-point framework with distribution-aware validation, this study elucidates where 25 

empirical baselines fail under storm conditions, and why hemispheric responses diverge. This 26 

approach clarifies the model limitations relevant to GNSS reliability and motivates the 27 

development of hybrid data-assimilative schemes that incorporate dynamic drivers while being 28 

evaluated with both magnitude- and structure-sensitive metrics. 29 
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Short Summary 32 

Ionospheric storms affect GNSS differently in conjugate hemispheres. Using GNSS-derived 33 

TEC during the 25–27 Aug 2018 storm, we assess IRI-2016, IRI-Plas, and NeQuick2 as quiet-34 

time baselines. Magnitude errors (MAE, RMSE) and structure-sensitive KLD show phase-35 

dependent degradation, with equatorial asymmetries strongest. This framework reveals hidden 36 

mismatches overlooked by conventional metrics and improves GNSS reliability assessment. 37 

1 Introduction 38 

The ionospheric response to geomagnetic storms remains a significant challenge in 39 

space weather and wireless communication research because of its nonlinear dynamics 40 

(Bojilova et al., 2024) and substantial impact on Global Navigation Satellite System (GNSS) 41 

positioning, including scintillation-induced degradation (Aguiar et al., 2025; Yang et al., 2020), 42 

satellite links, and transionospheric signal propagation (Li et al., 2024). It is important to note 43 

that the objective of this study is not to evaluate the storm-time predictability of empirical 44 

models; rather, these models are employed as quiet-time baselines to quantify storm-time 45 

deviations and interhemispheric differences using distribution-aware metrics (Chou et al., 2023; 46 

Peng et al., 2024). During geomagnetic disturbances, interactions between the solar wind and 47 

magnetosphere inject energy into the ionosphere–thermosphere system through mechanisms 48 

such as particle precipitation, prompt penetration of electric fields (PPEFs) (Tsurutani et al., 49 

2008), and disturbance dynamo currents (Lee et al., 2025; Paul et al., 2025; Venugopal et al., 50 

2025). These drivers disrupt the electrodynamic balance, alter the neutral composition, and 51 

modulate global circulation, resulting in significant Total Electron Content (TEC, hereafter 52 

VTEC when mapped to the vertical) variability that directly translates into signal delays, phase 53 

scintillation, and GNSS service degradation (Aguiar et al., 2025; Bojilova et al., 2024; Li et al., 54 

2024; Yang et al., 2020). 55 

A particularly incisive yet underutilized framework for investigating storm-time 56 

dynamics is the analysis of magnetic conjugate points (Förster and Cnossen, 2013; Habarulema 57 

et al., 2020; Laundal et al., 2017). These locations, connected by common geomagnetic field 58 

lines, offer a natural laboratory for assessing the interhemispheric coupling (Habarulema et al., 59 

2020; Wang et al., 2021). Theoretically, such coupling should result in mirrored ionospheric 60 

responses at the conjugate sites. However, empirical studies, including those by Dmitriev et al. 61 

(Dmitriev et al., 2017), Habarulema et al. (Habarulema et al., 2020), and Wang et al. (Wang et 62 

al., 2021), have demonstrated systematic non-mirrored behavior driven by hemispheric 63 

differences in geomagnetic field geometry, dip angle, neutral composition, and thermospheric 64 
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winds (Habarulema et al., 2020; Laundal et al., 2017; Wang et al., 2021). Such non-mirrored 65 

behaviors are particularly critical for GNSS applications because prediction algorithms often 66 

assume hemispheric symmetry. These divergences can exceed approximately 100–150% 67 

during intense storms, such as the 2015 St. Patrick’s Day event (Astafyeva et al., 2015) and 68 

surpassed 200% in the American sector during the August 25–27, 2018 storm, as analyzed in 69 

subsequent multi-instrumental and modeling studies (Cherniak and Zakharenkova, 2022; Zhai 70 

et al., 2023), resulting in severe and unpredictable GNSS errors. While extreme asymmetries 71 

(>200%) have been reported in the American sector during this storm (Cherniak and 72 

Zakharenkova, 2022; Zhai et al., 2023), our study focuses on the European, African, and Asian 73 

sectors to provide a complementary global perspective and assess whether such severe 74 

discrepancies are also prevalent in other longitudinally distinct regions with high user density. 75 

Despite their practical importance, conjugate-point discrepancies remain insufficiently 76 

quantified in terms of both their physical drivers and their representation in operational models 77 

(Cnossen and Förster, 2016; Laundal et al., 2017). Global model validations (e.g., Bilitza et al., 78 

2017 (Bilitza et al., 2017)) often emphasize averaged metrics, whereas regional case studies, 79 

such as Sherif et al. (2024) (Sherif et al., 2024), highlight that performance can vary 80 

substantially across local longitudinal sectors, underscoring the need for conjugate-point 81 

frameworks that explicitly capture hemispheric differences. 82 

Despite the recognized need for improvement, empirical models such as IRI-2016, IRI-83 

Plas, and NeQuick2 continue to serve as standard reference frameworks for ionospheric 84 

specifications in GNSS and communication system applications (Chou et al., 2023; Luo et al., 85 

2023; Peng et al., 2024). These models are particularly effective in replicating climatological 86 

behavior under quiet time conditions. However, they were not originally developed to account 87 

for storm-time electrodynamics (Cnossen and Förster, 2016; Laundal et al., 2017). This 88 

limitation has been acknowledged for some time, yet validation studies predominantly focus on 89 

global averages or pointwise error statistics, such as RMSE or MAE (Bilitza et al., 2017; Luo 90 

et al., 2023; Sherif et al., 2024). Although these metrics effectively quantify magnitude errors, 91 

they do not adequately capture distributional differences in TEC variability, structural 92 

mismatches across hemispheres, or the storm-phase dependence of model skill (Jiang et al., 93 

2024). Moreover, very few validation efforts have explicitly employed a conjugate-point 94 

framework (Astafyeva et al., 2015; Habarulema et al., 2020; Laundal et al., 2017; Wang et al., 95 

2021; Zhai et al., 2023), leaving hemispheric divergence, a critical aspect of storm-time GNSS 96 

degradation, largely unexplored. 97 
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Utilizing GNSS-derived TEC as a widely recognized benchmark, we employed three 98 

complementary validation metrics: (i) Mean Absolute Error (MAE), (ii) root-mean-square error 99 

(RMSE), and (iii) distribution-sensitive Kullback–Leibler Divergence (KLD). While MAE and 100 

RMSE assess the pointwise accuracy (Bilitza et al., 2017; Tang et al., 2020), KLD evaluates 101 

the structural discrepancies between the modeled and observed TEC distributions (Adolfs et 102 

al., 2022). In this study, KLD was calculated between the probability distributions of the 103 

modeled and observed TEC during the storm phases (initial, main, and recovery) using 104 

consistent binning across both datasets (refer to Section 2.4 for implementation details). This 105 

metric was specifically selected because of its asymmetry and sensitivity to differences in the 106 

tails of distributions, which are essential for identifying storm-time anomalies that manifest as 107 

rare but high-impact events in the TEC. Given that the TEC structure directly influences range 108 

delay and scintillation risk, distribution-aware validation is operationally pertinent to GNSS 109 

integrity (Bojilova et al., 2024; Li et al., 2024; Martinon et al., 2023). Beyond geospace science, 110 

similar distribution-sensitive divergence metrics are extensively utilized in wireless 111 

communication research to evaluate channel reliability and error propagation (Al-Jarrah et al., 112 

2023; Manimegalai and Bhagyaveni, 2019), highlighting their methodological significance in 113 

detecting storm-time TEC anomalies. This cross-disciplinary application underscores the 114 

methodological robustness of incorporating KLD into our framework, as both ionospheric TEC 115 

variability and wireless channel fluctuations exhibit similar distribution-sensitive error 116 

characteristics. 117 

By integrating these approaches, our analysis (i) elucidates the conditions under which 118 

empirical models fail during storm forcing, (ii) quantifies cross-hemispheric differences at 119 

conjugate locations, and (iii) underscores the methodological benefits of distribution-aware 120 

validation for communication-focused applications (Adolfs et al., 2022; Al-Jarrah et al., 2023; 121 

Habarulema et al., 2020; Jiang et al., 2024; Luo et al., 2023; Manimegalai and Bhagyaveni, 122 

2019; Wang et al., 2021). In doing so, we reconceptualize the role of empirical ionospheric 123 

models in storm-time contexts, not as predictive tools for disturbed conditions, but as reference 124 

baselines whose limitations, when properly characterized, provide critical insights into GNSS 125 

reliability and wireless system vulnerability. This dual perspective, combining conjugate-point 126 

analysis with distribution-sensitive metrics, offers a novel contribution by bridging space 127 

weather science and applied wireless communication (Adolfs et al., 2022; Al-Jarrah et al., 2023; 128 

Habarulema et al., 2020; Jiang et al., 2024; Luo et al., 2023; Manimegalai and Bhagyaveni, 129 

2019; Wang et al., 2021). 130 
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2 Data and Model 131 

This study examines the ionospheric response during a geomagnetic storm from August 132 

25 to 27, 2018, at two pairs of magnetic conjugate stations: Ambalavao (21.9°S, 46.8°E) and 133 

Haifa (32.8°N, 35.0°E), representing mid-latitudes, and Malindi (3.0°S, 40.1°E) and Djibouti 134 

(11.5°N, 42.9°E), representing low latitudes (Akala et al., 2021; Astafyeva et al., 2022; Piersanti 135 

et al., 2020; Zhai et al., 2023). These stations were strategically selected to capture distinct 136 

geophysical regimes, facilitating a systematic evaluation of hemispheric asymmetries across 137 

both mid- and equatorial latitudes (Förster and Haaland, 2015; Laundal and Richmond, 2017). 138 

Figure 1 illustrates the geographic distribution of stations and their conjugate linkages. The East 139 

African and Eastern Mediterranean sectors were chosen because of their high density of GNSS 140 

users and critical satellite communication routes, making the precise characterization of TEC 141 

variability in these regions essential for service reliability (European GNSS Service Centre 142 

(GSC), 2015; Ionospheric Correction Algorithms (NeQuick-G / NTCM-G), 2025). This 143 

configuration is particularly pertinent for GNSS users because spatial and hemispheric 144 

variability in the TEC directly results in positioning errors, signal delays, and service 145 

degradation in wireless communication systems. 146 

 147 

Fig. 1 Geographic distribution of GNSS stations and their corresponding magnetic conjugate 148 

links. Station identifiers (IGS codes) are indicated, and great-circle arcs are utilized to 149 

approximate the connectivity of the geomagnetic field lines. The latitude and longitude 150 

graticules were presented at intervals of 20°. 151 

2.1 Observational Data 152 
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Total Electron Content (TEC) was derived from dual-frequency GNSS data obtained via the 153 

International GNSS Service (IGS). RINEX-format observations from GPS, GLONASS, and 154 

Galileo satellites (when available) were processed at a 30-second resolution using the 155 

IONOLAB-TEC software suite (Sezen et al., 2013). For each epoch, all satellite–receiver links 156 

above a 30° elevation mask were included. The vertical TEC (VTEC) values were computed 157 

per satellite at the ionospheric pierce point and subsequently averaged to obtain a station-level 158 

time series, thereby reducing satellite-specific noise while retaining the storm-time variability 159 

most relevant to the GNSS navigation accuracy. 160 

To ensure calibration accuracy, the IONOLAB-BIAS algorithm was employed to 161 

estimate and eliminate differential code biases (DCBs) from both receivers and satellites 162 

(Arikan et al., 2008). This process incorporates precise IGS orbits and IONEX-derived global 163 

DCB products (Hernández-Pajares et al., 2009). The methodology has undergone extensive 164 

validation against global IGS centers, and is recognized for providing reliable single-station 165 

TEC retrievals under both quiet and disturbed conditions. Although GNSS-derived TEC is 166 

widely regarded as the reference ground truth, it is important to acknowledge the limitations 167 

associated with receiver biases, multipaths, and calibration errors. These effects were mitigated 168 

through IONOLAB-BIAS correction and validated orbits/DCB products, ensuring that the 169 

residual errors were minimal relative to the storm-time TEC variability of interest in this study, 170 

as supported by the comprehensive validation of IONOLAB methodology against global IGS 171 

products (Sezen et al., 2013). Station metadata, receiver types, and data availability windows 172 

are summarized in Table S1 (Supplementary Information). 173 

2.2 Empirical Models 174 

Three widely used empirical ionospheric models were selected for this study: IRI-2016, 175 

IRI-Plas, and NeQuick2 (Bilitza et al., 2017; Gulyaeva et al., 2011; Nava et al., 2008). These 176 

models are not intended as predictive tools for storm-time conditions, as they were not designed 177 

for such purposes. Instead, they serve as climatological baselines, against which deviations 178 

during storm-time and hemispheric asymmetries can be systematically quantified. From the 179 

perspective of wireless communication, these models are frequently integrated into GNSS error 180 

correction, integrity monitoring, and service reliability assessments, rendering their evaluation 181 

particularly pertinent under disturbed conditions (European GNSS Service Centre (GSC), 2015; 182 

Ionospheric Correction Algorithms (NeQuick-G / NTCM-G), 2025).  183 

IRI-2016 represents the climatological monthly medians of ionospheric parameters 184 

(Bilitza et al., 2017). IRI-Plas extends IRI by incorporating plasmaspheric contributions to the 185 
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Total Electron Content (TEC), thereby enhancing the representation of the topside ionosphere 186 

(Gulyaeva et al., 2011). NeQuick2 is a semi-empirical model driven by solar flux inputs (F10.7, 187 

or the effective ionization level, Az) to adjust the electron density profiles dynamically (Nava 188 

et al., 2008). Although storm-time empirical models exist (e.g., the IRI-based STORM 189 

extension) (Araujo‐Pradere et al., 2002), this study specifically focuses on the performance of 190 

the standard, unmodified versions of IRI-2016, IRI-Plas, and NeQuick2. These standard 191 

versions are the most widely implemented in operational GNSS receivers and communication 192 

systems for real-time error correction. Therefore, evaluating their inherent limitations during 193 

storms is of direct practical relevance (European GNSS Service Centre (GSC), 2015; 194 

Ionospheric Correction Algorithms (NeQuick-G / NTCM-G), 2025). 195 

2.3 Storm Phases 196 

Model outputs and GNSS observations were systematically compared across three 197 

distinct storm phases, initial, main, and recovery, as defined by the temporal variation in the 198 

Dst index (Gonzalez et al., 1994). This phase-resolved methodology facilitates the assessment 199 

of model performance in relation to storm progression, rather than averaging results across 200 

dynamically disparate intervals. This distinction is crucial for relevance to communication 201 

systems, as GNSS errors typically reach their peak during the main phases and stabilize during 202 

the recovery phase. 203 

2.4 Statistical Metrics 204 

Three statistical measures were employed to assess the model performance relative to 205 

GNSS-derived TEC: 206 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ �𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 − 𝑇𝑇𝐸𝐸𝐸𝐸𝑝𝑝�𝑛𝑛
𝑖𝑖=1       (1)207 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = � 1
𝑛𝑛
∑ �𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝�

2𝑛𝑛
𝑖𝑖=1       (2) 208 

where TECi is the observed value, TECp the model output, and n the number of samples. 209 

Equations (1) and (2) capture pointwise errors, with MAE emphasizing the average deviations 210 

and RMSE amplifying larger mismatches. 211 

To go beyond magnitude-based errors, we introduced the Kullback–Leibler Divergence (KLD): 212 

  𝐾𝐾𝐾𝐾𝐾𝐾 = ∑ 𝑃𝑃(𝑖𝑖)𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃(𝑖𝑖)
𝑄𝑄(𝑖𝑖)𝑖𝑖        (3) 213 
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In this context, P(i) and Q(i) denote the probability distributions of the observed and modeled 214 

Total Electron Content (TEC), respectively, with the divergence of the model distribution Q 215 

from the observed distribution P being the focus. A lower Kullback-Leibler divergence (KLD) 216 

signifies closer alignment in the distributional structure. Unlike Equations (1) and (2), Equation 217 

(3) is sensitive to discrepancies in variance, skewness, and multimodality, which often become 218 

pronounced during storm-time dynamics (Kullback and Leibler, 1951; Sason and Verdu, 2016). 219 

For implementation, probability distributions were estimated using histograms with bin widths 220 

determined by the Freedman–Diaconis rule to ensure consistency across datasets (Freedman 221 

and Diaconis, 1981). Kernel density estimation (KDE) was also evaluated as part of a 222 

comprehensive sensitivity analysis. To prevent undefined values in the logarithmic term, a 223 

small smoothing constant (ε ≈ 10-6) was added to all bins following standard divergence-224 

analysis practice (Cover and Thomas, 2005). This setup is also consistent with wireless 225 

communication research, where divergence metrics are commonly applied to evaluate the 226 

channel reliability and error propagation. 227 

 A comprehensive sensitivity analysis was performed to evaluate the robustness of the 228 

Kullback-Leibler divergence (KLD) metric in relation to the inherent subjectivity of probability 229 

density estimation. KLD was recalculated for each station-model pair across a broad spectrum 230 

of histogram bin counts (ranging from 20 to 60) and Gaussian kernel density estimation (KDE) 231 

bandwidths (spanning 0.30 to 0.70 TECU). Variability in the results was quantified using the 232 

relative percentage change (Δ%) across these parameter ranges. This analysis demonstrated that 233 

KLD is systematically sensitive to these parameters; it generally increases with finer histogram 234 

binning and decreases with broader KDE smoothing. Importantly, the extent of this sensitivity 235 

is highly contingent on both the model and the geophysical location. 236 

Across all stations, the Δ bin values ranged from 3.68% to 75.64%, whereas the Δ_KDE 237 

values varied from 10.85% to 67.23%. The mid-latitude stations, Ambalavao and Djibouti, 238 

exhibited significant sensitivity, with the KLD increasing consistently with finer binning 239 

(Δ_bins ≈ 61–67% across models) and decreasing with broader KDE smoothing (Δ_KDE ≈ 56–240 

64% at Ambalavao; 11–58% at Djibouti). Haifa demonstrated the highest parameter sensitivity, 241 

particularly for NeQuick2 (Δ_bins ≈ 75.6%, Δ_KDE ≈ 67.2%), whereas IRI-PLAS remained 242 

relatively stable at this location (Δ_bins ≈ 35.8%, Δ_KDE ≈ 30.0%). Conversely, the equatorial 243 

station Malindi was an outlier; its long-tailed PDFs rendered the KLD nearly insensitive to 244 

binning (Δ_bins ≈ 3–7% across models), although it remained responsive to the KDE 245 

bandwidth (Δ_KDE ≈ 45–48% for IRI-PLAS and NeQuick2). 246 
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Crucially, the divergence between the model and observations remained consistent 247 

across all parameter configurations. Consequently, our conclusions based on KLD are 248 

indicative of authentic structural differences rather than artifacts arising from histogram or KDE 249 

settings. The comprehensive results of this sensitivity analysis are presented in Supplementary 250 

Figures S1-S12 and summarized in Supplementary Table S2. This thorough validation 251 

emphasizes the robustness of our distribution-aware evaluation and offers an essential context 252 

for interpreting the KLD results discussed in the subsequent sections. 253 

2.5 Theoretical Framework 254 

Conjugate-point analysis is based on storm-time electrodynamics. Prompt penetration 255 

electric fields (PPEFs) and disturbance dynamo currents facilitate large-scale plasma 256 

redistribution along the magnetic field lines (Blanc and Richmond, 1980; Tsurutani et al., 257 

2008). Although theoretical models anticipate mirrored behaviors at conjugate points, empirical 258 

observations consistently reveal hemispheric asymmetries owing to geomagnetic field 259 

geometry, conductivity imbalances, and neutral wind filtering (Förster and Haaland, 2015; 260 

Laundal and Richmond, 2017). Total Electron Content (TEC) serves as a crucial diagnostic tool 261 

for these processes, and its distribution across hemispheres provides a rigorous test for empirical 262 

models. Beyond its geophysical importance, this framework elucidates the mechanisms by 263 

which ionospheric storms impair Global Navigation Satellite System (GNSS) positioning 264 

accuracy and communication reliability, underscoring the necessity of cross-disciplinary 265 

evaluation methods. The theoretical expectation of both coupling and asymmetry directly 266 

informs our methodological choices: selecting conjugate pairs offers a controlled experimental 267 

setup, whereas the Kullback-Leibler divergence (KLD) metric is particularly suited for 268 

detecting the non-mirrored distributional differences predicted by theory (Bilitza et al., 2017). 269 

Consequently, our framework provides a direct observational test for these electrodynamic 270 

principles. Therefore, precise quantification of hemispheric divergence, a critical factor in 271 

storm-time GNSS degradation, remains a central challenge, emphasizing the need for 272 

conjugate-point validation frameworks. As conjugate sites do not share a common local time 273 

(LT) at a given UT, the interpretation of hemispheric asymmetry is potentially confounded by 274 

diurnal illumination. In future analyses, we will employ LT-aligned comparisons and explicit 275 

LT controls to isolate electrodynamic coupling from diurnal effects. 276 

3 Results 277 

3.1 Storm Overview and Ionospheric Context 278 
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The geomagnetic storm examined in this study occurred between August 25 and 27, 279 

2018 and exhibited characteristics of a moderately intense to strong event. As illustrated in 280 

Figure 2, Dst reached −176 nT, Kp peaked at 7.3, and ap increased to 154 nT (Piersanti et al., 281 

2020). The main phase, characterized by a prolonged southward turning of the IMF Bz, 282 

extended from 18:00 UT on August 25 to 06:00 UT on August 26 (Piersanti et al., 2020). Taken 283 

together, these indicators are consistent with strong storm conditions (Piersanti et al., 2020). 284 

Storm classifications vary in the literature. Akala et al. (2021) documented that the 285 

geomagnetic activity on August 26, 2018, was consistent with a G3-level event precipitated by 286 

a solar filament eruption on August 20 (Akala et al., 2021). Subsequent analyses suggested that 287 

the storm was predominantly influenced by weak CME transients interacting with Corotating 288 

Interaction Regions (CIRs) and High-Speed Streams (HSSs) rather than by a strong magnetic 289 

cloud, which is typically associated with severe geomagnetic disturbances (Akala et al., 2021; 290 

Gonzalez et al., 2011). 291 

Although Prompt Penetration Electric Fields (PPEFs) were relatively modest (≈0.3 292 

mV/m; Akala et al., 2021) (Akala et al., 2021), our observations reveal significant ionospheric 293 

responses, particularly in the form of pronounced Total Electron Content (TEC) deviations at 294 

magnetic conjugate points. This underscores two critical aspects: (i) even moderately driven 295 

storms with sustained southward Interplanetary Magnetic Field (IMF) Bz can induce strong 296 

interhemispheric ionospheric coupling and (ii) localized spatial variability plays a decisive role 297 

in shaping storm-time ionospheric impacts. 298 

Consequently, while the August 2018 event may not be classified as an extreme storm 299 

based on solar drivers, its impact on the ionosphere serves as a valuable case study for assessing 300 

the performance of the empirical model under disturbed and complex geomagnetic conditions. 301 

This perspective is consistent with previous research indicating that even G2–G3 storms can 302 

significantly disrupt GNSS positioning and communication systems when they occur under 303 

favorable local time and background thermospheric conditions (Valdés-Abreu et al., 2021; Xue 304 

et al., 2024). 305 
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Fig. 2 Temporal variations in the IMF Bz, Dst, Kp, and ap indices observed from August 22 to 307 

29, 2018. The main phase of the storm, which occurred from August 25, 18:00 UT to August 308 

26, 06:00 UT, is delineated by the vertical dashed lines. A pronounced minimum in the Dst 309 

index and sustained southward orientation of the IMF Bz corroborated the intensity of the 310 

storm. 311 

3.2 TEC Model Evaluation at Conjugate Points 312 

To assess the efficacy of empirical ionospheric models in representing storm-time 313 

dynamics, we conducted a comparative analysis of NeQuick2, IRI-2016, and IRI-Plas during a 314 

geomagnetic storm that occurred from August 25 to 27, 2018. This evaluation concentrated on 315 

two magnetic conjugate station pairs, Ambalavao–Haifa and Malindi–Djibouti, encompassing 316 

both mid-latitude and equatorial responses. Model outputs were systematically compared with 317 

GNSS-derived Total Electron Content (TEC) using three complementary metrics: MAE, 318 

RMSE, and KLD. This hybrid framework, which integrates magnitude-based errors with 319 

distribution-sensitive divergence, offers a comprehensive assessment of the model performance 320 

across various storm phases. This approach is particularly valuable given the nonlinear, 321 

asymmetric, and rapidly evolving nature of ionospheric disturbances during geomagnetic 322 
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storms, particularly when interhemispheric processes are considered (Bilitza et al., 2017; 323 

Cherniak and Zakharenkova, 2019; Vankadara et al., 2022). 324 

Although these empirical models are extensively employed for climatological 325 

specifications, they possess inherent limitations in accurately representing the rapid 326 

electrodynamic processes that occur during geomagnetic disturbances. These processes include 327 

the prompt penetration of electric fields, storm-time thermospheric wind surges, and 328 

hemispheric conductivity gradients (Blanc and Richmond, 1980; Tsurutani et al., 2008).  329 

3.2.1 Ambalavao–Haifa pair: How do the models behave at mid-latitudes? 330 

As illustrated in Table 1, all three models demonstrated optimal performance during the 331 

recovery phase, with NeQuick2 exhibiting the lowest errors (MAE ≈ 0.4 TECU; RMSE ≈ 1.0 332 

TECU). Conversely, the error rates increased significantly during the main phase, particularly 333 

for IRI-2016 (while IRI-Plas occasionally yielded a smaller MAE at mid-latitudes during the 334 

MP; Table 1), highlighting their limited capacity to accurately capture rapid storm-time 335 

fluctuations. These findings align with previous reports indicating that IRI models tend to 336 

underestimate the daytime TEC and oversimplify storm variability (Bilitza et al., 2017; 337 

Cherniak and Zakharenkova, 2019; Endeshaw, 2020; Gulyaeva et al., 2011). 338 

Table 1 TEC model performance for Ambalavao–Haifa across storm phases (BP, MP, and RP), errors 339 
(MAE, RMSE, and TECU), and divergence (KLD; –) are reported relative to OBS |ΔTEC|. 340 

Metric Phase Observed (Amb–Haifa) NeQuick2 IRI-2016 IRI-Plas 
MAE (TECU) BP 6.0 1.7 1.8 2.1  

MP 6.2 2.8 2.3 1.3  
RP 2.3 0.4 0.5 1.5 

RMSE (TECU) BP 6.4 1.9 2.1 2.8  
MP 6.4 3.0 2.5 1.7  
RP 4.2 1.0 1.3 3.5 

KLD (–) BP 0.08 0.30 0.31 0.17  
MP 0.07 0.22 0.26 0.13  
RP 0.16 0.26 0.31 0.16 

Note: MAE and RMSE are in TECU, and KLD is dimensionless. 341 

An important insight derived from the Kullback–Leibler Divergence (KLD) is that 342 

elevated values during the initial phase indicate that despite a moderate Mean Absolute Error 343 

(MAE) and Root Mean Square Error (RMSE), the models inaccurately represented the 344 

statistical structure of the Total Electron Content (TEC) distribution. Variance, skewness, and 345 

tail behavior, which are often obscured by pointwise metrics, have proven crucial in capturing 346 

the onset of storm-driven changes (Arikan et al., 2016; Karatay et al., 2010). To our knowledge, 347 

this is among the earliest distribution-aware (KLD) validations explicitly framed within a 348 

conjugate-point analysis for this storm and station set. 349 
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3.2.2 Haifa–Ambalavao Reverse Evaluation: The Hemispheric Disconnect 350 

Upon reversing the evaluation to compare Haifa with Ambalavao, distinct hemispheric 351 

asymmetry was evident (Table 2). Errors were consistently more pronounced at the Northern 352 

Hemisphere site, particularly during the main phase, suggesting increased modeling challenges 353 

at higher northern mid-latitudes. This phenomenon aligns with variations in the seasonal solar 354 

illumination, geomagnetic field geometry, and background electron density gradients (Laundal 355 

et al., 2017; Mendillo, 2006). 356 

Table 2 Directional (reverse) evaluation for Haifa–Ambalavao across BP, MP, RP; errors (MAE, 357 
RMSE; TECU) and divergence (KLD; –) reported relative to OBS |ΔTEC|. 358 

Metric Phase Observed (Haifa–Amb) NeQuick2 IRI-2016 IRI-Plas 
MAE (TECU) BP 6.0 2.8 4.3 2.3  

MP 6.2 4.6 6.6 2.6  
RP 2.3 0.5 1.2 0.7 

RMSE (TECU) BP 6.4 3.3 4.8 2.8  
MP 6.4 4.7 6.7 2.9  
RP 4.2 1.2 2.2 1.4 

KLD (–) BP 0.08 0.04 0.05 0.03  
MP 0.07 0.08 0.07 0.06  
RP 0.16 0.11 0.07 0.10 

Note: MAE and RMSE are in TECU, and KLD is dimensionless. 359 

 The Kullback-Leibler divergence (KLD) further accentuates the asymmetry, indicating 360 

that the models encountered difficulties with the statistical structure of Total Electron Content 361 

(TEC) distributions in Haifa, beyond merely the mean errors. 362 

3.2.3 Malindi–Djibouti Pair: The Challenge of the Equator 363 

For the Malindi–Djibouti pair, performance declined further (Table 3). During the main 364 

phase, the IRI-2016 model exhibited a Mean Absolute Error (MAE) exceeding 15 Total 365 

Electron Content Units (TECU), with a Root Mean Square Error (RMSE) approaching 16 366 

TECU, which is significantly larger than the errors observed at mid-latitudes. These 367 

discrepancies underscore the inherent complexity of the equatorial ionosphere, which is 368 

significantly influenced by the Equatorial Ionization Anomaly (EIA), neutral wind reversal, and 369 

storm-time coupling processes (Cherniak and Zakharenkova, 2022; Zhang et al., 2021). 370 

Table 3 TEC model performance for Djibouti–Malindi across BP, MP, and RP; errors (MAE, 371 
RMSE, TECU) and divergence (KLD; –) reported relative to OBS |ΔTEC|. 372 

Metric Phase Observed (Mal–Dji) NeQuick2 IRI-2016 IRI-Plas 
MAE (TECU) BP 12.5 10.5 10.9 5.5 

 MP 13.3 15.7 15.2 8.1 
 RP 5.3 5.0 4.8 2.4 

RMSE (TECU) BP 12.9 11.1 11.5 7.2 
 MP 14.0 15.9 15.2 8.6 
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 RP 8.9 8.6 8.2 4.7 
KLD (–) BP 0.10 0.23 0.28 0.15 

 MP 0.14 0.13 0.17 0.09 
 RP 0.07 0.14 0.16 0.09 

Note: MAE and RMSE are in TECU, and KLD is dimensionless. 373 

The KLD values indicate that the model not only inaccurately estimated TEC 374 

magnitudes, but also failed to maintain distributional characteristics, emphasizing the specific 375 

challenges associated with equatorial dynamics. 376 

3.2.4 NeQuick2’s Edge in the Recovery Phase 377 

Despite its recognized limitations, NeQuick2 consistently surpassed IRI-2016 and IRI-378 

Plas during the recovery phase, as shown in Table 4. With mean absolute error (MAE) values 379 

below 1 total electron content unit (TECU), relatively low root mean square error (RMSE), and 380 

Kullback-Leibler divergence (KLD), NeQuick2 demonstrated considerable robustness once the 381 

ionosphere stabilized following the peak disturbance (Montenbruck and González Rodríguez, 382 

2020; Nava et al., 2008). 383 

Table 4 Directional (reverse) evaluation for Malindi–Djibouti across BP, MP, and RP; errors 384 
(MAE, RMSE, TECU) and divergence (KLD; –) reported relative to OBS |ΔTEC|. 385 

Metric Phase Observed (Mal–Dji) NeQuick2 IRI-2016 IRI-Plas 
MAE (TECU) BP 12.5 3.9 4.2 10.7 

 MP 13.3 2.9 3.3 8.7 
 RP 5.28 0.7 1.2 3.8 

RMSE (TECU) BP 12.92 5.0 5.2 12.2 
 MP 13.9 4.2 3.8 10.2 
 RP 8.9 1.5 2.6 7.3 

KLD (–) BP 0.10 0.23 0.28 0.15 
 MP 0.14 0.13 0.17 0.09 
 RP 0.17 0.14 0.16 0.09 

Note: MAE and RMSE are in TECU, and KLD is dimensionless. 386 

The KLD values remained relatively low, indicating that NeQuick2 maintained its 387 

structural integrity during the recovery. This relative success is likely attributable to its solar-388 

flux-driven parameterization, which facilitates dynamic adjustment during recovery, in contrast 389 

to IRI-based models that rely on climatological medians and lack flexibility. However, 390 

NeQuick2's simplified plasmaspheric representation resulted in an underestimation of the 391 

topside TEC (Cherniak and Zakharenkova, 2019), highlighting that even the most reliable 392 

empirical models have inherent limitations under storm conditions (Kashcheyev and Nava, 393 

2019; Pezzopane et al., 2023; Pezzopane and Pignalberi, 2019). 394 

4 Discussion 395 

4.1 Model Limitations and Benchmark Role 396 
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In this study, empirical models were employed as baselines for quiet-time conditions to assess 397 

deviations during storm periods; however, they were not used as predictors of storm events. 398 

This analysis underscores a well-established limitation: empirical ionospheric models such as 399 

IRI-2016, IRI-Plas, and NeQuick2 are not designed to predict storm-time phenomena (Bilitza 400 

et al., 2017; Gulyaeva et al., 2011; Nava et al., 2008). These models are based on climatological 401 

averages and are not intended to capture transient electrodynamic forcings (Bilitza et al., 2017; 402 

Blanc and Richmond, 1980; Nava et al., 2008). Rather than viewing this as a deficiency, our 403 

study reinterprets their function by providing benchmarks for quiet-time conditions against 404 

which storm-time deviations can be systematically quantified. Extensions such as the IRI-based 405 

STORM module aim to parameterize storm effects; however, they remain constrained by the 406 

complexity of magnetosphere–ionosphere–thermosphere interactions (Araujo‐Pradere et al., 407 

2002; Astafyeva et al., 2015; Blanc and Richmond, 1980). Therefore, evaluating baseline 408 

empirical models under storm conditions is scientifically valuable not as a test of forecasting 409 

ability but as a means to diagnose where physical processes diverge from climatological 410 

assumptions (Bilitza et al., 2017; Gulyaeva et al., 2011). Notably, IRI-Plas occasionally 411 

exhibited lower magnitude errors (MAE/RMSE) during the main phase at mid-latitudes (e.g., 412 

Tables 1 and 2), which may have resulted from its plasmaspheric extension stabilizing topside 413 

contributions under certain conditions or from differences in parameterization. This 414 

occasionally lower MAE/RMSE during the main phase is physically plausible: the 415 

plasmaspheric extension can partially stabilize topside contributions and reduce magnitude 416 

errors when the scale heights increase rapidly. However, this advantage does not consistently 417 

translate into superior distributional fidelity, as indicated by the KLD, underscoring that IRI-418 

Plas may match totals while still misrepresenting variance, skewness, or tails. However, 419 

establishing generality requires further case studies (Arikan et al., 2016; Gulyaeva et al., 2011). 420 

4.2 Hemispheric Asymmetry and Physical Insights 421 

One of the most evident outcomes is the pronounced hemispheric asymmetry observed 422 

at the conjugate points, notably in the Malindi–Djibouti pair. Despite their magnetic linkage, 423 

these sites exhibited significantly different TEC signatures during the main phase, with IRI-424 

2016 errors exceeding 15 TECU at Djibouti. This asymmetry cannot be attributed solely to 425 

model deficiencies; it reflects genuine geophysical influences, including solar illumination 426 

gradients, thermospheric wind circulation, and geographic offsets (Cnossen and Förster, 2016; 427 

Förster and Cnossen, 2013; Förster and Haaland, 2015; Laundal et al., 2017; Laundal and 428 

Richmond, 2017). These findings are consistent with previous reports on conjugate divergence 429 
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and underscore the necessity for conjugate frameworks in future validation studies because 430 

assumptions of symmetry obscure significant physical variability (Cherniak and Zakharenkova, 431 

2022; Habarulema et al., 2020; Zhang et al., 2021). Although the hemispheric asymmetries 432 

discussed above reflect authentic geophysical drivers, conjugate sites do not share the same 433 

local time (LT) at a given UT. Because TEC is strongly influenced by solar illumination (LT), 434 

a portion of the observed divergence may result from LT offsets rather than solely from 435 

hemispheric electrodynamics. Future analyses should incorporate LT-aligned composites or 436 

explicit LT controls to isolate this contribution, which represents a limitation of this study 437 

(Cnossen and Förster, 2016; Förster and Cnossen, 2013; Förster and Haaland, 2015; Laundal et 438 

al., 2017; Laundal and Richmond, 2017; Mendillo, 2006). 439 

4.3 Structural Reliability via KLD 440 

Traditional error metrics, such as the Mean Absolute Error (MAE) and Root Mean Square Error 441 

(RMSE), evaluate the mean accuracy but do not ascertain whether the statistical structure of 442 

storm-time Total Electron Content (TEC) is preserved. By utilizing the Kullback–Leibler 443 

Divergence (KLD), we identified instances where models appeared satisfactory in terms of 444 

mean error yet inaccurately represented variance, skewness, or distribution tails, particularly at 445 

the onset of storms (Arikan et al., 2016; Karatay et al., 2010; Kullback and Leibler, 1951). This 446 

distinction is significant; a model that accurately predicts numerical values may still 447 

inadequately capture the dynamics governing ionospheric variability. Our findings demonstrate 448 

that KLD complements conventional metrics by revealing hidden discrepancies in model 449 

performance (Arikan et al., 2016; Cover and Thomas, 2005; Karatay et al., 2010; Kullback and 450 

Leibler, 1951; Sason and Verdu, 2016). The application of KLD to conjugate-point analysis 451 

represents a methodological advancement beyond standard evaluation (Kullback and Leibler, 452 

1951; Sason and Verdu, 2016). Operationally, an elevated KLD indicates that the model 453 

underrepresents the distribution tails that drive rare but high-impact TEC excursions, which are 454 

the most challenging for Global Navigation Satellite System (GNSS) correction/integrity and 455 

wireless links. It is important to note that KLD quantifies the similarity of distributional shape 456 

(variance, skewness, multimodality) rather than the absolute magnitude of errors; thus, a station 457 

can exhibit large MAE/RMSE yet moderate KLD if the modeled distribution preserves shape, 458 

whereas smaller magnitude errors can still yield higher KLD when the distributional structure 459 

is incorrect—hence our joint reporting of MAE/RMSE and KLD. 460 

Sensitivity analyses (Supplementary Figs. S1–S12; Tables S1–S2) confirm that these 461 

conclusions are not artifacts of density estimation settings. The analysis revealed that NeQuick2 462 
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was the most parameter-sensitive model, as indicated by the significant fluctuations in the KLD 463 

values depending on the bin count and KDE bandwidth. In contrast, IRI-Plas demonstrated 464 

greater stability. This finding underscores that distribution-aware metrics not only identify 465 

structural discrepancies but also highlight the vulnerability of different models to 466 

methodological assumptions. Therefore, distribution-aware metrics are directly relevant to risk-467 

focused validation (Al-Jarrah et al., 2023; Kullback and Leibler, 1951; Manimegalai and 468 

Bhagyaveni, 2019; Sason and Verdu, 2016). 469 

4.4 Future Directions 470 

The degradation observed during storm-time was most pronounced during the main 471 

phase, wherein all models failed to accurately capture rapid electrodynamic forcing(Astafyeva 472 

et al., 2015, 2022). Conversely, the recovery phase exhibited variability contingent upon the 473 

model used, with NeQuick2 demonstrating a relative advantage (Cherniak and Zakharenkova, 474 

2019; Kashcheyev and Nava, 2019; Montenbruck and González Rodríguez, 2020; Pezzopane 475 

et al., 2023; Pezzopane and Pignalberi, 2019). This disparity underscores the necessity of 476 

developing models capable of dynamic adaptation across different phases rather than relying 477 

on static climatological assumptions (Adolfs et al., 2022; Jiang et al., 2024; Luo et al., 2023). 478 

The most pronounced cross-hemispheric divergences are observed at equatorial 479 

conjugate pairs, where complex factors such as pre-reversal enhancement (Fejer, 2002), EIA 480 

modulation, and neutral wind asymmetries intensify the discrepancies between models and 481 

observations (Cherniak and Zakharenkova, 2022; Cnossen and Förster, 2016; Habarulema et 482 

al., 2020; Wang et al., 2021). These findings highlight the limitations of climatological 483 

baselines and emphasize the necessity of incorporating storm-responsive physical processes. 484 

The utilization of the Kullback–Leibler Divergence (KLD) presents notable diagnostic 485 

benefits by detecting structural errors such as variance inflation, skewness shifts, and tail 486 

distortions, which are not identified by MAE and RMSE (Al-Jarrah et al., 2023; Cover and 487 

Thomas, 2005; Freedman and Diaconis, 1981; Kullback and Leibler, 1951; Manimegalai and 488 

Bhagyaveni, 2019; Sason and Verdu, 2016). This highlights the importance of adopting 489 

distribution-aware metrics as the standard in storm-time validation, particularly in applications 490 

where communication is of critical importance. 491 

These findings collectively highlight the imperative for the development of hybrid or 492 

data-assimilative models that integrate solar-wind coupling, E×B drifts (Fejer, 2002), and 493 

variations in thermospheric composition. These models must be evaluated using both 494 
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magnitude-based and distribution-sensitive metrics (Adolfs et al., 2022; Astafyeva et al., 2015; 495 

Jiang et al., 2024; Luo et al., 2023; Tang et al., 2020; Tsurutani et al., 2008). Such approaches 496 

are vital for advancing our ability to accurately model storm-time ionospheric dynamics and 497 

enhance the reliability of GNSS-enabled systems. 498 

5 Conclusion 499 

By integrating a conjugate-point framework with distribution-aware validation (KLD), 500 

this study provides a novel benchmark for assessing empirical ionospheric models during 501 

geomagnetic storms. We utilized empirical ionospheric models as baselines for quiet-time 502 

conditions to quantify deviations during storm periods at magnetic conjugate points by 503 

employing the Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and 504 

distribution-aware Kullback–Leibler Divergence (KLD). The analysis of the storm from August 505 

25 to 27, 2018, indicated that the performance of the models was significantly contingent upon 506 

the storm phase; all models exhibited degradation during the main phase, with NeQuick2 507 

demonstrating superior performance during the recovery phase. Pronounced hemispheric 508 

asymmetries were observed; errors were more substantial, and distributions were more distorted 509 

at northern mid-latitudes (Haifa), particularly at the equator (Malindi–Djibouti), reflecting 510 

genuine geophysical influences such as illumination, winds, and magnetic geometry. 511 

The Kullback-Leibler Divergence (KLD) effectively identified structural discrepancies, 512 

including variance, skewness, and tails, which remained undetected when the Mean Absolute 513 

Error (MAE) or Root Mean Square Error (RMSE) appeared moderate. For instance, during the 514 

initial phase of the storm at mid-latitudes, KLD revealed significant distributional distortions 515 

in the models (e.g., KLD=0.30 for NeQuick2 in Table 1) that were not apparent from the 516 

magnitude errors alone (MAE=1.7 TECU), highlighting its critical diagnostic value. This 517 

underscores the importance of communication-oriented validations. While NeQuick2's solar-518 

flux parameterization offers certain relative advantages, its topside limitations highlight the fact 519 

that no empirical model can fully capture storm-time dynamics. 520 

Crucially, the robustness checks conducted through the sensitivity analysis 521 

(Supplementary Figures S1–S12, Table S2) substantiate that these conclusions are not mere 522 

artifacts of parameter selection but rather reflect authentic structural discrepancies. 523 

The findings indicate that empirical models should be considered as reference 524 

benchmarks rather than predictors. When combined with structure-aware validation, the 525 

conjugate-point framework provides a practical methodology for identifying failure modes, 526 
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prioritizing physical processes for assimilation, and ultimately enhancing the resilience of 527 

GNSS and wireless systems under geomagnetic disturbances. This is particularly relevant 528 

across magnetically conjugate links, where asymmetries are the most operationally significant. 529 

While the current study focused on storms occurring from August 25 to 27, 2018, future 530 

research will expand this conjugate-point KLD framework to a statistical ensemble of storms 531 

across different seasons and phases of the solar cycle to ascertain the generalizability of the 532 

findings. 533 
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