
Supplementary  

Table S1 Metadata of GNSS stations and approximate magnetic latitude (MLAT) values used in 

this study. 

Parameter Ambalavao 
(VOIM00MDG) 

Haifa 
(BSHM00ISR) 

Malindi 
(MAL200KEN) 

Djibouti 
(DJIG00DJI) 

 
Latitude, 
Longitude −21.906, 46.793 32.779, 35.020 −2.996, 40.194 11.526, 42.847 

Elevation (m) 163.3 225.1 −20.4 711.4 

  
Country/Region 

Ambalavao, 

Madagascar 
Haifa, Israel 

Malindi, 

Kenya Arta, Djibouti 

 
Receiver JAVAD TR_2S 

SEPT 

POLARX5 

SEPT 

POLARX5 
SEPT POLARX5 

Antenna JAVRINGANT_G
5T 

TRM59800.00 LEIAR25.R4 TRM59800.00 

Satellite System 
GPS+GLO+GAL+

BDS+QZSS+SBA

S 

GPS+GLO+G

AL+BDS+QZ

SS+IRNSS 

GPS+GLO+G

AL+BDS+SB

AS 

GPS+GLO+GAL+

BDS+IRNSS+SB

AS 

Approx. MLAT 
(°) 

-26.25 +29.52 -6.58 +7.39 

 

Notes. Geographic coordinates were sourced from the IGS metadata, while magnetic latitudes were 
calculated using AACGMv2 (Epoch 2018). Information regarding the receiver and antenna was 
obtained from IGS station logs. Satellite counts represent averages over 30-second sampling 
intervals during storm periods. 

 

Table S2. Summary of KLD Sensitivity to Estimation Parameters Across Stations and Models. 

Station Model Δ% (Histogram Bins) Δ% (KDE Bandwidth) 

Ambalavao IRI-2016 67.44% 64.34%  
IRI-PLAS 65.33% 56.45%  
NeQuick2 63.69% 61.02% 



Haifa IRI-2016 66.17% 54.54%  
IRI-PLAS 35.78% 30.00%  
NeQuick2 75.64% 67.23% 

Malindi IRI-2016 7.06% 45.53%  
IRI-PLAS 3.68% 48.01%  
NeQuick2 6.91% 45.22% 

Djibouti IRI-2016 61.58% 25.04%  
IRI-PLAS 65.54% 58.36%  
NeQuick2 62.49% 10.85% 

 

This table summarizes the sensitivity of the Kullback–Leibler Divergence (KLD) to estimation 
parameters across all stations and ionospheric models. The Δ% values represent the relative change 
in KLD when (i) the histogram bin count is varied between 20 and 60 and (ii) the KDE bandwidth 
is varied between 0.30 and 0.70 TECU. A larger Δ% indicates a stronger dependence of KLD on 
the respective parameter choice. The results demonstrate that Ambalavao and Haifa exhibit 
particularly high sensitivity across all models, whereas Malindi shows comparatively lower 
sensitivity in histogram binning but moderate to strong dependence on the KDE bandwidth. These 
findings confirm that distributional mismatches between observations and models are not artifacts 
of parameterization but reflect structural divergences in model performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Captions – Ambalavao 

 

Figure S1. Sensitivity of Kullback–Leibler Divergence (KLD) for Ambalavao station: IRI-
2016 PLAS model. 

Panel (a) compares the observed GPS-TEC distribution with that of the IRI-2016 PLAS model. 
The model systematically underestimated the higher-end TEC values (>10 TECU) while slightly 
overestimating the peak around 4–5 TECU, resulting in a visible shift between the two 
distributions. 

Panel (b) shows the KLD response to histogram bin count (20–60 bins). The divergence steadily 
increases from ~0.28 to ~0.78, corresponding to a relative change of Δ ≈ 65.33%, indicating 
moderate sensitivity of the metric to binning choice. 



Panel (c) illustrates the dependence on the KDE bandwidth (0.30–0.70). Here, KLD decreased from 
~0.68 to ~0.30, with Δ ≈ 56.45%. This trend suggests that finer bandwidths exaggerate the 
structural mismatch, whereas broader smoothing reduces the divergence. 

Overall, the persistence of nonzero KLD across parameter settings confirms that the observed 
distributional differences between GPS-TEC and IRI-2016 PLAS are robust and not an artifact of 
binning or bandwidth selection. 

 

 



Figure S2. Sensitivity of Kullback–Leibler Divergence (KLD) for Ambalavao station: IRI-
2016 model. 

Panel (a) compares the observed GPS-TEC distribution with that of the IRI-2016 model. The model 
significantly underestimates the dominant peaks seen in the observations (notably around 5–7 
TECU), leading to mismatched probability densities across the distribution. 

Panel (b) shows that KLD increases steadily with the number of histogram bins (Δ ≈ 67.44%), 
indicating that the divergence between the observed and modeled distributions becomes more 
pronounced at finer binning scales. 

Panel (c) illustrates that KLD decreases systematically with increasing KDE bandwidth (Δ ≈ 
64.34%), suggesting that smoothing reduces, but does not eliminate, the structural differences 
between the two distributions. Together, the sensitivity results confirm that the mismatch is 
consistent and not an artifact of the histogram or KDE parameter choice. 



 

 

Figure S3. Sensitivity of Kullback–Leibler Divergence (KLD) for Ambalavao station: 
NeQuick2 model. 

Panel (a) compares the observed GPS-TEC distribution with NeQuick2 output. The NeQuick2 
distribution is shifted toward lower TEC values, peaking at approximately 2–4 TECU, whereas 
observations show a broader distribution with multiple modes extending beyond 10 TECU. This 
structural mismatch highlights that NeQuick2 systematically underestimates the higher-TEC tail 
observed during storm-time. 



Panel (b) shows how KLD increased with the number of histogram bins (20–60), with Δ ≈ 63.69%. 
This indicates that a finer resolution amplifies the divergence between the model and observed 
distributions. 

Panel (c) displays the effect of the KDE bandwidth variation (0.30–0.70 TECU), where KLD 
decreases steadily with increasing bandwidth (Δ ≈ 61.02%). The relatively high Δ across both 
parameters underscores the fact that NeQuick2 is sensitive to methodological choices and exhibits 
stronger divergence from GPS-TEC than IRI-based models. 

Supplementary Captions – Djibouti 

 



Figure S4. Sensitivity of Kullback–Leibler Divergence (KLD) for the Djibouti station: IRI-
2016 PLAS model. 

Panel (a) shows that the IRI-2016 PLAS distribution (orange) substantially underestimates the 
higher-TEC tail compared with the GPS observations (blue), with visible mismatches around 10–
20 TECU, where the observed distribution retains elevated probabilities. Panel (b) demonstrates 
that KLD steadily increases as the histogram bin count increases from 20 to 60, resulting in a 
relative sensitivity of Δ ≈ 65.54%. Panel (c) reveals a systematic decline in KLD with increasing 
KDE bandwidth (0.30–0.70 TECU), with Δ ≈ 58.36%. These results indicate that, while the model 
diverges notably from observations, the sensitivity patterns remain consistent across parameter 
choices, highlighting the robustness of the detected structural mismatches. 



 

Figure S5. Sensitivity of Kullback–Leibler Divergence (KLD) for the Djibouti station: IRI-
2016 model. 

Panel (a) shows a comparison between the observed GPS-TEC and the IRI-2016 model 
distribution. The model consistently underestimates the higher-TEC portion, producing a narrower 
distribution and shifting the peak around 2–3 TECU compared with observations peaking between 
12 and 15 TECU. Panel (b) illustrates that the KLD values increase steadily with histogram bin 
counts, with a relative variation of Δ ≈ 61.58%, indicating a substantial sensitivity to binning 



resolution. Panel (c) demonstrates that the dependence on the KDE bandwidth is less pronounced 
(Δ ≈ 25.04%), showing a monotonic decrease in the KLD with wider smoothing. Together, these 
results suggest that the distributional mismatch between IRI-2016 and observations at Djibouti is 
robust, but strongly influenced by histogram binning. 

 

Figure S6. Sensitivity of Kullback–Leibler Divergence (KLD) for the Djibouti station: 
NeQuick2 model. 



Panel (a) shows the GPS-TEC distribution compared to the NeQuick2 model output, where the 
model systematically underestimates the higher-probability modes of the observed distribution. 
Panel (b) illustrates how KLD increases markedly as the histogram bin count increases from 20 to 
60, with a relative variation of Δ ≈ 62.49%, indicating a strong sensitivity to bin choice. Panel (c) 
demonstrates the dependence of KLD on the KDE bandwidth (0.30–0.70 TECU), where KLD 
steadily decreases with smoother bandwidths, but with a smaller relative variation (Δ ≈ 10.85%). 
Together, these results confirm that NeQuick2 diverges significantly from the observations, 
although its sensitivity to KDE smoothing is less pronounced than that of bin selection. 

Supplementary Captions – Haifa 

 



Figure S7. Sensitivity of Kullback–Leibler Divergence (KLD) for the Haifa station: IRI-2016 
PLAS model. 

Panel (a) shows the observed GPS-TEC distribution compared to the IRI-2016 PLAS output. The 
model systematically underestimated the main peaks observed in the measurements, with the 
largest divergence at approximately 13–15 TECU. Panel (b) illustrates how KLD increases with 
the histogram bin count, showing a relative sensitivity of approximately Δ ≈ 35.78%. Panel (c) 
demonstrates that KLD decreases consistently as the KDE bandwidth increases (0.30–0.70 TECU), 
with Δ ≈ 30.00%. These results indicate that while the numerical sensitivity to parameterization is 
moderate, the structural mismatch between the model and data persists across settings. 



 

Figure S8. Sensitivity of Kullback–Leibler Divergence (KLD) for the Haifa station: IRI-2016 
model. 

Panel (a) shows the probability distributions of GPS-TEC and IRI-2016 outputs. The IRI-2016 
distribution underestimates the main observed peak (approximately 14 TECU) while 
overemphasizing lower TEC values (~2–4 TECU), leading to clear structural mismatches. Panel 
(b) demonstrates that KLD increases steadily with the histogram bin count (Δ ≈ 66.17%), indicating 



strong sensitivity to bin resolution. Panel (c) illustrates a consistent decrease in KLD with larger 
KDE bandwidths (Δ ≈ 54.54%), showing that smoothing reduces the divergence, but does not 
eliminate the discrepancy. These results highlight that the IRI-2016 model failed to reproduce the 
observed distributional shape at Haifa, with parameter sensitivity analyses confirming the 
robustness of this mismatch. 

 

Figure S9. Sensitivity of Kullback–Leibler Divergence (KLD) for the Haifa station: NeQuick2 
model. 

Panel (a) compares the GPS-TEC probability distribution with NeQuick2 model output. The 
NeQuick2 curve shows systematic deviations from observations, particularly in the mid-range TEC 
values (6–15 TECU), where the observed distribution exhibits more spread and secondary peaks 



than the model does not fully reproduce. Panel (b) illustrates the dependence of KLD on the 
histogram bin count (20–60), revealing a strong upward trend with Δ ≈ 75.64%, which indicates 
the high sensitivity of the divergence metric to the binning resolution. Panel (c) presents the 
variation in KLD with KDE bandwidth (0.30–0.70 TECU). Δ ≈ 67.23% further demonstrates the 
sensitivity of the model–data divergence to parameterization. Together, these results suggest that 
NeQuick2 exhibits both distributional mismatches and higher parameter sensitivity than IRI-based 
models, underscoring its limitations at Haifa during the analyzed conditions. 

Supplementary Captions – Malindi 

 

Figure S10. Sensitivity of Kullback–Leibler Divergence (KLD) for the Malindi station: IRI-
2016 PLAS model. 



Panel (a) shows the probability distributions of the GPS-TEC compared with the IRI-2016 PLAS 
output. While the two curves overlap at a very low TEC (<50 TECU), the model underestimates 
the occurrence probability at intermediate ranges and oversmoothes the observed multi-peaked 
structure. Panel (b) demonstrates how the KLD increases steadily with the histogram bin count, 
yielding Δ ≈ 3.68%, which indicates a relatively low sensitivity to binning choices. Panel (c) depicts 
the effect of KDE bandwidth variation, where KLD decreases from ~8.5 at bw = 0.30 to ~4.5 at 
bw = 0.70, corresponding to a Δ ≈ 48.01%. This highlights that bandwidth selection can 
substantially affect divergence values, although the consistent model–data mismatch across 
parameter settings confirms the robustness of structural disagreement. 

 

 



Figure S11. Sensitivity of Kullback–Leibler Divergence (KLD) for the Malindi station: IRI-
2016 model. 

Panel (a) shows the probability distributions of GPS-TEC compared to the IRI-2016 simulations, 
where both curves overlap closely, particularly at lower TEC values. Panel (b) presents the 
variation in KLD with histogram bin counts (20–60), indicating a modest relative change (Δ ≈ 
7.06%), which suggests stable behavior across binning schemes. Panel (c) demonstrates the effect 
of the KDE bandwidth choice (0.30–0.70 TECU), where KLD decreases steadily with increasing 
bandwidth, reflecting smoother density estimates. The overall sensitivity remained moderate, 
confirming that the observed distributional mismatches were consistent and not dominated by 
parameter choices. 



 

Figure S12. Sensitivity of Kullback–Leibler Divergence (KLD) for the Malindi station: 
NeQuick2 model. 

Panel (a) shows the probability distributions of GPS-TEC and NeQuick2, which align closely at 
low TEC values (<100 TECU) but diverge slightly in the higher-tail region. Panel (b) illustrates 
that KLD increases moderately with the number of histogram bins, from ~1.56 at 20 bins to ~1.59 
at 60 bins, with a relative change of Δ ≈ 6.91%, indicating a limited binning sensitivity. Panel (c) 
demonstrates a stronger dependence of KLD on KDE bandwidth, with values decreasing from 



~10.2 at bandwidth 0.30 to ~5.6 at 0.70, corresponding to Δ ≈ 45.22%. These results highlight that 
while NeQuick2 reproduces the overall distributional structure well, its divergence from GPS-TEC 
estimates is more strongly affected by kernel-smoothing choices than by bin resolution. 

 


