

# Attributing the decadal variations in springtime East Asian and North American dust emission to regime shifts in extratropical cyclone

Yiting Wang<sup>1</sup>, Yan Yu<sup>1,2,3</sup>, Ji Nie<sup>1,2,3</sup>, Bing Pu<sup>4</sup>

<sup>1</sup>Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

<sup>2</sup>Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

<sup>3</sup>China Meteorological Administration Tornado Key Laboratory

<sup>4</sup>Department of Geography and Atmospheric Science, University of Kansas, Lawrence, KS, USA

\*Correspondence to Yan Yu ([yuyan@pku.edu.cn](mailto:yuyan@pku.edu.cn)) and Ji Nie ([jinie@pku.edu.cn](mailto:jinie@pku.edu.cn))

## Abstract

Dust activities across East Asia and North America have shown decadal variations, mediating radiation budget, air quality, and human health, especially during their peak months of April and May. Using satellite and ground measurements, as along with simulations from a dust emission model, we demonstrate an increase of 12.7% and 23.4% in April dust emissions across East Asia and North America, respectively, during the past four decades, in contrast to a 16.5% and 2.5% decrease during the last two decades. Meanwhile, both regions show a steady increase in May dust emissions by 5.7% and 16.3%, respectively, since the 1980s. Sensitivity experiments attribute both regions' decadal variations in dust emission primarily to surface wind speed changes; whereas vegetation exerts minimum influence on the regional dust emission variations. Furthermore, these decadal variations in dust initiating wind could largely be attributed to regime shifts in extratropical cyclone (EC), including their duration and intensity. Specifically, ECs are responsible for 60-70% of the April-May total dust emissions in East Asia and 30-40% of that in North America; meanwhile, ECs explain a larger portion of the decadal variations in April dust emission from East Asia (up to ~80%), compared with May and from North America. These results highlight the changing frequency and duration of strong winds, especially those associated with EC, and their role in shaping the decadal variations of mid-latitude dust emissions.

32 **1. Introduction**

33 East Asia and North America are significant dust source regions in the Northern Hemispheric mid-  
34 latitudes. The presence and transportation of dust alter the radiation budget (Adebiyi et al., 2023;  
35 Chen et al., 2013; Huang et al., 2014) and biogeochemical cycles of the marine and terrestrial  
36 ecosystems (Jickells and Moore, 2015; Kong et al., 2022; Jickells et al., 2005). Apart from the  
37 influence on the natural environment, extreme dust activities [from the Gobi Desert and Southwest](#)  
38 [United States](#) also impair atmospheric visibility, air quality, and human health across downwind  
39 regions, including populated areas in China and the United States (Gui et al., 2022; Hashizume et  
40 al., 2020; Yang et al., 2015). These environmental and societal concerns of dust activity peak in  
41 April and May across both regions, when vegetation and snow provide insufficient protection of  
42 the dry soil, accompanied by strong near-surface winds and frequent extratropical cyclones (Aryal  
43 and Evans, 2022; Kim et al., 2017; Kurosaki and Mikami, 2007; Kim et al., 2021). Changes in  
44 these atmospheric and land surface factors also shape the interannual and decadal variations in  
45 springtime dustiness across these two mid-latitude regions, ultimately affecting the regional human  
46 well-being.

47

48 Springtime dustiness across both East Asia and North America exhibits substantial interannual-to-  
49 decadal variations, with seemingly opposing trends across decades and divergent driving  
50 mechanisms [as](#) reported by various studies (Kim et al., 2021; Kurosaki and Mikami, 2007; Xu et  
51 al., 2006). Based on satellite measurements of vegetation greenness and dust aerosol abundance,  
52 Wang et al. (2021) explained the decreased East Asian dustiness in spring by ecological restoration  
53 and resultant vegetation expansion for the period 2001-2020. In contrast, Wu et al. (2022)  
54 performed simulations with a dust emission model and identified surface wind speed weakening  
55 as the dominant driving mechanism for the decreased springtime dust emission across East Asia  
56 since 2000s. Apart from that, Song et al. (2021) regarded increasing vegetation and decreasing  
57 surface wind as main contributors of decreasing East Asian dust optical depth during 2009-2019.  
58 While this identified role of wind speed confirmed Tai et al. (2021)'s findings based on chemical  
59 transport model simulations, the latter study, covering the longer period since the 1980s, showed  
60 a different phase of decadal variations in East Asian dust emissions (Tai et al., 2021). Similar  
61 debates regarding the interannual-to-decadal variations in North American dustiness have also  
62 persisted. For example, statistical analysis with ground-based surface fine dust revealed warming

63 and drying as the main cause of North American springtime dust emission's increase in the early  
64 21<sup>st</sup> century (Achakulwisut et al., 2017). While according to ground-based dataset in the long-term,  
65 Pu and Ginoux (2018) attributed increased springtime surface fine dust concentrations to the  
66 decreasing trend in precipitation across Southwestern America for the period 1990-2015. Similar  
67 spatio-temporal variation was interpreted by Hand et al. (2017) as a result of wind speed, soil  
68 moisture and land cover changes. In contrast, Pu and Ginoux (2017) studied satellite derived dust  
69 optical depth and established the primary relevance between land cover change and Southwestern  
70 North American springtime dust activities for the period 2004-2015. In the context of global  
71 warming, both regions' dust emissions appeared sensitive to vegetation expansion, according to  
72 global climate models and coupled dynamic vegetation-chemical transport model simulations (Li  
73 et al., 2021; Pu and Ginoux, 2017; Zong et al., 2021).

74

75 Despite the rich body of literature on the interannual to decadal variations in springtime mid-  
76 latitude dustiness, little consensus has emerged among these model- and observation-based studies  
77 regarding the direction of change and underlying mechanism. Observational datasets from ground-  
78 and satellite-based measurements provide estimates for atmospheric dust load in the past two to  
79 four decades but lack dust emission records. Therefore, the observed increase or decrease in  
80 atmospheric dust load could be sourced from both local and remote emissions, especially for the  
81 highly transportable mid-latitude dust (Yu et al., 2019b). On the other hand, dust emissions could  
82 be quantified using models, but the credibility of these models, especially their sensitivity to  
83 different influencing factors, should be validated against observation. [Moreover, intense dust storm](#)  
84 [events that frequently occur in April-May over the Gobi Desert and Southwest United States are](#)  
85 [often modulated by extratropical cyclones, and associated storm tracks or frontal systems \(Lukens](#)  
86 [et al., 2018; Guo et al., 2017\)](#). For instance, the extreme dust event over East Asia in March 2021  
87 was attributed to both the increased intensity and frequency of Mongolian cyclones (Liang et al.,  
88 2022; Yin et al., 2022). Between 2001-2022, Mongolian cyclones were reported to contribute 34%  
89 to 47% of the total dust emissions from the Gobi Desert (Mu and Fiedler, 2025). However,  
90 quantitative analysis of how the characteristics of extratropical cyclones, including their  
91 occurrence, intensity and size, affect long-term variations in springtime dust activity across East  
92 Asia and North America remains lacking, which limits our understanding of the drivers behind  
93 dust's interannual to decadal variability.

94

95 This study aims to reconcile the interannual to decadal variations in dust emission across East Asia  
96 and North America and quantify the influence of multiple environmental factors. In this work, we  
97 simulate dust emissions across East Asia and North America in April and May from the late 20<sup>th</sup>  
98 century to the early 21<sup>st</sup> century using an observation-validated dust emission model and  
99 subsequently quantify the contribution of meteorology and land surface factors on dust emission  
100 changes, including surface wind speed, soil moisture, snow cover fraction, surface temperature,  
101 leaf area index (LAI) from reanalysis and satellite-based observation datasets. Furthermore, this  
102 study integrates cyclone tracking and identification techniques to quantify the impact of  
103 extratropical cyclones (ECs) on the interannual to decadal variations of both regions' dust activity  
104 over the past four decades. To clarify the reliability of the off-line dust emission model based on  
105 Ginoux et al. (2012), we compare the simulated changes in dust emission with ground-based dust  
106 measurements, including the global dust Integrated Surface Database (duISD) during 1980-2019,  
107 and the Interagency Monitoring of Protected Visual Environments (IMPROVE) network during  
108 1988-2021.

109

## 110 **2. Data and Method**

### 111 **2.1. Ground-based dust measurements**

112 The observed extinction coefficient contributed by dust aerosol ( $\beta, \text{km}^{-1}$ ) across East Asia (35  
113  $^{\circ}\text{N}$ -50  $^{\circ}\text{N}$ , 90  $^{\circ}\text{E}$ -120  $^{\circ}\text{E}$ ) is provided by global dust Integrated Surface Database (duISD) covering  
114 the period 1980-2019 (Xi, 2021). This dataset compiles about 30,000 stations globally, as collected  
115 by the National Oceanic and Atmospheric Administration (NOAA), and derives dust extinction  
116 coefficient from visibility observations as follows:

$$117 \beta = \frac{3.9}{V} \times f, \quad (1)$$

118 where  $\beta$  is a measure of the extinction coefficient caused by dust particles,  $V$  is the harmonic mean  
119 visibility associated with dust events, and  $f$  is the dust frequency (%) given by:

$$120 f = \frac{N_{du}}{N_{ww}} \times 100\%, \quad (2)$$

121 Here,  $N_{du}$  is the number of reported dust events, and  $N_{ww}$  is the total number of weather reports  
122 (ww) during a given time period (Shao et al., 2013; Kurosaki and Mikami, 2003). Weather reports  
123 from manned stations are categorized by the World Meteorological Organization (WMO) under

124 [Code Table 4677, with priority codes ranging from 00 \(lowest\) to 99 \(highest\), indicating the visual](#)  
125 [perception of weather phenomena during the observation period. Dust events are ranked within](#)  
126 [the fog \(40-49\) and precipitation \(50-99\) weather groups and are identified by the following](#)  
127 [numeric codes: ww = 06-09, 30-35, 98.](#)

128

129 [The calculation of  \$\beta\$  is based on the principle that visibility is typically determined by light](#)  
130 [attenuation measurements using sensors such as transmissometers or forward-scatter sensors. We](#)  
131 [analyze long-term observations from 100 and 65 stations in East Asia for April and May,](#)  
132 [respectively, with valid records spanning over two years for both the late 20th century \(1980-1999\)](#)  
133 [and early 21st century \(2000-2019\).](#)

134

135 Parallel to the duISD dataset, the Interagency Monitoring of Protected Visual Environments  
136 (IMPROVE) network has monitored the surface fine dust concentrations ( $\mu\text{g m}^{-3}$ ) across North  
137 America ( $30^{\circ}\text{N}$ - $50^{\circ}\text{N}$ ,  $103^{\circ}\text{W}$ - $118^{\circ}\text{W}$ ) since 1988. The IMPROVE network was originally  
138 designated to support the United States Environmental Protection Agency's Regional Haze Rule  
139 (Hand et al., 2019), and has subsequently been applied to air quality studies, including those on  
140 fine dust variations near the surface (Kim et al., 2021; Pu et al., 2022; Tong et al., 2017). The  
141 IMPROVE dataset provides individual species' contributions to  $\text{PM}_{2.5}$  mass and total aerosol  
142 extinction twice a week during 1988-2000 and every third day after 2000 in the United States (Pu  
143 et al., 2022). In this work we analyze the surface fine dust concentrations ( $\mu\text{g m}^{-3}$ ) from 1988 to  
144 2021 in April and May.

145

## 146 **2.2. Satellite-based dust measurements**

147 [To geographically constrain the off-line dust emission calculation \(section 2.6\) to observed dust](#)  
148 [emission hotspots, here we analyze the](#) Moderate-resolution Imaging Spectroradiometer (MODIS)  
149 with collection 6.1, level 1 provides the daily dust optical depth (DOD) during 2000-2021 at a  
150 spatial resolution of  $0.1^{\circ} \times 0.1^{\circ}$ . MODIS DOD is calculated from aerosol optical depth (AOD)  
151 and the Ångström exponent ( $\alpha$ ) as follows:

$$152 \quad DOD = AOD \times (0.98 - 0.5089\alpha + 0.051\alpha^2), \quad (3)$$

153 The MODIS instrument is carried by both the Terra (equatorial overpassing at 10:30 a.m.) and  
154 Aqua (equatorial overpassing at 1:30 a.m.) satellites. DOD from MODIS is broadly used in the

155 study of dust emission and atmospheric loading (Ginoux et al., 2012; Wu et al., 2022; Yu et al.,  
156 2019a; Yu and Ginoux, 2021, 2022; [Meng et al., 2025](#)) and widely provides the observational basis  
157 for dust emission simulation (Ginoux et al., 2012; Parajuli et al., 2019; Pu et al., 2020).

158

### 159 **2.3. Satellite-based vegetation measurements**

160 The long-term global leaf area index (LAI) is provided by Global Inventory Modeling and  
161 Mapping Studies LAI product (GIMMS LAI4g) (Cao et al., 2023), with a half-month temporal  
162 resolution and a spatial resolution of 1/12° for the period 1982-2020. In this study, we expand the  
163 time range to 1980-2021 by replacing LAI in 1980-1981 with that in 1982 and LAI in 2021 with  
164 that in 2020. The GIMMS LAI4g product used the PKU GIMMS normalized difference vegetation  
165 index product (PKU GIMMS NDVI) and high-quality global Landsat LAI samples to remove the  
166 effects of satellite orbital drift and sensor degradation of Advanced Very High Resolution  
167 Radiometer (AVHRR). [The algorithm of compiling LAI also utilizes vegetation type reference](#)  
168 [from the MODIS Land Cover Type Product \(MCD12Q1, version 6.1\).](#)

169

### 170 **2.4. Reanalysis data**

171 To investigate the change in dust emissions and the contribution of several environmental variables  
172 in April and May, we analyze the 6-hourly snow cover fraction (%), top layer soil moisture ([0-7](#)  
173 [cm, m<sup>3</sup> m<sup>-3</sup>](#)), land surface temperature (K) and hourly 10-m wind speed (m s<sup>-1</sup>) from the European  
174 Centre for Medium-Range Weather Forecasts Reanalysis v5-Land (ERA5-LAND, referred to  
175 ERA5 hereafter) during 1980-2021. The ERA5-LAND dataset is an enhanced global dataset  
176 produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), with a native  
177 resolution of 9 km (Hersbach et al., 2020). The 10-m wind speed from ERA5 can capture the  
178 characteristics of wind to explore wind events both in the hourly and daily scales, compared with  
179 station observed wind speed from Hadley Centre's Integrated Surface Database (HadISD) (Molina  
180 et al., 2021).

181

### 182 **2.5. Extratropical cyclone detection and tracking**

183 To analyze regime shifts of extratropical cyclones and their contribution to near-surface strong  
184 winds (> 6 m s<sup>-1</sup>), we [employ](#) the Cyclone TRACKing framework (CyTRACK), an open-source  
185 Python toolbox for cyclone detection and tracking in reanalysis datasets (Pérez-Alarcón et al.,

186 2024). CyTRACK identifies cyclone centers from mean sea level pressure (MSLP) fields at each  
187 time step and applies threshold-based filtering to track each cyclone. Previous evaluations have  
188 demonstrated that CyTRACK reliably reproduces interannual and seasonal variability, life-cycle  
189 characteristics, and spatial distributions of cyclone tracks when compared with ERA5-based best-  
190 track archives and other cyclone-track datasets.

191

192 In this work, we use the 6-hourly 10-m wind speed ( $\text{m s}^{-1}$ ) and MSLP data in April and May from  
193 ERA5 to identify and track ECs during 1980-2021, with a horizontal resolution of  $0.25^\circ$ . Cyclone  
194 centers are mainly identified based on two criteria: (1) surface relative vorticity exceeding  $10^{-5} \text{ s}^{-1}$ ,  
195 a threshold widely applied in EC detection studies (Chen and Di Luca, 2025; Chen et al., 2022;  
196 Priestley et al., 2020), and (2) the central MSLP anomaly being at least 1 hPa lower than the  
197 surrounding grid points (Eichler and Higgins, 2006). Only cyclones with a lifetime longer than 24  
198 hours are retained.

199

200 To quantify the contribution of ECs to surface wind speed across East Asia and North America,  
201 we define all surface wind speeds and strong-wind ( $> 6 \text{ m s}^{-1}$ ) events that occur within the radial  
202 domain of each extratropical cyclone as cyclone-affected winds and cyclone-affected strong winds.  
203 Conversely, winds and strong winds outside this domain are classified as non-cyclone-affected  
204 winds and non-cyclone-affected strong winds, respectively. The spatial extent of each cyclone is  
205 determined following Schenkel et al. (2017) as the radial distance from the cyclone center at which  
206 the azimuthal-mean 10-m wind speed equals a critical wind speed threshold. Following previous  
207 studies (Pérez-Alarcón et al., 2021; Pérez-Alarcón et al., 2024), we test several thresholds (2, 4, 6,  
208 8, 10, and  $12 \text{ m s}^{-1}$ ) and adopt  $6 \text{ m s}^{-1}$ , which both aligns with our definition of strong winds and  
209 provides the most consistent results. All points within this radius are considered to be influenced  
210 by the cyclone.

211

## 212 **2.6. Off-line dust emission model**

213 The quantification of historical, springtime dust emission change across East Asia and North  
214 America is achieved by an off-line dust emission model, based on Ginoux et al. (2001) and Ginoux  
215 et al. (2012). Dust emission flux  $F_p$  is calculated as follows:

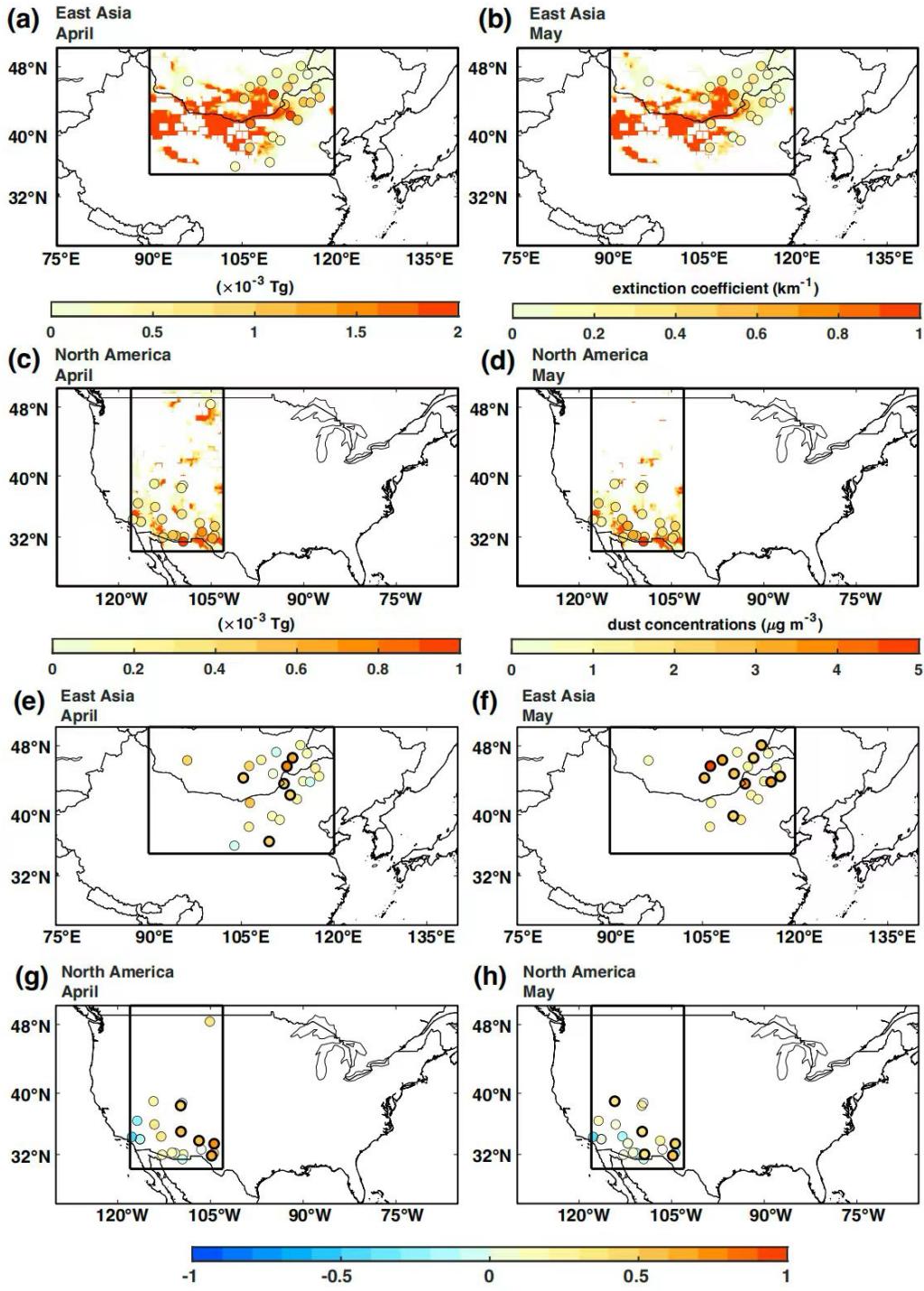
$$216 F_p = CSu_{max}^2(u_{max} - u_t), \quad (4)$$

217 In April and even occasionally in May, mid-to-high latitude dust source regions in East Asia and  
218 North America are partly covered by snow or frozen soil, which has a nonnegligible influence on  
219 dust emission (Yin et al., 2022; Balkanski et al., 2004). In this work, we take snow cover fraction,  
220 surface temperature and vegetation cover into consideration, and define the simulated dust  
221 emission flux  $F_{p-cover}$  with  $0.1^\circ \times 0.1^\circ$  spatial resolution as follows:

222 
$$F_{p-cover} = F_p \times (1 - f_{snow}) \times \exp(-1 \times LAI) \times I, \quad (5)$$

223 where  $f_{snow}$  is daily snow cover fraction,  $LAI$  is daily vegetation cover and  $I$  is the indicator  
224 function of surface temperature (surface temperature  $> 0$   $^\circ\text{C}$ ,  $I = 1$ ; surface temperature  $< 0$   $^\circ\text{C}$ ,  
225  $I = 0$ ).  $C = 1.9 \mu\text{g s}^2 \text{ m}^{-5}$  is a dimensional factor,  $S$  is the fraction of dust source (Ginoux et al.,  
226 2010; Ginoux et al., 2012), approximated by the frequency of DOD  $> 0.2$  for the period during  
227 2000-2021 from MODIS in April and May, separately.

228


229  $u_{max}$  is daily maximum surface wind speed in the original model and is substituted with hourly  
230 10-m wind speed in the current study.  $u_t$  is the threshold wind velocity which is calculated as  
231 follows:

232 
$$u_t = A \times u_{ref} \sqrt{\frac{\rho_p - \rho_a}{\rho_a} g \Phi_p} (1.2 + 0.2 \log_{10} w) \quad (w < 0.5), \quad (6)$$

233 where  $A = 6$  is a dimensionless parameter,  $u_{ref}$  is a reference threshold wind speed from Pu et al.  
234 (2020).  $\rho_a$  and  $\rho_p$  are the air and particle density,  $g$  is the gravitational acceleration,  $\Phi_p$  is the  
235 particle diameter in five bins: 0.1-1  $\mu\text{m}$ , 1-1.8  $\mu\text{m}$ , 1.8-3.0  $\mu\text{m}$ , 3.0-6.0  $\mu\text{m}$  and 6.0-20.0  $\mu\text{m}$ ,  
236 according to (Kok et al., 2017),  $w$  is the top-layer soil moisture ( $\text{m}^3 \text{ m}^{-3}$ ).

237

238 To assess the reliability of the off-line dust emission model over East Asia and North America  
239 during April and May, spatial distributions and temporal correlations between simulated dust  
240 emissions and ground-based observations of dust abundance over the past four decades are  
241 evaluated (Fig. 1). The simulated dust emission patterns geographically align with ground-  
242 observed dust abundance for both regions and seasons (Fig. 1a-d). Statistically significant positive  
243 correlations are widely obtained across both regions, especially over areas close to the dust sources  
244 (Fig. 1e-h). These results indicate that this model successfully captures the spatial and temporal  
245 patterns of observed dustiness.



246

247 **Figure 1. Validation of simulated dust emissions across East Asia and North America using**  
 248 **station-based observations.** Climatology of (a, c) April and (b, d) May dust emissions across (a,  
 249 (b) East Asia and (c, d) North America during 1980-2021, with dots indicating (a, b) the dust aerosol  
 250 extinction coefficients from duISD during 1980-2019 and (c, d) surface fine dust concentrations  
 251 from IMPROVE during 1988-2021. Correlations between monthly (a, b) dust aerosol extinction

252 [coefficients from duISD during 1980-2019, \(c, d\) surface fine dust concentrations from IMPROVE](#)  
253 [during 1988-2021 and the simulated dust emission from the 0.1° grid cell covering the station in](#)  
254 [\(a, c\) April and \(b, d\) May. Dots enclosed by a black bold border indicate statistical significance](#)  
255 [at  \$p\$ -value < 0.1.](#)

256

## 257 **2.7. Sensitivity experiments**

258 To quantify the contribution of multiple environmental factors on East Asian and North American  
259 springtime dust emission changes, we conduct a set of sensitivity experiments that simulate  
260 controlled dust emissions. The controlled dust emissions are obtained by individually replacing  
261 the concurrent snow cover, temperature, soil moisture, hourly surface wind speed, and LAI during  
262 the controlled period with that during the baseline periods. These sensitivity experiments are  
263 conducted during the long (1980-2021) and short (2000-2021) terms as follows: in the long-term  
264 range, the time subsection is from the late 20<sup>th</sup> century (1980-2000, baseline period) to early 21<sup>st</sup>  
265 century (2001-2021, controlled period); in the short-term range, the time subsection is from 2000-  
266 2010 (baseline period) to 2011-2021 (controlled period). In this study, we use the percentage of  
267 dust emission changes between the controlled and baseline simulations to quantify the contribution  
268 of each meteorological and biological factor to the decadal changes in dust emission.

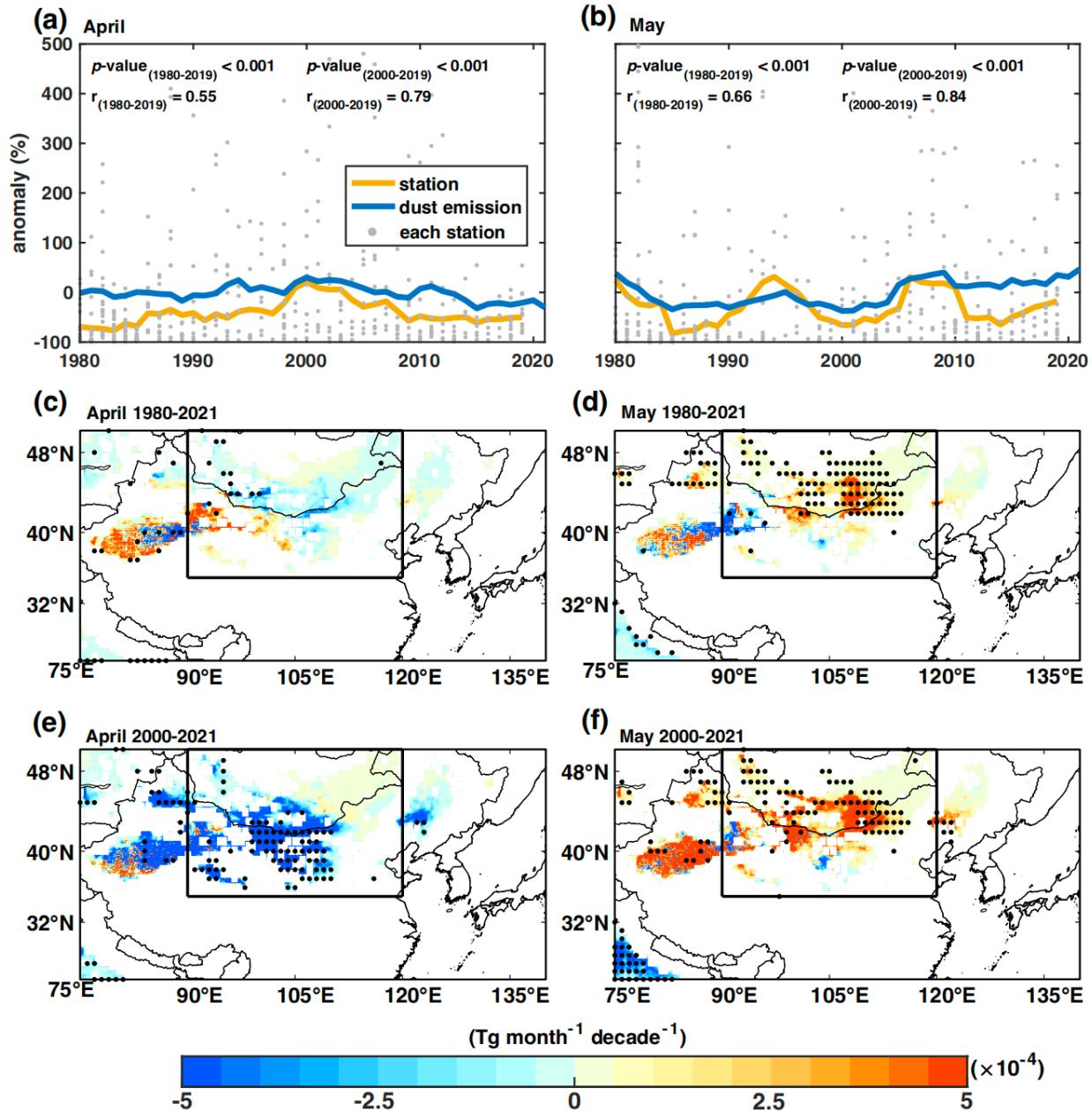
269

270 [In addition, to analyze the specific contribution of ECs, we perform an additional cyclone-](#)  
271 [controlled experiment in which cyclone-affected wind speeds \(section 2.5\) are replaced with](#)  
272 [climatological surface wind speed. This approach allows direct quantification of the contribution](#)  
273 [of ECs to near-surface wind variability and, consequently, its effect on springtime dust emission.](#)

274

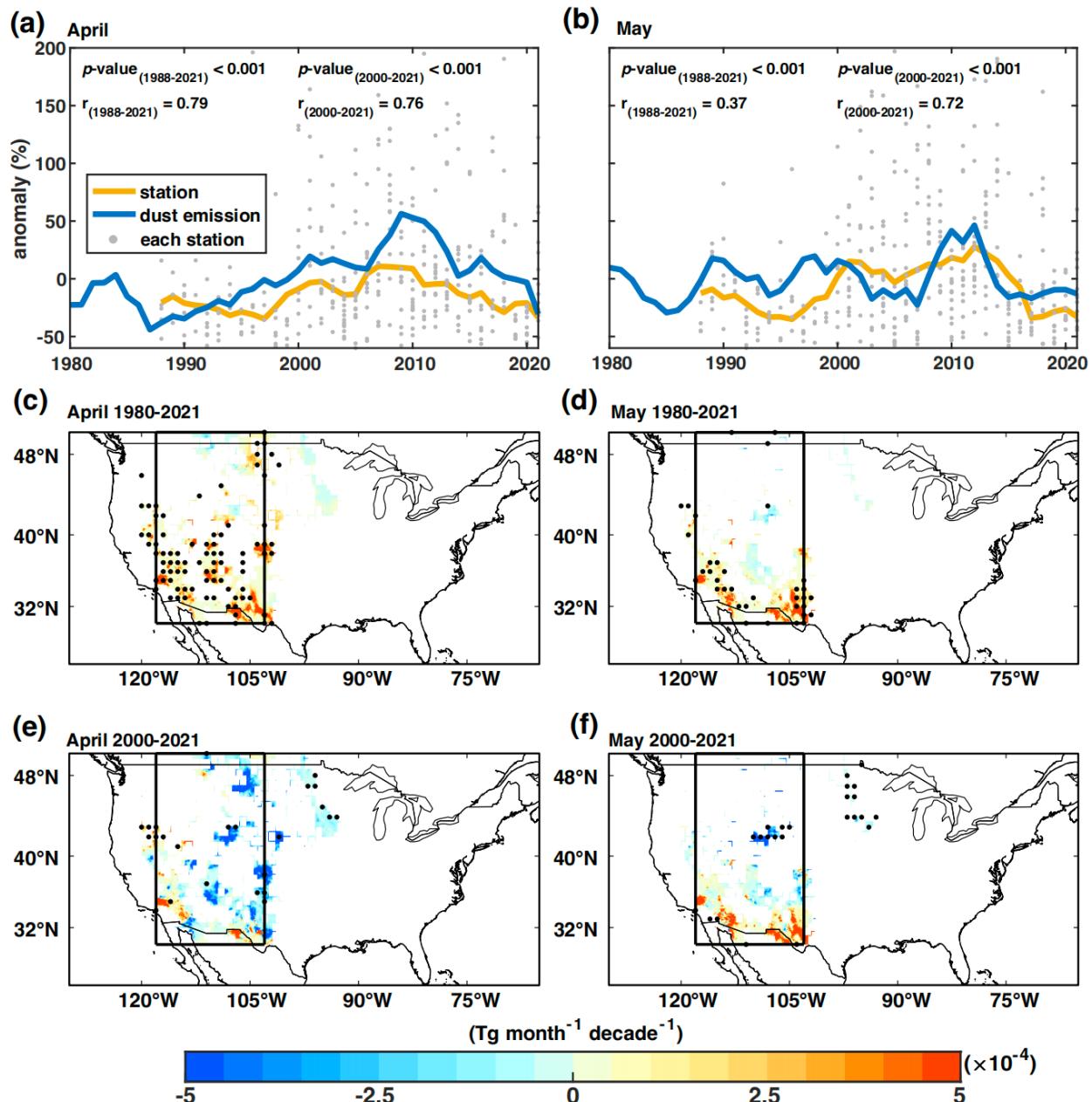
## 275 **3. Results**

### 276 **3.1. Decadal variations in East Asian and North American dust emissions**


277 Regional dust emission across East Asia mainly occurs in South Mongolia and North China, and  
278 increases by 0.240 Tg month<sup>-1</sup> decade<sup>-1</sup> in April during the period 1980-2021 (Fig. 2a, c). The  
279 simulated time series for East Asian dust emissions from 1980 to 2019 shows a statistically  
280 significant ( $p$ -values < 0.001, based on Spearman correlation test) positive correlation with  
281 ground-based observations (Fig. 2a). The East Asian dust emission in April [shifts from a rising to](#)  
282 [declining trend](#) after the onset of the 21<sup>st</sup> century, [with a significant](#) ( $p$ -values < 0.05, based on the

283 Mann-Kendall trend test) reduction of 9.37 Tg month<sup>-1</sup> decade<sup>-1</sup> or 16.5% per two decades from  
284 2000 to 2021 (Fig. 2e). Consistent with this simulated decrease in April dust emission in 2000-  
285 2021, the observation dataset shows a significant (p-values < 0.001) positive correlation with the  
286 simulations, with a correlation coefficient (r) of 0.79 (Fig. 2a). Meanwhile, regional dust emission  
287 in North America shows a reversed multidecadal trend, with a significant (p-values < 0.05)  
288 increase of 0.406 Tg month<sup>-1</sup> decade<sup>-1</sup> or 23.4% per four decades in April during the period 1980-  
289 2021 (Fig. 3c). This increase is corroborated by a significant positive correlation (r = 0.79, p-values  
290 < 0.001) with surface fine dust concentrations from 1988 to 2021 (Fig. 3a). However, this increase  
291 is followed by a decrease in the regional total dust emissions by 0.235 Tg month<sup>-1</sup> decade<sup>-1</sup> or 2.52%  
292 per two decades in April for the period 2000-2021, which is also significantly positively correlated  
293 (r = 0.76, p-values < 0.001) with station-observed data (Fig. 3a, e).

294


295 In contrast, both East Asian and North American dust emissions show a consistent upward trend  
296 in May during the past four decades. The East Asian dust emission in May is estimated to have  
297 increased significantly (p-values < 0.05) by 0.937 Tg month<sup>-1</sup> decade<sup>-1</sup> or 5.67% during 1980-2021;  
298 this increase accelerates to 6.22 Tg month<sup>-1</sup> decade<sup>-1</sup> or 11.2% for the period 2000-2021 (Fig. 2b,  
299 d, f). This trend is supported by significant (p-values < 0.001) positive correlations with station-  
300 based observations, with correlation coefficients of 0.66 and 0.84 during past four to two decades  
301 (Fig. 2b). In North America, the regional total dust emission has increased significantly (p-values  
302 < 0.1) by 0.275 and 0.184 Tg month<sup>-1</sup> decade<sup>-1</sup> or 16.3% and 12.0% in May during 1980-2021 and  
303 2000-2021 (Fig. 3b, d, f), respectively, consistent with the ground-based dustiness observations,  
304 which exhibit a significant positive correlation (p-values < 0.001) (Fig. 3b).

305



306  
307 **Figure 2. Changes in East Asian dustiness in April and May during 1980-2021 and 2000-2021.**  
308 Anomaly time series of the ground-observed extinction coefficient contributed by dust aerosol,  
309 from each station (grey dot) of duISD and their median (yellow line), during 1980-2019 and dust  
310 emission anomaly (blue lines) from off-line simulation model during 1980-2021 across East Asia  
311 in (a) April and (b) May. Color shading represents the trend of simulated dust emissions ( $Tg\ month^{-1}\ decade^{-1}$ )  
312 in (c, e) April and (d, f) May for the period (c, d) 1980-2021 and (e, f) 2000-2021.  
313 Stippled areas exhibit statistically significant dust emission trends ( $p$ -values  $< 0.1$ , based on the  
314 Mann-Kendall trend test). Boxes denote studied dust source regions across East Asia.

315  
316

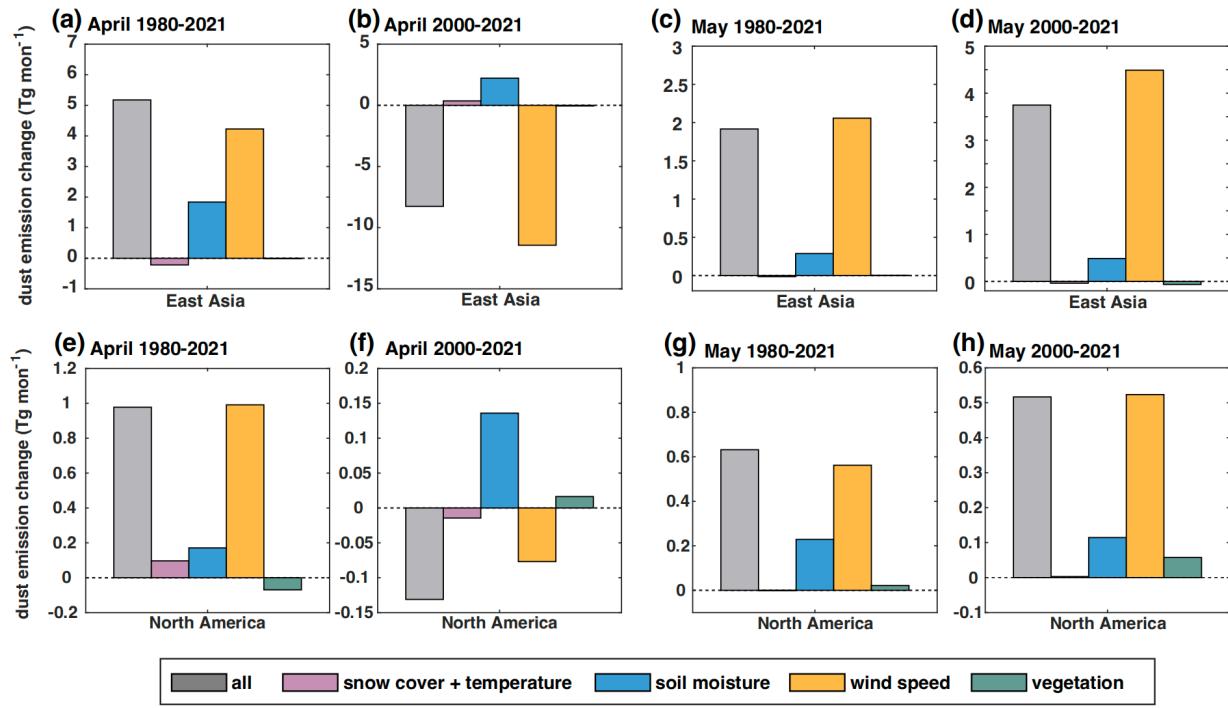


317  
318  
319  
320  
321  
322  
323

**Figure 3. Changes in North American dustiness in April and May during 1980-2021 and 2000-2021.** [Anomaly time](#) series of ground-observed [surface fine dust concentrations from each station \(grey dot\) of IMPROVE and their median](#) (yellow line) during 1988-2021 and [dust emission](#) anomaly (blue lines) from off-line simulation model during 1980-2021 across North America in (a) April and (b) May. Color shading represents the trend of simulated dust emissions ( $\text{Tg month}^{-1} \text{ decade}^{-1}$ ) in (c, e) April and (d, f) May for the period (c, d) 1980-2021 and (e, f) 2000-

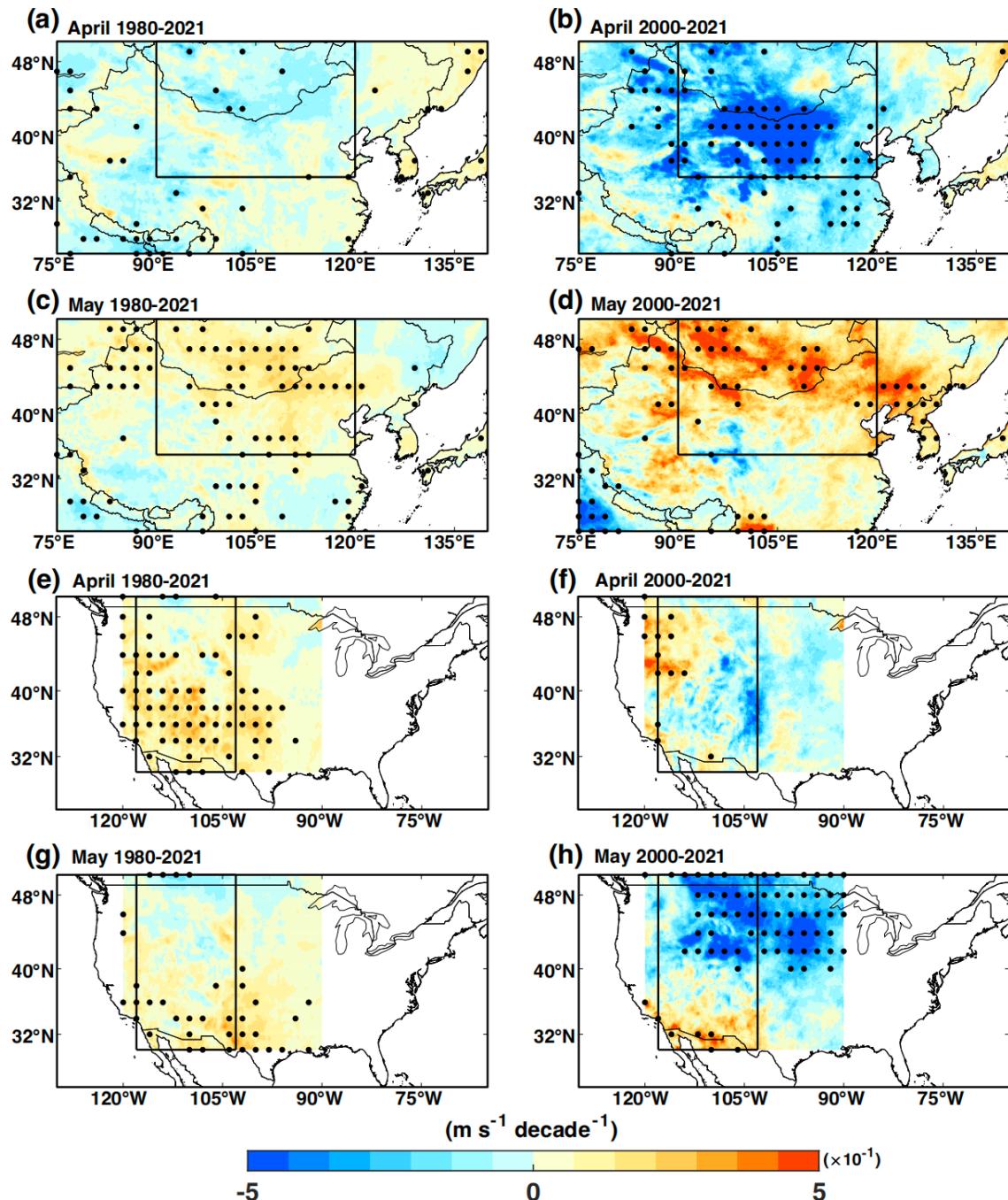
324 2021. Stippled areas exhibit statistically significant dust emission trends ( $p$ -values  $< 0.1$ , based on  
325 the Mann-Kendall trend test). Boxes denote studied dust source regions across North America.

326


### 327 **3.2. Influencing factors of dust emission changes since the 1980s**

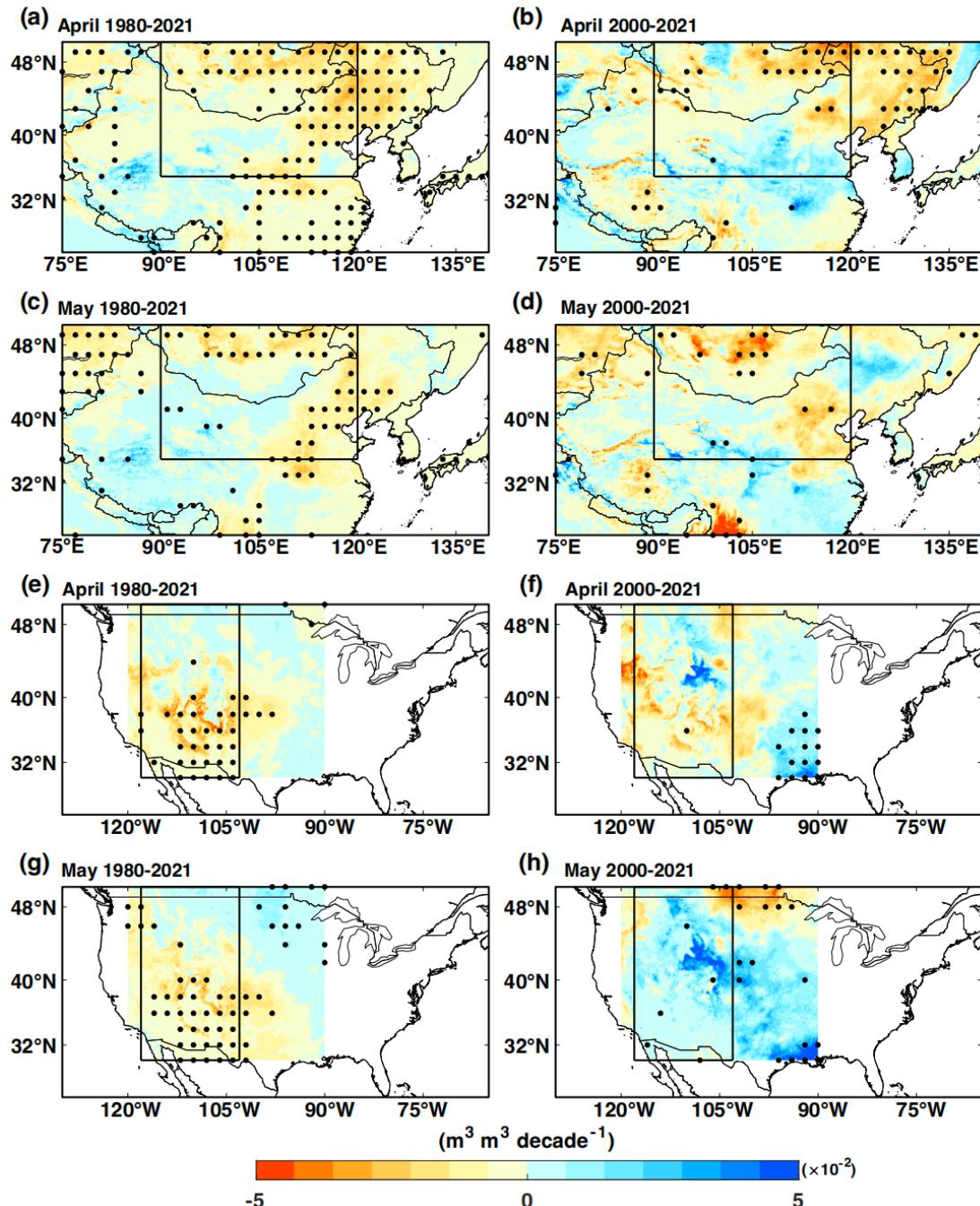
328 The contributions of several environmental variables to the decadal variations in regional dust  
329 emissions are disentangled by the sensitivity experiments. The multidecadal change in East Asian  
330 and North American springtime dust emissions during 1980-2021 have been mainly driven by  
331 variations in surface wind speed (Fig. 4a). For example, during 1980-2021, the changes in surface  
332 wind speed have made a positive contribution to dust emission increase by 10.3% and 23.7%  
333 across East Asia and North America, respectively, in April (Fig. 4a, e), and a corresponding  
334 regional contribution of 6.09% and 14.5% in May (Fig. 4c, g). During 2000 to 2021, the surface  
335 wind speed has caused a reduction in dust emissions by 22.9% and 1.48% across East Asia and  
336 North America in April (Fig. 4b, f) and an increment by 13.4% and 12.2% in May (Fig. 4d, h). As  
337 the dominant influencing factor of East Asian and North American dust emission in mid-to-late  
338 spring, near-surface wind speed shows spatio-temporally in-phase variations with dust emission.  
339 Spatially, daily maximum wind speed (Fig. 5) exhibits similar patterns of change with those in  
340 dust emissions across both regions during both the shorter and longer periods (Figs. 2, 3).

341


342 Soil moisture constitutes the secondary control on dust emission changes in both regions and  
343 months, complementing the control of wind speed changes in a nonlinear way (Fig. 4). Despite  
344 substantial declines in soil moisture that promote dust emission potentials across both regions in  
345 all the study periods (Fig. 6), these changes are often insufficient to initiate dust emission with the  
346 absence of strong surface wind, resulting in dust emission changes that follow wind speed  
347 variations in both regions (Fig. 4). For example, April dust emissions in North America show a  
348 decreasing trend (Figs. 3e, 4f) despite continuous soil drying (Fig. 6f) during 2000-2021, primarily  
349 due to the lack of strong winds (Fig. 5f) that offsets the apparent dominance of soil moisture (Fig.  
350 4f). By contrast, changes in vegetation exert only a minor influence on dust emission changes in  
351 two regions during the same periods (Fig. 4), likely due to lack of significant, positive trends in  
352 LAI across both regions in both April and May, especially in the longer term (Fig. 7).

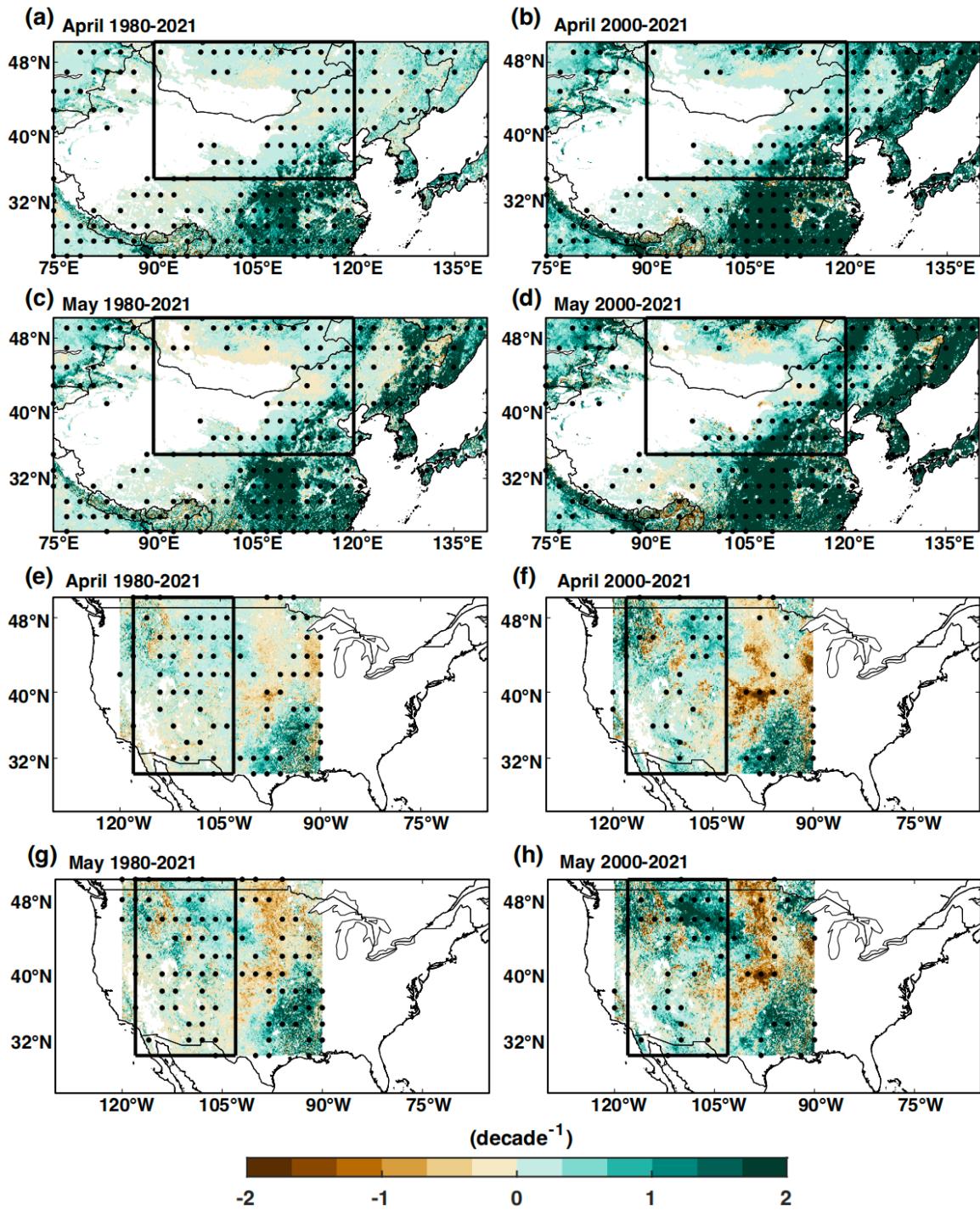
353




354  
355  
356  
357  
358  
359  
360  
361

**Figure 4.** Changes in East Asian and North American dust emission ( $\text{Tg month}^{-1}$ ) and the contribution of several environmental variables during 1980-2021. (a-d) East Asian and (e-h) North American dust emission change (gray,  $\text{Tg month}^{-1}$ ) and the contribution of each factor (purple: snow cover fraction and land surface temperature; blue: top-layer soil moisture; yellow: near-surface wind speed; green: vegetation) in (a, b, e, f) April and (c, d, g, h) May in (a, c, e, g) past four decades and (b, d, f, h) past two decades.




362

363 **Figure 5. Changes in daily maximum wind speed in April and May for the period 1980-2021**  
 364 and 2000-2021. Trends in (a, b) April and (c, d) May daily maximum wind speed ( $\text{m s}^{-1} \text{ decade}^{-1}$ )  
 365 across East Asia for the period (a, c) 1980-2021 and (b, d) 2000-2021. Trends in (e, f) April and (g,  
 366 h) May daily maximum wind speed ( $\text{m s}^{-1} \text{ decade}^{-1}$ ) across North America for the period (e, g)  
 367 1980-2021 and (f, h) 2000-2021, respectively. Black dots indicate significant ( $p$ -values  $< 0.1$ ,  
 368 based on the Mann-Kendall trend test) trend.



369

370 **Figure 6. Changes in top-layer soil moisture in April and May for the period 1980-2021 and**  
 371 **2000-2021.** Trends in (a, b) April and (c, d) May soil moisture ( $\text{m}^3 \text{ m}^{-3} \text{ decade}^{-1}$ ) across East Asia  
 372 for the period (a, c) 1980-2021 and (b, d) 2000-2021. Trends in (e, f) April and (g, h) May daily  
 373 soil moisture ( $\text{m}^3 \text{ m}^{-3} \text{ decade}^{-1}$ ) across North America for the period (e, g) 1980-2021 and (f, h)  
 374 2000-2021, respectively. Black dots indicate significant ( $p$ -values  $< 0.1$ , based on the Mann-  
 375 Kendall trend test) trend.



376

377 **Figure 7. Changes in LAI in April and May for the period 1980-2021 and 2000-2021. Trends**  
 378 in (a, b) April and (c, d) May LAI ( $\text{decade}^{-1}$ ) across East Asia for the period (a, c) 1980-2021 and  
 379 (b, d) 2000-2021. Trends in (e, f) April and (g, h) May daily LAI ( $\text{decade}^{-1}$ ) across North America  
 380 for the period (e, g) 1980-2021 and (f, h) 2000-2021, respectively. Black dots indicate significant  
 381 ( $p$ -values  $< 0.1$ , based on the Mann-Kendall trend test) trend.

382

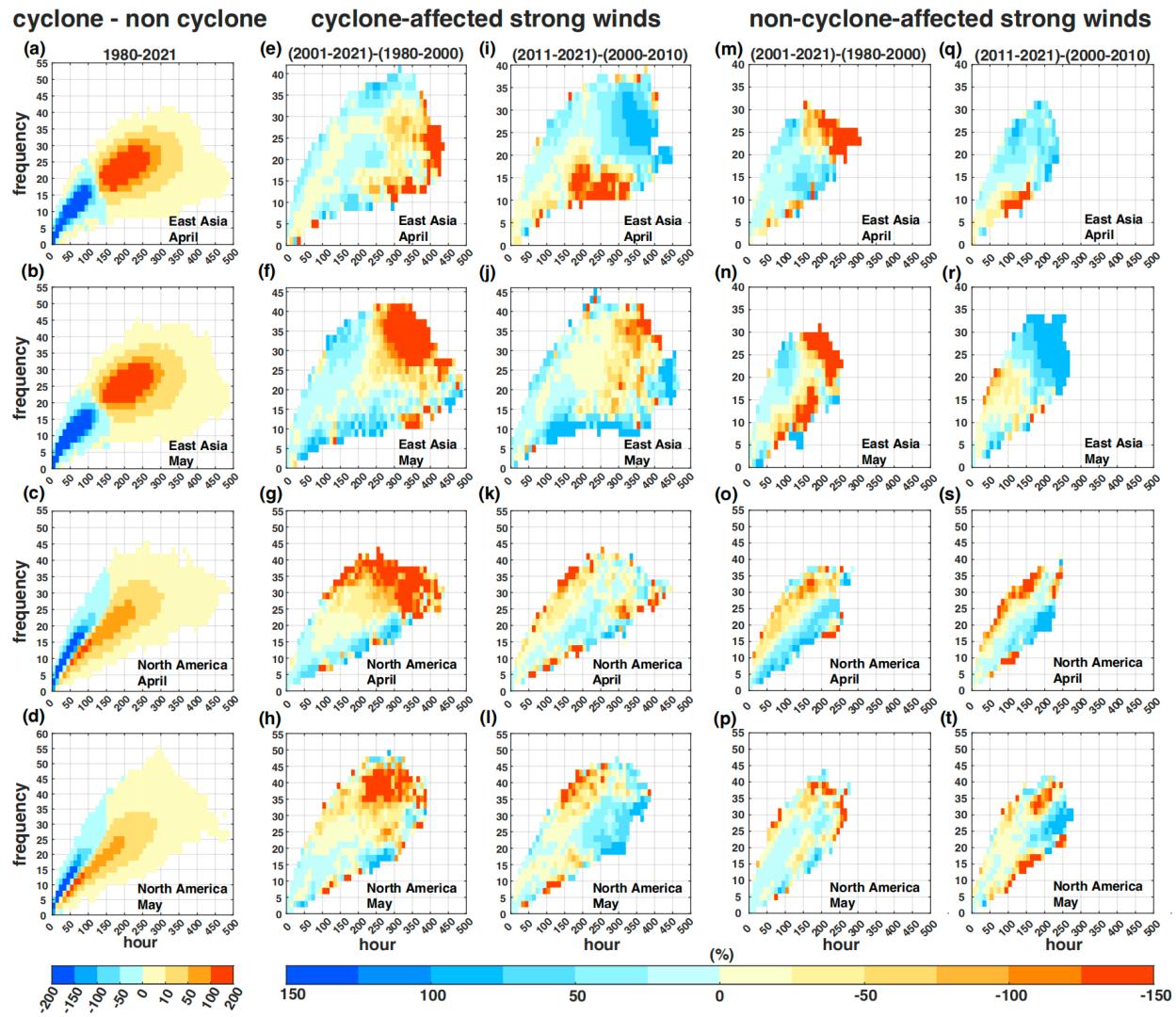
383 **3.3. Changes in extratropical cyclones and associated wind responsible for dust emission**  
384 **changes**

385 As demonstrated in section 3.2, springtime dust emissions in East Asia and North America are  
386 closely linked to wind speed and exhibit pronounced decadal variations; indeed, much of these  
387 decadal variations in the occurrence and duration of strong winds is attributable to regime shifts in  
388 ECs (Fig. 8). In East Asia, cyclone-affected strong winds predominantly shift into the longer-  
389 lasting (duration ranging from 150 to 450 hours) and higher-frequency (occurring between 15 and  
390 35 times) bins in April and May, compared with non-cyclone-affected strong winds (Fig. 8a, b). In  
391 contrast, North American cyclone-affected strong winds exhibit a less pronounced increase in both  
392 duration and frequency (Fig. 8c, d). Comparing different decades, the occurrence of longer-lasting  
393 and higher-frequency cyclone-affected strong wind ( $> 6 \text{ m s}^{-1}$ ) events has increased significantly  
394 during the past four decades across East Asia and North America in both April and May (Fig. 8e-  
395 f). During the recent two decades, such cyclone-affected shift towards longer-lasting and higher-  
396 occurrence of strong winds has continued in May across East Asia (Fig. 8j), but has faded in both  
397 months across North America (Fig. 8k, l) and in April across East Asia (Fig. 8i). Meanwhile, the  
398 non-cyclone-affected strong wind events exhibit a much weaker change during the same periods  
399 (Fig. 8m-t), indicating that the decadal variations in the statistics of strong winds are primarily  
400 driven by ECs.

401

402 Furthermore, the spatiotemporal variations in wind speed are closely connected to characteristics  
403 of ECs in East Asia and North America in both April and May. According to the compilation of all  
404 cyclone events across both regions and in both months, the maximum surface wind speed within  
405 the cyclone radius shows a significant positive correlation with the central pressure and radius of  
406 ECs from 1980 to 2021 ( $p$ -values  $< 0.001$ ). Next, we explore the decadal variations in wind  
407 attributable to EC characteristics.

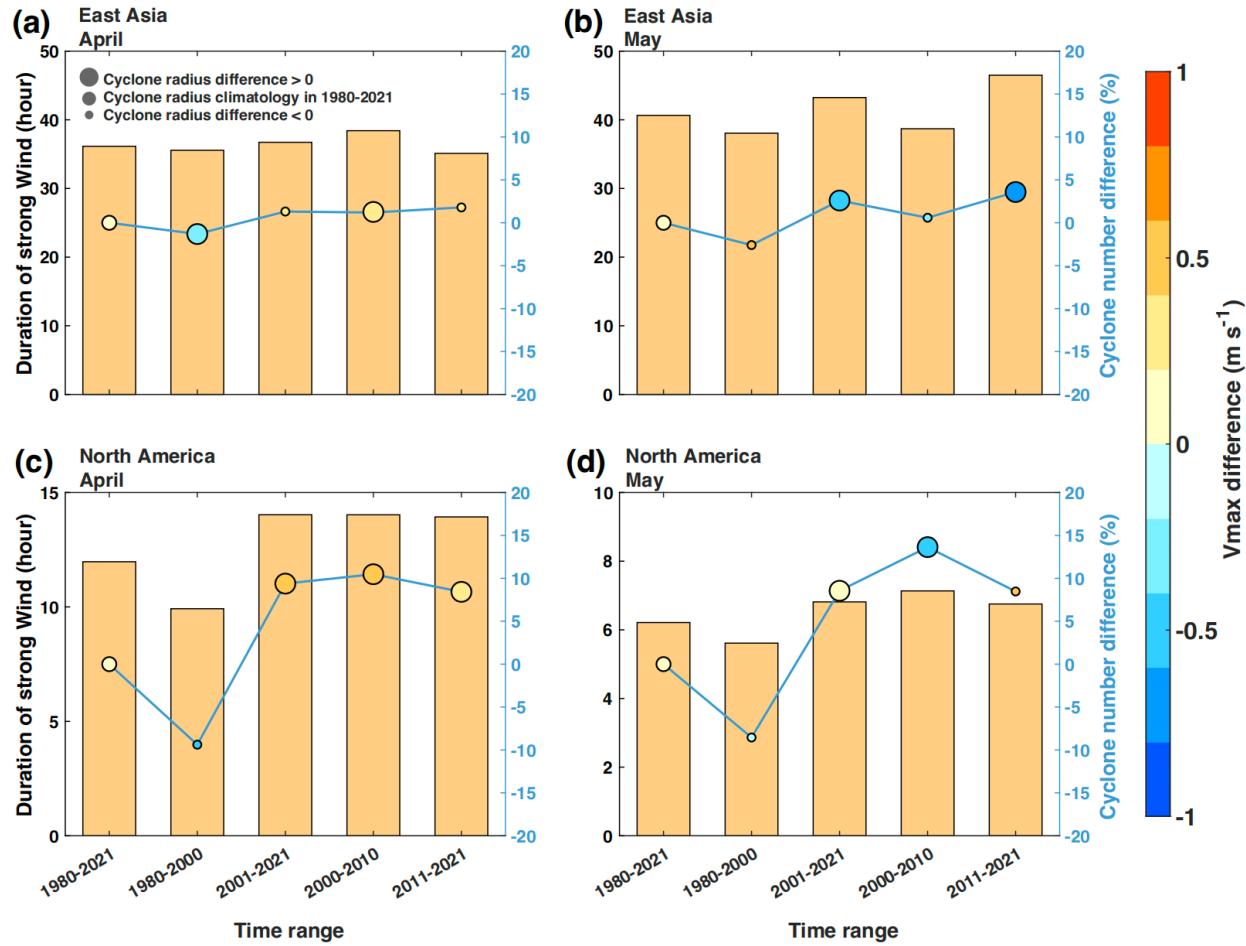
408


409 In East Asia, the cumulative frequency and duration of strong wind events align closely with  
410 relative shifts among different cyclone characteristics. In April, increases in both the number of  
411 ECs and their Vmax are associated with prolonged durations of strong winds during 1980-2021  
412 (Figs. 8e, 9a). However, in the period 2000-2021, the reduction in cyclone size counterbalanced

413 the increase in cyclone frequency, leading to a decrease in longer-lasting strong wind events (Figs.  
414 8i, 9a). By contrast, the expansion of cyclone radius and the increase in cyclone frequency  
415 counteracted the impact of the weakening Vmax, ultimately leading to an increase in wind speed  
416 despite the reduction in Vmax during both 1980-2021 and 2000-2021 in May (Figs. 8f, j, 9b).

417

418 In North America, variations in surface wind are also explainable by changes in extratropical  
419 cyclone characteristics. In April, changes in strong wind conditions occur in conjunction with  
420 different combinations of cyclone properties, including increases in cyclone radius, frequency, and  
421 Vmax during 1980-2021, responsible for the increasing duration of cyclone-affected strong winds  
422 (Fig. 9c). During 2000-2021, the duration of cyclone-affect strong wind changes subtly due to  
423 minor changes in Vmax, cyclone number, and cyclone radius (Fig. 9c). These contrasting cyclone  
424 configurations are consistent with the corresponding variability in strong winds (Fig. 8g, k). In  
425 May for the period 1980-2021, changes in cyclone characteristics and strong winds are broadly  
426 similar to those in April over the same period (Figs. 8g, h, 9c, d). By contrast, during 2000-2021  
427 in May, reductions in cyclone frequency and radius occur alongside an increase in Vmax; the net  
428 effect is a decrease in the duration of strong winds (Figs. 8l, 9d).

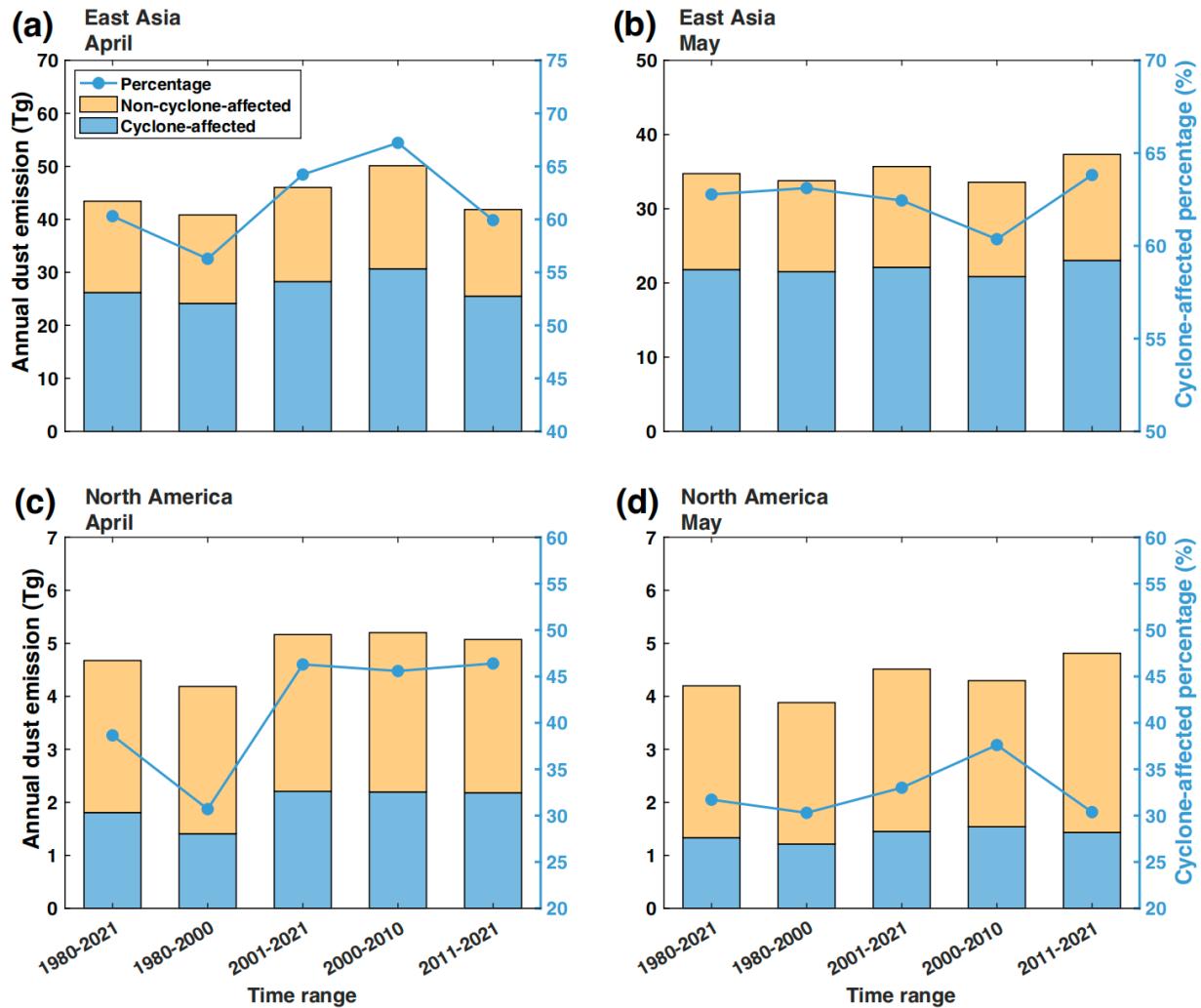

429



430

431 **Figure 8. Changes in cyclone-affected strong wind across East Asia and North America in**  
 432 **April and May.** Joint probability distribution of monthly differences in total frequency and  
 433 duration of cyclone-affected strong winds, subtracted by non-cyclone-affected strong winds,  
 434 across the dust-emitting pixels in (a, b) East Asia and (c, d) North America in (a, c) April and (b,  
 435 d) May during 1980-2021. Change rate (%) of the joint PDF of the frequency (events per month)  
 436 and duration (hours per month) of cyclone-affected strong winds ( $> 6 \text{ m s}^{-1}$ ) to baseline periods  
 437 from ERA5 hourly 10-m wind speed data across the dust-emitting pixels in (e, f, i, j) East Asia in  
 438 (e, i) April and (f, j) May for the period (e, f) 1980-2021, (i, j) 2000-2021 and in (g, h, k, l) North  
 439 America in (g, k) April and (h, l) May for the period (g, h) 1980-2021, (k, l) 2000-2021. (m-t) same  
 440 as (e-l) but for non-cyclone-affected strong winds.

441




442

443 **Figure 9. Regime shifts in extratropical cyclones across East Asia and North America during**  
 444 **April and May across different time periods from 1980 to 2021.** The monthly average duration  
 445 of strong winds (hours; yellow bars) caused by extratropical cyclones in (a, b) East Asia and (c, d)  
 446 North America in (a, c) April and (b, d) May, for the time periods: 1980-2021, 1980-2000, 2001-  
 447 2021, 2000-2010, and 2011-2021, with reference to the left y-axis. The blue solid line with markers  
 448 represents the difference in the monthly average number of cyclones during these periods  
 449 compared to the monthly average cyclone count during the whole period 1980-2021,  
 450 corresponding to the right blue y-axis. Marker color shows the deviation of monthly mean Vmax  
 451 ( $\text{m s}^{-1}$ ) from the 1980-2021 climatology, and marker size reflects the cyclone radius difference  
 452 relative to the 1980-2021 mean.

453

454



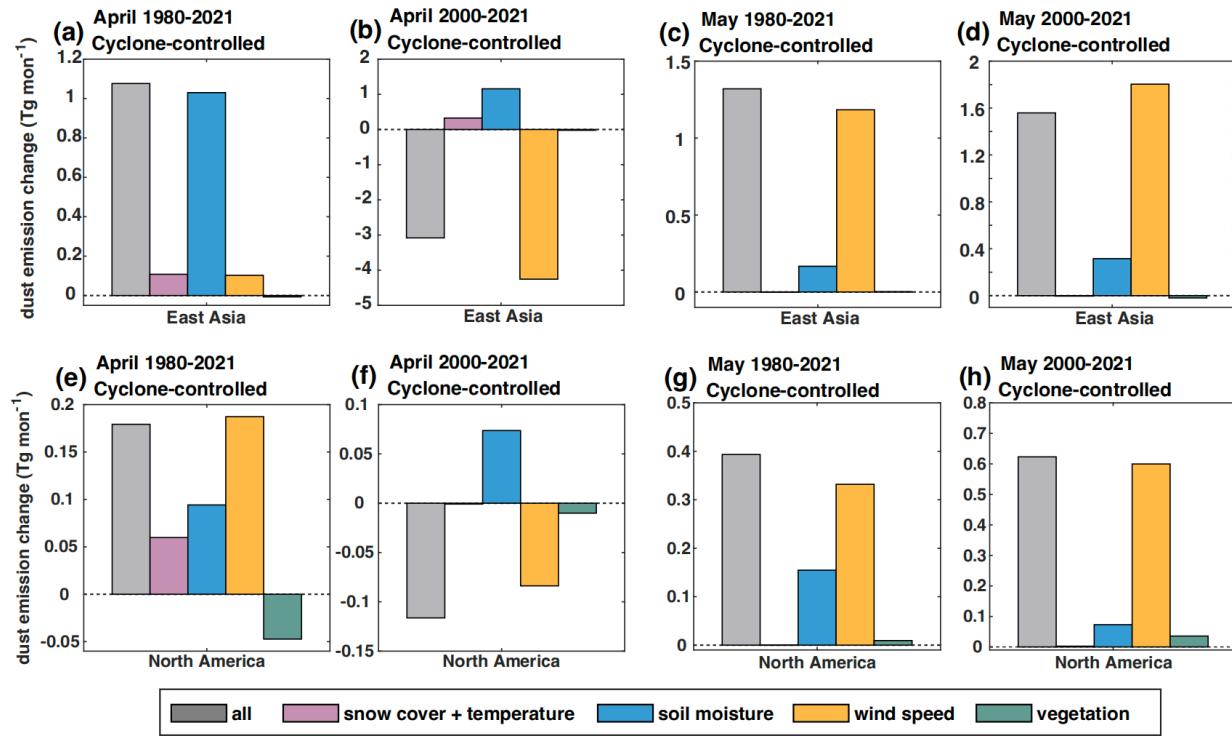
455

456 **Figure 10.** Regime shifts in extratropical cyclone-affected dust emissions (Tg) across East Asia  
457 and North America during April and May for multiple subperiods within 1980-2021. The annual  
458 average dust emissions (Tg) along the passage of extratropical cyclones (blue bars) and those  
459 unaffected by them (yellow bars) are shown for (a, b) East Asia and (c, d) North America in (a, c)  
460 April and (b, d) May, for the time periods: 1980-2021, 1980-2000, 2001-2021, 2000-2010, and  
461 2011-2021, with reference to the left y-axis. The blue bars show the cyclone-affected dust  
462 emissions, defined as the difference between total dust emissions and the emissions in the cyclone-  
463 controlled experiments (i.e., total - cyclone-controlled), while the yellow bars show the emissions  
464 estimated from the cyclone-controlled experiments. The blue solid line represents the percentage  
465 of dust emissions affected by extratropical cyclones (%) over these periods, corresponding to the  
466 right y-axis.

467

468 Such wind speed changes associated with the regime shift in ECs have been largely responsible  
469 for the decadal variations in dust emissions from these two mid-latitude sources, with generally  
470 stronger influences across East Asia than North America (Figs. 8 and 10). According to our  
471 cyclone-controlled experiments, ECs account for 60.3% and 38.7% of April dust emissions in East  
472 Asia and North America, respectively, and 70.6% and 31.5% of May dust emissions in these two  
473 regions during 1980-2021. Similarly, during 2000-2021, ECs contribute to 60.1% and 42.6% of  
474 April dust emissions in East Asia and North America, respectively, and 61.9% and 32.5% of May  
475 dust emissions in these regions (Fig. 10). The generally lower contribution of ECs to North  
476 American dust emission is consistent with the weaker modulation of ECs on the frequency and  
477 duration of strong wind (Fig. 8a-d).

478


479 Based on the cyclone-controlled sensitivity experiments (section 2.7), we further quantify the  
480 influence of extratropical cyclones on the decadal variability of dust emissions in April and May.  
481 After constraining the cyclone-affected wind speed to its climatological state, the decadal  
482 variability of dust emissions shows substantial changes, accompanied by a shift in the dominant  
483 environmental drivers (Fig. 11). Specifically, the magnitude of dust emission changes across both  
484 East Asia and North America is markedly reduced over the past two to four decades. The increase  
485 in East Asian dust emissions over 1980-2021 declines from 5.18 Tg to 1.08 Tg in April,  
486 representing a reduction of 79.2% (Figs. 4a, 11a). Similarly, in North America, the April dust  
487 emission increment over same period is reduced from 0.978 Tg to 0.179 Tg, corresponding to a  
488 reduction of 81.7% (Figs. 4e, 11e). In May of these four decades, nudging the cyclone-affected  
489 strong winds to their climatology leads to a reduction of 31.3% and 37.8% in the decadal changes  
490 of East Asian and North American dust emission. During 2000-2021, such contribution of ECs to  
491 dust emission shrinks to 62.7% and 58.4% for East Asia in April and May and becomes negligible  
492 for North America in both months.

493

494 Apart from that, the dominant environmental drivers of dust emission also shift when cyclone-  
495 affected wind speeds are removed. For instance, soil moisture emerges as the primary positive  
496 contributor, accounting for 6.17% of the East Asian dust emission increase in April during 1980-  
497 2021, while the total dust emission increased by only 6.44% in the cyclone-controlled experiments  
498 (Fig. 11a). By contrast, the contribution of wind speed to dust emissions is reduced to merely 0.62%

499 after cyclone-affected winds are constrained (Fig. 11a). Naturally, such shift in the dominant  
 500 environmental drivers of dust emission is muted during 2000-2021, especially in North America,  
 501 when and where ECs contribute negligibly to the decadal variations in dust emission.

502



503

504 **Figure 11. Changes in East Asian and North American dust emission (Tg month<sup>-1</sup>) and the**  
 505 **contribution of several environmental variables during 1980-2021 in cyclone-controlled**  
 506 **experiments.** Figure elements are identical to those in Fig. 4.

507

#### 508 4. Discussion and conclusion

509 Based on a suite of multi-source observational datasets and a dust emission model, we characterize  
 510 the decadal variability of mid-to-late springtime dust emissions across East Asia and North  
 511 America, which are primarily regulated by changes in surface wind speed and extratropical  
 512 cyclone activity during the recent decades. During the past four decades, the East Asian and North  
 513 American drylands exhibit a [12.7%](#) and [23.4%](#) increase in April dust emissions and a [5.7%](#) and  
 514 [16.3%](#) increase in May. During the past two decades, these two regions show a [16.5%](#) and [2.52%](#)  
 515 decrease in April dust emissions and a [11.2%](#) and [12.0%](#) increase in May. Our results highlight the  
 516 dominant role of surface wind speed in shaping decadal variations of dust emissions, while the

frequency and intensity of extratropical cyclones exert substantial influence on wind speed variability. Collectively, these two factors constitute the primary drivers of regional total dust emission changes across East Asia and North America in the late 20<sup>th</sup> century and early 21<sup>st</sup> century. Overall, our study provides a clearer understanding of the decadal-scale variability of mid-to-late springtime dust emissions across East Asia and North America, and underscores the primary roles of both surface wind speed and extratropical cyclones in modulating dust emission changes.

523

In this study, we demonstrate the leading influence of surface wind speed on decadal changes of dust emission. Changes in wind regimes, particularly variations in the frequency, duration, and intensity of strong wind events, play a central role in shaping long-term dust emission variability and reflect the combined influence of climate variability and climate change. Extratropical cyclones exert a strong influence on near-surface strong winds, which in turn drive dust emissions. Through their regulation of the occurrence, frequency, and duration of strong wind events, cyclones provide an effective dynamical linkage between large-scale atmospheric circulation and surface dust emission processes. Quantitative assessment using cyclone-controlled experiments reveals a 60-70% contribution to the springtime dust emissions in East Asia and 30-40% in North America, as well as a ~80% contribution to both regions' decadal variations in April dust emission and ~30% of that in May during the past four decades; whereas during the past two decades, variations in cyclone characteristics explain about ~60% of the decadal variations in April-May dust emission from East Asia but negligible to that from North America. These results support a strong dynamical coupling between cyclone-modulated near-surface winds and dust emissions across both regions in mid-to-late spring, particularly in East Asia, where the impact of extratropical cyclones is especially pronounced on the longer-lasting (duration ranging from 150 to 450 hours) and higher-frequency (occurring in a range of 15 to 35 times) strong winds (Fig. 8a, b).

542

Beyond ECs, changes in dust emission can also be associated with changes in other synoptic-scale circulation systems, such as the Siberian High (Kang et al., 2022; Zhao et al., 2018), and meso- to small-scale processes, including convective storms (“haboobs”) (Foroutan and Pleim, 2017; Bukowski and Van Den Heever, 2020), nocturnal low-level jets and mountain-valley circulations (Fiedler et al., 2013; Ge et al., 2016). These processes can locally or episodically enhance near-

548 surface winds and thereby contribute to dust emission change independently of extratropical  
549 cyclone activity.

550  
551 The identified decadal changes in near-surface wind speed, along with the changing duration of  
552 strong wind events, can be largely attributed to regime shifts in extratropical cyclone  
553 characteristics, including changes in cyclone frequency, intensity, and spatial extent (Figs. 8-11).  
554 In addition, these changes can be interpreted within the context of large-scale climate dynamics,  
555 including (1) the response in mid-latitude storm track processes to global warming (Shaw et al.,  
556 2016), (2) regional climate oscillations associated with large scale modes of climate oscillation,  
557 such as El Niño-Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Pacific Decadal  
558 Oscillation (PDO), Arctic Oscillation (AO) etc. (Yin et al., 2022), and (3) global surface wind  
559 stilling up to 2010 and subsequent recovery attributed to internal climate variability (Zeng et al.,  
560 2019; Wohland et al., 2021).

561  
562 Compared with wind speed, land surface changes seem secondary in shaping the decadal variations  
563 in dust emission. In addition to reflecting the integrated influence of climate variability, land  
564 surface factors directly respond to climate change. For example, studies on vegetation phenology  
565 have reported an earlier greening trend across Northern Hemispheric mid-latitudes in response to  
566 early-spring warming and CO<sub>2</sub> fertilization (Fan et al., 2014; Piao et al., 2019). However, the  
567 suppressive effect associated with vegetation greening appears insufficient to offset the dominant  
568 influence of surface wind speed on dust emissions at the decadal scale (Fig. 4). Furthermore, future  
569 changes in vegetation cover depend strongly on the competing trajectories of surface temperature  
570 and soil moisture, and their role in dust emission remains uncertain (Ding et al., 2020). At the same  
571 time, non-photosynthetic vegetation present in spring over arid and semi-arid regions, such as  
572 senescent plants and crop residues, can exert a persistent suppressive effect on dust emission by  
573 modifying surface roughness and soil exposure, thereby providing a form of absolute but relatively  
574 stable constraint on dust emission (Huang and Foroutan, 2022).

575  
576 The uncertainty in our study mainly comes from the limitations of observational datasets and dust  
577 emission model. First, due to the high temporal and spatial inhomogeneity of station observation  
578 datasets, aggregating them into a single time series leads to considerable uncertainty. Although

579 [individual station observations exhibit strong correlations with simulated dust emissions within](#)  
580 [the surrounding  \$0.1^\circ\$  grid cells \(Fig. 1\), the correlation between observations and simulations](#)  
581 [weakens after constructing the time series and taking the median of station anomalies.](#)  
582 [Nevertheless, the correlation remains statistically significant \(Fig. 2, 3\).](#) Second, higher albedo of  
583 cloud and land surface, in the presence of thick clouds and snow, respectively, brings challenge to  
584 satellite aerosol retrieval algorithms [in the mid-latitude dust sources](#), preventing a more accurate  
585 quantification of dust concentration or emission solely based on satellite data [\(Meng et al., 2025\)](#).  
586 Third, although the simulation from off-line dust emission model generally matches observed  
587 spatio-temporal variations, this parameterization inevitably underrepresents actual physical  
588 processes, similar to all dust emission models currently being used, especially the interaction  
589 between environmental variables. For example, we estimate the area of unvegetated, wind-erosive  
590 regions within each grid by  $\exp(-1 \times LAI)$  (Pu and Ginoux, 2017). This parameterization,  
591 however, omits the influence of vegetation height and canopy structure on near-surface wind  
592 profile and eventually the frictional wind speed that is directly responsible for dust emission. This  
593 uncertainty in dust emission modeling will be quantified and reduced upon an expanded collection  
594 of observable data, e.g. meter-resolution vegetation structure, spatio-temporally resolved near-  
595 surface wind speed profiles, in conjunction with satellite measurement of dust aerosol abundance  
596 with finer spatio-temporal resolutions.

597

## 598 **Data Availability Statement**

599 Data used in this study are all publicly available, including: the MODIS Deep Blue aerosol  
600 products acquired from the Level-1 and Atmosphere Archive and Distribution System (LAADS)  
601 Distributed Active Archive Center (DAAC) (<https://doi.org/10.5194/amt-6-949-2013>); the ERA-5  
602 hourly climate data provided by European Centre for Medium-Range Weather Forecasts (ECMWF)  
603 (<https://doi.org/10.5194/essd-13-4349-2021>); the GIMMS leaf area index at a half-month temporal  
604 resolution acquired from Cao et al. (2023); the global dust Integrated Surface Database (duISD)  
605 acquired from Xi (2021); the Interagency Monitoring of Protected Visual Environments  
606 (IMPROVE) network is available for download (<http://vista.cira.colostate.edu/improve>).

607

## 608 **Code Availability**

609 The code to carry out the current analyses is available from the corresponding authors upon request.

610

## 611 **Acknowledgments**

612 This research is supported by Beijing Natural Science Foundation grant JQ23037 (J.N.) and NSFC  
613 grant number 42275016 (Y.Y.). We thank Paul Ginoux for useful discussions. Computation is  
614 supported by High-performance Computing Platform of Peking University.

615

## 616 **Author contributions**

617 YY conceived the study. YW and YY performed the analysis and wrote the initial draft. All authors  
618 contributed to the data analysis and manuscript editing.

619

## 620 **Competing interests**

621 The authors declare that they have no conflict of interest.

622

## 623 **References**

624 Achakulwisut, P., Shen, L., and Mickley, L. J.: What Controls Springtime Fine Dust Variability  
625 in the Western United States? Investigating the 2002-2015 Increase in Fine Dust in the U.S.  
626 Southwest, *Journal of Geophysical Research: Atmospheres*, 122, 12449-12467,  
627 <https://doi.org/10.1002/2017jd027208>, 2017.

628 Adebiyi, A., Kok, J. F., Murray, B. J., Ryder, C. L., Stuut, J.-B. W., Kahn, R. A., Knippertz, P.,  
629 Formenti, P., Mahowald, N. M., Pérez García-Pando, C., Klose, M., Ansmann, A., Samset,  
630 B. H., Ito, A., Balkanski, Y., Di Biagio, C., Romanias, M. N., Huang, Y., and Meng, J.: A  
631 review of coarse mineral dust in the Earth system, *Aeolian Research*, 60, 100849,  
632 <https://doi.org/10.1016/j.aeolia.2022.100849>, 2023.

633 Aryal, Y. and Evans, S.: Decreasing Trends in the Western US Dust Intensity With Rareness of  
634 Heavy Dust Events, *Journal of Geophysical Research: Atmospheres*, 127, e2021JD036163,  
635 <https://doi.org/10.1029/2021jd036163>, 2022.

636 Balkanski, Y., Schulz, M., Clauquin, T., Moulin, C., and Ginoux, P.: Global Emissions of Mineral  
637 Aerosol: Formulation and Validation using Satellite Imagery, *Emissions of Atmospheric*  
638 *Trace Compounds*, Springer Netherlands, Dordrecht, 239-267 pp.,  
639 [https://doi.org/https://doi.org/10.1007/978-1-4020-2167-1\\_6](https://doi.org/https://doi.org/10.1007/978-1-4020-2167-1_6), 2004.

640 Bukowski, J. and van den Heever, S. C.: Convective distribution of dust over the Arabian  
641 Peninsula: the impact of model resolution, *Atmospheric Chemistry and Physics*, 20, 2967-  
642 2986, <https://doi.org/10.5194/acp-20-2967-2020>, 2020.

643 Cao, S., Li, M., Zhu, Z., Wang, Z., Zha, J., Zhao, W., Duanmu, Z., Chen, J., Zheng, Y., Chen, Y.,  
644 Myneni, R. B., and Piao, S.: Spatiotemporally consistent global dataset of the GIMMS leaf  
645 area index (GIMMS LAI4g) from 1982 to 2020, *Earth System Science Data*, 15, 4877-  
646 4899, <https://doi.org/10.5194/essd-15-4877-2023>, 2023.

647 Chen, S., Huang, J., Zhao, C., Qian, Y., Leung, L. R., and Yang, B.: Modeling the transport and  
648 radiative forcing of Taklimakan dust over the Tibetan Plateau: A case study in the summer

649 of 2006, *Journal of Geophysical Research: Atmospheres*, 118, 797-812,  
650 <https://doi.org/10.1002/jgrd.50122>, 2013.

651 Chen, T. C. and Di Luca, A.: Characteristics of Precipitation and Wind Extremes Induced by  
652 Extratropical Cyclones in Northeastern North America, *Journal of Geophysical Research: Atmospheres*, 130, <https://doi.org/10.1029/2024jd042079>, 2025.

653 Chen, T. C., Di Luca, A., Winger, K., Laprise, R., and Thériault, J. M.: Seasonality of  
654 Continental Extratropical-Cyclone Wind Speeds Over Northeastern North America,  
655 *Geophysical Research Letters*, 49, <https://doi.org/10.1029/2022gl098776>, 2022.

656 Ding, Y., Li, Z., and Peng, S.: Global analysis of time-lag and -accumulation effects of climate  
657 on vegetation growth, *International Journal of Applied Earth Observation and  
658 Geoinformation*, 92, 102179, <https://doi.org/10.1016/j.jag.2020.102179>, 2020.

659 Eichler, T. and Higgins, W.: Climatology and ENSO-Related Variability of North American  
660 Extratropical Cyclone Activity, *Journal of Climate*, 19, 2076-2093,  
661 <https://doi.org/10.1175/JCLI3725.1>, 2006.

662 Fan, B., Guo, L., Li, N., Chen, J., Lin, H., Zhang, X., Shen, M., Rao, Y., Wang, C., and Ma, L.:  
663 Earlier vegetation green-up has reduced spring dust storms, *Scientific Reports*, 4, 6749,  
664 <https://doi.org/10.1038/srep06749>, 2014.

665 Fiedler, S., Schepanski, K., Heinold, B., Knippertz, P., and Tegen, I.: Climatology of nocturnal  
666 low-level jets over North Africa and implications for modeling mineral dust emission, *J  
667 Geophys Res Atmos*, 118, 6100-6121, <https://doi.org/10.1002/jgrd.50394>, 2013.

668 Foroutan, H. and Pleim, J. E.: Improving the simulation of convective dust storms in regional-to-  
669 global models, *J Adv Model Earth Syst*, 9, 2046-2060,  
670 <https://doi.org/10.1002/2017MS000953>, 2017.

671 Ge, J. M., Liu, H., Huang, J., and Fu, Q.: Taklimakan Desert nocturnal low-level jet: climatology  
672 and dust activity, *Atmospheric Chemistry and Physics*, 16, 7773-7783,  
673 <https://doi.org/10.5194/acp-16-7773-2016>, 2016.

674 Ginoux, P., Garbuзов, D., and Hsu, N. C.: Identification of anthropogenic and natural dust  
675 sources using Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue level  
676 2 data, *Journal of Geophysical Research*, 115, D05204,  
677 <https://doi.org/10.1029/2009jd012398>, 2010.

678 Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C., and Zhao, M.: Global-scale attribution of  
679 anthropogenic and natural dust sources and their emission rates based on MODIS Deep  
680 Blue aerosol products, *Reviews of Geophysics*, 50, 3,  
681 <https://doi.org/https://doi.org/10.1029/2012RG000388>, 2012.

682 Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O., and Lin, S.-J.: Sources  
683 and distributions of dust aerosols simulated with the GOCART model, *Journal of  
684 Geophysical Research: Atmospheres*, 106, 20255-20273,  
685 <https://doi.org/10.1029/2000jd000053>, 2001.

686 Gui, K., Yao, W., Che, H., An, L., Zheng, Y., Li, L., Zhao, H., Zhang, L., Zhong, J., Wang, Y.,  
687 and Zhang, X.: Record-breaking dust loading during two mega dust storm events over  
688 northern China in March 2021: aerosol optical and radiative properties and meteorological  
689 drivers, *Atmospheric Chemistry and Physics*, 22, 7905-7932, <https://doi.org/10.5194/acp-22-7905-2022>, 2022.

690 Guo, Y., Shinoda, T., Lin, J., and Chang, E. K. M.: Variations of Northern Hemisphere Storm  
691 Track and Extratropical Cyclone Activity Associated with the Madden-Julian Oscillation,  
692 *Journal of Climate*, 30, 4799-4818, <https://doi.org/10.1175/jcli-d-16-0513.1>, 2017.

693

694

695 Hand, J. L., Gill, T. E., and Schichtel, B. A.: Spatial and seasonal variability in fine mineral dust  
696 and coarse aerosol mass at remote sites across the United States, *Journal of Geophysical*  
697 *Research: Atmospheres*, 122, 3080-3097, <https://doi.org/10.1002/2016jd026290>, 2017.

698 Hand, J. L., Prenni, A. J., Schichtel, B. A., Malm, W. C., and Chow, J. C.: Trends in remote  
699 PM2.5 residual mass across the United States: Implications for aerosol mass reconstruction  
700 in the IMPROVE network, *Atmospheric Environment*, 203, 141-152,  
701 <https://doi.org/10.1016/j.atmosenv.2019.01.049>, 2019.

702 Hashizume, M., Kim, Y., Ng, C. F. S., Chung, Y., Madaniyazi, L., Bell, M. L., Guo, Y. L., Kan,  
703 H., Honda, Y., Yi, S. M., Kim, H., and Nishiwaki, Y.: Health Effects of Asian Dust: A  
704 Systematic Review and Meta-Analysis, *Environ Health Perspect*, 128, 66001,  
705 <https://doi.org/10.1289/EHP5312>, 2020.

706 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Muñoz-Sabater, J., Nicolas, J.,  
707 Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellán, X.,  
708 Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren,  
709 P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A.,  
710 Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P.,  
711 Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and  
712 Thépaut, J. N.: The ERA5 global reanalysis, *Quarterly Journal of the Royal Meteorological*  
713 *Society*, 146, 1999-2049, <https://doi.org/10.1002/qj.3803>, 2020.

714 Huang, J., Wang, T., Wang, W., Li, Z., and Yan, H.: Climate effects of dust aerosols over East  
715 Asian arid and semiarid regions, *Journal of Geophysical Research: Atmospheres*, 119,  
716 11398-11416, <https://doi.org/10.1002/2014jd021796>, 2014.

717 Huang, X. and Foroutan, H.: Effects of Non-Photosynthetic Vegetation on Dust Emissions,  
718 *Journal of Geophysical Research: Atmospheres*, 127,  
719 <https://doi.org/10.1029/2021jd035243>, 2022.

720 Jickells, T. and Moore, C. M.: The Importance of Atmospheric Deposition for Ocean  
721 Productivity, *Annual Review of Ecology, Evolution, and Systematics*, 46, 481-501,  
722 <https://doi.org/10.1146/annurev-ecolsys-112414-054118>, 2015.

723 Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G., Brooks, N., Cao, J. J.,  
724 Boyd, P. W., Duce, R. A., Hunter, K. A., Kawahata, H., Kubilay, N., laRoche, J., Liss, P. S.,  
725 Mahowald, N., Prospero, J. M., Ridgwell, A. J., Tegen, I., and Torres, R.: Global iron  
726 connections between desert dust, ocean biogeochemistry, and climate, *Science*, 308, 67-71,  
727 <https://doi.org/10.1126/science.1105959>, 2005.

728 Kang, S., Wang, X., Wang, N., Song, Y., Liu, W., Wang, D., and Peng, J.: Siberian High  
729 Modulated Suborbital-Scale Dust Accumulation Changes Over the Past 30 ka in the  
730 Eastern Yili Basin, *Central Asia, Paleoceanography and Paleoclimatology*, 37,  
731 <https://doi.org/10.1029/2021pa004360>, 2022.

732 Kim, D., Chin, M., Cruz, C. A., Tong, D., and Yu, H.: Spring Dust in Western North America and  
733 Its Interannual Variability-Understanding the Role of Local and Transported Dust, *Journal*  
734 *of Geophysical Research: Atmospheres*, 126, e2021JD035383,  
735 <https://doi.org/10.1029/2021jd035383>, 2021.

736 Kim, D., Chin, M., Remer, L. A., Diehl, T., Bian, H., Yu, H., Brown, M. E., and Stockwell, W.  
737 R.: Role of surface wind and vegetation cover in multi-decadal variations of dust emission  
738 in the Sahara and Sahel, *Atmospheric Environment*, 148, 282-296,  
739 <https://doi.org/10.1016/j.atmosenv.2016.10.051>, 2017.

740 Kok, J. F., Ridley, D. A., Zhou, Q., Miller, R. L., Zhao, C., Heald, C. L., Ward, D. S., Albani, S.,  
741 and Haustein, K.: Smaller desert dust cooling effect estimated from analysis of dust size  
742 and abundance, *Nature Geoscience*, 10, 274-278, <https://doi.org/10.1038/ngeo2912>, 2017.

743 Kong, S. S., Pani, S. K., Griffith, S. M., Ou-Yang, C. F., Babu, S. R., Chuang, M. T., Ooi, M. C.  
744 G., Huang, W. S., Sheu, G. R., and Lin, N. H.: Distinct transport mechanisms of East Asian  
745 dust and the impact on downwind marine and atmospheric environments, *Science of the  
746 Total Environment*, 827, 154255, <https://doi.org/10.1016/j.scitotenv.2022.154255>, 2022.

747 Kurosaki, Y. and Mikami, M.: Recent frequent dust events and their relation to surface wind in  
748 East Asia, *Geophysical Research Letters*, 30, 1736, <https://doi.org/10.1029/2003gl017261>,  
749 2003.

750 Kurosaki, Y. and Mikami, M.: Threshold wind speed for dust emission in east Asia and its  
751 seasonal variations, *Journal of Geophysical Research*, 112, D17202,  
752 <https://doi.org/10.1029/2006jd007988>, 2007.

753 Li, Y., Mickley, L. J., and Kaplan, J. O.: Response of dust emissions in southwestern North  
754 America to 21st century trends in climate, CO<sub>2</sub> fertilization, and land use: implications for  
755 air quality, *Atmospheric Chemistry and Physics*, 21, 57-68, <https://doi.org/10.5194/acp-21-57-2021>, 2021.

756 Liang, P., Chen, B., Yang, X., Liu, Q., Li, A., Mackenzie, L., and Zhang, D.: Revealing the dust  
757 transport processes of the 2021 mega dust storm event in northern China, *Science Bulletin*,  
758 67, 21-24, <https://doi.org/10.1016/j.scib.2021.08.014>, 2022.

759 Lukens, K. E., Berbery, E. H., and Hodges, K. I.: The Imprint of Strong-Storm Tracks on Winter  
760 Weather in North America, *Journal of Climate*, 31, 2057-2074, <https://doi.org/10.1175/jcli-d-17-0420.1>, 2018.

761 Meng, X., Yu, Y., and Ginoux, P.: Rise in dust emissions from burned landscapes primarily  
762 driven by small fires, *Nature Geoscience*, 18, 586-592, <https://doi.org/10.1038/s41561-025-01730-3>, 2025.

763 Molina, M. O., Gutiérrez, C., and Sánchez, E.: Comparison of ERA5 surface wind speed  
764 climatologies over Europe with observations from the HadISD dataset, *International  
765 Journal of Climatology*, 41, 4864-4878, <https://doi.org/10.1002/joc.7103>, 2021.

766 Mu, F. and Fiedler, S.: How much do atmospheric depressions and Mongolian cyclones  
767 contribute to spring dust activities in East Asia?, *npj Climate and Atmospheric Science*, 8,  
768 <https://doi.org/10.1038/s41612-025-00929-w>, 2025.

769 Parajuli, S. P., Stenchikov, G. L., Ukhov, A., and Kim, H.: Dust Emission Modeling Using a New  
770 High-Resolution Dust Source Function in WRF-Chem With Implications for Air Quality,  
771 *Journal of Geophysical Research: Atmospheres*, 124, 10109-10133,  
772 <https://doi.org/10.1029/2019jd030248>, 2019.

773 Pérez-Alarcón, A., Coll-Hidalgo, P., Trigo, R. M., Nieto, R., and Gimeno, L.: CyTRACK: An  
774 open-source and user-friendly python toolbox for detecting and tracking cyclones,  
775 *Environmental Modelling & Software*, 176, <https://doi.org/10.1016/j.envsoft.2024.106027>,  
776 2024.

777 Pérez-Alarcón, A., Sorí, R., Fernández-Alvarez, J. C., Nieto, R., and Gimeno, L.: Comparative  
778 climatology of outer tropical cyclone size using radial wind profiles, *Weather and Climate  
779 Extremes*, 33, <https://doi.org/10.1016/j.wace.2021.100366>, 2021.

780 Piao, S., Wang, X., Park, T., Chen, C., Lian, X., He, Y., Bjerke, J. W., Chen, A., Ciais, P.,  
781 Tømmervik, H., Nemani, R. R., and Myneni, R. B.: Characteristics, drivers and feedbacks  
782

785 of global greening, *Nature Reviews Earth & Environment*, 1, 14-27,  
786 <https://doi.org/10.1038/s43017-019-0001-x>, 2019.

787 Priestley, M. D. K., Ackerley, D., Catto, J. L., Hodges, K. I., McDonald, R. E., and Lee, R. W.:  
788 An Overview of the Extratropical Storm Tracks in CMIP6 Historical Simulations, *Journal*  
789 of Climate, 33, 6315-6343, <https://doi.org/10.1175/jcli-d-19-0928.1>, 2020.

790 Pu, B. and Ginoux, P.: Projection of American dustiness in the late 21(st) century due to climate  
791 change, *Scientific Reports*, 7, 5553-5563, <https://doi.org/10.1038/s41598-017-05431-9>,  
792 2017.

793 Pu, B. and Ginoux, P.: Climatic factors contributing to long-term variations in surface fine dust  
794 concentration in the United States, *Atmospheric Chemistry and Physics*, 18, 4201-4215,  
795 <https://doi.org/10.5194/acp-18-4201-2018>, 2018.

796 Pu, B., Jin, Q., Ginoux, P., and Yu, Y.: Compound heat wave, drought, and dust events in  
797 California, *Journal of Climate*, 35, 1-42, <https://doi.org/10.1175/jcli-d-21-0889.1>, 2022.

798 Pu, B., Ginoux, P., Guo, H., Hsu, N. C., Kimball, J., Marticorena, B., Malyshev, S., Naik, V.,  
799 O'Neill, N. T., Pérez García-Pando, C., Paireau, J., Prospero, J. M., Shevliakova, E., and  
800 Zhao, M.: Retrieving the global distribution of the threshold of wind erosion from satellite  
801 data and implementing it into the Geophysical Fluid Dynamics Laboratory land-  
802 atmosphere model (GFDL AM4.0/LM4.0), *Atmospheric Chemistry and Physics*, 20, 55-81,  
803 <https://doi.org/10.5194/acp-20-55-2020>, 2020.

804 Schenkel, B. A., Lin, N., Chavas, D., Oppenheimer, M., and Brammer, A.: Evaluating Outer  
805 Tropical Cyclone Size in Reanalysis Datasets Using QuikSCAT Data, *Journal of Climate*,  
806 30, 8745-8762, <https://doi.org/10.1175/jcli-d-17-0122.1>, 2017.

807 Shao, Y., Klose, M., and Wyrwoll, K. H.: Recent global dust trend and connections to climate  
808 forcing, *Journal of Geophysical Research: Atmospheres*, 118, 11107-11118,  
809 <https://doi.org/10.1002/jgrd.50836>, 2013.

810 Shaw, T. A., Baldwin, M., Barnes, E. A., Caballero, R., Garfinkel, C. I., Hwang, Y. T., Li, C.,  
811 O'Gorman, P. A., Rivière, G., Simpson, I. R., and Voigt, A.: Storm track processes and the  
812 opposing influences of climate change, *Nature Geoscience*, 9, 656-664,  
813 <https://doi.org/10.1038/ngeo2783>, 2016.

814 Song, Q., Zhang, Z., Yu, H., Ginoux, P., and Shen, J.: Global dust optical depth climatology  
815 derived from CALIOP and MODIS aerosol retrievals on decadal timescales: regional and  
816 interannual variability, *Atmospheric Chemistry and Physics*, 21, 13369-13395,  
817 <https://doi.org/10.5194/acp-21-13369-2021>, 2021.

818 Tai, A. P. K., Ma, P. H. L., Chan, Y.-C., Chow, M.-K., Ridley, D. A., and Kok, J. F.: Impacts of  
819 climate and land cover variability and trends on springtime East Asian dust emission over  
820 1982–2010: A modeling study, *Atmospheric Environment*, 254, 118348,  
821 <https://doi.org/10.1016/j.atmosenv.2021.118348>, 2021.

822 Tong, D. Q., Wang, J. X. L., Gill, T. E., Lei, H., and Wang, B.: Intensified dust storm activity and  
823 Valley fever infection in the southwestern United States, *Geophys Res Lett*, 44, 4304-4312,  
824 <https://doi.org/10.1002/2017GL073524>, 2017.

825 Wang, S., Yu, Y., Zhang, X.-X., Lu, H., Zhang, X.-Y., and Xu, Z.: Weakened dust activity over  
826 China and Mongolia from 2001 to 2020 associated with climate change and land-use  
827 management, *Environmental Research Letters*, 16, 124056, <https://doi.org/10.1088/1748-9326/ac3b79>, 2021.

829 Wohland, J., Folini, D., and Pickering, B.: Wind speed stilling and its recovery due to internal  
830 climate variability, *Earth System Dynamics*, 12, 1239-1251, <https://doi.org/10.5194/esd-12-1239-2021>, 2021.

832 Wu, C., Lin, Z., Shao, Y., Liu, X., and Li, Y.: Drivers of recent decline in dust activity over East  
833 Asia, *Nature Communications*, 13, 7105, <https://doi.org/10.1038/s41467-022-34823-3>,  
834 2022.

835 Xi, X.: Revisiting the Recent Dust Trends and Climate Drivers Using Horizontal Visibility and  
836 Present Weather Observations, *Journal of Geophysical Research: Atmospheres*, 126,  
837 e2021JD034687, <https://doi.org/10.1029/2021jd034687>, 2021.

838 Xu, X., Levy, J. K., Zhao, L., and Hong, C.: An investigation of sand-dust storm events and  
839 land surface characteristics in China using NOAA NDVI data, *Global and Planetary  
840 Change*, 52, 182-196, <https://doi.org/10.1016/j.gloplacha.2006.02.009>, 2006.

841 Yang, H., Zhang, X., Zhao, F., Wang, J. a., Shi, P., and Liu, L.: Mapping Sand-dust Storm Risk of  
842 the World, in: *World Atlas of Natural Disaster Risk*, edited by: Shi, P., and Kasperson, R.,  
843 Springer Berlin Heidelberg, Berlin, Heidelberg, 115-150, [https://doi.org/10.1007/978-3-662-45430-5\\_7](https://doi.org/10.1007/978-3-662-45430-5_7), 2015.

844 Yin, Z., Wan, Y., Zhang, Y., and Wang, H.: Why super sandstorm 2021 in North China?, *National  
845 Science Review*, 9, nwab16, <https://doi.org/10.1093/nsr/nwab165>, 2022.

846 Yu, H., Tan, Q., Chin, M., Remer, L. A., Kahn, R. A., Bian, H., Kim, D., Zhang, Z., Yuan, T.,  
847 Omar, A. H., Winker, D. M., Levy, R., Kalashnikova, O., Crepeau, L., Capelle, V., and  
848 Chedin, A.: Estimates of African Dust Deposition Along the Trans-Atlantic Transit Using  
849 the Decade-long Record of Aerosol Measurements from CALIOP, MODIS, MISR, and  
850 IASI, *Journal Of Geophysical Research-atmospheres*, 124, 7975-7996,  
851 <https://doi.org/10.1029/2019JD030574>, 2019a.

852 Yu, Y. and Ginoux, P.: Assessing the contribution of the ENSO and MJO to Australian dust  
853 activity based on satellite- and ground-based observations, *Atmospheric Chemistry and  
854 Physics*, 21, 8511-8530, <https://doi.org/10.5194/acp-21-8511-2021>, 2021.

855 Yu, Y. and Ginoux, P.: Enhanced dust emission following large wildfires due to vegetation  
856 disturbance, *Nature Geoscience*, 15, 878-884, <https://doi.org/10.1038/s41561-022-01046-6>,  
857 2022.

858 Yu, Y., Kalashnikova, O. V., Garay, M. J., and Notaro, M.: Climatology of Asian dust activation  
859 and transport potential based on MISR satellite observations and trajectory analysis,  
860 *Atmospheric Chemistry and Physics*, 19, 363-378, <https://doi.org/10.5194/acp-19-363-2019>, 2019b.

861 Zeng, Z., Ziegler, A. D., Searchinger, T., Yang, L., Chen, A., Ju, K., Piao, S., Li, L. Z. X., Ciais,  
862 P., Chen, D., Liu, J., Azorin-Molina, C., Chappell, A., Medvigh, D., and Wood, E. F.: A  
863 reversal in global terrestrial stilling and its implications for wind energy production, *Nature  
864 Climate Change*, 9, 979-985, <https://doi.org/10.1038/s41558-019-0622-6>, 2019.

865 Zhao, S., Feng, T., Tie, X., Long, X., Li, G., Cao, J., Zhou, W., and An, Z.: Impact of Climate  
866 Change on Siberian High and Wintertime Air Pollution in China in Past Two Decades,  
867 *Earth's Future*, 6, 118-133, <https://doi.org/10.1002/2017ef000682>, 2018.

868 Zong, Q., Mao, R., Gong, D.-Y., Wu, C., Pu, B., Feng, X., and Sun, Y.: Changes in Dust Activity  
869 in Spring over East Asia under a Global Warming Scenario, *Asia-Pacific Journal of  
870 Atmospheric Sciences*, 57, 839-850, <https://doi.org/10.1007/s13143-021-00224-7>, 2021.

871

872

873