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S1. Overview of Airborne Aerosol Sampling 

The Center for Interdisciplinary Research Projects in Airborne Science (CIRPAS), operated by 

the Naval Postgraduate School (NPS), provides a specialized Twin Otter research aircraft 

designed to support environmental and atmospheric science missions. The Twin Otter is a 

versatile aircraft well-suited for research flights enabling direct sampling of the lower 

troposphere. Equipped with multiple wing pylons, fuselage ports, and integrated power systems, 

the aircraft can accommodate a wide range of meteorological and aerosol instrumentation. 

CIRPAS adheres to rigorous calibration protocols and offers comprehensive logistical support to 

ensure high-quality data acquisition across multi-institutional field campaigns.  

In situ measurements of air temperature (Rosemount total temperature probe, model E102AL) 

(Friehe and Khelif, 1992) and dew point temperature (Vigilant Chilled Mirror Hygrometer, 

Edgetech Instruments Inc., Hudson, MA) were used by flight scientists to determine the cloud 

base height (CBH). During the initial sounding at each sampling station, vertical profiles of air 

temperature and dew point temperature were monitored as they gradually converged with 

increasing altitude.  

Aerosol measurements aboard the CIRPAS Twin Otter rely on the precise characterization 

of aerosol sampling dynamics. The aircraft’s aerosol inlet has been evaluated under both flight 

and wind tunnel conditions to quantify its transmission efficiency across a range of particle sizes. 

Studies show that the inlet’s transmission efficiency begins to decline near 3.5 µm particle 

diameter but stabilizes at 5.5 µm with a transmission efficiency just above 0.6 for particles up to 

9 µm (Hegg et al., 2005). This behavior is likely attributed to sub-isokinetic aspiration flow, 



wherein the inlet flow velocity is lower than the freestream velocity, leading to inertial losses of 

larger particles. 

 

Figure S1. (a) Box plot showing monthly AOD at 550 nm measured using the AERONET 

(Holben et al., 1998) at Barbados for the last 17 years.  

S2. Single Particle Aerosol Composition and Size Distribution 

Single-particle chemical composition and morphology of aerosol samples collected during dust 

events were examined using computer-controlled scanning electron microscopy with energy-

dispersive X-ray spectroscopy (CCSEM/EDX). The analysis revealed a diverse set of particle 

types with distinct chemistries and morphologies, including mineral dust, sea spray, aged sea 

spray, internally mixed mineral dust and sea spray, sulfates, and organics (Ault et al., 2014; 

Royer et al., 2023). Representative scanning electron microscopy (SEM) images and 

corresponding EDX spectra for each particle class are shown in Fig. 3c in main text. 

Mineral Dust: Mineral dust particles were primarily characterized by the presence of 

aluminosilicate elements such as Si, Al, Fe, K, Ca, and Mg, consistent with long-range 

transported Saharan dust (Royer et al., 2023, 2025; Twohy et al., 2009; Levin et al., 2005; 



Krueger et al., 2004; Hand et al., 2010; Denjean et al., 2015). Notably, approximately only 25% 

of the dust particles analyzed contained sulfur and nitrogen, suggesting atmospheric chemical 

aging either during transport or during entrainment into the marine boundary layer (MBL). This 

is consistent with earlier findings at the site that reported minimal evidence of aging in mineral 

dust (Kandler et al., 2018; Royer et al., 2025). 

Sea Spray and Aged Sea Spray: Fresh sea spray particles were identified by a high relative 

abundance of Na and Cl and exhibited crystalline morphologies indicative of halite (NaCl). 

Small peaks of Mg further confirmed their marine origin. Aged sea spray particles were 

distinguished by depleted chloride content and enriched sulfur and nitrogen signatures, likely 

resulting from heterogeneous reactions with atmospheric acidic gases such as sulfuric acid 

(H₂SO₄), nitric acid (HNO₃), and dinitrogen pentoxide (N₂O₅). These interactions are known to 

produce Cl-depleted sea spray and form secondary aerosol coatings (Ault et al., 2013a; Royer et 

al., 2023, 2025; Gaston et al., 2011). The aspect ratio of sea spray particles in the smaller size 

bins (Fig. 5d) is higher than in the larger bins, potentially due to the presence of gypsum rods 

commonly observed attached to these particles and partial drying of the particles on the 

substrate. However, it should be noted that the number of particles observed in these smaller size 

bins is significantly lower than in larger bins. 

Internally Mixed Mineral Dust and Sea Spray: These particles exhibited a heterogeneous 

composition, containing both dust-derived (Si, Al, Fe, K, Ca, Mg) and marine-derived (Na, Cl) 

components (Royer et al., 2023, 2025; Kandler et al., 2018). Elemental distributions varied 

within individual particles, indicating spatially localized mixing of the two sources. The 

generally low percentage of nitrogen and sulfur suggests limited atmospheric aging of this 

particle type. This is contrary to wintertime observations at Barbados by Royer et al. (2025), 



where SEM/EDX elemental mapping showed that signs of aging, such as the presence of sulfur 

or nitrogen, were confined to the sea spray portions of these mixed particles. Previous work at 

the same site proposed that this internal mixing likely occurs locally, potentially driven by 

turbulent interactions between airborne dust and sea spray (Kandler et al., 2018). 

Organics: Organic particles were predominantly composed of carbon and oxygen (>95%), with 

minor contributions from inorganic constituents (<5%). Several larger particles were observed, 

potentially corresponding to marine gels, characterized by Mg-rich shells and sea spray-

dominated cores (Ault et al., 2013b; Gaston et al., 2011). These marine gels are typically formed 

from bubble-bursting processes at the ocean surface, where hydrophobic organic compounds 

concentrated in the sea surface microlayer become aerosolized and associate with divalent 

cations during gel formation (Chin et al., 1998). 

Sulfates: Sulfate-rich particles were identified based on dominant sulfur signals accompanied by 

carbon, oxygen, and nitrogen. These particles are consistent with marine secondary aerosol 

components such as ammonium sulfate ((NH₄)₂SO₄) and ammonium bisulfate (NH₄HSO₄) (Hand 

et al., 2010; Royer et al., 2023). The elevated carbon content suggests these particles also contain 

a substantial organic fraction, a common feature in marine submicron aerosols (O’Dowd and de 

Leeuw, 2007). 



 

Fig. S2. Kernel density of different particle types vs particle diameter during the dust event. 

S3. Estimation of Expected Lidar Depolarization Ratio  

S3.1 Modeling expected depolarization ratio mixture.  

To estimate the expected aerosol depolarization ratio (δ expected), we begin by modeling the total 

aerosol backscatter as a mixture of contributions from dust and marine aerosols. The total 

backscatter coefficient (ν) is expressed as: 

𝜈 =  𝜈(𝑑)  + 𝜈(𝑚)(1)  

where, ν (d) and ν (m) are dust and marine air mass backscatter, respectively. 

The total parallel (𝜈∥) and perpendicular (ν⊥) components of the backscatter can be similarly 

expressed as:  

𝜈∥  =  𝑣∥
(𝑑)

 + 𝑣∥
(𝑚)

        (2) 

 𝜈⊥ =  𝑣⊥
(𝑑)

 + 𝑣⊥
(𝑚)

        (3)  

The depolarization ratio mixture is then defined as:  
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𝜈⊥

𝜈∥
        (4) 

Using this formulation, the expected depolarization ratio can be alternatively written as: 

 𝛿𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 =  
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This formulation requires estimation of the aerosol-specific backscatter and their polarized 

components which are computed as described in the following sections.  

S3.2 Estimating the aerosol specific polarized backscatter  

To calculate the expected depolarization, we first estimate extinction β [m−1] using the observed 

particulate backscatter (v) and lidar ratio µ [sr]: 

𝛽 =  𝜈µ       (6)  

Next, the aerosol specific backscatter components for marine and dust contributions are derived 

using their respective mass concentrations M(d) and M(m) [µg m−3], and lidar ratio cut offs for dust 

(µd) and marine aerosols (µm) were taken as 40 and 20, respectively: 

𝑣(𝑚)  =  
𝑀(𝑚)

𝑀(𝑚) +  𝑀(𝑑)

𝛽

µ𝑚
         (7)  

𝑣(𝑑)  =  
𝑀(𝑑)

𝑀(𝑚) +  𝑀(𝑑)

𝛽

µ𝑑
          (8)  

S3.3 Compute the marine and dust parallel and perpendicular backscatters  

Using the campaign-derived in-situ linear depolarization ratios for dust and marine aerosols in-

situ marine δ (m) and dust δ (d) (i.e., 0.3 for dust and 0.02 for marine), we calculate the aerosol 

specific backscatter into polarized components.  



a. the parallel polarized marine and dust backscatters is calculated as:  

𝑣∥
 (𝑚)

=  
𝑣  (𝑚)

(1 +  𝛿(m))
         (9)  

𝑣∥
 (𝑑)
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        (10)  

 

b. the perpendicular polarized marine and dust backscatters is calculated as:  

𝑣⊥
(𝑚)

= 𝛿  (𝑚) 𝑣∥
 (𝑚)

        (11)  

𝑣⊥
(𝑑)

= 𝛿(𝑑) 𝑣∥
(𝑑)         (12) 

Finally, the expected linear depolarization ratio is computed by substituting Eqs. (7) – (12) into 

Eq. (5).  
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