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Abstract. This project produced a Python language implementation of locally interpolated regression (LIR) and neural network 

(NN) algorithms from empirical seawater property estimation routines (PyESPERv1.0.0). These routines estimate total 10 

alkalinity, dissolved inorganic carbon, total pH, nitrate, phosphate, silicate, and oxygen from geographic coordinates, depth, 

salinity, and 16 combinations of 0 to 4 additional predictors (temperature and biogeochemical information), and were 

previously available only in the MATLAB programming language. Here we document modifications to reduce discrepancies 

between the implementations, calculate the disagreements between the methods, and quantify Global Ocean Data Analysis 

Project (GLODAPv2.2022) reconstruction errors with PyESPER. While the PyESPER routine based on neural networks 15 

(PyESPER_NN) faithfully reproduces the corresponding MATLAB routine estimates of properties that do not require 

anthropogenic carbon change information, PyESPER_LIR and—to a lesser extent—PyESPER_NN estimates for total pH and 

dissolved inorganic carbon do not exactly reproduce the MATLAB routine estimates due to differences in interpolation and 

extrapolation methods between the programming languages. While the MATLAB and Python LIR-based estimates are not 

identical, we show that they are similarly skilled at reproducing the GLODAPv2.2022 data product and are thus comparable.  20 

This project increases the accessibility of ESPERv1.01.01 algorithms by providing users with code in the freely available 

Python language and enables future ESPER updates to be released in multiple coding languages. 

1 Introduction 

Ship-based biogeochemical data, as compiled within the Global Ocean Data Analysis Project (GLODAP; Lauvset et al., 2022) 

have high precision and accuracy, but are seasonally biased and spatially sparse (Hauck et al., 2023). International efforts to 25 

deploy biogeochemical (BGC) profiling floats with broad spatial coverage and high temporal resolution (10 days) are ongoing 

(Bittig et al., 2019), with potential to greatly augment available ocean carbon cycle and biogeochemical data. These data can 

then support a wide variety of research topics and management applications (e.g., warming, acidification, eutrophication, 

deoxygenation, fisheries, and ecosystem studies). This strategy leverages the high precision and accuracy of ship-based 

measurements to calibrate and validate the BGC float sensors periodically throughout a float deployment.  To do this, machine 30 

learning and regression algorithms—which take advantage of the strong regional correlations between seawater properties in 

the open ocean, and especially the ocean interior (Bittig et al., 2018; Carter et al., 2017, 2021)—are used to map the ship-based 

information onto “reference depth” portions of the float profiles.  

 

The empirical seawater property estimation routines (ESPERv1.01.01, henceforth referred to as ESPERs), originally written 35 

in MATLAB programming language, aim to help realize the full potential of BGC float data by using machine learning 

techniques and regression strategies to predict total alkalinity (TA), dissolved inorganic carbon (DIC), pH on the total scale 

(pHT), phosphate, nitrate, silicate, and oxygen from commonly measured physical and BGC parameters (Carter et al., 2021). 
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The algorithms are used to calibrate float profiles (Maurer et al., 2021). In addition, since two carbonate system property 

measurements are necessary to fully quantify the carbonate system in seawater (Zeebe and Wolf-Gladrow, 2001) and BGC 40 

floats only have the capability to measure pHT, these algorithms have the potential to provide (calculated) TA or DIC as a 

secondary constraint for the marine carbonate system. This method also offers an alternative to using models to estimate 

variables for carbonate chemistry calculations when nutrient information is unavailable, which potentially has high error 

values. ESPERs have also been used to map ship-based information across spatial and temporal scales for other applications 

including estimation of TA for adjustments of pH and fugacity of CO2 (fCO2) to in situ conditions for data products (Jiang et 45 

al., 2021), and estimation of TA and seawater properties necessary for estimation of ocean acidification indicators (Jiang et 

al., 2020; Sharp et al., 2024). Recent research has also shown that similar machine learning estimation algorithms have potential 

for  the development of four-dimensional data products such as the Gridded Ocean Biogeochemistry from Artificial 

Intelligence – Oxygen (GOBAI-O2; Sharp et al., 2023) and the Mapped Observation-Based Oceanic DIC (MOBO-DIC; 

Keppler et al., 2020). 50 

1.1 Importance 

Tanhua et al. (2021) and others have argued that researchers should utilize workflows that produce findable, accessible, 

interoperable, and reusable (FAIR) data products. ESPERs are publicly available (findable) on Zenodo, with updates published 

to GitHub, free (accessible), and provide the option for users to cite a digital object identifier (DOI) for each version (reusable). 

However, until now ESPERs were only available in the proprietary MATLAB programming language, which posed a barrier 55 

to accessibility and interoperability that we aim to address. Future updates may include even more accessible features such as 

a user interface.  

1.2 Goals 

This project aimed to create a freely available Python implementation of ESPERs (PyESPERv1.0.0, henceforth referred to as 

PyESPERs; Carter et al., 2021; Dias and Carter, 2025) that is equivalent to the MATLAB version within 2 × Estimate 60 

Uncertainties () for all estimated biogeochemical properties (TA, DIC, pHT, nitrate, phosphate, silicate, and oxygen). 

PyESPER code is freely available at Zenodo and updates will be made available at the GitHub repository (see Sect. “Code 

availability”). 

2 Methods 

ESPER algorithms were translated into Python coding language, while associated files were either translated into Python or 65 

read by Python as MATLAB files. Some original methods were required to allow interpolations to be similar in Python to 

those of MATLAB ESPERs.  
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2.1 ESPERs 

ESPERs allow estimation of biogeochemical seawater properties using coordinates, depth, salinity, and other optional inputs 

from a single function call. While sharing a similar set of equations and required input data, ESPERs have two variants that 70 

use locally interpolated regressions (ESPER_LIR) and neural networks (ESPER_NN), respectively, along with a mixed 

estimate (ESPER_Mixed) that is the mean of estimates from the two functions (Carter et al., 2017).  There are a couple of 

reasons to maintain the separate ESPER LIR, NN, or Mixed options, from an end-user perspective, and these reasons are 

also true for PyESPERs.  

1. ESPER_LIRs predate the ESPER_NNs and have been used as a standalone data product for various research 75 

purposes (see Carter et al., 2016; Carter et al., 2018). Long-term users of these LIRs have previously expressed 

desire for consistency between versions (e.g., when depth was taken out as predictor for pHT), and some of them 

already use CANYON-B (Bittig et al., 2019) as a neural net option for comparison. Therefore, these users who 

desire consistency would most likely prefer to use ESPER_LIR.  

2. ESPER_LIRs are more transparent than ESPER_NN, as it is simple to parse apart coefficients at the gridded 80 

locations and to see how the equations are a result of these. ESPER_LIRs also rely on a grid, which may appeal to 

some users.  

3. ESPER_NNs work a bit better on average than ESPER_LIRs and work more like a mapping product in that 3D 

coordinates are predictors, which may alternately appeal to some users.  

4. Although the ESPER_Mixed estimates perform better on average than LIRs or NNs do independently, there are 85 

cases where they have greater bias and RMSE than LIRs or NNs (e.g., when using equations 1-3 for phosphate or 

nitrate at all depths; Carter et al., 2021). Users may want to assess each scenario independently and choose which 

method is most appropriate according to their needs. 

5. The NNs are more closely reproduced between the MATLAB and Python ESPER implementations.   

2.1.1 Locally interpolated regressions 90 

The most recent versions of ESPER_LIRs (version 1.01.01; version 3 of LIRs) use a standard set of equations of the format 

shown by Eq. (1) to estimate up to seven different biogeochemical water properties using up to 16 equations with different 

combinations of input parameters (see Sect. “Appendix A”, Tables A1 and A2; Carter et al., 2021): 

𝑋 =  𝐶0  + ∑ 𝐶𝑖𝑃𝑖

𝑛

𝑖=1

 (1) 

 
where X is the estimated property (TA, DIC, pHT, nitrate, phosphate, silicate, or oxygen), C0 is the intercept, and Ci is the 95 

coefficient for each of the n predictors Pi. The intercepts (C0) and coefficients (Ci) vary with location (latitude, longitude, and 

depth) and are different for each of the predictor variables (Pi; Tables A1 and A2; Carter et al., 2021). The most recent ESPERs 

were trained and assessed on the GLODAPv2.2020 (Olsen et al., 2020) data product, which includes data from 946 cruises 
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and spanning 1972–2019, and additional data sets from the Mediterranean Sea and Gulf of Mexico (Carter et al., 2021, 

Supplementary Information) taken from the Coastal Ocean Data Analysis Project (CODAP, Jiang et al., 2021) and the 100 

CARIMED data product (Álvarez et al., 2019).  

 

When the ESPER_LIR function is called, the routines interpolate a pre-determined grid of C’s (intercepts and coefficients) to 

user-defined locations. Linear interpolation is used within the grid and for extrapolation, and this method utilizes an underlying 

Delaunay triangulation with MATLAB’s scatteredInterpolant function (Carter et al., 2021). The three-dimensional 105 

interpolation algorithm is implemented differently in MATLAB and Python, and although both calculations are valid, this 

difference in implementation is the source of disagreements we find and later quantify between ESPER and PyESPER. 

 

ESPER_LIR coefficients have been determined on a grid using a moving window regression strategy similar to the approach 

first outlined by Velo et al. (2013), resulting in a set of intercept and coefficient estimates for each of 16 equations for 7 110 

possible properties at 44,957 total locations on a 5° latitude (-84.5–85.5 N) x 5° longitude (-19.5–375.5 E)  x 33  depth 

(0–5500 m) ocean interior grid subsampled from the World Ocean Atlas gridded product (Carter et al., 2016, 2017, 2021). 

These coefficients were fit using regressions relating the property of interest (X) to different combinations of up to five 

predictor properties (P, Tables A1 and A2), relating to each possible equation as in Eq. (1). Depth (scaled to 
1

25
) is included 

as a coordinate for coefficient interpolation, but depth is not used as a predictor for the current ESPER version (it was 115 

included in an earlier version, but only when predicting pHT; Carter et al., 2017). Data for each regression fit are selected 

from “windows” of data that are within 15° latitude, 30°/cosine(latitude) in longitude, and within either (100 + z/10) m depth 

or 0.1 kg m-3 of the estimated density of seawater at that coordinate location, where z is depth in m (Carter et al., 2021). If 

either the depth-based or the density-based criterion applies, data are selected for that location, which allows water masses to 

impact window selection along with depth. If fewer than 100 measurements fall within a window, the dimensions are 120 

doubled. In LIRv2, windows were iteratively scaled by a factor of the iteration number until at least 100 measurements are 

selected to train each regression (Carter et al., 2017). For ESPER_LIRs (LIRv3), it is argued that increasing window size has 

the following benefits: (1) includes more data for regression fits, (2) introduces more modes of oceanographic variability into 

fitting data, and (3) reduces multicollinearity (Carter et al., 2021). However, the risk of increasing window size is that they 

will be less appropriate locally. A weighting term is applied to help account for this by reducing to cost of regression misfits 125 

to data that are distant or at significantly different depths from the location, with a cap to prevent overfitting to nearby 

coordinates (see Carter et al., 2021). Regression coefficients (C0 and Ci) are then fit using Eq. (2), with separate regressions 

for northern hemisphere Atlantic, Mediterranean, and Arctic, and other global locations, to prevent interpolation across 

Central America or the Bering Strait.  

𝑋𝑊 =  (𝐶0  + ∑ 𝐶𝑖𝑃𝑖

𝑛

𝑖=1

) 𝑊 (2) 



6 

 

 130 

 
PyESPER_LIR does not duplicate this portion of the effort but instead builds directly upon the grid of coefficients obtained 

for and utilized by the MATLAB implementation of ESPER_LIR.   

 

When the function is called, ESPER_LIR uses MATLAB’s scatteredInterpolant (linear interpolation and extrapolations) 135 

function to interpolate this previously-created grid of regression coefficients to the user-provided set of coordinates, resulting 

in coefficient estimates at the desired locations (Carter et al., 2021). This method uses a Delaunay triangulation of the scattered 

sample points to perform interpolations and extrapolations. Different valid mathematics can be used to obtain these Delaunay 

triangulations and to extrapolate and interpolate, and efforts to identify a Python method for these tasks that exactly replicated 

MATLAB results were unsuccessful. The most similar and least computationally intensive results to those of MATLAB’s 140 

scatteredInterpolant were produced by combining Python’s scipy package functions LinearNDInterpolator (interpolate 

subpackage) and Delaunay (spatial subpackage; Virtanen et al., 2020). However, since LinearNDInterpolator does not 

extrapolate, and other Python functions did not produce similar results to those of MATLAB when using similar methods (see 

Appendix D), the gridded set of three-dimensional coordinates (44,957 locations based on the World Ocean Atlas) and 

corresponding coefficient estimates provided by ESPER_LIRs were expanded in MATLAB to 106,400 locations on a grid 145 

with estimates every 5 latitude (-94.5–90.5 N) and longitude (-19.5–375.5 E) and up to 9000 m depth and applied to 

scatteredInterpolant within ESPER_LIR to provide coefficient estimates for the external locations through extrapolation. This 

grid, with equivalent coefficients within the original parts of the grid and extrapolations outside of the grid, was read in Python 

when LIRs were called. The expanded grid allowed Python functions to avoid extrapolations and rely solely on interpolation 

and triangulation methods when estimating coefficients at user-defined locations. While some of these locations are unphysical 150 

(e.g., ± >90º N or on land), the coefficients nevertheless provide valid extrapolations from MATLAB for the full possible 

domain that can then be interpolated in PyESPER_LIR. PyESPER_LIR otherwise replicated ESPER_LIR’s separation of data 

from the Atlantic Ocean, Mediterranean Sea, and Arctic Ocean and data from the Indo-Pacific and Southern Ocean regions.  

 

During the creation of this expanded grid, a grouping error was observed in current versions of MATLAB ESPER_LIRs. 155 

Specifically, the mirrored portion of the grid found at < 0º E and > 360º E and north of 40º S are not correctly flagged as 

belonging to the Atlantic grid. The practical effect of this bug was that estimates near the Prime Meridian and near the cutoff 

between the Southern Ocean and the Atlantic Ocean had extrapolated coefficients instead of interpolated coefficients. This 

bug was fixed for both MATLAB ESPER_LIR and PyESPER_LIR comparisons for this paper, and a fixed grouping routine 

is now provided at the original MATLAB ESPER repository with corresponding documentation and will be included in future 160 

updates to ESPER_LIRs. 
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2.1.2 Neural networks 

ESPER_NNs use feed-forward neural networks with latitude, depth, cosine(longitude-20°E), cosine(longitude-110°E) and the 

parameters from Table A2 as predictors. Four neural networks are used in each of the two ocean regions, which are the same 

as those used for LIRs (Atlantic-Mediterranean-Arctic and Indo-Pacific-Southern), resulting in 896 total neural networks (8 165 

for each of 16 combinations of predictors for 7 property estimates; Carter et al., 2021). An ensemble of four previously-created 

neural networks with different combinations of neurons and hidden layers, including a single one-hidden-layer network with 

40 neurons and three two-hidden-layer networks with 30/10, 25/15, and 20/20 neurons in the first/second hidden layers is used 

to minimize the impact of errors from any one neural network (Carter et al., 2021).  

 170 

In ESPER_NN the neural networks are encoded as functions to avoid requiring access to the Machine Learning toolbox within 

MATLAB. Here we further translate these functions to Python. The resultant Python functions replicate the functions in 

ESPER_NN to within machine precision. ESPER_NNs linearly interpolate between the two regions of neural networks by 

latitude across the Southern Atlantic Ocean and Bering Sea and between the North Pacific and Arctic Oceans. Zonal transitions 

in the Southern Atlantic and Indo-Pacific-Southern Ocean network are also implemented. This interpolation uses custom-175 

written 1 or 2D interpolations that are handled identically in both programming environments.  

2.1.3 Mixed estimates 

The mixed estimate for each input location is the mean of the LIR and NN estimates and therefore is trivially reproduced by a 

simple single function call within Python.  

2.1.4 Anthropogenic carbon  180 

The impacts of anthropogenic carbon (Cant) are approximated in ESPER and PyESPER using a 1 x 1 gridded transit time 

distribution (Waugh et al., 2006)-based Cant product referenced to the year 2002 (Lauvset et al., 2016). ESPERs assume that 

oceanic Cant increases proportionally to atmospheric anthropogenic CO2 (transient steady state assumptions; Gammon et al., 

1982; Gruber et al., 2019; Tanhua et al., 2007). This implies that the “shape” of the Cant vertical profile (gradient) remains 

constant with continuous exponential increases of atmospheric CO2 and ocean Cant according to Eq. (3; Carter et al., 2021). 185 

 
𝐶𝑎𝑛𝑡_𝑦𝑒𝑎𝑟_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝐶𝑎𝑛𝑡_𝑦𝑒𝑎𝑟_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑒0.018989(𝑦𝑒𝑎𝑟−2002) 

(3) 

The coefficient in Eq. (3) is derived from Gruber et al.'s (2019) assumption of a 28% increase in Cant from 1994–2007, and 

enables estimating Cant for a location in a desired year when Cant is known for that same location in a reference year (2002; 
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Carter et al., 2021). This approach does not allow for non-steady-state variations, which is accounted for in overall uncertainty 

estimates, and is noted as a significant source of uncertainty for projections beyond ~2030.  190 

ESPERs were trained on data for pHT and DIC which were transformed to the year 2002, then modified back to the original 

measurement dates using Eq. (3). ESPERs and PyESPERs estimate the Cant component of DIC and pHT in output variables for 

2002 by interpolating the 2002 Cant grid to user-provided coordinates and then applying Eq. (3) to estimate Cant for the user-

requested estimate year. As with original ESPERs, this method is not meant to be used when Cant is of primary interest, but 

rather provides a means of quickly adjusting DIC or pHT to a reference year (Carter et al., 2021). Likewise, these methods are 195 

not adequate for making reliable projections beyond the year 2030, or perhaps sooner in coastal or other areas where the 

underlying global open-ocean anthropogenic carbon estimations have greater uncertainties (Carter et al., 2021). 

2.2 Uncertainty estimation 

ESPERs and PyESPERs return depth- and salinity-dependent uncertainties for each property at the 1𝛔 (one standard 

uncertainty) level, meaning approximately 95% of new open-ocean measurements from GLODAPv2.2022 should fall within 200 

± twice the ESPER uncertainties (Carter et al., 2021). As in Carter et al. (2021), baseline error estimates in depth and salinity 

space (EX_Est) are interpolated based on root mean square errors (RMSEs) of all predictions from validation versions of the 

routines within bins of salinity and depth. ESPER_LIRs and PyESPER_LIRs scale these uncertainties using user-provided 

predictor uncertainty estimates (EPi_Provided). Eq. (4) is used when user-provided uncertainties exceed default assumed input 

uncertainties (EPi_Default; Table A3): 205 

 

𝐸𝑋_𝑂𝑢𝑡𝑝𝑢𝑡  =  √𝐸𝑋_𝐸𝑠𝑡
2  −  ∑ (

𝜕𝑋

𝜕𝑃𝑖
𝐸𝑃𝑖_Default)

2𝑛

𝑖=1

+ ∑ (
𝜕𝑋

𝜕𝑃𝑖
𝐸𝑃𝑖_Provided)

2𝑛

𝑖=1

 
(4) 

 

where 
𝜕𝑋

𝜕𝑃𝑖
 is the sensitivity of the property estimate X to the ith predictor Pi. ESPER_NNs and PyESPER_NNs estimate 

sensitivities by iteratively perturbing the input predictors if the user specifies uncertainties that are larger than default. Mixed 

uncertainties are the minimum uncertainties assessed for LIR and NN estimates.  210 

2.3 Assessment 

For many applications, the most critical validation is a test of the reconstruction of withheld data. However, such an exercise 

requires training alternative versions of the method after withholding data, and, as of now, PyESPER is not separately trained, 

but is instead reliant on the ESPER training that was performed and validated previously with MATLAB (Carter et al. 2021). 

For this publication, we aim to instead show that PyESPER and ESPER provide quantitatively similar results and assert that 215 

the validation presented earlier for ESPER in MATLAB can be considered to also be appropriate for PyESPER in all but a 
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limited number of specific exceptional cases. To support this claim, PyESPER and ESPER were used to estimate values for 

the GLODAPv2.2022 data product (1,381,248 sets of measurements; Fig. 1) with each equation and output variable 

combination. This dataset included a wide range of input data, and comparison of PyESPER and ESPER was primarily 

considered from application to the high-quality “open ocean” (o) portion of the GLODAP dataset as in Carter et al. (2021), 220 

defined as GLODAP data with only World Ocean Circulation Experiment (WOCE) data quality control flag categories of 2 

(Acceptable) and secondary quality control flag categories of 1 (subjected to full secondary quality control) for all possible 

input and measurement data, and for salinities between 30–37 (n=306,227 for TA, 343,580 for DIC, 199,304 for pHT, and 

764,301 for phosphate, nitrate, silicate, and oxygen). Additional comparison with the entire GLODAPv2.2022 dataset (“whole 

ocean” or w), including NaNs and anomalous data with salinities 30 and temperatures 0 °C, which are not recommended for 225 

use with ESPERs, is presented in Sect. “Appendix B”. These comparisons are used as a rigorous test of the fidelity of the 

PyESPER estimates to the ESPER estimates. Resulting estimates were compared graphically and with normalized root mean 

square error (RMSEn; equivalent to RMSE divided by the mean of the MATLAB estimate for each variable) for each equation 

case globally and regionally, and across depths. RMSEn was used because it allows for comparison between variables of 

different scales. Additionally, where measured values were present in the dataset, both ESPER and PyESPER were validated 230 

against the measured data, though, again, this is not a validation of the method as much as a check that both variants provide 

similar values.  

2.3.1 DIC application 

As an additional comparison of the LIR method differences, DIC estimates from both PyESPER_LIR and ESPER_LIR were 

applied to the Roemmich and Gilson Argo-derived climatology (Roemmich and Gilson, 2009) to create mapped annual surface 235 

estimates of DIC.  
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Figure 1: Location of GLODAPv2.2022 data used to compare PyESPER to MATLAB ESPER estimates (a), and 

histograms of the distributions of measured GLODAPv2.2022 variables used as inputs for PyESPERv1.0.0 and ESPER 

algorithms (b-g). 240 
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3 Results and Discussion 

PyESPER and ESPER produced open ocean estimates with mean differences (Python estimate – MATLAB estimate) of 

<0.04 for all parameters, and NNs had smaller mean differences of <0.004 for all parameters (units are mol kg-1 except for 

pHT) estimated from open ocean GLODAPv2.2022 data, although the standard deviations of these differences and uncertainties 

associated with estimates were at times larger than the mean differences (Tables 1 and 2). The greatest RMSEn was 2.08x10-2 245 

for silicate estimates using LIRs. PyESPER_NN functioned as an equivalent data product to ESPER_NN for all data. For open 

ocean data, PyESPER_LIRs functioned similarly to ESPER_LIRs, with a large majority of identical estimates produced 

between the two data products. 

3.1 Data product validation 

Results of comparisons between MATLAB ESPERs and PyESPERs are described below. 250 

3.1.1 Locally interpolated regressions 

When compared to the ESPER_LIR results for the open ocean (o) GLODAPv2.2022 dataset, all equation-case and desired 

outcome variable combinations from PyESPER (PyESPER_LIR – ESPER_LIR estimates) resulted in mean differences of 

±0.04 (Table 1). Mean (standard deviation; RMSEn) PyESPER – ESPER_LIR differences for each property are shown in 

Table 1.  The very wide range of input data resulted in a wide range of estimates from both ESPER_LIRs and PyESPER_LIRs 255 

for all variables (Table 1; Fig. 2; for w see Sect. “Appendix B”, Fig. B1), representing the large range of biogeochemical 

property values that can be found in the oceans. PyESPER_LIR and ESPER_LIR results worked similarly well in predicting 

measured values at locations, even with the outlier and unusual input data used (see Table B1), suggesting that Python 

estimates, although not identical to MATLAB estimates for these interpolations, were equivalently valid reconstructions.  

 260 
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Figure 2: Difference between Python and MATLAB locally interpolated regression estimates (y-axis) compared to 

MATLAB estimates (x-axis) for open ocean (o) data and all equations combined for TA (a, 13,384,096 total estimates 

from all equations), DIC (b, 13,384,096 estimates), pHT (c, 13,384,096 estimates), phosphate (d, 13,384,096 estimates), 

nitrate (e, 12,718,592 estimates), silicate (f, 12,640,896), and oxygen (g, 12,757,792 estimates; n=306,227 for TA, 343,580 270 

for DIC, 199,304 for pHT, and 764,301 for phosphate, nitrate, silicate, and oxygen). Units for all except pHT are in µmol 

kg-1. Top and bottom side histograms represent the distribution of the x and y axes, respectively. Note the differences 

in x- and y-axes scales. RMSEn is the normalized root mean square error, or the RMSE of all divided by the mean of 

all estimates.  
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275 

PyESPER_LIRs were within 2 (~95% of measurements should fall within this uncertainty level) for most ocean regions, with 

a few exceptions which occurred predominantly in coastal areas or deep waters near the edges of the original MATLAB grid 

(Figs. 3 and 4). Spatial patterns in distribution of outliers shown in Fig. 4 appear to reflect locations where more edge-of-grid 

biogeochemical measurements were collected (e.g., near coasts and in deep waters). Hence, these exceptionally different 

locations aligned well with places where coefficients were extrapolated in MATLAB for use in PyESPER_LIRs, compared to 280 

interpolations with far away “dummy points” within MATLAB ESPER_LIRs (see Sect. 2.1.1, “Locally interpolated 

regressions”; Figs. 3, 4, and 5; for w Fig. B2 and B3, and Appendix D). Within regions where MATLAB and Python were 

interpolating similarly, far outliers were uncommon (Figs. 3, 4, 5, B2, and B3). When ESPER_LIR and PyESPER_LIR were 

applied to temperature and salinity from the Roemmich and Gilson climatology for the year 2023 (Roemmich and Gilson, 

2009), patterns of surface DIC distribution were similar with a few minor nuances (Fig. C1). Notably, low DIC estimates 285 

covered a broader spatial extent in the western equatorial Pacific and Indian Oceans for PyESPER_LIR estimates, and 

PyESPER_LIR appeared to have a slightly low bias in some places relative to ESPER_LIR. Beyond these minor differences, 

the mapped DIC demonstrates the similarity of the data products’ functionality in an applied setting. While ESPER_LIR and 

PyESPER_LIR do not produce quantitatively identical estimates, it should be noted that both routines perform similarly well 

at reconstructing the GLODAPv2.2022 data product (Table 1; for w Table B1). These routines should not be considered 290 

identical but are comparable.  

3.1.2 Neural networks 

When compared to the ESPER_NN results for the open ocean (o) GLODAPv2.2022 dataset, all equation-case and desired 

outcome variable combinations from PyESPER_NN (PyESPER – ESPER_NN estimates) resulted in mean differences of 

±0.004 (Table 2), a much smaller difference than for LIR comparisons. Mean (standard deviation; RMSEn) offset for each 295 

property is shown in Table 2.  Since a very wide range of input data were used, a wide range of estimates were produced from 

both ESPER_NNs and PyESPER_NNs for all variables (Fig. 6), representing the high variability that can be found in the 

oceans (especially coastal regions, some of which were included in the “open ocean” dataset due to having salinities between 

30–37 and quality-controlled data). Both PyESPER_NN and ESPER_NN results were nearly identical, even when outlier 

results were obtained from unusual input data from environments where ESPERs are not recommended for use (for example, 300 

resulting in negative DIC estimates in Fig. B4; see also Table B2). The largest relative disagreements were found for DIC and 

pHT, though these disagreements remained small relative to measurement uncertainties.  These minor offsets are attributed to 

the programming language differences in the interpolation of the Cant adjustment, which is only applied to these two properties. 
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Figure 3: Map of differences between Python and MATLAB ESPER locally interpolated regression estimates (total 305 

estimates n=13,384,096 for TA (a), DIC (b), pHT (c), and phosphate, 12,718,592 for nitrate (d), 12,640,896 for silicate 

(e), and 12,757,792 for oxygen (f)) for the open ocean (o), where small blue circles represent differences <2 x 

uncertainties of the MATLAB estimates (n=13,344,924 for TA, 13,354,980 for DIC, 13,349,438 for pHT, 13,357,843 for 

phosphate, 12,688,861 for nitrate, 12,597,608 for silicate, and 12,721,483 for oxygen), and red circles represent 

differences >2 x uncertainties of the MATLAB estimates (n=39,172 for TA, 29,116 for DIC, 34,658 for pHT, 26,253 for 310 

phosphate, 29,731 for nitrate, 43,288 for silicate, and 36,309 for oxygen).  
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Figure 4: Map of locations and depths (colorbar) where differences between Python and MATLAB ESPER locally 

interpolated regression estimates  are greater than 2 x the estimate uncertainties for the open ocean (o, n=13,344,924 315 
for TA (a), 13,354,980 for DIC (b), 13,349,438 for pHT (c), 13,357,843 for phosphate (d), 12,688,861 for nitrate (e), 

12,597,608 for silicate (f), and 12,721,483 for oxygen (g)).  
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Figure 5: Map of locations where MATLAB was interpolating (n=1,365,170, blue) and extrapolating (n=16,078, red) 320 

from the grid to GLODAPv2.2022 data (a) and depth of extrapolations (b). 

3.1.3 Anthropogenic carbon estimates 

Although inconsistencies in results occur between Python and MATLAB when interpolating (same issue noted in Sect. 2.1.4, 

“Anthropogenic carbon”), anthropogenic carbon (Cant) estimates were similar between the two versions of ESPER. This was 

demonstrated by differences in DIC and pHT estimates for NNs, which only interpolate when estimating the contribution of 325 

Cant to estimates (Fig. 6). The next generation of ESPER updates will include a new method for estimating Cant (Tracer-Based 

Rapid Anthropogenic Carbon Estimation, or TRACEv1; Carter et al., submitted), which uses neural networks and should 

eliminate the need for interpolation. Currently, when Cant estimates are required, the results from PyESPER_NNs remain 

functionally identical to those from ESPER_NNs, despite minor offsets from the interpolation methods.   

3.2 Speed of calculation 330 

PyESPERs take considerably longer than ESPERs to produce estimates. On a MacBook Air using Python Jupyter Notebook 

with standard internet connection, PyESPER_NN produced results 0–1500 x slower than ESPER_NN, while PyESPER_LIR 

produced results about 7–500 x slower than ESPER_LIRs, with magnitude of the slowdown dependent upon the number of 

variable inputs and equation cases requested and number of estimates required (Table 3). ESPER_NNs were the fastest to 

execute, and took <2 s for all time tests, even when large datasets and all variable-equation case scenarios were requested. 335 

ESPER_LIRs were the next-fastest, requiring <33 s for all time tests, followed by PyESPER_NNs, which typically required 

5–15 s to execute, but required >1400 s (23 min) for running large datasets and all variable-equation case scenarios. 

PyESPER_LIRs were the slowest, and typically required 22–500 s to execute, but the longest scenario required 7530 s (125 

min; Table 3). It is possible that this code can be further optimized for speed in future updates.  

 340 
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Figure 6: Difference between Python and MATLAB neural network estimates (y-axis) compared to MATLAB estimates 

(x-axis) for open ocean (o) data and all equations combined for TA (a, 4,899,512 total estimates from all equations), DIC 

(b, 5,497,004 estimates), pHT (c, 3,188,864 estimates), phosphate (d, 12,228,432 estimates), nitrate (e, 12,228,432 

estimates), silicate (f, 12,228,432 estimates), and oxygen (g, 12,228,560 estimates; n=306,227 for TA, 343,580 for DIC, 350 

199,304 for pHT, and 764,301 for phosphate, nitrate, silicate, and oxygen). Units for all except pHT are in µmol kg-1. 

Top and bottom side histograms represent the distribution of the x and y axes, respectively. Note the differences in x- 

and y-axes scales. RMSEn is the normalized root mean square error, or the RMSE divided by the mean of all estimates 

from MATLAB_NN.  

 355 
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Table 3: Time required to produce estimates for PyESPERv1.0.0s and ESPERs (LIRs and NNs) for different desired 

variable, equation-case, and number of estimates scenarios. 

Variable Equation(s) 

Number of 

Estimates 

PyESPER_NN 

time (s) 

ESPER_NN 

time (s) 

PyESPER_LIR 

time (s) 

ESPER_LIR 

time (s) 

TA 1 10 6.55 0.01 22.35 0.77 

TA 1 100 5.87 0.01 19.98 0.60 

TA 2 100 5.82 0.01 25.90 0.79 

TA 3 100 5.79 0.01 22.82 0.81 

TA 4 100 5.90 0.01 24.01 0.78 

TA 5 100 5.80 0.00 23.60 0.75 

TA 6 100 5.88 0.01 22.42 0.79 

TA 7 100 5.88 0.00 23.03 0.78 

TA 8 100 5.84 0.00 22.51 0.80 

TA 9 100 5.87 0.00 22.42 0.81 

TA 10 100 5.82 0.01 22.60 0.74 

TA 11 100 5.84 0.00 22.28 0.74 

TA 12 100 5.90 0.00 22.43 0.75 

TA 13 100 5.88 0.00 22.37 0.79 

TA 14 100 5.82 0.01 22.46 0.77 

TA 15 100 5.81 0.00 22.35 0.84 

TA 16 100 5.81 0.01 22.57 0.74 

TA 1-16 100 11.06 0.04 312.13 0.62 

TA 1 1000 11.50 0.03 29.69 0.76 

TA 1 10,000 61.54 0.12 57.59 0.83 

TA 1 100,000 950.78 0.62 325.87 1.55 

DIC 1 100 5.86 1.55 32.51 2.69 

DIC 1-16 100 10.86 1.53 365.58 1.54 

pH 1 100 6.09 0.06 54.65 0.81 

pH 1-16 100 15.37 0.46 766.74 3.41 

Phosphate 1 100 5.85 0.01 23.46 3.39 

Phosphate 1-16 100 11.01 0.06 376.30 0.80 

Nitrate 1 100 5.85 0.01 23.07 0.74 

Nitrate 1-16 100 11.04 0.05 364.13 3.56 

Silicate 1 100 5.84 0.02 26.84 3.64 

Silicate 1-16 100 11.02 0.04 365.34 0.82 

Oxygen 1 100 6.97 0.01 24.60 0.78 

Oxygen 1-16 100 10.98 0.04 385.28 2.15 

All Variables 1 100 11.81 0.01 194.31 13.86 

All Variables 1 10,000 147.26 0.10 561.29 15.17 

All Variables 1-16 100 49.53 0.09 3182.56 15.26 

All Variables 1-16 10,000 1443.63 1.67 7530.23 32.13 
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3.3 Future improvements 

Updated ESPERs will be trained and assessed using GLODAPv2.2023 (or later versions), which includes 1108 cruises 360 

(compared to 946 cruises from GLODAPv2.2020, the current data product used. Additionally, future ESPERs will incorporate 

depth (z) as an optional predictor variable for consistency with LIPHR, a prior version for estimating pHT (Carter et al., 2017). 

The implementation of updated Cant estimation methods should additionally improve the accuracy and efficiency of both 

ESPERs and PyESPERs when Cant estimates are required. Future versions of ESPER written in MATLAB may be modified to 

improve interoperability with the Python implementation (i.e., to ensure the interpolation routines are identical in all instances 365 

between languages). 

4 Data Availability 

Data used for reconstruction and estimate comparisons is available through GLODAP (https://glodap.info; see Lauvset et al., 

2022, doi:10.5194/essd-14-5543-2022 and Olsen et al., 2020, doi:10.5194/essd-12-3653-2020). The temperature and salinity 

gridded climatology created by Roemmich & Gilson (2009), doi:10.1016/j.pocean.2009.03.004 was created with data from 370 

the Argo Program. 

5 Code Availability 

PyESPERv1.0.0, affiliated files, and analyses files are available through LMD’s GitHub page 

(https://github.com/LarissaMDias) and archived through Zenodo (doi: 10.5281/zenodo.15133085). Updates to 

PyESPERv1.0.0 will also be published through LMD’s GitHub page and archived through Zenodo. ESPERs (Carter, 2021) 375 

and original associated files used in creation of PyESPERv1.0.0 are available at BRC’s GitHub page at 

https://github.com/BRCScienceProducts. Input data used for comparisons are available through the GLODAP website 

(https://glodap.info).  

6 Conclusions 

A near-replicate of ESPERs has been produced in the freely available Python programming language. This algorithm data 380 

product will allow Python users or researchers with limited funds an alternate, free method for using ESPERS (other than the 

proprietary MATLAB), increasing the accessibility of the original ESPER algorithms. The same logic applied to the original 

MATLAB ESPERs was applied within the Python coding language (PyESPERs, version 1.0.0), and results have demonstrated 

comparability to ESPER estimates. Estimates from PyESPER_NNs precisely align with those from ESPER_NNs for all 

equations and desired outcome variable combinations (Fig. 6) and estimates from these two routines align very closely for all 385 

estimates, and to within machine precision for all but pHT and DIC, which exhibit slight differences due to impacts of 

https://glodap.info/
https://github.com/LarissaMDias
https://github.com/BRCScienceProducts
https://glodap.info/
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interpolating for Cant. PyESPER_LIR estimates differ from ESPER_LIR estimates for some coastal and deep-water regions 

between the two coding languages due to triangulation, extrapolation, and interpolation differences, but were more similar 

throughout all portions of the open ocean (Figs. 2, 3, and 4). Notably, PyESPER_LIR performs equivalently to ESPER_LIR 

when reconstructing the training data from GLODAPv2.v2022, so estimates produced from these two routines should be 390 

considered comparable rather than identical. Nevertheless, we do not recommend using PyESPER_LIR in coastal or deep 

(>5500 m) waters when primarily interested in comparing results with those of the MATLAB implementation of ESPER_LIR. 

Future updates to ESPERs will include updates to PyESPERs, with adjustments to allow for greater consistency and speed.  

7 Appendices 

Appendix A: ESPER specifications 395 

Sets of equations, predictor variables, and measurement uncertainties used in ESPER and PyESPER (adapted from Carter et 

al., 2021) are shown below.  

 
Table A1: Input predictor variable combinations used for each ESPER equation (adapted from Carter et al., 2021), 

where S is salinity, T is temperature, and A, B, and C are defined in Table A2 (below). 400 

Equation Number Predictor Variables 

1 S, T, A, B, C 

2 S, T, A, C 

3 S, T, B, C 

4 S, T, C 

5 S, T, A, B 

6 S, T, A 

7 S, T, B 

8 S, T 

9 S, A, B, C 

10 S, A, C 

11 S, B, C 

12 S, C 

13 S, A, B 

14 S, A 

15 S, B 

16 S 
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 405 

 

 

 
Table A2: Input predictor variables (A, B, and C) for each estimated property (adapted from Carter et al., 2021). 

Estimated Property A B C 

TA Nitrate Oxygen Silicate 

DIC Nitrate Oxygen Silicate 

pHT Nitrate Oxygen Silicate 

Phosphate Nitrate Oxygen Silicate 

Nitrate Phosphate Oxygen Silicate 

Silicate Phosphate Oxygen Nitrate 

Oxygen Phosphate Nitrate Silicate 

 410 

Table A3: Default measurement uncertainties (EPi_Default) for ESPERs and PyESPERs (adapted from Carter et al., 

2021), where 𝜃 is potential temperature. 

Property Units Uncertainty 

S – 0.003, absolute 

𝜃 ℃ 0.003, absolute 

Phosphate µmol kg-1 2%, relative 

Nitrate µmol kg-1 2%, relative 

Silicate µmol kg-1 2%, relative 

Oxygen µmol kg-1 1%, relative 

Appendix B: Comparison using entire GLODAPv2.2022 

Results of comparisons of PyESPER with ESPER for the entire GLODAPv2.2022 dataset, including the entire oceanic and 

coastal salinity range and data of all quality control flag categories are shown below.  415 
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Figure B1: Difference between Python and MATLAB locally interpolated regression estimates (y-axis) compared to 

MATLAB estimates (x-axis) for whole ocean (w) data and all equations combined (22,099,968 total estimates from all 

equations for each variable), for TA (a), DIC (b), pHT (c), phosphate (d), nitrate (e), silicate (f), and oxygen (g) derived 425 

using all equations and calculated from entire GLODAPv2.2022 data (n=1,381,248). Units for all except pHT are in 

µmol kg-1. Top and bottom side histograms represent the distribution of the x and y axes, respectively. Note the 

differences in x- and y-axes scales. RMSEn is the normalized root mean square error, or the RMSE of all divided by 

the mean of all MATLAB estimates. The large range of sometimes unrealistic estimates along the x-axis can be 

attributed to anomalous and sometimes erroneous input data used for predictions.  430 
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Figure B2: Map of differences between Python and MATLAB ESPER locally interpolated regression estimates (total 

estimates n=22,099,968 for all variables) for the whole ocean (w), where small blue circles represent differences <2 x 

uncertainties of MATLAB estimates (n=22,034,967 for TA (a), 22,054,048 for DIC (b), 22,045,316 for pHT (c), 

22,057,220 for phosphate (d), 22,045,770 for nitrate (e), 22,024,674 for silicate (f), and 22,045,827 for oxygen (g)), and 435 

red circles represent differences >2 x uncertainties of MATLAB estimates (n=65,001 for TA, 45,920 for DIC, 54,642 for 

pH, 42,748 for phosphate, 54,198 for nitrate, 75,294 for silicate, and 54,141 for oxygen; n=1,381,248). 
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Figure B3: Map of locations and depths (colorbar) where differences between Python and MATLAB ESPER locally 440 

interpolated regression estimates are greater than 2 x the estimate uncertainties for the whole ocean (w, n=22,034,967 

for TA (a), 22,054,048 for DIC (b), 22,045,316 for pHT (c), 22,057,220 for phosphate (d), 22,045,770 for nitrate (e), 

22,024,674 for silicate (f), and 22,045,827 for oxygen (g); n=1,381,248). 
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 450 

 

Figure B4: Difference between Python and MATLAB neural network estimates (y-axis) compared to MATLAB 

estimates (x-axis) for whole ocean (w) data and all equations combined for TA (a, 17,802,134 total estimates from all 

equations), DIC (b, 17,802,134 estimates), pHT (c, 17,799,566 estimates), phosphate (d, 17,802,134 estimates), nitrate (e, 

17,395,954 estimates), silicate (f, 17,445,310 estimates), and oxygen (g, 17,220,360 estimates) derived using all equations 455 

and calculated from entire GLODAPv2.2022 dataset (n=1,381,248). Units for all except pHT are in µmol kg-1. Top and 

bottom side histograms represent the distribution of the x and y axes, respectively. Note the differences in x- and y-axes 

scales. RMSEn is the normalized root mean square error, or the RMSE of all divided by the mean of all estimates. The 

large range of sometimes unrealistic estimates along the x-axis can be attributed to anomalous and sometimes erroneous 

input data used for predictions. 460 
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Appendix C: Example of mapped DIC estimates from PyESPER and ESPER 

Surface ocean DIC estimates form PyESPER_LIR and ESPER_LIR applied to the Roemmich and Gilson climatology 

(Roemmich and Gilson, 2009). Differences in surface ocean DIC between the two coding languages (c) illustrate the need to 

avoid using PyESPER_LIR for DIC in the surface ocean when comparing to MATLAB ESPER_LIR.  

 465 

Figure C1: Maps of 2023 mean annual surface estimates of MATLAB ESPER_LIR DIC (a), Python PyESPER_LIR 

DIC (b), and PyESPER_LIR – ESPER_LIR  DIC (c; units are µmol kg-1) from application of ESPERs to the Roemmich 

and Gilson Argo-based (Argo, 2000) climatology (Roemmich and Gilson, 2009).  

 

Appendix D: Comparison of interpolation and extrapolation values between MATLAB and Python 470 

 

(a) 

(b) 

(c) 
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MATLAB ESPER_LIRs avoid extrapolation by addition of a false set of data points at very far distances from the grid. 

However, when this method was implemented in Python, significant errors were introduced due to the differences in 

triangulation (which were both valid mathematical solutions) between coding languages. Therefore, it was necessary to find 

another means of calculating extrapolations in PyESPER_LIRs which was more similar to those of ESPER_LIRs. We did this 475 

by producing a larger grid in MATLAB and reading that into Python. A simple demonstration of the errors introduced by this 

method is described below.  

 

For this comparison we imagine a hypothetical cube, with x, y, and z coordinates, upon which we wish to provide estimates 

for a fourth variable (p) via both interpolation and extrapolation (Fig. D1a). We have created a random dataset of points and 480 

values within this cube for these demonstration purposes. We then followed the same procedure as in the PyESPER data 

product creation, whereby we extended this grid in three-dimensional space and used MATLAB scatteredInterpolant 

extrapolations to estimate values on the expanded grid (Fig. D1b). This method conducts a Delaunay triangulation, then uses 

both linear interpolation and extrapolation to estimate values. These extrapolated values were then used for interpolation only 

within Python using scipy’s Delaunay and LinearNDInterpolator functions, which produced more consistent results than 485 

interpolation and extrapolation within Python.  

 

 

Figure D1: Hypothetical “grid” whereby estimates (p) interpolated within the grid are shown in blue and extrapolations 

are shown in red (a). Grid created for demonstration purposes, with interpolated values in blue and areas where we 490 

extrapolated values in red (b).   

 

When interpolations within Python were compared to locations on the hypothetical grid where interpolations occurred in 

MATLAB also, results were more similar than those where the grid was extrapolated within MATLAB. This is because 

(a) (b) 
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different, but equally valid, mathematics are used to interpolate and extrapolate. Namely, a triangulation is used as the basis 495 

for interpolations, whereas extrapolations are based on boundary gradients. Despite these differences, results were still more 

similar with this method between the two coding languages than when extrapolations were done in both Python and MATLAB. 

 

Table D1: Comparison of differences between MATLAB interpolations and extrapolations and Python results (all 

interpolations). 500 

 MATLAB Interpolation - Python 

Interpolation 

MATLAB Extrapolation - Python 

Interpolation 

Mean 0.0004 -0.6693 

Standard Deviation 0.9559 5.2088 

Max 2.2582 13.3083 

Min -2.4593 -15.6633 
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