
 1 

Review of “PyESPERv1.01.01: A Python implementation 
of empirical seawater property estimation routines 
(ESPERs)” by L.M. Dias and B.R. Carter 
28th May 2025 

Overview 
[1] This manuscript presents a Python implementation of an existing MATLAB tool to 
estimate values for various marine carbonate system and nutrient parameters in 
seawater. There is no new development of the tool here. The aim is a direct translation. 
This is a valuable goal, because unlike MATLAB, Python is free and open source. But it 
does mean that, in my opinion, the quality of the code itself is equally as important as (or 
even more important than) the manuscript when assessing this submission. The 
manuscript is primarily describing the new code, so the new code must be complete 
before publication. I do not think that the code in its current form is complete, usable and 
publishable, but I think it is possible for this to be achieved within the scope of revisions 
to this submission (manuscript and code). 

[2] My sense from looking through the other reviews is that they are mostly focused on 
the manuscript rather than the code, so this review deliberately focuses mostly on the 
code rather than the manuscript. 

[3] Although my comments may read as being rather critical, they are all intended to be 
constructive and I am overall really positive about this manuscript and (more importantly) 
the code. I’m very happy to see it appear in Python and it’s certainly something that I 
could see myself using in the future. Thank you to the authors for their eKorts! 

MATLAB-Python di5erences 
[4] The authors acknowledge that Python code does not produce exactly the same results 
as the MATLAB. They argue that this is mostly due to diKerences in how Delaunay 
triangulation and extrapolation are implemented by the external packages used to do 
these steps. This argument is plausible but it is not yet convincing. Is there some way the 
authors can prove that this is the cause of the diKerences, or at least demonstrate it more 
quantitatively? See also [8] below. 

[5] Continuing on the above, I am worried about the word “most” (“this diKerence in 
implementation is the source of most disagreements”; line 87). This implies that there 
remain some diKerences that cannot be explained in this way, which presumably points 
to bugs in the code? See also [9] below. 

[6] The test dataset does include some additional cruises that were not part of the training 
set but it is not really independent. The additional cruises will have been assessed for 
consistency with the existing GLODAP product and potentially had their values adjusted 
to match better. 

[7] If I understood Section 3.1.1 correctly (especially lines 260-264), the ‘extrapolation’ 
areas generally had bigger diKerences than the ‘interpolation’ areas. This is puzzling. My 



 2 

understanding from Section 2.1.1 (lines 110-128) was that the Python implementation 
does not extrapolate itself, but rather reads a from saved output for the extrapolation 
regions generated by the MATLAB implementation. If that’s right, then surely these 
regions should agree very well with each other, because Python is just copying MATLAB 
directly rather than doing the calculations internally? Perhaps I have misunderstood the 
explanations – in which case the corresponding text should be made clearer. 

[8] From Figure 2, some of the diKerences are really rather large (e.g. up to 200 µmol/kg 
in DIC, 0.5 in pH). Without further evidence I find it hard to understand how or accept that 
such a large diKerence could really be due to diKerences in how Delaunay triangles are 
calculated. A clearer explanation of this would be appreciated. 

[9] Were this being released as a data product, then the issues above would be less 
important, because of the validation against the GLODAP dataset for example. However, 
this is a tool intended for users to calculate things with untested sets of input conditions. 
If some part of the diKerences between implementations are due to bugs in the code, 
they cannot be written oK just because they’re fairly small in these tests, because they 
could easily have a much bigger eKect with a diKerent set of inputs. In order to have 
confidence in the results, any unexpected behaviour or diKerences between 
implementations above the level of computer precision must be really thoroughly 
understood. 

Code quality 
[10] I was able to get the example code to run but it still required some troubleshooting 
and corrections to the code beyond the instructions given in the README. These were 
mostly related to defining and concatenating file paths (which can more robustly and 
conveniently be done with os.path.join rather than by manually manipulating strings). I 
have made a pull request (PR) to the GitHub repo which contains these and some other 
(see [11]) fixes (https://github.com/LarissaMDias/PyESPER/pull/1). 

[11] Parts of the code are very diKicult to follow. This makes me worry more about points 
[5] and [9] above. The most critical issues are: 

• The functions needed are in a Jupyter notebook, so they can’t be imported and 
used in other workflows. 

• There are two notebooks both with copies of these functions – there should only 
be one “source of truth”. 

• Variables are defined, renamed and copied without clear reasons why, making it 
easy to lose track of which version of a variable should be used for the next step 
of the calculation. 

• The deprecated seawater package is used instead of its well-maintained 
successor gsw. 

• It’s virtually never necessary to explicitly use global variables in Python and best 
practice to avoid doing so. 

• Numerical data appear to be processed into strings at some points? 

Some more minor points that would improve things: 

• Variables are converted between dicts and pandas DataFrames, and lists and 
numpy arrays, often without any clear reason. Both for code clarity and 

https://github.com/LarissaMDias/PyESPER/pull/1


 3 

computational speed, numerical data should be kept as numpy arrays 
throughout, and dicts promoted to DataFrames only when essential. 

• Some packages are imported and not used (e.g., decimal). 
• Some variables are defined and never used. 
• Sometimes multiple packages are used where one would be more eKicient (e.g., 

using math and statistics for some calculations that should all be done with 
numpy). 

• The code could be run through a linter / auto-styler (e.g. RuK, Black) to make it 
more readable and help locate some of the issues noted above. 

The PR I made to the GitHub repo (see [10]) also contains fixes for some, but not all, of 
the points above, and I’d be happy to discuss with the authors further on how to tackle 
any of these issues if that might be useful. 

[12] Following from [10], the authors note that the Python code runs significantly slower 
than the MATLAB. I suspect the frequent reliance on looping calculations through lists, 
which is known to be very slow in Python, rather than vectorising calculations across 
numpy arrays, may be largely responsible for this. Operations on pandas DataFrames can 
also be a lot slower than the equivalent with a dict or numpy array. 

[13] For this to be really considered “available” in Python it needs at the very least to be 
packaged properly and installable from the GitHub repo with pip. Functions in Jupyter 
notebooks are not useful for integrating into other workflows. Given my comments in [1], 
that this manuscript is really about the code, I think that should be a bare minimum for 
publication. 

[14] Uploading to PyPI and conda-forge would be very useful additional steps, although 
not critical for publishing this manuscript. 

Minor comments 
[15] Figure 2: the y-axis scales have very unusual intervals, which does make it harder to 
interpret the figures. 

[16] Line 261-262: presumably “these locations” refers to the “exceptions” from the 
previous sentence rather than the “most ocean regions”, but this is not clear. 

[17] The version number 1.01.01 is quite unusual. Of course it’s the authors’ prerogative 
to use whatever system they like, but I would suggest considering switching to the very 
widely used semantic versioning (https://semver.org) to make it easier to interpret. 

[18] For the examples, you could consider using https://github.com/mvdh7/glodap to 
import the GLODAP dataset (this automatically downloads the files if the user doesn’t 
have them). I included an example script in my PR (see [10]) which shows how this could 
be implemented. 

 

https://semver.org/
https://github.com/mvdh7/glodap

