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Abstract. This project presents,a Python language implementation of locally interpolated regression (LIR) and neural network

(NN) algorithms from empirical seawater property estimation routines (PyESPERvV1.0,0). These routines estimate total
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alkalinity, dissolved inorganic carbon, total pH, nitrate, phosphate, silicate, and oxygen from geographic coordinates, depth,
salinity, and 16 combinations of 0 to 4 additional predictors (temperature and biogeochemical information), and were
previously available only in the MATLAB programming language. Here we document modifications to reduce discrepancies
between the implementations, calculate the disagreements between the methods, and quantify Global Ocean Data Analysis
Project (GLODAPv2.2022) reconstruction errors with PyESPER. While the PyESPER routine based on neural networks
(PyESPER_NN) faithfully reproduces the corresponding MATLAB routine estimates of properties that do not require
anthropogenic carbon change information, PYESPER LIR and—to a lesser extent—PyESPER NN estimates for total pH and
dissolved inorganic carbon do not exactly reproduce the MATLAB routine estimates due to differences in interpolation and
extrapolation methods between the programming languages. While the MATLAB and Python LIR-based estimates are not
identical, we show that they are similarly skilled at reproducing the GLODAPv2.2022 data product and are thus comparable.
This project increases the accessibility of ESPERv1.01.01 algorithms by providing users with code in the freely available
Python language and enables future ESPER updates to be released in multiple coding languages.

1 Introduction

Ship-based biogeochemical data, as compiled within the Global Ocean Data Analysis Project (GLODAP; Lauvset et al., 2022)
have high precision and accuracy, but are seasonally biased and spatially sparse (Hauck et al., 2023). International efforts to
deploy biogeochemical (BGC) profiling floats with broad spatial coverage and high temporal resolution (10 days) are ongoing
(Bittig et al., 2019), with potential to greatly augment available ocean carbon cycle and biogeochemical data. These data can
then support a wide variety of research topics and management applications (e.g., warming, acidification, eutrophication,
deoxygenation, fisheries, and ecosystem studies). This strategy leverages the high precision and accuracy of ship-based
measurements to calibrate and validate the BGC float sensors periodically throughout a float deployment. To do this, machine
learning and regression algorithms—which take advantage of the strong regional correlations between seawater properties in
the open ocean, and especially the ocean interior (Bittig et al., 2018; Carter et al., 2017, 2021)—are used to map the ship-based

information onto “reference depth” portions of the float profiles.

The empirical seawater property estimation routines (ESPERv1.01.01, henceforth referred to as ESPERSs), originally written
in MATLAB programming language, aim to help realize the full potential of BGC float data by using machine learning
techniques and regression strategies to predict total alkalinity (TA), dissolved inorganic carbon (DIC), pH on the total scale

(pHr), phosphate, nitrate, silicate, and oxygen from commonly measured physical and BGC parameters (Carter et al., 2021).
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The algorithms are used to calibrate float profiles (Maurer et al., 2021). In addition, since two carbonate system property
measurements are necessary to fully quantify the carbonate system in seawater (Zeebe and Wolf-Gladrow, 2001) and BGC
floats only have the capability to measure pHr, these algorithms have the potential to provide (calculated) TA or DIC as a

secondary constraint for the marine carbonate system. This method also offers an alternative to using models to estimate

variables for carbonate chemistry calculations when nutrient information is unavailable, which potentially has high error

values. ESPERs have also been used to map ship-based information across spatial and temporal scales for other applications
including estimation of TA for adjustments of pH and fugacity of CO2 (fCO2) to in situ conditions for data products (Jiang et
al., 2021), and estimation of TA and seawater properties necessary for estimation of ocean acidification indicators (Jiang et
al., 2020; Sharp et al., 2024). Recent research has also shown that similar machine learning estimation algorithms have potential
for the development of four-dimensional data products such as the Gridded Ocean Biogeochemistry from Artificial
Intelligence — Oxygen (GOBAI-Oz; Sharp et al., 2023) and the Mapped Observation-Based Oceanic DIC (MOBO-DIC;
Keppler et al., 2020).

1.1 Importance

Tanhua et al. (2021) and others have argued that researchers should utilize workflows that produce findable, accessible,
interoperable, and reusable (FAIR) data products. ESPERs are publicly available (findable) on Zenodo, with updates published
to GitHub, free (accessible), and provide the option for users to cite a digital object identifier (DOI) for each version (reusable).
However, until now ESPERs were only available in the proprietary MATLAB programming language, which posed a barrier

to accessibility and interoperability that we aim to address. Future updates may include even more accessible features such as

a user interface.

1.2 Goals

This project aimed to create a freely available Python implementation of ESPERs (PyESPERy,.0,0, henceforth referred to as

PyESPERs; Carter et al., 2021; Dias and Carter, 2025) that is equivalent to the MATLAB version within +2 x Estimate
Uncertainties (o) for all estimated biogeochemical properties (TA, DIC, pHr, nitrate, phosphate, silicate, and oxygen).
PyESPER code is freely available at Zenodo and updates will be made available at the GitHub repository (see Sect. “Code
availability”).

2 Methods

ESPER algorithms were translated into Python coding language, while associated files were either translated into Python or
read by Python as MATLAB files. Some original methods were required to allow interpolations to be similar in Python to

those of MATLAB ESPERs.
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2.1 ESPERs

ESPERSs allow estimation of biogeochemical seawater properties using coordinates, depth, salinity, and other optional inputs < (Formatted: Line spacing: 1.5 lines

from a single function call. While sharing a similar set of equations and required input data, ESPERs have two variants that

80  use locally interpolated regressions (ESPER_LIR) and neural networks (ESPER_NN), respectively, along with a mixed

estimate (ESPER_Mixed) that is the mean of estimates from the two functions (Carter et al., 2017). There are a couple of o (Formatted: Font: 10 pt, Not Bold, Font color: Auto

reasons to maintain the separate ESPER LIR, NN, or Mixed options, from an end-user perspective, and these reasons are

also true for PYyESPERs.
1. ESPER_LIRs predate the ESPER NNs and have been used as a standalone data product for various research

85 purposes (see Carter et al., 2016; Carter et al., 2018). Long-term users of these LIRs have previously expressed

desire for consistency between versions (e.g., when depth was taken out as predictor for pHr), and some of them

already use CANYON-B (Bittig et al., 2019) as a neural net option for comparison. Therefore, these users who

desire consistency would most likely prefer to use ESPER_LIR.

2. ESPER_LIRs are more transparent than ESPER_NN, as it is simple to parse apart coefficients at the gridded

90 locations and to see how the equations are a result of these. ESPER_LIRs also rely on a grid, which may appeal to

SOmMe users.

3. ESPER_NNs provide improved estimates on average than ESPER_LIRs and behave more like a mapping product

in that 3D coordinates are predictors, which may alternately appeal to some users.

4. Although the ESPER_Mixed estimates perform better on average than LIRs or NNs do independently, there are

95 cases where they have greater bias and RMSE than LIRs or NNs (e.g., when using equations 1-3 for phosphate or

nitrate at all depths; Carter et al., 2021). Users may want to assess each scenario independently and choose which

method is most appropriate according to their needs.

5. The NNs are more closely reproduced between the MATLAB and Python ESPER implementations.

2.1.1 Locally interpolated regressi U (Deleted: q

100  The most recent versions of ESPER_LIRs (version 1.01.01; version 3 of LIRs) use a standard set of equations of the format
shown by Eq. (1) to estimate up to seven different biogeochemical water properties using up to 16 equations with different

combinations of input parameters (see Sect. “Appendix A”, Tables Al and A2; Carter et al., 2021):

n
X=C, + Zc,pi M

where X is the estimated property (TA, DIC, pHr, nitrate, phosphate, silicate, or oxygen), Co is the intercept, and Ciis the
105 coefficient for each of the n predictors Pi. The intercepts (Cs) and coefficients (Ci) vary with location (latitude, longitude, and
depth) and are different for each of the predictor variables (P;; Tables A1 and A2; Carter et al., 2021). The most recent ESPERs
were trained and assessed on the GLODAPv2.2020 (Olsen et al., 2020) data product, which includes data from 946 cruises
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and spanning 1972-2019, and additional data sets from the Mediterranean Sea and Gulf of Mexico (Carter et al., 2021,
Supplementary Information) taken from the Coastal Ocean Data Analysis Project (CODAP, Jiang et al., 2021) and the
CARIMED data product (Alvarez et al., 2019).

When the ESPER_LIR function is called, the routines interpolate a pre-determined grid of C’s (intercepts and coefficients) to
user-defined locations. Linear interpolation is used within the grid and for extrapolation, and this method utilizes an underlying
Delaunay triangulation with MATLAB’s scatteredInterpolant function (Carter et al., 2021). The three-dimensional
interpolation and extrapolation algorithm is implemented differently in MATLAB and Python, and although both calculations

are valid, this difference in implementation is the source of disagreements we find and later quantify between ESPER and (Deleted: most
PyESPER.
ESPER_LIR coefficients have been determined on a grid using a moving window regression strategy similar to the approach « (Formatted: Line spacing: 1.5 lines

first outlined by Velo et al. (2013), resulting in a set of intercept and coefficient estimates for each of 16 equations for 7
possible properties at 44,957 total locations on a 5° latitude (-84.5°-85.5° N) x 5° longitude (-19.5°-375.5° E) x 33 depth
(0-5500 m) ocean interior grid subsampled from the World Ocean Atlas gridded product (Carter et al., 2016, 2017, 2021).

These coefficients were fit using regressions relating the property of interest (X) to different combinations of up to five
predictor properties (P, Tables Al and A2), relating to each possible equation as in Eq. (1). Depth (scaled to %) is included

as a coordinate for coefficient interpolation, but depth is not used as a predictor for the current ESPER version (it was
included in an earlier version, but only when predicting pHr; Carter et al., 2017). Data for each regression fit are selected
from “windows” of data that are within 15° latitude, 30°/cosine(latitude) in longitude, and within either (100 +z/10) m depth
or 0.1 kg m™ of the estimated density of seawater at that coordinate location, where z is depth in m (Carter et al., 2021). If
either the depth-based or the density-based criterion applies, data are selected for that location, which allows water masses to

impact window selection along with depth. If fewer than 100 measurements fall within a window, the dimensions are

doubled. In LIRv2, windows were iteratively scaled by a factor of the iteration number until at least 100 measurements are (Formatted: Font: 10 pt, Not Bold, Font color: Auto

selected to train each regression (Carter et al., 2017). For ESPER_LIRs (LIRv3), it is argued that increasing window size has

the following benefits: (1) includes more data for regression fits, (2) introduces more modes of oceanographic variability into

fitting data, and (3) reduces multicollinearity (Carter et al., 2021). However, the risk of increasing window size is that they

will be less appropriate locally. A weighting term is applied to help account for this by yeducing to cost of regression misfits (Deleted: reduce

to data that are distant or at significantly different depths from the location, with a cap to prevent overfitting to nearby
coordinates (see Carter et al., 2021). Regression coefficients (Cpand C;) are then fit using Eq. (2), with separate regressions
for northern hemisphere Atlantic, Mediterranean, and Arctic, and other global locations, to prevent interpolation across

Central America or the Bering Strait.
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PyESPER_LIR does not duplicate this portion of the effort but instead builds directly upon the grid of coefficients obtained
for and utilized by the MATLAB implementation of ESPER_LIR.

When the function is called, ESPER_LIR uses MATLAB’s scatteredInterpolant (linear interpolation and extrapolations)
function to interpolate this previously-created grid of regression coefficients to the user-provided set of coordinates, resulting
in coefficient estimates at the desired locations (Carter et al., 2021). This method uses a Delaunay triangulation of the scattered
sample points to perform interpolations and extrapolations. Different valid mathematics can be used to obtain these Delaunay
triangulations and to extrapolate and interpolate, and efforts to identify a Python method for these tasks that exactly replicated
MATLAB results were unsuccessful. The most similar and least computationally intensive results to those of MATLAB’s
scatteredInterpolant were produced by combining Python’s scipy package functions LinearNDlInterpolator (interpolate
subpackage) and Delaunay (spatial subpackage; Virtanen et al., 2020). However, since LinearNDInterpolator does not

extrapolate, and other Python functions did not produce similar results to those of MATLAB when using similar methods, the

(oa

gridded set of three-dimensional coordinates (44,957 locations based on the World Ocean Atlas) and corresponding coefficient
estimates provided by ESPER_LIRs were expanded in MATLAB to 106,400 locations on a grid with estimates every 5°
latitude (-94.5°-90.5° N) and longitude (-19.5°-375.5° E) and up to 9000 m depth and applied to scatteredInterpolant within
ESPER_LIR to provide coefficient estimates for the external locations through extrapolation. This grid, with equivalent
coefficients within the original parts of the grid and extrapolations outside of the grid, was read in Python when LIRs were
called. The expanded grid allowed Python functions to avoid extrapolations and rely solely on interpolation and triangulation
methods when estimating coefficients at user-defined locations. While some of these locations are unphysical (e.g., + >90° N
or on land), the coefficients nevertheless provide valid extrapolations from MATLAB for the full possible domain that can
then be interpolated in PYESPER_LIR. PyESPER_LIR otherwise replicated ESPER_LIR’s separation of data from the Atlantic

Ocean, Mediterranean Sea, and Arctic Ocean and data from the Indo-Pacific and Southern Ocean regions.

During the creation of this expanded grid, a grouping error was observed in current versions of MATLAB ESPER LIRs.
Specifically, the mirrored portion of the grid found at < 0° E and > 360° E and north of 40° S are not correctly flagged as
belonging to the Atlantic grid. The practical effect of this bug was that estimates near the Prime Meridian and near the cutoff
between the Southern Ocean and the Atlantic Ocean had extrapolated coefficients instead of interpolated coefficients. This
bug was fixed for both MATLAB ESPER_LIR and PyESPER LIR comparisons for this paper, and a fixed grouping routine
is now provided at the original MATLAB ESPER repository with corresponding documentation and will be included in future

updates to ESPER_LIRs.

extrapolating
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2.1.2 Neural networks

ESPER_NNs use feed-forward neural networks with latitude, depth, cosine(longitude-20°E), cosine(longitude-110°E) and the
parameters from Table A2 as predictors. Four neural networks are used in each of the two ocean regions, which are the same
as those used for LIRs (Atlantic-Mediterranean-Arctic and Indo-Pacific-Southern), resulting in 896 total neural networks (8

for each of 16 combinations of predictors for 7 property estimates; Carter et al., 2021). Angnsemble,of four previously-created

neural networks with different combinations of neurons and hidden layers, including a single one-hidden-layer network with
40 neurons and three two-hidden-layer networks with 30/10, 25/15, and 20/20 neurons in the first/second hidden layers is used

to minimize the impact of errors from any one neural network (Carter et al., 2021).

In ESPER_NN the neural networks are encoded as functions to avoid requiring access to the Machine Learning toolbox within
MATLAB. Here we further translate these functions to Python. The resultant Python functions replicate the functions in
ESPER_NN to within machine precision. ESPER_NNs linearly interpolate between the two regions of neural networks by
latitude across the Southern Atlantic Ocean and Bering Sea and between the North Pacific and Arctic Oceans. Zonal transitions
in the Southern Atlantic and Indo-Pacific-Southern Ocean network are also implemented. This interpolation uses custom-

written 1 or 2D interpolations that are handled identically in both programming environments.

2.1.3 Mixed estimates

The mixed estimate for each input location is the mean of the LIR and NN estimates and therefore is trivially reproduced by a

simple single function call and module within Python.

2.1.4 Anthropogenic carbon

The impacts of anthropogenic carbon (Cant) are approximated in ESPER and PyESPER using,a 1° x 1° gridded transit time
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oceanic Cant increases proportionally to atmospheric anthropogenic COxftransient steady state assumptions; Gammon et al.

1982; Gruber et al., 2019; Tanhua et al., 2007),,This implies that the ;’shape” of the Cant vertical profile

constant with continuous exponential increases of atmospheric CO2 and ocean Cant according to Eq. (3; Carter et al., 2021).

. 0.018989(year~2002)
ant_year_location (3)

Cant;year,lacatian

The coefficient in Eq. (3) is derived from Gruber et al.'s (2019) assumption of a 28% increase in Cant from 1994-2007, and

enables estimating Cant for a location in a desired year when Cant is known for that same location in a reference year (2002;

oradient) remains

Tanhua et al., 2007)
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Carter et al., 2021). This approach does not allow for non-steady-state variations, which is accounted for in overall uncertainty

estimates, and is noted as a significant source of uncertainty for projections beyond ~2030.

ESPERs were trained on data for pHr and DIC which were transformed to the year 2002, then modified back to the original
measurement dates using Eq. (3). ESPERs and PyESPERs estimate the Cant component of DIC and pHr in output variables for
2002 by interpolating the 2002 Cant grid to user-provided coordinates and then applying Eq. (3) to estimate Can for the user-
requested estimate year. As with original ESPERs, this method is not meant to be used when Can is of primary interest, but

rather provides a means of quickly adjusting DIC or pHr to a reference year (Carter et al., 2021). Likewise, these methods are

not adequate for making reliable projections beyond the year 2030, or perhaps sooner, in coastal or other areas where the

underlying global open-ocean anthropogenic carbon estimations have greater uncertainties (Carter et al., 2021).

2.2 Uncertainty estimation

ESPERs and PyESPERs return depth- and salinity-dependent uncertainties for each property at the 16 (one standard
uncertainty) level, meaning approximately 95% of new open-ocean measurements from GLODAPv2.2022 should fall within
+ twice the ESPER uncertainties (Carter et al., 2021). As in Carter et al. (2021), baseline error estimates in depth and salinity
space (Ex k) are interpolated based on root mean square errors (RMSEs) of all predictions from validation versions of the
routines within bins of salinity and depth. ESPER_LIRs and PyESPER_LIRs scale these uncertainties using user-provided
predictor uncertainty estimates (Ep;_provided). EqQ. (4) is used when user-provided uncertainties exceed default assumed input

uncertainties (Epi_pefauir; Table A3):

. " oox 2" ax 2 “
Ex output = |Ex gse — Z (ﬁEPi,Default) + Z (ﬁEPi,Provided)
- 3 / i

ax . e . . . .
where a% is the sensitivity of the property estimate X to the i predictor P.. ESPER_NNs and PyESPER_NNs estimate
i
sensitivities by iteratively perturbing the input predictors if the user specifies uncertainties that are larger than default. Mixed
uncertainties are the minimum uncertainties assessed for LIR and NN estimates.
2.3 Assessment

For many applications, the most critical validation is a test of the reconstruction of withheld data. However, such an exercise

requires training alternative versions of the method after withholding data, and, as of now, PyESPER is not separately trained,

but is instead reliant on the ESPER training that was performed and validated previously with MATLAB (Carter et al. 2021).
For this publication, we aim to instead show that PYESPER and ESPER provide quantitatively similar results and assert that

the validation presented earlier for ESPER in MATLAB can be considered to also be appropriate for PyESPER in all but a
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limited number of specific exceptional cases. To support this claim, PYESPER and ESPER were used to estimate values for

the GLODAPv2.2022 data product (1,381,248 sets of measurements; Fig. 1) with each equation and output variable
combination. This dataset included a wide range of input data, and comparison of PyESPER, and ESPER was primarily

considered from application to the high-quality “open ocean” (,) portion of the GLODAP dataset as in Carter et al. (2021),
defined as GLODAP data with only World Ocean Circulation Experiment (WOCE) data quality control flag categories of 2
(Acceptable) and secondary quality control flag categories of 1 (subjected to full secondary quality control) for all possible
input and measurement data, and for salinities between 30-37 (n=306,227 for TA, 343,580 for DIC, 199,304 for pHr, and
764,301 for phosphate, nitrate, silicate, and oxygen). Additional comparison with the entire GLODAPv2.2022 dataset (“whole
ocean” or w), including NaNs and anomalous data with salinities <30 and temperatures <0 °C, which are not recommended for
use with ESPERSs, is presented in Sect. “Appendix B”. These comparisons are used as a rigorous test of the fidelity of the

PyESPER estimates to the ESPER estimates. Resulting estimates were compared graphically and with normalized root mean

square error (RMSE,; equivalent to RMSE divided by the mean of the MATLAB estimate for each variable) for each equation
case globally and regionally, and across depths. RMSE, was used because it allows for comparison between variables of
different scales. Additionally, where measured values were present in the dataset, both ESPER and PyESPER were validated
against the measured data, though, again, this is not a validation of the method as much as a check that both variants provide

similar values.

2.3.1 DIC application

As an additional comparison of the LIR method differences, DIC estimates from both PYESPER_LIR and ESPER_LIR were
applied to the Roemmich and Gilson Argo-derived climatology (Roemmich and Gilson, 2009) to create mapped annual surface

estimates of DIC.
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Figure 1: Location of GLODAPv2.2022 data used to compare PYESPER to MATLAB ESPER estimates (a), and (Deleted: (n=1,381,248)
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3 Results and Discussion

PyESPER and ESPER produced open ocean estimates with mean differences (Python estimate — MATLAB estimate) of

(Deleted: v1.0

<+0.04 for all parameters, and NNs had smaller mean differences of <+0.004 for all parameters (units are pmol kg™ except for
pHr) estimated from open ocean GLODAPv2.2022 data, although the standard deviations of these differences and uncertainties
associated with estimates were at times larger than the mean differences (Tables 1 and 2). The greatest RMSE, was 2.08x102
for silicate estimates using LIRs. PYESPER NN functioned as an equivalent data product to ESPER_NN for all data. For open
ocean data, PyESPER _LIRs functioned similarly to ESPER_LIRs, with a large majority of identical estimates produced

between the two data products.

3.1 Data product validation

Results of comparisons between MATLAB ESPERs and PyESPERs are described below.

3.1.1 Locally interpolated regressions
When compared to the ESPER_LIR results for the open ocean (o) GLODAPv2.2022 dataset, all equation-case and desired
outcome variable combinations from PyESPER (PyESPER_LIR — ESPER_LIR estimates) resulted in mean differences of

<+0.04 (Table 1). Mean (+standard deviation; RMSE,) PyESPER — ESPER_LIR differences for each property are shown in

Table 1, The very wide range of input data resulted in a wide range of estimates from both ESPER LIRs and PYESPER LIRs

for all variables (Table 1; Fig. 2; for w see Sect. “Appendix B”, Fig. B1), representing the large range of biogeochemical
property values that can be found in the oceans. PYESPER_LIR and ESPER_LIR results worked similarly well in predicting
measured values at locations, even with the outlier and unusual input data used (see Table B1), suggesting that Python

estimates, although not identical to MATLAB estimates for these interpolations, were equivalently valid reconstructions.

11

(Deleted: that is within the World Ocean Atlas Grid of <5500 m
depth...

)

Deleted: for TA was -4.8x10** pmol kg™ (+1.1 pmol kg™';
RMSE,=4.6x10*), DIC was 3.4x10? pmol kg ™' (+1.6 pmol kg ';

RMSE,=7.3x10%), pHr was -5.6x10” (+4.2x107%; RMSE,=5.4x10™%),

phosphate was 3.1x10* pmol kg™ (+1.4x10? pmol kg ';
RMSE,=8.4x107), nitrate was 2.2x10° pmol kg ™' (+3.1x10"" pmol
kg™'; RMSE,=1.3x10?), silicate was 2.3x10 (+1.2 umol kg™';
RMSE,=2.1x10%), and oxygen was 4.0x10” pmol kg™ (+2.1 pmol
kg'; RMSE,=1.1x10%; Table 1).




ble 1: Mean (standard deviation), maximum, minimum, and normalized RMSE (RMSE.), for differences between MATLAB and Python
Rs, ESPER_LIR and measured values, and PyESPER_LIR and measured values for TA, DIC, pHr, phosphate, nitrate, silicate, and

ygen estimates (all units except pHr are pmol kg™) for open ocean (,) data and all equations combined, (#=13,384,096 for TA, 13,384,096
- DIC, 13,384,096 for pHr, 13,384,096 for phosphate, 12,718,592 for nitrate, 12,640,896 for silicate, and 12,757,792 for oxygen).

Python - MATLAB

MATLAB - Measured

Python - Measured

Mean Max Min RMSE. Mean Max Min RMSE. Mean Max Min RMSEq
-4.75x10* 6.44x10' -7.03x10' 4.64x10* 2.71x10"! 8.13x10? -1.69x10? 2.72x10% 2.70x10"! 8.13x10? -1.73x10% 2.71x10°
i (1.08) (6.34) (6.32)
bIC 3.39x10? 2.01x10? 2.61x10° 7.29x10* | -4.40x10" 6.20x10° -3.20x107 3.90x10° | -4.02x10°! 6.20x10° 3.16x102 3.90x10°
(1.60) (8.55) (8.47)
-5.65x10°  5.05x10"! -3.77x10 5.36x10* | -2.51x10° 1.14x10° -6.80x10"! 2.86x10°% | -2.56x10° 1.14x10° -5.46x107! 2.84x10°
pH (4.24x107) (2.24x10?) (2.23x107?)
Phosp- | 3.08x10* 1.65 217 8.44x10° | -1.54x10" 2.90 S3.2x10° 3.90x107 | -1.61x10*  2.57x10° -3.50x10°  3.61x107
hate (1.41x10%) (6.21x10%) (6.09x10%)
) 2.20x10° 1.89x10! -4.13x10" 1.30x102 | -5.43x10°  4.23x10' -3.45x10' 3.62x10% | -7.67x10°  3.04x10' -4.24x10" 3.43x107?
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Figure 2: Difference between Python and MATLAB locally interpolated regression estimates (y-axis) compared to
MATLAB estimates (x-axis) for open ocean (,) data and all equations combined for TA (a, 13,384,096 total estimates
from all equations), DIC (b, 13,384,096 estimates), pHr (¢, 13,384,096 estimates), phosphate (d, 13,384,096 estimates),

717 26¢

nitrate (e, 12,718,592 estimates), silicate (f, 12,640,896), and oxygen (g, 12,757,792 estimates; #n=306,227 for TA, 343,580

for DIC, 199,304 for pHr, and 764,301 for phosphate, nitrate, silicate, and oxygen). Units for all except pHr are in pmol
kg'. Top and bottom side histograms represent the distribution of the x and y axes, respectively. Note the differences

in x- and y-axes scales. RMSEn is the normalized root mean square error, or the RMSE of all divided by the mean of

all estimates.
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PyESPER_LIRs were within 26 (~95% of measurements should fall within this uncertainty level) for most ocean regions, with

a few exceptions which occurred predominantly in coastal areas or deep waters near the edges of the original MATLAB grid

(Figs. 3 and 4). Spatial patterns in distribution of outliers shown in Fig. 4 appear to reflect locations where more edge-of-grid

biogeochemical measurements were collected (e.g.. near coasts and in deep waters). Hence, fhese gxceptionally different

locations aligned well with places where coefficients were extrapolated in MATLAB for use in PyESPER_LIRs, compared to

(Deleted: T
(Deleted: locations

interpolations with far away “dummy points” within MATLAB ESPER LIRs (see Sect. 2.1.1, “Locally interpolated

regressions”; Figs. 3,4, and 5; for w Fig. B2 and B3). Within regions where MATLAB and Python were interpolating similarly.

far outliers were uncommon (Figs. 3, 4, 5, B2, and B3). When ESPER_LIR and PyESPER_LIR were applied to temperature
and salinity from the Roemmich and Gilson climatology for the year 2023 (Roemmich and Gilson, 2009), patterns of surface

DIC distribution were similar with a few minor nuances (Fig. C1). Notably, low DIC estimates covered a broader spatial extent

in the western equatorial Pacific and Indian Oceans for PYESPER_LIR estimates, and PyESPER_LIR appeared to have a
slightly low bias in some places relative to ESPER_LIR. Beyond these minor differences, the mapped DIC demonstrates the
similarity of the data products’ functionality in an applied setting. While ESPER_LIR and PyESPER LIR do not produce
quantitatively identical estimates, it should be noted that both routines perform similarly well at reconstructing the

GLODAPv2.2022 data product (Table 1; for w Table B1). These routines should not be considered identical but are comparable.

3.1.2 Neural networks

When compared to the ESPER_NN results for the open ocean (,) GLODAPv2.2022 dataset, all equation-case and desired
outcome variable combinations from PyESPER_NN (PyESPER — ESPER_NN estimates) resulted in mean differences of
<+0.004 (Table 2), a much smaller difference than for LIR comparisons. Mean (+standard deviation; RMSE,) offset for gach

property is shown in Table 2, Since a very wide range of input data were used, a wide range of estimates were produced from

both ESPER_NNs and PyESPER_NNs for all variables (Fig. ), representing the high variability that can be found in the

oceans (especially coastal regions, some of which were included in the “open ocean” dataset due to having salinities between *

3037 and quality-controlled data). Both PYESPER_NN and ESPER_NN results were nearly identical, even when outlier
results were obtained from unusual input data from environments where ESPERs are not recommended for use (for example,
resulting in negative DIC estimates in Fig. B4; see also Table B2). The largest relative disagreements were found for DIC and

pHr, though these disagreements remained small relative to measurement uncertainties. These ninor offsets are attributed to

the programming language differences in the interpolation of the Cant adjustment, which is only applied to these two properties.
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Figure 3: Map of differences between Python and MATLAB ESPER locally interpolated regression estimates (total
estimates n=13,384,096 for TA (a), DIC (b), pHr (c), and phosphate, 12,718,592 for nitrate (d), 12,640,896 for silicate

(e), and 12,757,792 for oxygen (f)) for the open ocean (,), where small blue circles represent differences <2 x

uncertainties of the MATLAB estimates (n=13,344,924 for TA, 13,354,980 for DIC, 13,349,438 for pHr, 13,357,843 for
phosphate, 12,688,861 for nitrate, 12,597,608 for silicate, and 12,721,483 for oxygen), and red circles represent
differences >2 x uncertainties of the MATLAB estimates (»=39,172 for TA, 29,116 for DIC, 34,658 for pHr, 26,253 for
phosphate, 29,731 for nitrate, 43,288 for silicate, and 36,309 for oxygen).,
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3.1.3 Anthropogenic carbon estimates

Although inconsistencies in results occur between Python and MATLAB when interpolating (same issue noted in Sect. 2.1.4,
“Anthropogenic carbon”), anthropogenic carbon (Cant) estimates were similar between the two versions of ESPER. This was
demonstrated by differences in DIC and pHr estimates for NNs, which only interpolate when estimating the contribution of

Cant to estimates (Fig. $). The next generation of ESPER updates will include a new method for estimating Cant (Tracer-Based

Rapid Anthropogenic Carbon Estimation, or TRACEv1; Carter et al., submitted), which uses neural networks and should
eliminate the need for interpolation. Currently, when Can estimates are required, the results from PyESPER_NNs yemain

functionally identical to those from ESPER_NNs, despite minor offsets from the interpolation methods.

3.2 Speed of calculation
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3.3 Future jmprovements

Updated ESPERs will be trained and assessed using GLODAPv2.2023 (or later versions), which includes 1108 cruises
(compared to 946 cruises from GLODAPv2.2020, the current data product used. Additionally, future ESPERs will incorporate
depth (z) as an optional predictor variable for consistency with LIPHR, a prior version for estimating pHr (Carter et al., 2017).
The implementation of updated Cant estimation methods should additionally improve the accuracy and efficiency of both
ESPERs and PyESPERs when Cant estimates are required. Future versions of ESPER written in MATLAB may be modified to
improve interoperability with the Python implementation (i.e., to ensure the interpolation routines are identical in all instances

between languages).

4 Data Availability

Data used for reconstruction and estimate comparisons is available through GLODAP (https://glodap.info; see Lauvset et al.,

2022, doi:10.5194/essd-14-5543-2022 and Olsen et al., 2020, doi;10.5194/essd-12-3653-2020). The temperature and salinity

gridded climatology created by Roemmich & Gilson (2009), doi:10.1016/j.pocean.2009.03.004 was created with data from

the Argo Program.

5 Code Availability

PyESPERV1.0,0, affiliated files, and analyses files are available through LMD’s GitHub page

(https://github.com/LarissaMDias) and archived through Zenodo (doi: 10.5281/zenodo.15133085), Updates to
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PyESPERvV1.0,0,will also be published through LMD’s GitHub page and archived through Zenodo. ESPERs (Carter, 2021)

and original associated files used in creation of PyESPERvV1.0,0,are available at BRC’s GitHub page at

https:/github.com/BRCScienceProducts. Input data used for comparisons are available through the GLODAP website
(https:/glodap.info).

6 Conclusions

A near-replicate of ESPERs has been produced in the freely available Python programming language. This algorithm data
product will allow Python users or researchers with limited funds an alternate, free method for using ESPERS (other than the
proprietary MATLAB), increasing the accessibility of the original ESPER algorithms. The same logic applied to the original
MATLAB ESPERs was applied within the Python coding language (PyESPERs, version 1.0,0), and results have demonstrated
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estimates, and to within machine precision for all but pHy and DIC, which exhibit slight differences due to impacts of
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interpolating for Can. PYESPER_LIR estimates differ from ESPER_LIR estimates for some coastal and deep-water regions
between the two coding languages due to triangulation, extrapolation, and interpolation differences, but were more similar
throughout all portions of the open ocean (Figs. 2, 3, and 4). Notably, PyESPER_LIR performs equivalently to ESPER_LIR
when reconstructing the training data from GLODAPv2.v2022, so estimates produced from these two routines should be
considered comparable rather than identical. Nevertheless, we do not recommend using PyESPER_LIR in coastal or deep
(>5500 m) waters when primarily interested in comparing results with those of the MATLAB implementation of ESPER_LIR.
Future updates to ESPERs will include updates to PyESPERs, with adjustments to allow for greater consistency and speed.

7 Appendices

Appendix A: ESPER specifications

Sets of equations, predictor variables, and measurement uncertainties used in ESPER and PyESPER (adapted from Carter et

al., 2021) are shown below.

Table Al: Input predictor variable combinations used for each ESPER equation (adapted from Carter et al., 2021),

where S is salinity, 7 is temperature, and 4, B, and C are defined in Table A2 (below). (Deleted: S2
Equation Number | Predictor Variables
1 S, T,4, B C
2 S, T4 C
3 S, T,B C
4 STC
5 S, T,4, B
6 S, T, A
7 ST B
8 ST
9 S, 4, B C
10 S 4, C
11 S, B, C
12 S, C
13 S, A4, B
14 S, A
15 S, B
16 N
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735

740 Table A2: Input predictor variables (4, B, and C) for each estimated property (adapted from Carter et al., 2021).
Estimated Property A B C

TA Nitrate Oxygen | Silicate

DIC Nitrate Oxygen | Silicate

pHr Nitrate Oxygen | Silicate

Phosphate Nitrate Oxygen | Silicate

Nitrate Phosphate | Oxygen | Silicate

Silicate Phosphate | Oxygen | Nitrate

Oxygen Phosphate | Nitrate | Silicate

Table A3: Default measurement uncertainties (Ep; pefaurr) for ESPERs and PyESPERs (adapted from Carter et al.,

2021), where 6 is potential temperature.

Property Units Uncertainty
N - 0.003, absolute
6 °C 0.003, absolute
Phosphate pmol kg! 2%, relative
Nitrate pmol kg! 2%, relative
Silicate pmol kg! 2%, relative
Oxygen umol kg! 1%, relative

745  Appendix B: Comparison using entire GLODAPv2.2022

Results of comparisons of PYESPER with ESPER for the entire GLODAPv2.2022 dataset, including the entire oceanic and

coastal salinity range and data of all quality control flag categories are shown below.

(Deleted:

... [3]
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ble B1: Mean (standard deviation), maximum, minimum, and normalized RMSE (RMSE.,), for differences between MATLAB and
thon LIRs, ESPER_LIR and measured values, and PYESPER_LIR and measured values for TA, DIC, pHr, phosphate, nitrate, silicate,

d oxygen estimates (all units except pHr are pmol kg™') for all equations combined, from the entire GLODAPv2.2022 (,; 1=1,381,248). Deleted: ), including NaN’s, coastal data, and all data quality
control flag categories (where necessary input data were
available,

Python - MATLAB MATLAB - Measured Python - Measured
Mean Max Min RMSE. Mean Max Min RMSE. Mean Max Min RMSEx
-2.76x107 6.46x10° -6.98x10? 1.12x10°% 3.36x10"! 1.19x10° -7.34x10? 5.12x107% 3.22x10"! 1.19x10° -7.34x10? 5.22x107%
™ (2.61) (1.19x10") (1.21x10")
-5.35x10° 5.17x10? -7.46x107 1.29x10° -6.85x10! 9.79x10? -1.75x10° 7.46x107 -6.69x10! 9.79x10? -1.75x10° 7.45x10°
pIc (2.82) (1.63x10") (1.63x10")
oH -6.05x10° 7.65x10™! -1.59x10° 8.52x10™* 2.03x107 3.24x10° -1.39x10° 4.29x10° 2.14x107% 2.85x10° -1.40x10° 4.26x10
(6.74x107) (3.39x102) (3.37x10?)
Phosp- | 8.88x10° 3.96 331 127x107 | -1.04x107 4.77 -1.37x100  5.74x107 | -9.66x10™ 4.66 -1.39x10"  5.74x107
hate | (2.02x10?) (9.26x102) 9.27x102)
Nitrate -7.07x10* 6.18x10' -6.35x10' 1.99x10 -7.11x10°% 8.17x10' -1.82x10? 5.70x10 -7.79x1073 7.55x10" -1.76x10? 5.76x10?
(4.37x10") (1.27) (1.29)
Silicate 3.78x10° 5.49x10° -5.09x10? 4.39x102 -1.22x10" 3.11x10? -1.11x10° 7.76x10 -1.16x10" 1.16x10? -5.61x107 7.77x102
(2.24) (4.06) (4.03)
Oxyge -4.47x10? 4.28x10? -5.78x10? 1.58x10 2.33x10"! 1.33x10° -9.02x10? 6.37x10? 1.87x10"! 9.69x10? -9.02x10? 6.19x102
n (3.20) (1.27x10") (1.23x10")

24



698 746 q
RMSE _=1.1x10"3 RMSE =1.3x103
418.8 o 447.6 .
1306 149.2
| S— — |
-139.6 -149.2 1
5 4476
4188 oic,
-698 -746
(@) 1000 2000 3000 ®) o 2000
16 ‘ m—L
RMSE, =8.5x10™* RMSE, =1.3x10" 7
096 24
L
= ¥ 08 - 6
g -0.32 » 0.8
£ 096 24 { 5%
» pH., phosphate, 5
L -1 - W 3
154 ©2 4 6 8 10 (d15-10 5 0 5 |42
E €
= g
8 182
0 2
49 —L 582 1 €
3 RMSE,=1.4x10 RMSE _-2.6x102 \ 2=
= 29.4 349.2 o
I 1
98 116.4
1 ‘“ — -
9.8 1164 1
5 0
9 294 34921
nitrate silicate,
E -49 w - -582 -
(€200 -100 0 100 M -1000 0
578 TRMSE ~1.6x107
346.8
115.6
' f—
1156
-346.8
oxygen,,
578

@ o 1000
MATLAB estimates from LIR
765  Figure Bl: Difference between Python and MATLAB locally interpolated regression estimates (y-axis) compared to
MATLAB estimates (x-axis) for whole ocean () data and all equations combined (22,099,968 total estimates from all
equations for each variable), for TA (a), DIC (b), pHr (c), phosphate (d), nitrate (e), silicate (f), and oxygen (g) derived

using all equations and calculated from entire GLODAPv2.2022 data, (n=1,381,248). Units for all except pHr are in [Deleted: , including NaN’s, coastal data, and all data quality ]
control flag categories

pmol kg!'. Top and bottom side histograms represent the distribution of the x and y axes, respectively. Note the

770 differences in x- and y-axes scales. RMSEn is the normalized root mean square error, or the RMSE of all divided by
the mean of all MATLAB estimates. The large range of sometimes unrealistic estimates along the x-axis can be

attributed to anomalous and sometimes erroneous input data used for predictions.
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Figure B2: Map of differences between Python and MATLAB ESPER locally interpolated regression estimates (total
estimates n=22,099,968 for all variables) for the whole ocean (), where small blue circles represent differences <2 x
uncertainties of MATLAB estimates (#=22,034,967 for TA (a), 22,054,048 for DIC (b), 22,045,316 for pHr (c),
22,057,220 for phosphate (d), 22,045,770 for nitrate (e), 22,024,674 for silicate (f), and 22,045,827 for oxygen (g)), and
red circles represent differences >2 x uncertainties of MATLAB estimates (n=65,001 for TA, 45,920 for DIC, 54,642 for
PpH, 42,748 for phosphate, 54,198 for nitrate, 75,294 for silicate, and 54,141 for oxygen; n=1,381,248).
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Figure B3: Map of locations and depths (colorbar) where differences between Python and MATLAB ESPER locally
interpolated regression estimates are greater than 2 x the estimate uncertainties for the whole ocean (v, n=22,034,967

for TA (a), 22,054,048 for DIC (b), 22,045,316 for pHr (c), 22,057,220 for phosphate (d), 22,045,770 for nitrate (e),

|790 22,024,674 for silicate (f), and 22,045,827 for oxygen (g):,2=1,381,248).
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ble B2: Mean (standard deviation), maximum, minimum, and normalized RMSE (RMSE.,), for differences between MATLAB and
thon NNs, ESPER_NN and measured values, and PYESPER_NN and measured values for TA, DIC, pHr, phosphate, nitrate, silicate,

d oxygen estimates (all units except pHr are pmol kg™) for all equations combined, from the entire GLODAPv2.2022 dataset (;;Where _ [Deleted: ), including NaN’s, coastal data, and all data quality ]
A ) 5 control flag categories
cessary input data were available, n=1,381,248). ‘(Delete d: ( )
Python - MATLAB MATLAB - Measured Python - Measured
Mean Max Min RMSEx Mean Max Min RMSEx Mean Max Min RMSE.
A -6.35x1017  6.00x10°  -9.00x10°  2.69x10"% | 4.99x107 2.12x10°  -2.24x10°  6.30x10° | 4.99x107 2.12x10°  -224x10°  6.30x107
(6.24x107) (1.46x10") (1.46x10")
-3.24x10° 2.88 -4.68 5.19x10° | -4.82x107  1.97x10°  -2.22x10°  8.01x10° | -4.82x10"  1.97x10°  -2.22x10°  8.01x10?
pIe (1.13x10™) (1.75x10") (1.75x10")
o 6.08x10°  1.21x102  -2.03x102  4.52x10° | -3.01x10° 2.53 -5.74 4.49x10° | -3.00x107 2.53 -5.74 4.49x10°
(3.58x10) (3.54x10%) (3.54x10%)
6.32x10*  639x107  -1.25x107  1.31x10"° | -5.84x10* 1.14x10' -6.02 5.06x102 | -5.84x10™ 1.14x10' -6.02 5.06x107
P:;p (2.08x10° (8.25x10?) (8.25x10?)
)
Nitrate 512x10" 1L17x10°  -2.28x10°  1.39x10™ | -1.07x107  1.97x10°  -145x10°  5.06x10? | -1.07x10?  1.97x10*>  -1.45x10>  5.06x107
(3.06x10) (1.17) (1.17)
» -2.35x1017 7.46x10° -2.97x10°  4.96x10"" | -2.37x107  6.25x10*  -7.32x10*  7.06x102 | -2.37x102  6.25x10*  -7.32x10*  7.06x10?
Silicate (2.55x10%) (3.71) (3.71)
-4.65x10°  1.00x10°  -1.00x107  1.06x10"? | -3.46x10°  7.12x10*>  -1.22x10°  5.65x102 | -3.46x102  7.12x10*>  -1.22x10°  5.65x10?
Onge (2.15x10° (1.13x10") (1.13x10")
10)
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Figure B4: Difference between Python and MATLAB neural network estimates (y-axis) compared to MATLAB
estimates (x-axis) for whole ocean () data and all equations combined for TA (a, 17,802,134 total estimates from all
equations), DIC (b, 17,802,134 estimates), pHr (¢, 17,799,566 estimates), phosphate (d, 17,802,134 estimates), nitrate (e,
17,395,954 estimates), silicate (f, 17,445,310 estimates), and oxygen (g, 17,220,360 estimates) derived using all equations
and calculated from entire GLODAPv2.2022 dataset,(#=1,381,248). Units for all except pHr are in pmol kg™'. Top and

bottom side histograms represent the distribution of the x and v axes, respectively. Note the differences in x- and y-axes

scales. RMSE. is the normalized root mean square error, or the RMSE of all divided by the mean of all estimates. The
large range of sometimes unrealistic estimates along the x-axis can be attributed to anomalous and sometimes erroneous

input data used for predictions.
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Appendix C: Example of mapped DIC estimates from PYESPER and ESPER
Surface ocean DIC estimates form PyESPER LIR and ESPER LIR applied to the Roemmich and Gilson climatolog;

(Roemmich and Gilson, 2009). Differences in surface ocean DIC between the two coding languages (c) illustrate the need to

B20 avoid using PyESPER LIR for DIC in the surface ocean when comparing to MATLAB ESPER LIR.
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Figure C1: Maps of 2023 mean annual surface estimates of MATLAB ESPER LIR DIC (a), Python PYESPER LIR

DIC (b), and PYESPER LIR - ESPER LIR DIC (c; units are umol kg™") from application of ESPERs to the Roemmich
and Gilson Argo-based (Argo, 2000) climatology (Roemmich and Gilson, 2009).
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Appendix D: Comparison of interpolation and extrapolation values between MATLAB and Python
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MATLAB ESPER_LIRs avoid extrapolation by addition of a false set of data points at very far distances from the grid.

However, when this method was implemented in Python, significant errors were introduced due to the differences in

triangulation (which were both valid) between coding languages. Therefore, it was necessary to find another means of

calculating extrapolations in PYESPER_LIRs which was more similar to those of ESPER LIRs. We did this by producing a

larger grid in MATLAB and reading that into Python. A simple demonstration of the errors introduced by this method is

described below.

For this comparison we imagine a hypothetical cube, with x, y, and z coordinates, upon which we wish to provide estimates

for a fourth variable (p) via both interpolation and extrapolation (Fig. D1a). We have created a random dataset of points and

values within this cube for these demonstration purposes. We then followed the same procedure as in the PYESPER data

product creation, whereby we extended this grid in three-dimensional space and used MATLAB scatteredInterpolant

extrapolations to estimate values on the expanded grid (Fig. D1b). This method conducts a Delaunay triangulation, then uses

both linear interpolation and extrapolation to estimate values. These extrapolated values were then used for interpolation only

within Python using scipy’s Delaunay and LinearNDInterpolator functions, which produced more consistent results than

interpolation and extrapolation within Python.

°
°
° o .
° °
° °
° hd °
° ° °
°
‘ 200
°
a
(a) PE—

Figure D1: Hypothetical “grid” whereby estimates (p) interpolated within the grid are shown in blue and extrapolations

are shown in red (a). Grid created for demonstration purposes, with interpolated values in blue and areas where we

extrapolated values in red (b),

v

When interpolations within Python were compared to locations on the hypothetical grid where interpolations occurred in

MATLAB also. results were more similar than those where the grid was extrapolated within MATLAB. This is because
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different, but equally valid, mathematics are used to interpolate and extrapolate. Namely, a triangulation is used as the basis

for interpolations, whereas extrapolations are based on boundary gradients. Despite these differences, results were still more

similar with this method between the two coding languages than when extrapolations were done in both Python and MATLAB.

Table D1: Comparison of differences between MATLAB interpolations and extrapolations and Python results (all

interpolations).

(Formatted: Font: Bold
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NN A

MATLAB Interpolation - Python MATLAB Extrapolation - Python (Formatted: Centered
Interpolation Interpolation ‘(Formatted Table
Mean 0.0004 -0.6693 (Formatted: Centered
Standard Deviation 0.9559 5.2088 (Formatted: Centered
Max 2.2582 13.3083 ( Formatted: Centered
Min -2.4593 -15.6633 ( Formatted: Centered
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