Final Response: Andrew Yool
Thank you for your revised manuscript and response to your (many!) referees.
We thank you for the opportunity to greatly improve the manuscript and code.

I have reviewed these now and am generally satisfied that your revisions and expansions satisfy
the majority of the issues raised by your referees. However, I note - particularly in your
responses to referee #4 - that your replies appear provisional with reference to planned or
anticipated revisions to the model code. While this may just be a colloquial language in your
response, it does suggest that the code described by this manuscript is still undergoing changes.
While it is to be expected that the code will undergo revision in the future, it is important that
this manuscript describes a specific instance (and fixed version number) of the code that is
satisfactory to your referees.

We apologize for lack of clarity and have finished all code revisions that were required for
this version.

To which end, I would appreciate it if you could clarify your responses to your referees as
necessary so that it is absolutely clear where work has been concluded on this version. Where
future (even imminent) change is expected, this should be noted, but your manuscript should
absolutely be clear on where the final accepted version of your code ends and where "future
development" is anticipated. The current "still working on this" tone of some of your responses is
not acceptable where a very specific model version is being described and formalised.

We have clarified the responses to Reviewer #4 and attached those to the end of this
document. Specifically, we have addressed all immediate issues and have finished with the
current code version.

As such, [am returning your manuscript and response to you for what I expect will be a final
iteration. The positivity of your referees means I do not anticipate the need to return your
manuscript to them. If you require any additional time to satisfy this request, please do not
hesitate to get in contact with me - I appreciate that manuscript revision is in competition with
your other research activities (and the upcoming summer leave period).

We thank you for your consideration.

* One further point: Figure B3 uses a rainbow palette that is incompatible with our requirements
around colour blindness. Could you please revise this to one of the other palettes that you use
that is consistent with this requirement?

We apologize for forgetting to do the colorblind correction of this figure and have updated
it to adhere to the guidelines and match Fig. 4. Please see L.605 and the improved figure B3
below.

8000
7000
6000
5000
4000
3000
2000
1000

8000
7000
6000
5000
4000
13000
2000
11000

0Z < sajewnse gy11VIN — UOYlkd aieym suoneoo) Jo (w) yideg

8000

7000

= 6000

5000

4000

13000

2000

1000

R 0
ssss s =%

90° 8000
7000
45° N 6000
5000
0° 9 4000
3000
. 2000
45°S 1600

90°S (g

M o042

MSLE

Additional (Edited) Responses to Reviewer #4 (MH):

Review of “PyESPERv1.01.01: A Python implementation of empirical seawater property
estimation routines (ESPERs)” by L.M. Dias and B.R. Carter

28th May 2025

Note: Also see Git commits and notes from Matthew email

Overview

[1] This manuscript presents a Python implementation of an existing MATLAB tool to
estimate values for various marine carbonate system and nutrient parameters in

seawater. There is no new development of the tool here. The aim is a direct translation.
This is a valuable goal, because unlike MATLAB, Python is free and open source. But it
does mean that, in my opinion, the quality of the code itself is equally as important as (or
even more important than) the manuscript when assessing this submission. The
manuscript is primarily describing the new code, so the new code must be complete
before publication. I do not think that the code in its current form is complete, usable and
publishable, but I think it is possible for this to be achieved within the scope of revisions
to this submission (manuscript and code).

We thank you for the constructive comment and agree that the code can be greatly
improved quickly with a few minor fixes prior to publication, especially with your advice
below and on GitHub.

[2] My sense from looking through the other reviews is that they are mostly focused on
the manuscript rather than the code, so this review deliberately focuses mostly on the
code rather than the manuscript.

We appreciate the coding expertise.

[3] Although my comments may read as being rather critical, they are all intended to be
constructive and I am overall really positive about this manuscript and (more importantly)
the code. I’'m very happy to see it appear in Python and it’s certainly something that I
could see myself using in the future. Thank you to the authors for their efforts!

We thank you for the constructive comment.

MATLAB-Python differences

[4] The authors acknowledge that Python code does not produce exactly the same results
as the MATLAB. They argue that this is mostly due to differences in how Delaunay
triangulation and extrapolation are implemented by the external packages used to do
these steps. This argument is plausible but it is not yet convincing. Is there some way the
authors can prove that this is the cause of the differences, or at least demonstrate it more
quantitatively? See also [8] below.

We have adjusted the explanation as follows and added an appendix (D) to the manuscript
that provides an improved and more detailed quantitative explanation and comparison of
this issue.

L.327-332. Spatial patterns in distribution of outliers shown in Fig. 4 appear to reflect
locations where more edge-of-grid biogeochemical measurements were collected (e.g., near
coasts and in deep waters). Hence, these locations aligned well with places where
coefficients were extrapolated in MATLAB for use in PYESPER _LIRs, compared to
interpolations with far away “dummy points” within MATLAB ESPER_LIRs (see Sect.
2.1.1, “Locally interpolated regressions”; Figs. 3, 4, and 5; for w Fig. B2 and B3). Within
regions where MATLAB and Python were interpolating similarly, far outliers were
uncommon (Figs. 3, 4, 5, B2, and B3).

[5] Continuing on the above, | am worried about the word “most” (“this difference in
implementation is the source of most disagreements”; line 87). This implies that there
remain some differences that cannot be explained in this way, which presumably points
to bugs in the code? See also [9] below.

This choice of wording was indeed misleading, as we believe the interpolation differences
beyond machine precision to be entirely due to interpolation differences. See the corrected
wording below (simply omitting the word “most”):

L107-109. The three-dimensional interpolation algorithm is implemented differently in
MATLAB and Python, and although both calculations are valid, this difference in
implementation is the source of disagreements we find and later quantify between ESPER
and PyESPER.

[6] The test dataset does include some additional cruises that were not part of the training
set but it is not really independent. The additional cruises will have been assessed for
consistency with the existing GLODAP product and potentially had their values adjusted
to match better.

This is true. However, the GLODAP dataset was also used to validate ESPERs, which was
our rationale for choosing this dataset. In future updates, we plan to also validate both
ESPERs and PyESPERs against other datasets and potentially model results in an
independent analysis.

[7] If I understood Section 3.1.1 correctly (especially lines 260-264), the ‘extrapolation’
areas generally had bigger differences than the ‘interpolation’ areas. This is puzzling. My
understanding from Section 2.1.1 (lines 110-128) was that the Python implementation
does not extrapolate itself, but rather reads a from saved output for the extrapolation
regions generated by the MATLAB implementation. If that’s right, then surely these
regions should agree very well with each other, because Python is just copying MATLAB
directly rather than doing the calculations internally? Perhaps I have misunderstood the
explanations — in which case the corresponding text should be made clearer.

This is a good point and a complicated issue, but it is important to note that Python is not
copying MATLAB directly. We have added more information about what the two ESPER
versions are doing below and in Appendix D.

MATLAB ESPER_LIR: The grid is expanded vastly (to very large numbers) in order to
avoid extrapolation.

Python PyESPER _LIR: The above method resulted in extremely different values due to
different triangulation methods in Python. Instead, we extrapolated the grid within
MATLAB and used this larger, extrapolated grid to interpolate within Python. After
extensive testing of many methods, this was the closest agreement method possible.

Please note that in updates we hope to find interpolation methods that match precisely

between MATLAB and Python.

[8] From Figure 2, some of the differences are really rather large (e.g. up to 200 pmol/kg
in DIC, 0.5 in pH). Without further evidence I find it hard to understand how or accept that
such a large difference could really be due to differences in how Delaunay triangles are

calculated. A clearer explanation of this would be appreciated.

Please see the above comments and addition of Appendix D and the table of differences
below for a randomly created variable with values between 1-10. Because neural networks
agreed to within machine precision, and we have noted these differences between
interpolation for the two languages, we can conclude that indeed the interpolation methods

introduced the differences.

Table D1: Comparison of differences between MATLAB interpolations and extrapolations
and Python results (all interpolations).

MATLAB Interpolation - MATLAB Extrapolation -
Python Interpolation Python Interpolation
Mean 0.0004 -0.6693
Standard Deviation 0.9559 5.2088
Max 2.2582 13.3083
Min -2.4593 -15.6633

[9] Were this being released as a data product, then the issues above would be less
important, because of the validation against the GLODAP dataset for example. However,
this is a tool intended for users to calculate things with untested sets of input conditions.
If some part of the differences between implementations are due to bugs in the code,
they cannot be written off just because they’re fairly small in these tests, because they
could easily have a much bigger effect with a different set of inputs. In order to have
confidence in the results, any unexpected behaviour or differences between
implementations above the level of computer precision must be really thoroughly
understood.

This is a valid point, which we believe we have addressed through addition of Appendix D.

Code quality

[10] I was able to get the example code to run but it still required some troubleshooting
and corrections to the code beyond the instructions given in the README. These were
mostly related to defining and concatenating file paths (which can more robustly and
conveniently be done with os.path.join rather than by manually manipulating strings). |
have made a pull request (PR) to the GitHub repo which contains these and some other
(see [11]) fixes (https://github.com/LarissaMDias/PyESPER/pull/1).

Thank you for the useful comments. We have accepted and merged all aspects of this pull
request.

https://github.com/LarissaMDias/PyESPER/pull/1

[11] Parts of the code are very difficult to follow. This makes me worry more about points
[5] and [9] above. The most critical issues are:

We agree that (as marine chemists) we have no formal training in coding and the code may
be sloppy. We thank you for your careful edits! We have divided code into modules, edited
all modules for clarity, and used ruff autolinter/filter (as recommended below) to check for
additional errors or fixes and to make the code easier to follow.

* The functions needed are in a Jupyter notebook, so they can’t be imported and
used in other workflows.

We now have .py modules available. We have also completely eliminated the
JupyterNotebooks from the repository.

* There are two notebooks both with copies of these functions — there should only
be one “source of truth”.

We now have only one copy of each function.

* Variables are defined, renamed and copied without clear reasons why, making it
easy to lose track of which version of a variable should be used for the next step
of the calculation.

We have closely edited code and variables within, for a more streamlined code in the final
version. Additional explanations have been added for explanation of variable changes
within modules.

* The deprecated seawater package is used instead of its well-maintained
SUCCEeSSOr gSwW.

This is done for consistency with the current MATLAB version but will be changed to the
gsw package for future ESPER updates in both MATLAB and Python. When we used the
gsw package within this version of PYESPER, it did not align with results from the current
MATLAB version, which uses the deprecated seawater package. We have added an
additional message within the PYESPER code (within the “errors.py” module) when sw is
used clarifying this to users (please see below).

Error message within errors.py module of PYESPER: “Please note that, for consistency
with MATLAB ESPERVvV1, the now-deprecated sw package is used. This will be replaced

with gsw in future updates.”

* [t’s virtually never necessary to explicitly use global variables in Python and best
practice to avoid doing so.

Thank you, we have removed all unnecessary global variables.

* Numerical data appear to be processed into strings at some points?

The iterations.py module required string formatting where indexing within arrays
according to string labeling (lines 160-168 of this module, see below):

for v in range(0, len(salinity)):
prodnptile[v][prodnptile[v] == "0"] = "nan"
prodnptile[v][prodnptile[v] == "1"] = salinity[v]

prodnptile[v][prodnptile[v] == "2"] = temperature_processed[v]

prodnptile[v][prodnptile[v] == "3"] = phosphate_processed[v]
prodnptile[v][prodnptile[v] == "4"] = nitrate_processed|[v]
prodnptile[v][prodnptile[v] == "5"] = silicate_processed|[v]
prodnptile[v][prodnptile[v] == "6"] = oxygen_processed[V]

product_processed.append(prodnptile)

Some more minor points that would improve things:

* Variables are converted between dicts and pandas DataFrames, and lists and numpy arrays,
often without any clear reason. Both for code clarity and computational speed, numerical data
should be kept as numpy arrays throughout, and dicts promoted to DataFrames only when
essential.

Thank you for these tips. We have eliminated pandas DataFrames (replacing with
dictionaries) from the package and use numpy whenever numerical data is used.

» Some packages are imported and not used (e.g., decimal).

We have eliminated these entirely.

» Some variables are defined and never used.

We have eliminated variables that were defined but not used.

» Sometimes multiple packages are used where one would be more efficient (e.g.,
using math and statistics for some calculations that should all be done with

numpy).

Thank you for the advice. We have discontinued the math package and have eliminated use
of the statistics package in all but one module (“process netresults.py”), where it was found
to be more efficient) for our calculations in the final version.

* The code could be run through a linter / auto-styler (e.g. RuK, Black) to make it
more readable and help locate some of the issues noted above.

This is a good idea, and we have used ruff linter / auto-styler for this purpose.

The PR I made to the GitHub repo (see [10]) also contains fixes for some, but not all, of
the points above, and I’d be happy to discuss with the authors further on how to tackle
any of these issues if that might be useful.

We thank you and have made efforts to address all of these issues.

[12] Following from [10], the authors note that the Python code runs significantly slower
than the MATLAB. I suspect the frequent reliance on looping calculations through lists,
which is known to be very slow in Python, rather than vectorising calculations across
numpy arrays, may be largely responsible for this. Operations on pandas DataFrames can
also be a lot slower than the equivalent with a dict or numpy array.

We have rewritten this section and table; many of our timing issues stemmed from using
JupyterNotebooks. However, we have implemented your above comments for even greater
speed. We have also updated Sect. 3.2 and Table 3 to account for changes in calculation
speed for the final version.

[13] For this to be really considered “available” in Python it needs at the very least to be
packaged properly and installable from the GitHub repo with pip. Functions in Jupyter
notebooks are not useful for integrating into other workflows. Given my comments in [1],
that this manuscript is really about the code, I think that should be a bare minimum for
publication.

We thank you, this package is now installable with pip, and instructions for installing this
are available in the README.

[14] Uploading to PyPI and conda-forge would be very useful additional steps, although
not critical for publishing this manuscript.

We agree and are preparing to upload to both PyPI and conda-forge. This has taken a bit
longer than expected due to changes in standard protocol for this process, but we hope to
have this completed very soon.

Minor comments
[15] Figure 2: the y-axis scales have very unusual intervals, which does make it harder to
interpret the figures.

We have changed the y-axis scales of Figure 2 to be much more readable, and whole-
number intervals when possible.

[16] Line 261-262: presumably “these locations” refers to the “exceptions” from the
previous sentence rather than the “most ocean regions”, but this is not clear.

We have altered the language to “these exceptionally different locations”

[17] The version number 1.01.01 is quite unusual. Of course it’s the authors’ prerogative
to use whatever system they like, but I would suggest considering switching to the very
widely used semantic versioning (https://semver.org) to make it easier to interpret.

If we understood correctly, all version numbers for this initial release should (and have
been) altered to 1.0.0.

[18] For the examples, you could consider using https://github.com/mvdh7/glodap to
import the GLODAP dataset (this automatically downloads the files if the user doesn’t
have them). I included an example script in my PR (see [10]) which shows how this could
be implemented.

We thank you for the information and have included this method in our examples, rather
than prior downloaded datasets.

Responses to Reviewer #1: PYESPER

Overall great. The first iteration of this in Matlab was already sound in my opinion so this
translation requires less scrutiny. I have not run the code myself, and although it would be
intensive, I believe the accessibility would improve significantly if there is a possibility for a
computer scientist to create a simple UI for either packages.

We thank you for your helpful and supportive review. We hope to implement a Ul in the
Puget Sound in the near future that is ESPER-inspired. This could serve as a template for a
more global version. We will also investigate Ul solutions that can be quickly implemented
as a part of this product (if time allows during this review process) or next ESPER updates,
such as Voila, Mercury, Panel, or JupyterDash.

40 - Should add note of the potential high error when using a model to estimate a variable then
used to calculate carbonate chemistry parameter without nutrient information too

We understood this comment to imply that ESPERSs offer an alternative to these high-error
model estimates and added a sentence about this following the sentence in L.40 that
introduces ESPERs:

L43-44. This method offers an alternative to using models to estimate variables for
carbonate chemistry calculations when nutrient information is unavailable, which
potentially has high error values.

50 - I would argue that it may not be considered entirely findable for many scientists who are
not coding competent and even those who are, are likely unaware of the Zenodo and GitHub
repositories though I recognize that is not entirely your responsibility

Yes, this is a difficult barrier. We hope to develop a simple Ul that is similar to ESPERs for
the Puget Sound. If successful, this could be expanded in the future for the entirety of

ESPERs. We have added a sentence addressing this possibility at the end of this section for
now (see below) and are testing options for easy to implement UI’s to add onto this version.

L55-56. Future updates may include even more accessible features such as a user interface.

68 - If all models perform comparably then why is there a need for all three why not just use the
mixed as an ensemble prediction

We have added the following information to the bottom of section 2.1 regarding this valid
question:

L. 72-87. There are a couple of reasons to maintain the separate ESPER LIR, NN, or Mixed
options, from an end-user perspective, and these reasons are also true for PYESPERs.

1. ESPER _LIRs predate the ESPER_NNs and have been used as a standalone data
product for various research purposes (see Carter et al., 2016, doi:
10.1002/1om3.10087; Carter et al., 2018, doi: 10.1002/lom3.10232). Long-term users
of these LIRs have previously expressed desire for consistency between versions
(e.g., when depth was taken out as predictor for pHr), and some of them already use
CANYON-B (Bittig et al., 2019) as a neural net option for comparison. Therefore,
these users who desire consistency would most likely prefer to use ESPER_LIR.

2. ESPER_LIRs are more transparent than ESPER NN, as it is simple to parse apart
coefficients at the gridded locations and easier to see how the equations are a result
of these. ESPER_LIRs also rely on a grid, which may appeal to some users.

3. ESPER_NNs work a bit better on average than ESPER_LIRs, and work more like a
mapping product in that 3D coordinates are predictors, which may alternately
appeal to some users.

4. Although the ESPER_Mixed estimates perform better on average than LIRs or NNs
do independently, there are cases where they have greater bias and RMSE than
LIRs and/or NNs (e.g., when using equations 1-3 for phosphate or nitrate at all
depths; Carter et al., 2021). Users may want to assess each scenario independently
and choose which method is most appropriate according to their needs.

5. The NNs are more closely reproduced between the MATLAB and Python ESPER
implementations.

100 — if there’s inadequate data number and the area size is doubled, does the output indicate
this? Has it been checked if this correlates with an increase in error? Why is it jumping straight
to double instead of small increase intervals?

We have added the following text to help explain the rationale of the windows:

10

L. 122-126. In LIRv2, windows were iteratively scaled by a factor of the iteration
number until at least 100 measurements are selected to train each regression. For
ESPER_LIRs (LIRv3), it is argued that increasing window size has the following
benefits: (1) includes more data for regression fits, (2) introduced more modes of
oceanographic variability into fitting data, and (3) reduced multicollinearity.
However, the risk of increasing window size is that they will be less appropriate
locally. The weighting term helps account for this (Carter et al., 2021, doi:
10.1002/1om3.10461).

Here is the weighting term used:

=2

2
W =max (5, (%éf)z) + (cos(lat)(Alon))? + 4(Alat)2)

There do remain instances where the windows need to be doubled, but these amount to 5
data points out of ~50,000 (for DIC in one previous version of ESPER; no triplings of
windows occurred). A previous version of ESPERSs did include the data needed to
determine how many doublings were required with the release for each grid cell, but we
did not provide means to interpolate that information to an arbitrary location and we
found that these portions of the files were rarely used. In next version updates (where we
have more freedom to change the overall methods rather than replicating past ESPER
methods), we hope to investigate whether doubling of window sizes has an effect on error
and, if so, to modify our methods to iteratively increase window sizes instead.

160/172 - Should add a caveat that in addition to not predicting past 2030 they should not be
used in areas with abnormal atmospheric CO2 absorption or profiles ie. upwelling, coastal areas,
high freshwater outflow mentioned in 261 and may seem obvious to some but not others

Good point. We added the following statement:

L. 199-200. Likewise, these methods are not adequate for making reliable projections
beyond the year 2030, or perhaps sooner in coastal or other areas where the underlying
global open-ocean anthropogenic carbon estimations have greater uncertainties.

Responses to Reviewer #2: PYESPER

The manuscript describes a new python-based version of the existing ESPER algorithms. No
new development or training is performed, but detailed comparison of outcomes with both the
original Matlab and the new Python versions is described.

The manuscript is well written and clearly details what is new and how the new version performs
compared to the original. It is a nice added value that the algorithms are now available in several

programming languages.

I only have some minor comments. Once those issues are fixed I’'m happy to see this published.

11

We thank you for your productive feedback.
Minor issues:

Throughout the manuscript information is needlessly repeated several times. In particular which
observational data are included is presented again and again. It should be sufficient to define
once what is 0 and w data, including how much data there is, and then just refer to those
definitions. The many repetitions of this information makes the text a bit cumbersome to read.

We have edited the manuscript for repeated information and deleted duplicates of data
definitions, including the following:

We removed the (repeated from prior text) number of measurements within
GLODAPv2.2022 within the caption of Fig. 1 (L251), definition of open ocean data from
captions of Table 1 (L284), Fig. 2 (L297), Fig. 3 (L.343), Table 2 (L395), Fig. 7 (L409), and
definition of whole ocean data from the captions of Table B1, Fig. B1 (1.497), Fig. B2
(L509), Fig. B3 (L515), Table B2 (L.524), and Fig. B4 (L.537).

L261. Redefinition of open ocean data was removed.

Line 141: ensemble is the more commonly used word so I suggest using only that

The wording has been changed to ensemble, with no mention of committees (now L.169).
Line 156-158: The sentence is quite awkwardly phrased. Try revising for clarity.

True. The wording of the entire paragraph has been revised for clarity as follows:
L.184-188. The impacts of anthropogenic carbon (Cant) are approximated in ESPER and
PyESPERV1.0 using a 1° x 1° gridded transit time distribution (Waugh et al., 2006)-based
Cant product referenced to the year 2002 (Lauvset et al., 2016). ESPERs assume that oceanic
Cant increases proportionally to atmospheric anthropogenic CO: (transient steady state
assumptions; Gammon et al., 1982; Gruber et al., 2019; Tanhua et al., 2007). This implies
that the “shape” of the Cant vertical profile (gradient) remains constant with continuous

exponential increases of atmospheric CO2 and ocean Cant according to Eq. (3; Carter et al.,
2021).

Line 160: I do not understand the meaning of the sentence. Please revise for clarity.
We have reworked the entire paragraph for clarity (see above Line notes).

Line 230-235: All these numbers are also given in the table so it is unnecessary to repeat here.
The information is also more easily digestible from a table. Same goes for lines 275-279.

We have replaced these two segments of text with simple reference to Tables as follows:

12

L.280-281. Mean (xstandard deviation; RMSE,) PYESPER — ESPER_LIR differences for
each property are shown in Table 1.

L338-339. Mean (tstandard deviation; RMSEn) offset for each property is shown in Table
2.

Table 2 caption: Try splitting the information into smaller sentences or removing some
redundant information.

We have reworked the caption as follows:

L414-417. Table 2: Mean (standard deviation), maximum, minimum, and normalized RMSE
(RMSEn) are shown for three scenarios: (1) between Python - MATLAB NNs, (2) MATLAB
ESPER_NN — measured values, and (3) PYESPER NN — measured values. Separate rows
exist for TA, DIC, pHr, phosphate, nitrate, silicate, and oxygen estimates. All units except
pHr are umol kg'!, and data are for open oceans (o) and all equations combined.

Captions for Figures 2, 7, B1 and B4: There is no information about what the histograms/bars on
the top and right represent. This should be added.

We have added the following sentence to each of these figure captions:
Top and bottom side histograms represent the distribution of the x and y axes, respectively.

Lines 287-288: This statement appears to contradict the information on lines 318-319. Please
clarify.

Yes, this is confusingly worded. We have clarified the point we were trying to make, which
was that, despite some minor offsets in Cant estimates for pHt and DIC due to interpolation
differences, estimates from NNs for these two variables remain functionally identical.
Please refer to the following changes in-text.

L.346-347. These minor offsets are attributed to the programming language differences in the
interpolation of the Cant adjustment, which is only applied to these two properties.

L395-396. Currently, when Cant estimates are required, the results from PYESPER_NNs
remain functionally identical to those from ESPER_NNs, despite minor offsets from the
interpolation methods.

Figure 4: Most differences are found in the northwest Pacific Ocean. It would be interesting if
you could add a brief discussion about why this is and the implications of it.

The reason for these discrepancies within the western Pacific Ocean is that this is a place
where GLODAPv2.2022, which was used for estimate comparisons, contained data from
the very deep ocean. Very deep locations are at or near the edge of the original MATLAB
grid for training data (5500 m), where interpolation methods had greater differences. You

13

can see the matching “problem areas” on the following (coarse) map of locations where
GLODAPv2.2022 samples were collected at >6000 m depth:

60°N - 3

0 Q

%

WN | ® o o XY 1

8 © © J e®° o

2 efte £]
3 ® . %

s oo i

o . S
60°S 8 b

75°S -

. FA. WOWA. L35

I |
180°W 120°W 60°W lig 60°E 120°E 180°E
Longitude

We have added the following text to the text on LIR results to better explain this:

L324-329. PyESPER_LIRs were within 26 (~95% of measurements should fall within this
uncertainty level) for most ocean regions, with a few exceptions which occurred
predominantly in coastal areas or deep waters near the edges of the original MATLAB grid
(Figs. 3 and 4). Spatial patterns in distribution of outliers shown in Fig. 4 appear to reflect
locations where more edge-of-grid biogeochemical measurements were collected (e.g., near
coasts and in deep waters). Hence, these locations aligned well with places where
coefficients were extrapolated in the MATLAB implementation (see Sect. 2.1.1, “Locally
interpolated regressions”; Figs. 3, 4, and 5; for w Fig. B2 and B3).

Line 320: I suggest you rename this section. It is not intuitive that it deals with the differences in
speed of calculation

We have renamed the section to “Speed of calculation,” as suggested.
Figure 6: It would be useful to have a panel showing the differences between panels a and b

This has been added to Figure 6, as recommended. This figure was moved to appendices
(now Fig. C1), as it is likely more suited there. Please see the following modified figure:

14

i
8
2023 Surface ESPER_LIR DIC

it
o
o
2023 Surface PyESPER_LIR DIC

270 W180W 90 W 0

150

100

LIR - ESPER_LIR DIC

270 W180 W 90 W 0

)
o
2023 Surface PyESPER

Line 358: I suggest to rename the section future work or future improvements.
We have renamed the section “Future improvements”
Please also list the data product doi(s) in the data availability section along with the references.

We have included the doi’s for the appropriate data repositories in this section.

15

Line 383-384: “essentially identical” is not true for DIC and pH. That should be mentioned here
too

The estimates are still very closely aligned for DIC and pHrt when estimated using NN
methods (Cant contributions account for a slight difference between the MATLAB and
Python estimates). We have noted that here and removed the “essentially identical”
language as follows.

L489-490. Estimates from PyESPER NNs precisely align with those from ESPER NN for
all equations and desired outcome variable combinations (Fig. 7) and estimates from these
two routines align very closely for all estimates, and to within machine precision for all but
pHr and DIC, which exhibit slight differences due to impacts of interpolating for Cant.

Table A1: Caption refers to Table S2, but that is really A2.
Thank you for pointing this out. We have fixed this error.

Responses to Reviewer #3: PYESPER

This manuscript introduces PyESPERv1.01.01, a Python-based implementation of empirical
seawater property estimation routines (ESPERs), previously developed and made available only
in MATLAB by author Carter. These routines estimate core seawater biogeochemical properties
—such as total alkalinity, dissolved inorganic carbon, total pH, nitrate, phosphate, silicate, and
oxygen—using inputs like geographic coordinates, depth, salinity, and up to four additional
predictors (e.g., temperature and biogeochemical information). Two statistical algorithms, a
locally interpolated regression (LIR) and a neural network (NN) estimation are averaged to
produce a best estimate.

By transitioning ESPERSs to Python, the authors enhance accessibility for the scientific
community, as Python is an open-source language widely used in oceanographic research. The
study also documents modifications made to reduce discrepancies between the Python and
MATLAB implementations and evaluates the disagreements between the methods. The
implementation also updates underlying datasets using Global Ocean Data Analysis Project
(GLODAPv2.2022) dataset and addresses a couple minor issues with the original code.

The work submitted here will be a valuable resource to the community and required a large
amount of detailed assessment and validation. I recommend publication after consideration and
edits based on the range of suggestions from reviewers.

We thank you for the constructive feedback.

General Feedback:

This work will have substantial impact on the field of ocean biogeochemistry and carbon

cycling, as well as serve as an important resource for characterizing baseline inorganic carbon
chemistry in the context of marine carbon dioxide removal (mCDR) activities. While the

16

concepts and ideas are not new, and build on the original ESPER, transitioning this tool to
Python will broaden accessibility and encourage further scientific inquiry and discovery.

We concur and appreciate the feedback

The calculations/algorithms used are described in precise and comprehensive detail. Care is
taken to evaluate uncertainty, as well as assess internal consistency within the inorganic carbon
system.

Thank you for the feedback.

I commend the authors for making the code available on GitHub through a Jupyter Notebook
example. However, two improvements would make this much more accessible to the
community: (1) I am very surprised the performance was so much worse with python relative to
Matlab. Profiling the code to see where the slowdown is likely could lead to massive
performance improvements with some refactoring. (2) providing the code in a pip or conda
installable package would make it much more reproducible and less error prone.

We appreciate the suggestions for improvements. (1) We have indeed profiled the code and
found the slowdown to be during interpolations. This was greatly improved by packaging
it, which we are near completion of. (2) We are nearing completion of the pip installable
package also, which should be ready by the time of formal publication. Please check the
GitHub page for the package.

The overall presentation is clear, although somewhat dense. I appreciate the detailed
documentation of methodology though.

Thank you for the comments.
Minor Feedback:

Do you have insight into why DIC and pH seems to have considerably larger python-Matlab
differences?

Yes, this is because the current methods for estimation of contributions of anthropogenic
carbon (Cant) to DIC and pH involves interpolations, which did not match well between
Python and MATLAB versions. Other estimated properties (e.g., TA, nitrate, phosphate,
silicate, and oxygen) do not require estimates of Cant. Please see the following modified
explanation to help clarify this.

L. 347-349. The largest relative disagreements were found for DIC and pHr, though these
disagreements remained small relative to measurement uncertainties. These minor offsets
are attributed to the programming language differences in the interpolation of the Cant
adjustment, which is only applied to these two properties.

17

L145: For clarification — NN functions were translated from scratch? Was this compared to using
something ‘out of the box’ like pytorch? It would be interesting to compare both reproducibility
and performance.

We did translate the neural networks from scratch because we wanted an exact replica (to
the best of our ability). The translation (PyESPER_NN) indeed did replicate ESPER NN
results to within machine precision. We feel that it is unlikely that independently trained
neural networks would provide as similar results as our present method, but do not rule
out the possibility of providing a “python-trained” option in future ESPER updates.

Figure B2: There seems to be structure in the large mismatches — For example in the North
Pacific along margins, and perhaps on an A10 GO-SHIP line. Could you add discussion on this?
Does this point towards potentially a data problem with one cruise?

This is true that there are areas where the mismatch are greater (although not for one
particular cruise). These areas align with places where the “edges” of our interpolated grid
occur. This is caused by differences in interpolation and extrapolation between the two
coding languages, where interpolating between previously extrapolated areas (in
MATLAB) is not a very good reproduction of the MATLAB mathematical method. We
have modified the text as follows, to aid with this explanation.

L. 324-330. PYESPER_LIRs were within 26 (~95% of measurements should fall within this
uncertainty level) for most ocean regions, with a few exceptions which occurred
predominantly in coastal areas or deep waters near the edges of the original MATLAB grid
(Figs. 3 and 4). Spatial patterns in distribution of outliers shown in Fig. 4 appear to reflect
locations where more edge-of-grid biogeochemical measurements were collected (e.g., near
coasts and in deep waters). Hence, these locations aligned well with places where
coefficients were extrapolated in the MATLAB implementation (see Sect. 2.1.1, “Locally
interpolated regressions”; Figs. 3, 4, and 5; for w Fig. B2 and B3). Within regions where
MATLAB was interpolating, far outliers were uncommon (Figs. 3, 4, 5, B2, and B3).

Figure B3: The colorbar should ‘depth’ but there are no labels or units?

The labels and units appear to the right of the figure (please see below).

18

Depth (m) of locations where Python — MATLAB estimates > 20

=
[}
2
T
=
@
1

19

