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Abstract. This study proposes a satellite remote sensing-based water-provider-centric irrigation advisory 

system designed to manage surface water resources and allocate water efficiently to areas in need, thereby 

promoting sustainable irrigation practices in the context of a changing climate. The system utilizes satellite 

remote sensing based SEBAL (Surface Energy Balance Algorithm for Land) and Penman-Monteith 

evapotranspiration models to estimate crop water use. By integrating the responses from the previous 15 

irrigation cycle, current precipitation, forecasted precipitation, and evapotranspiration-based water needs, 

the framework calculates the net water requirements for command areas within irrigation canal networks. 

Operating on a weekly basis, the system generates advisories that enable the irrigation water provider to 

make informed, science-based decisions about water allocation. These advisories quantify the net water 

requirement, giving water providers the flexibility to dispatch water to areas of higher need based on their 20 

on-ground judgment. Additionally, the proposed framework can simulate future cropping patterns by 

assuming potential policy changes or net reduction in water supply in the main canal due to climate change 

or increased transboundary withdrawal. The advisory system is co-developed and implemented with the 

irrigation management agency called Bangladesh Water Development Board on the Teesta River Irrigation 

System located in Northern Bangladesh. The study demonstrates its effectiveness when compared against 25 

actual water supplied for irrigation. However, the application of sDRIPS is not limited to Bangladesh, as it 

is scalable to other regions with similar water management challenges for agriculture. 

 

Keywords: Irrigation, Surface Water Management, Optimization, Satellite Remote Sensing, Cloud 

Computing, Teesta River, Bangladesh 30 

1. Introduction 

Freshwater is an essential resource for human survival and underpins a wide range of economic activities. 

Among the various sectors that are dependent on freshwater, agriculture is the largest consumer, accounting 

for approximately 85% of all human freshwater water consumption (D’Odorico et al., 2020). Projections 

for the year 2050 indicate a global population increase to more than 9.0 billion, which will further 35 

exacerbate the pressure on existing freshwater resources for food production, particularly groundwater 

(Boretti & Rosa, 2019). Recent studies have highlighted the significant depletion of groundwater resources 

in major food-producing regions and other areas worldwide (Feng et al., 2013; Jasechko et al., 2024; Kuang 

et al., 2024; Liu et al., 2022). In response to this issue, there is an urgent need for the conjunctive and 

optimal use of groundwater and surface water resources. Nations such as India, Pakistan, and Bangladesh 40 
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have increasingly promoted the use of surface water resources to alleviate pressure on groundwater reserves 

(Paul & Hasan, 2021). To enhance the effectiveness of these efforts, systematic and frequent water 

accounting is essential. This process should comprehensively account for direct human water use—

including agricultural, municipal, commercial, and industrial consumption, as well as indirect losses due to 

reservoir evaporation and evapotranspiration (Richter et al., 2024). Such analyses are critical for 45 

quantifying stress on different water sources and informing strategies for their sustainable and efficient 

management to meet growing water demands. 

 

Assuming a scenario where both surface water and groundwater resources are sufficient to meet food 

production needs, and we have a robust infrastructure for supplying from both sources, surface water is the 50 

more sustainable source due to its multifaceted benefits. Firstly, surface water often contains higher nutrient 

levels than groundwater, which can lead to increased crop yields. Secondly, by reducing the reliance on 

groundwater pumping, surface water allows aquifers to recover naturally by acting as a "storage battery" 

during dry seasons and ensuring a long-term water supply for agricultural and other uses. Thirdly, and 

perhaps most importantly, surface water irrigation systems are mostly gravity-driven and require less 55 

energy than groundwater pumping systems. This reduction in energy consumption translates to lower 

greenhouse gas emissions, thereby reducing the carbon footprint of agricultural practices (Qin et al., 2024). 

Accounting for government policies, over-exploitation of existing irrigation water resources, and the 

benefits of surface water irrigation, there is a need to manage surface water resources sustainably and 

efficiently.  60 

 

To manage surface water irrigation more efficiently, adapting traditional irrigation practices to address the 

challenges posed by climate variability and increasing demand is crucial. Rising temperatures and changing 

rainfall patterns significantly impact crop growth and surface water availability. This in turn, demands that 

current surface water irrigation practices become more optimized. Studies led by Kovenock and Farhat 65 

(2018, 2021) highlight the complex relationship between rising temperatures and biomass production. 

Kovenock & Swann (2018) have reported that increased carbon dioxide (CO2) concentrations can 

negatively affect biomass productivity and alter the leaf area, which reduces the resilience against climate 

change. Farhat et al. (2021) showed that the elevated temperature leads to a higher uptake of toxic 

substances in groundwater such as arsenic. This bioaccumulation eventually results in plant failure at 70 

elevated temperatures, affecting both food quality and quantity. In many places, such as in Bangladesh 

where groundwater can often be contaminated by arsenic (Pogorski and Berg, 2020), the surface water 

usually has a better quality for irrigation applications. Overall, surface water can present a better alternative, 

in many places, in the light of climate change, for mitigating these adverse effects on food production in 

terms of quality and sustainability. 75 

 

To fully leverage the benefits of surface water and adapt to climate variability, it is essential to overcome 

the limitations of traditional irrigation practices. Traditional-irrigation-practices specifically refer to those 

employed by the water-providers, encompassing temporal, intensity-based, and spatial components of 

irrigation decision-making. These components are broken down into the following:  80 

1. When to irrigate (time - T) – determining whether water should be distributed in the current cycle 

based on the combined effects of the previous irrigation cycle, precipitation response, and crop 

water need; 
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2. How much water is needed (intensity – L3) – evaluating the volume of water required by analyzing 

the intensity of the combined effects of the previous irrigation cycle, precipitation events, and crop 85 

water need; and 

3. Which region to irrigate (space - Location) – identifying regions requiring irrigation by assessing 

the spatial distribution of the previous irrigation cycle, precipitation events, and crop water need. 

 

In reality, traditional irrigation practices are not limited to water-providers but extend to water-consumers 90 

(farmers), who rely heavily on traditional irrigation calendars. These calendars, which are static and 

developed based on the historical climatology of the previous century assume a fixed cropping pattern. 

These calendars inform farmers of the irrigation schedule to follow but are becoming increasingly 

inadequate in the face of rising food production demands. The reliance on these static crop calendars leads 

to inefficiencies in water management and reduced agricultural productivity, as evidenced in many 95 

countries such as India, Bangladesh, Pakistan, and Australia (Bose et al., 2021; Bretreger et al., 2020; 

Hossain et al., 2017). Regardless of the region, farmers typically are not adaptive to rapid climate variability 

and cannot accurately predict precipitation events and their amounts at sub-seasonal irrigation timescales. 

This uncertainty often leads to overwatering of the fields to avoid the risk of crop loss due to rising 

temperatures. Overwatering, however, can inadvertently wash away essential soil nutrients, while 100 

underwatering can stress crops, both resulting in reduced yields. These practices lead to inefficiencies in 

water use and diminish soil fertility and agricultural productivity (Hossain et al., 2017). 

 

Considering the effects on agricultural yield due to altered rainfall patterns and rising temperatures, there 

is an urgent need for a scientific-data-driven approach to optimize existing irrigation practices to achieve 105 

maximum crop water productivity. The potential of using satellite data for sustainable agriculture and 

efficient irrigation has been widely acknowledged in recent years (Deines et al., 2019; Sishodia et al., 2020; 

Zhang et al., 2022). Several studies have employed crop coefficients (Kc) based evapotranspiration 

techniques to enhance the understanding of irrigation schedules and irrigate fields based on actual water 

needs (Bretreger et al., 2020; Gabr & Fattouh, 2021). Tools like the Food and Agriculture Organization's 110 

(FAO) CROPWAT, which utilizes the Penman-Monteith equation (Allen et al., 1998), have provided 

valuable insights into regional water requirements (Dong, 2018; Khaydar et al., 2021; Solangi et al., 2022; 

Surendran et al., 2015).  

 

Despite significant advancements, substantial gaps remain in the current body of research that need to be 115 

addressed. These gaps arise from limitations in the temporal and spatial resolution of past studies. The 

trade-off between temporal and spatial resolution of satellite data makes it challenging to estimate 

evapotranspiration (ET) at high temporal and spatial resolutions simultaneously. Typically, temporal 

resolution ranges from daily to monthly time steps. When the temporal resolution is one day, the spatial 

resolution is usually at the kilometer scale (Chen et al., 2021). Conversely, if a medium spatial resolution 120 

sensor having 30-meter pixels is selected, the temporal resolution is typically around 16 days from polar-

orbiting optical satellites (Tasumi, 2019). To achieve an optimal balance between spatial and temporal 

resolution, a combination of satellites needs to be used. Additionally, challenges exist in operationalizing 

findings or tools due to the latency of the available latest meteorological data. For instance, the Global Land 

Data Assimilation System (GLDAS), which provides global meteorological forcing data, can be used in 125 

estimating evapotranspiration (Pareeth & Karimi, 2023), has an early product stream with a latency of about 

1.5 months. This latency hinders the ability to use these datasets for near real-time operational studies. 
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Tools available for surface water irrigation also suffer from an inability to accurately distinguish between 

the actual water provided to plants and the water needed by plants. This arises from the difficulty in 130 

estimating ET under ambient water stress conditions for each crop and lack of metering and monitoring. 

The incomplete information makes it difficult to estimate net water requirements and project potential water 

savings. Additionally, there is a lack of integration of precipitation forecasts at the operational level to 

optimize irrigation even further. It is important to acknowledge that, to the best of our knowledge, there is 

no freely available open-source tool that addresses these gaps in optimizing surface water irrigation 135 

schemes based on satellite data. 

 

In this study, we present Satellite Data Rendered Irrigation using Penman-Monteith and SEBAL (sDRIPS., 

pronounced as “drips”), a cloud-based optimized surface water irrigation advisory system that leverages 

earth observations and weather models. sDRIPS. utilizes publicly available data from the Landsat satellite 140 

series, the Global Forecast System (GFS), and the Global Precipitation Measurement’s (GPM) IMERG data 

(precipitation dataset). The founding concept of sDRIPS originated from the Irrigation Advisory System 

(IAS) first prototyped by Hossain et al. (2017). Later, Bose et al. (2021) integrated Gravity Recovery and 

Climate Experiment (GRACE) satellite-based water storage data with Landsat data to quantify the impact 

of IAS. Bose et al. (2021) also used satellite and model weather data to estimate ET using the Penman-145 

Monteith method (Allen et al., 1998) and the Surface Energy Balance Algorithm for Land (SEBAL; 

Bastiaanssen et al., 1998) as proxies for crop water demand and actual water consumed, respectively. 

 

The core concept of IAS has been implemented in various regions under different names, such as IAS for 

Pakistan (Hossain et al., 2017), Provision for Advisory on Necessary Irrigation (PANI) in India (Hossain 150 

et al., 2020), and Integrated Rice Advisory System (IRAS) in Bangladesh (Hossain et al., 2022). IRAS 

represented a significant technological leap in achieving higher spatial resolution from the km scale of IAS 

to the 30m scale using Landsat Thermal Infrared (TIR) data to estimate actual ET based on SEBAL. 

Combined with crop water demand from Penman-Monteith FAO 56 (Allen et al., 1998) that could already 

be estimated at comparable scales, IRAS offered the prediction of potential over or under-irrigation based 155 

on the comparison of actual ET estimates from SEBAL and crop water demand estimates from Penman-

Monteith (Bose et al., 2021). Additional improvements in IRAS include cloud-based operationalization and 

automation that requires minimum internet bandwidth or local computing resources for the stakeholder 

agency. Climatic variables like precipitation, temperature, and wind speed are incorporated to generate 

advisories for farmers on how much they should water their crops based on potential over or under-irrigation 160 

in the previous week (Hossain et al., 2022). These advisories are then automatically transmitted to relevant 

users comprising farmers, irrigation district managers and water agency staff. With the combined use of 

two Landsat missions 8 and 9, the temporal resolution of IRAS has been improved from biweekly to weekly 

frequency. Additionally, dynamic crop coefficient values based on planting dates are used in IRAS to 

accurately estimate the actual water need for a given date. 165 

 

Due to these innovative features, IRAS has been adopted by the Department of Agricultural Extension 

(DAE), of the Ministry of Agriculture of Bangladesh (https://iras.bamis.gov.bd/ or visit 

https://bamis.gov.bd and click “Satellite Products”). Currently, IRAS operates on DAE servers, providing 

irrigation advisories to farmers across approximately 2,000 agricultural districts located in the Northwestern 170 

and Northeastern regions of Bangladesh (Landsat Science, 2023). 
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Given the recent adoption of the farmer/user-centric advisory system of IRAS that optimizes water use at 

the consumer side, we believe there is now an opportunity for an operator-centric or water-provider-centric 

irrigation advisory system for surface water irrigation at the supply side. This proposed operator-centric 175 

(hereafter alternated with ‘provider-centric’) advisory can potentially guide irrigation water managers to 

optimize water delivery at the supply side where water is being centrally withdrawn from a river for dispatch 

to the irrigation command areas. Water suppliers and canal operators can be informed as to how much water 

should be allocated or delivered to each region or canal based on the water needs of all the farmers of that 

region. By assimilating nowcast and forecast precipitation data that are now available from weather forecast 180 

systems with the previous week's water allotment to the region and the current crop water demand, an 

accurate estimate of net water requirement for each region can be estimated. This net water requirement 

can be translated to the flux of surface water (L3/T) that would need to be maintained in water-supplying 

canals at the supply side for water managers. Consequently, such a system can support dispatch decisions 

for surface water irrigation based on data-driven science, crop water needs, and ambient environmental 185 

conditions. 

 

In this study, our central research question is: How can we dynamically optimize a multi-branched canal 

irrigation system using earth observation satellites? We believe that addressing the sustainable use of 

surface water requires tackling it from both the consumer side (by farmers/users) and supply side (by water 190 

managers/canal operators) with an operator-centric system as a complement to the user-centric system. The 

key goal of this study is to guide canal operators and help them make informed decisions on how much 

surface water to dispatch centrally from the source at the river for the command areas to maximize 

agricultural water productivity. We developed and implemented sDRIPS for the Teesta River Irrigation 

system located in Northern Bangladesh where there is currently an urgent need to optimize the use of 195 

surface water resources. 

2. Study Area 

The sDRIPS study focuses on the Teesta Barrage Project (TBP) in Bangladesh, the country's largest surface 

water irrigation project. Established in 1990, the TBP supplies irrigation water from January to April and 

spans the Teesta River at Dalia-Doani Point in the Lalmonirhat district (Fig. 1 Middle Panel). This project 200 

features a 615-meter-long concrete structure equipped with 44 radial gates, providing a discharge capacity 

of 12,750 cubic feet per second and supporting a command area of 154,250 hectares through a 4,500-

kilometer network of canals (River Research Institute, 2023). For more details on TBP, readers are referred 

to (River Research Institute, 2023). 

 205 

The main TBP canal divides into three primary canals: Dinajpur Canal, Rangpur Canal, and Bogra Canal ( 

Fig. 1 Middle Panel), which further branches into an intricate network of secondary and tertiary canals. 

Selecting the TBP as a study site offers two primary advantages: the utilization of in-situ water supply data 

at the head canal and the opportunity to study a complex canal network system. A successful 

implementation of our study to implement sDRIPS for TBP here means it can be adapted and applied to 210 

surface water irrigation systems around the world. For this study, irrigation canal shapefiles, command 

areas, and in-situ water supply data were provided by the Bangladesh Water Development Board (BWDB).  
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Fig. 1: The Teesta Barrage Project (TBP). The left panel displays the map of Bangladesh with the location of TBP on the Teesta 

River. The middle panel illustrates the network of irrigation canals. The right panel highlights the command areas served by the 215 
primary, secondary, and tertiary canals. Satellite basemap from Bing Maps (© Microsoft). 

3. Datasets Used 

The publicly available datasets used in sDRIPS allow for accurate assessments of the actual water needs of 

command areas while considering climatic factors. To facilitate implementation and reduce technical 

barriers, the cloud computing platform Google Earth Engine (GEE), developed by Gorelick et al. (2017), 220 

was utilized. The cloud computing platform helps sDRIPS to eliminate the need to download and process 

satellite and weather data on the local machine. Table 1 provides a comprehensive list of the datasets utilized 

by sDRIPS. Some of the key datasets, which are referenced by their initials in Table 1 but not previously 

mentioned in the text are - Shuttle Radar Topography Mission (SRTM), Global Land Cover 

Characterization (GLCC), and National Oceanic and Atmospheric Administration (NOAA).  225 

 

Table 1: Datasets used in sDRIPS 

Dataset 
Dataset ID on 

GEE 

Band 

Name/Derived 

Products 

Description 
Spatial 

Resolution 

Temporal 

Resolution 

Global 

Forecasting 

System (GFS) 

NOAA/GFS0P25 temperature_2m_a

bove_ground 
Air Temperature 

25 km 6 hours 

u_component_of_

wind_10m_above

_ground 

Wind Speed (u 

component) 

u_component_of_

wind_10m_above

_ground 

Wind Speed (v 

component) 
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specific_humidity

_2m_above_groun

d 

Specific Humidity 

---- 

Pressure 

(Estimated using 

Hypsometric 

Equation) 

GEE and NOAA 
total_precipitation

_surface 

168-hour 

Precipitation 

Landsat 8 and 

Landsat 9 satellite 

series 

LANDSAT/LC08/

C02/T1_TOA and 

LANDSAT/LC09/

C02/T1_TOA 

B2 Blue 30 m 16 days 

individual, 8 days 

combined B4 Red 

B5 NIR 

B6 Shortwave IR 

B10 
Low Gain 

Thermal 

B11 
High Gain 

Thermal 

Sentinel 1 satellite 
COPERNICUS/S

1_GRD 
VV 

Single co-

polarization, 

vertical 

transmit/vertical 

receive 

10 m 10 days 

Shuttle Radar 

Terrain Mapping 

(SRTM) 

USGS/SRTMGL1

_003 
--- 

Digital Elevation 

Map 
30 m --- 

Global Land 

Cover 

Classification 

(GLCC) 

COPERNICUS/L

andcover/100m/Pr

oba-V-C3/Global 

discrete_classifica

tion 

Land Use Land 

Cover 
100 m --- 

IMERG GPM --- --- Precipitation 10 km Around 4 hours 

4. How sDRIPS Works 

An overview of sDRIPS is first provided along with an illustration (Fig. 2), followed by a brief description 

of the steps of the processes. These steps are then covered in detail in the methodology section. 230 
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Fig. 2: Illustration of how sDRIPS works. Green represents the regions where surplus irrigation has been provided, while red 

regions are deficit regions needing more irrigation. 

 

When a Landsat satellite overpasses a command area, sDRIPS collects crucial information required to 235 

estimate the actual water needs of the crop based on its growth stage using Penman-Monteith ET, and the 

amount of water applied to the crop using SEBAL ET. The impact of precipitation is also considered to 

refine the water demand estimation. This includes both nowcast precipitation data and forecasts of incoming 

precipitation. The system then compares these estimates to determine whether the water needs of all crops 

in the given command area are met. If the net water need is not satisfied, the area is classified as a deficit 240 

region, and the volume of water needed for dispatch for the coming week is quantified (Fig. 2). Conversely, 

if the water demand is met and there is an excess of provided water, the area is classified as a surplus region, 

The volume of surplus water that can be potentially stored locally and used later for nearby deficit regions 

is quantified (Fig. 2). This quantification allows water providers to monitor and adjust the water supply and 

dispatch decisions from the main canal efficiently to meet the specific needs of each command area. 245 

 

Fig. 3 illustrates the proposed methodology for the irrigation advisory system, sDRIPS. Before starting, 

users need to have a GEE account (https://signup.earthengine.google.com/) to estimate Penman–Monteith 

and SEBAL evapotranspiration and a Precipitation Processing System (PPS) account 

(https://registration.pps.eosdis.nasa.gov/registration/) to download the GPM  IMERG precipitation data. 250 
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Fig. 3: Flowchart illustrating the proposed data processing methodology for the irrigation advisory system. 

 

Step 1: Create command areas based on the availability of command area data: This includes creating 

configuration files for the command areas and updating the script configuration files accordingly to run the 255 

system. 

Step 2: Estimate Penman-Montieth and SEBAL ET: Use GEE to calculate evapotranspiration using the 

Penman-Monteith method and SEBAL. 

Step 3: Estimate net water requirements for each command area: Estimating soil moisture and 

percolation using Sentinel 1. Download IMERG precipitation data and use it to estimate the net water 260 

requirements by combining past precipitation with GFS precipitation forecasts. 

Step 4: Estimate the water supplied to each command area: Calculate the water supply at the head canal 

and distribute it across the command areas based on the supply. 

Step 5: Assess irrigation status and generate plots: Evaluate the irrigation status using the estimated ET 

and water supply and generate water stress plots for analysis. 265 

5. Methodology 

5.1. Creation of Configuration Files (Step 1) 

The configuration files provide the essential information required for the sDRIPS system to tailor the 

advisory system to the specific needs of the user. Readers are requested to refer to Section S1 of the 

supplementary material for more details.  270 
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5.2. Penman-Monteith and SEBAL Based Evapotranspiration 

Estimation (Step 2) 

After the creation of the configuration files, the next step is to estimate Penman-Monteith and SEBAL-

based evapotranspiration using Landsat data. sDRIPS checks the latest Landsat imagery from both Landsat 

8 and Landsat 9 collections for each command area at the specified time. Once an image for the given area 275 

is found, the timestep of the image is noted and used to estimate the Kc value by calculating the difference 

between the planting date and the image timestep and using the crop configuration file. Similarly, other 

useful information, as mentioned in Table 1, is stored temporarily on the cloud.  

5.2.1. Penman-Monteith Evapotranspiration 

Penman-Monteith evapotranspiration (ETo) serves as a proxy for potential water demand for a reference 280 

crop. ETo is estimated for the Landsat overpass date and for all command areas following the methodology 

of Allen et al., (1998). The equation for ETo is as follows: 

 

 

𝐸𝑇𝑜 =  
0.408𝛥(𝑅𝑛 −  𝐺) + 𝛾

900
𝑇 + 273

𝑢2(𝑒𝑠 − 𝑒𝑎)

𝛥 + 𝛾(1 + 0.34𝑢2)
 

 

 

 1 

 

Where ETo is reference evapotranspiration (mm/day), Rn is net radiation at the crop surface (MJ/m²/day), 

G is soil heat flux density (MJ/m²/day), T is mean daily air temperature at 2 m height (°C), u2 is wind speed 

at 2 m height (m/s), es is saturation vapor pressure (kPa), ea is actual vapor pressure (kPa), es−ea is saturation 285 

vapor pressure deficit (kPa), Δ is slope of the vapor pressure curve (kPa/°C), γ is psychrometric constant 

(kPa/°C). 

ETo calculated using  

 1 is the evapotranspiration for a reference crop. It is then adjusted for the actual crop growing in the given 

command area by considering the crop type, development stage, and water stress on crop transpiration for 290 

that command area using the following equation 

                                                                 𝐸𝑇 =  𝐸𝑇𝑜 × 𝐾𝑐 × 𝐾𝑠                                                 2 

Where ET is the potential evapotranspiration (mm/day), Kc is the crop coefficient and Ks is the soil water 

stress coefficient. Unless otherwise specified, hereafter, PET will be used as a term to refer to crop water 

demand ET based on the Penman-Monteith equation. 295 

5.2.2. SEBAL Evapotranspiration 

In our study, we employed the SEBAL algorithm developed by Bastiaanssen et al. (1998). The SEBAL 

model has been effectively implemented in more than 30 countries (Bastiaanssen et al., 2005). The SEBAL 

model has demonstrated high accuracy in estimating evapotranspiration. A few examples are -  Zahid et al. 

(2023) compared SEBAL ET with lysimeter ET in Pakistan, finding the Coefficient of Determination (R²) 300 

https://doi.org/10.5194/egusphere-2025-4574
Preprint. Discussion started: 16 October 2025
c© Author(s) 2025. CC BY 4.0 License.



11 

 

of 0.9 and a Root Mean Square Error (RMSE) of 1.26 mm/day with maximum error as 24.3%. Similarly, 

Zoratipour et al. (2023) found an R² of 0.9 and an RMSE of 2.15 mm/day in Iran, and Rawat et al. (2017) 

validated SEBAL ET estimates in India with an R² of 0.91. Typically the accuracies of the estimated 

SEBAL ET model are 85%, 95%, and 96% at daily, seasonal, and annual scales, respectively (Tang et al., 

2013). SEBAL used in the sDRIPS framework was originally employed and validated by Bose et al. (2021) 305 

and Hossain et al. (2022). 

 

The SEBAL model solves the surface energy balance equation to estimate evapotranspiration using satellite 

images and meteorological forcings data. SEBAL computes an instantaneous ET flux for the Landsat 

overpass time. A series of equations are incorporated in the SEBAL model that computes net surface 310 

radiation, soil heat flux, and sensible heat flux to the air. The residual energy flux is then calculated by 

subtracting the soil and sensible heat fluxes from the net radiation at the surface. This residual energy (latent 

heat) enables liquid water to transition to the water vapor phase, that is, the required evapotranspiration. 

Thus, for each pixel of the image, the ET flux is calculated as a residual of the surface energy budget shown 

in Equation 3. 315 

  

𝜆𝐸 = 𝑅𝑛 − 𝐺 − 𝐻 
 

 

3 

 

Where λE is latent heat flux (energy used for evapotranspiration), Rn is net radiation at the surface, G is soil 

heat flux, and H is sensible heat flux. SEBAL-based evapotranspiration (SEBAL ET) serves as a proxy for 

the actual water consumed by the crop, a concept validated by Bose et al. (2021). In our study, daily or 24-

hour evapotranspiration was computed by assuming that variations in instantaneous evapotranspiration are 

not significant over the 24-hour period (Allen et al., 2007). For weekly evapotranspiration calculations, we 320 

estimated evapotranspiration on the day of Landsat acquisition and considered this steady-state 

evapotranspiration value for the next seven days until the availability of the next Landsat image. In this 

study the term SEBAL ET will refer to actual ET estimated using the SEBAL method (Equation 3) 

5.2.3. Deficit Irrigation 

To quantify the evapotranspiration-based water requirements from a command area, we estimate the deficit 325 

for each command area or region. The deficit was calculated using the Equation 4. 

  

 

𝐷𝑒𝑓𝑖𝑐𝑖𝑡 𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 =  𝑆𝐸𝐵𝐴𝐿 𝐸𝑇 −  𝑃𝑒𝑛𝑚𝑎𝑛𝑀𝑜𝑛𝑡𝑒𝑖𝑡ℎ 𝐸𝑇 
 

 

4 

Fig. 4 Panel (a) represents the cumulative sum of Penman-Monteith based ET for 7 days, depicting the total 

water demand based on the rice crop water requirements. Similarly, Panel (b) is the cumulative sum of 

SEBAL-based ET for 7 days, providing an estimate of the actual water consumed by the crops, factoring 

in the actual conditions of the fields. Panel (c) shows the deficit and sufficient regions. The intensity of the 330 

deficit or sufficient is estimated using Equation 4 for every pixel. The deficit regions indicate areas where 

the water demand exceeds the supplied water, while sufficient regions indicate areas where the supplied 

water meets the demand. This detailed mapping allows water managers to identify critical areas needing 
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more precise water management interventions. Additionally, an uncertainty analysis of the SEBAL ET 

estimates was performed using Monte Carlo simulations, revealing a normalized deviation of 8.6% from 335 

the ensemble mean for the operational period of TBP. For further details, please refer to Section S3 of the 

supplementary materials. 

        

 
Fig. 4: Map of estimation of ET-based deficit and sufficient irrigation regions. 340 

5.3. Estimation of Net Water Requirement (Step 3) 

To accurately determine the net water requirement, several factors must be considered, with soil moisture 

being a critical component. Soil moisture plays a pivotal role in understanding the interactions between 

surface and groundwater and in generating accurate irrigation advisories, as it governs the amount of water 

percolating through the soil. Water lost through percolation, which moves beyond the crop root zone, 345 

becomes unavailable for crops. To account for percolation in our framework, we utilized Sentinel-1 

Synthetic Aperture Radar (SAR) data available on GEE. While global soil moisture products have been 

developed at coarser resolutions ranging from 9 km to 40 km (Chan et al., 2016; Kerr et al., 2012; Kim et 

al., 2023), these products are unsuitable for field-scale applications. SAR sensors, on the other hand, achieve 

finer spatial resolutions (10 m), making them suitable for agricultural field-scale analysis (Arias et al., 350 

2023). Sentinel-1 C-band (wavelength of 5cm) data has been extensively used in soil moisture estimation 

studies and has demonstrated promising results up to 100 mm depth (Arias et al., 2023; Bauer-

Marschallinger et al., 2019; Bhogapurapu et al., 2022; Wagner et al., 1999). While ground sensors provide 

ideal soil moisture measurements, installing them is often impractical on a large scale. To maintain the 

global scalability of the framework, Sentinel-1 C-band data was selected as the most viable alternative for 355 

estimating soil moisture. After estimating soil moisture from Sentinel-1 data, soil moisture at field capacity 

was derived using the Hengl & Gupta, (2019) dataset available on GEE. Percolation was subsequently 

calculated using Equation 5. 

 

                      𝑃𝑒𝑟𝑐𝑜𝑙𝑎𝑡𝑖𝑜𝑛 =  𝑆𝑜𝑖𝑙 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 − 𝐹𝑖𝑒𝑙𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦                        5 360 

Fig. 5 Panel (a) shows the average soil moisture estimated using the Sentinel 1 C band for each command 

area, Panel (b) shows the soil moisture at field capacity from Hengl & Gupta, (2019) and Panel (c) shows 

the average percolation that happened in each command area. Since percolation only happens when the soil 

moisture is greater than the soil moisture at field capacity, percolation was estimated using the following 

equation (Equation 6) for each pixel and then averaged over the command area. 365 
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              𝑃𝑒𝑟𝑐𝑜𝑙𝑎𝑡𝑖𝑜𝑛 = {
𝑆𝑜𝑖𝑙 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 − 𝐹𝑖𝑒𝑙𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ;  ≥ 0

0; 𝑒𝑙𝑠𝑒
                                6 

 

 
Fig. 5: The left panel shows the average soil moisture estimated using Sentinel 1 C band on 6th March 2023, the middle panels 370 
show the soil moisture at field capacity, and the right panel shows the estimated percolation on 6th March 2023 

 

Another crucial factor in determining the net water requirement is precipitation. Both Penman-Monteith 

and SEBAL evapotranspiration models do not inherently account for the effect of precipitation. To estimate 

the net water requirement accurately, it is essential to incorporate the precipitation events (if any). For this 375 

purpose, the precipitation for the current week or the operational week is estimated using the GPM IMERG 

data. Given the operational objective of the framework, only IMERG's early run data is utilized. The 

cumulative precipitation for the seven days preceding the latest Landsat overpass date is considered. 

Additionally, to provide accurate advisories to water managers, the cumulative sum of forecasted 

precipitation for the next seven days from the Landsat overpass date is also included in the calculations. 380 

Consequently, the net water requirement can be determined using the following equation: 

  

𝑁𝑒𝑡 𝑊𝑎𝑡𝑒𝑟 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 =  𝑆𝐸𝐵𝐴𝐿 𝐸𝑇 −  𝑃𝐸𝑇 − 𝑃𝑒𝑟 +  𝑃𝑛𝑐 + 𝑃𝑓𝑐 

 

 

7 

 

Here in Equation 7, SEBAL ET is the estimated evapotranspiration, PET is the evapotranspiration estimated 

using the Penman-Monteith (proxy of actual water demand of crop), Per is the percolation, Pnc is the 

nowcast precipitation, and Pfc is the forecasted precipitation. 

Based on the constituents of the above equation, the net water requirement is assessed as follows: 385 

● If the net water requirement is positive, it indicates that the combined effect of last week's water 

supply, the amount of percolation that happened (Equation 6), the current week's precipitation, and 

the next week's forecasted precipitation has met or exceeded the water demand. In this case, the net 

water requirement for the given command area is considered to be null, as no additional water is 

needed in the coming week. 390 

● If the net water requirement is negative, it signifies that the combined effect of the last week's water 

supply, the amount of percolation happened, the current week's precipitation, and the next week's 

forecasted precipitation was insufficient to meet the upcoming demand. Consequently, additional 

water is required for the given command area in the coming week. 

 395 
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It must be remembered that to calculate the surplus or deficit regions with precipitation factored in, we do 

not require to know the system losses, such as canal seepage, canal evaporation or sluice gate efficiency. 

This is because our calculations are based on the field conditions after the water has been delivered or 

consumed on the field. The actual ET estimated from the SEBAL algorithm is assumed to be a proxy of 

on-field water use or on-field irrigation. 400 

5.4. Command Area Irrigation Status (Step 4-5): 

After estimating the net water requirements for each command area, sDRIPS evaluates whether the current 

water supply conditions can meet these demands or not. To perform this evaluation, the water supply at the 

head canal is proportioned according to the area of each command area. This proportioning is based on the 

assumption that a larger command area will have more cropped land, resulting in higher evapotranspiration 405 

and, consequently, a greater water demand compared to smaller command areas. A distribution factor (DF) 

is created using the following equation: 

 

  

𝐷𝐹𝑖  =  
𝐴𝑖

∑ 𝐴𝑖
𝑁
𝑖=1

 

 

8 

 

 

Where DFi is the distribution factor for ith command area, N is the total number of command areas, Ai is an 410 

area of ith command area. After estimating the distribution factor for each command area, the available 

water supply at the head canal is multiplied by this factor to determine the amount of water distributed to 

each command area. Subsequently, the amount of water passing through each canal is estimated based on 

the distribution to the command areas.  

 415 

Fig. 6 illustrates this distribution process, showing how water is allocated to various command areas within 

the irrigation canal network. In Fig. 6, let the total water supply at the head canal be denoted as T. The main 

canal (C) branches into secondary canals (S1C, S2C, and S3C) and further into tertiary canals (T1S2C, 

T1S3C, T2S3C). The distribution factor (DF) for a command area b is calculated as shown in 9:  

 

𝐷𝐹𝑏    =  
𝑏

𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒
 

 

9 

 

The water supplied to command area b is then determined by: 420 

  

𝑊𝑆𝑏  =  𝑇 × (𝐷𝐹𝑏) 
 

 

10 
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Fig. 6: Illustration of how water distribution( dispatch) advisory for the command areas of an irrigation canal network. 

Similarly, the water passing through canal S2C includes the amount of water supplied to its command area 

and the water distributed to its sub-canals (Fig 6). This can be expressed as below: 425 

 

 

𝑊𝑆2𝐶  = 𝑊𝑆𝑏  + 𝑊𝑆𝑐 
 

 

11 

 

6. Results 

6.1. Water Needs and Distribution in Command Areas 

Fig. 7 illustrates the four panels generated by sDRIPS after running it for 14th March 2023 for TBP. For a 

better understanding of the readers, these panels are discussed in detail as follows. Fig. 7 Panel (a) depicts 

the main Teesta canal bifurcating into three primary canals and the percentage distribution of water in each 430 

canal. Using the DF, it is estimated that the Dinajpur canal receives approximately 27%, the Bogra canal 

receives around 17%, and the Rangpur canal receives about 18% of the total water supply withdrawn from 

the Teesta River for that week. Similarly, the water distribution for each canal is also quantified. Overall, 

the Teesta main Canal, carrying 100% of the water, supplies around 62% to these three primary canals, 

with the remaining 38% distributed to smaller canals serving command areas upstream of the primary 435 

canals. Quantifying this information is beneficial for any canal system (not limited to TBP) with some 

control over the distribution of water to its secondary and tertiary canals. This allows water managers to 

monitor and adjust the water distribution to each command area based on current needs. The percentage of 
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water flowing in each canal was estimated using the basic principles of network theory, where the amount 

of water from the lowest canal with no bifurcations was summed up to the primary canal. 440 

 

 
Fig. 7: (a) Canal water distribution based on the distribution factor where head canal is assumed to have 100% water at the 

source; (b) amount of water allotted to each command area from the water supply based on (a); (c) net water requirement of each 

command area after the inclusion of previous week’s water supplied to crops, nowcast, and forecast precipitation, and amount of 445 
water percolated (d) surplus or deficit command areas after the integrating all the components of water supply (panels b and c). 

 

Fig. 7 Panel (b) illustrates an example of the amount of water that provided to each command area by the 

water supply from the Teesta River using the canal network. This is calculated by multiplying the DF with 

the available water supply at the head canal and following the hierarchical canal network (primary to 450 

secondary; secondary to tertiary and so on). 
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Fig. 7 panel (c) illustrates the net water requirement, calculated by integrating multiple factors. These 

factors include the water applied to plants during the previous week, the current water needs of the plants, 

the precipitation received, the forecasted precipitation for the upcoming week and the amount of total water 455 

percolated. This estimation follows 7. The combined effect of these factors, excluding the canal water 

supply, met the needs of 60% of the command areas for the given date. This information is crucial for the 

hydrologic community, including water managers and researchers, as it identifies regions dependent on 

precipitation variability. Over an extended period, water managers and researchers can study the areas that 

are primarily reliant on precipitation and are sensitive to changes in precipitation patterns. When 460 

precipitation is adequate, these regions lessen the stress on water managers. Conversely, insufficient 

precipitation exacerbates the stress on water resources. Additionally, these regions can vary based on crop 

type, growth stage of crop, and precipitation intensity. Researchers can leverage this data to study the long-

term sensitivity of various crops to precipitation variability, informing crop selection in regions with high 

precipitation variability and recommending robust crops capable of withstanding such conditions. 465 

 

Fig. 7 panel (d) is derived by integrating the net water requirements of the command areas (Panel c) with 

the water provided by the available water supply (Panel b). This panel highlights regions within the TBP 

that have either surplus or deficit water. This information is crucial for water managers to make informed 

decisions about adjusting and optimizing water supply across different regions in the upcoming dispatch 470 

cycle. To provide a clear understanding to readers, we have discussed the various colored regions depicted 

in Panel (d) below. 

 

Red and Blue Regions: These areas have either surplus water (blue) or deficit water (red). These regions 

pose a significant challenge to water managers. To address this, water managers can divert water from 475 

surplus areas to nearby deficit areas if the supply infrastructure allows it and there is buy-in from farmers. 

Additionally, they can also advise farmers in the deficit regions to cultivate less water-intensive crops to 

balance water distribution more effectively. 

 

Light-Colored Regions: These areas exhibit low intensity of surplus or deficit water. Water managers 480 

should aim to stabilize the red and blue regions to fall within this range. These regions typically include 

areas where - i) The water needs were already met by precipitation, and additional water was supplied. ii) 

The water needs were only partially met by precipitation, but the combined effect of the water supply 

sufficiently met the requirements, albeit with a slight surplus. 

6.2. Reliability of sDRIPS 485 

To promote the applicability of sDRIPS in other regions where the proposed framework might be suitable 

and to instill confidence in its reliability among readers, we conducted a two-pronged investigation: i) 

comparing the estimates of sDRIPS with in-situ data, and ii) comparing the estimates of sDRIPS with 

OpenET. In the first approach, we evaluated the net water requirement for the entire TBP by aggregating 

the net water requirement estimates for each command area. These estimates were calculated based on the 490 

combined response of the previous irrigation cycle, nowcast and forecast precipitation, and the amount of 

water percolated, as outlined in Equation 7. For consistency in the analysis, we assumed rice, a water-

intensive crop, was cultivated uniformly across all regions of the TBP. We then compared the sDRIPS-

derived net water requirement with the actual amount of water supplied through the main canal system of 
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the TBP during the period from January 2023 to April 2023. Additionally, an uncertainty analysis was 495 

performed on the net water requirement by introducing perturbations in the parameters of the 

evapotranspiration models and running Monte Carlo simulations. For more details, readers are referred to 

Section S3 of the supplementary materials. 

 

 500 
Fig. 8: Timeseries of net water required by TBP vs amount of water supplied to TBP. 

From Fig. 8, we can infer the following: 

1. Early Crop Stage: At the early stage of crop growth, the water supplied through the TBP canal 

sufficiently met the crop's water requirements. However, during this period, there can be instances 

where the water supplied exceeded the crop water needs, indicating potential inefficiencies in water 505 

allocation. 

2. Mid-Crop Stage: During the mid-stage, the water supply from the TBP canal was insufficient to 

meet the crop water requirements, resulting in unmet water demand. 

3. Precipitation Effects: Precipitation intensity significantly reduced the water burden on the TBP 

canal during certain weeks: 510 

a. 14th March 2023, 7th April 2023, and 23rd April 2023: Precipitation alone satisfied the 

crop water needs for the TBP region, demonstrating that the TBP region could have 

significantly benefitted from integrating precipitation and its forecasting into its water 

allocation planning. This could reduce unnecessary reliance on canal water during times of 

sufficient rainfall. 515 

b. 30th March 2023: Despite the precipitation, the combined effect of rainfall and TBP water 

supply was inadequate to meet crop water demands due to low precipitation intensity. 

4. Late Crop Stage: Toward the end of the crop cycle, both water demand and TBP water supply 

decreased. During this period, precipitation also occurred, further reducing the canal's burden. 
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 520 

In the second approach, we compared the sDRIPS estimates (SEBAL ET as implemented within the 

sDRIPS framework) with the OpenET. OpenET leverages 30m Landsat imagery and employs six state-of-

the-art satellite based energy balance models, that is, ALEXI/DisALEXI, eeMETRIC, geeSEBAL, PT-JPL, 

SIMS and SSEBop (details on these models can be found in Volk et al., (2024)). These models have been 

extensively applied and evaluated in the United States for various water management and agricultural 525 

applications (Volk et al., 2024). According to Volk et al., (2024), a comparison of OpenET data with 152 

in-situ datasets across the USA showed that the daily ensemble results for cropland sites had a mean 

absolute error of 23.6% and an RMSE of 31.1% of the mean. However, OpenET is currently limited to use 

within the USA. To enable a fair comparison, we applied the sDRIPS framework to regions within the USA 

where OpenET data is available. Specifically, we selected two locations for comparison, as illustrated in 530 

Fig. 9 and Fig. 10 

 
Fig. 9: Location of the region of interest in California with the timeseries of estimates from OpenET and sDRIPS-based SEBAL 

ET. Satellite basemap from ESRI. 
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 535 
Fig. 10: Location of the region of interest in Nebraska with the timeseries of estimates from OpenET and sDRIPS. Satellite 

basemap from ESRI. 

In both Fig. 9 and Fig. 10, the upper panel shows the location of the region of interest where sDRIPS 

was applied, and the lower panel shows the timeseries of the estimates. The sDRIPS estimates align 

closely with the OpenET ensemble range, although some outliers are observed. Excluding the 540 

outliers, two key inferences can be drawn from the comparison: 

1. Both sDRIPS and OpenET exhibit similar trends in ET estimates across the studied regions. 

2. During peak periods (e.g., July), sDRIPS estimates slightly underpredict ET, or OpenET slightly 

overpredicts it (noting that OpenET itself is not 100% accurate). This discrepancy is likely due to 

differences in the spatial resolution of meteorological input data that comes from different sources. 545 

OpenET utilizes Gridded Surface Meteorological (gridMET) (Abatzoglou, 2013) and North 

American Land Data Assimilation System (NLDAS) products (Xia et al., 2012). Both gridMET 

and NLDAS are limited to the USA with spatial resolution of 4 km and around 13 km respectively; 
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whereas sDRIPS relies on a global (GFS) product with a coarser spatial resolution of 25 km to 

obtain the meteorological variables (see Table 1). 550 

  

6.3. Comparative Assessment of sDRIPS Scenarios 

In this section, we perform a comparative assessment of sDRIPS with the help of two scenarios. In scenario 

one, we simulate traditional irrigation practices, whereas in scenario two, we simulate scenario one using 

sDRIPS. More details are provided in the following subsections. 555 

6.3.1. First Scenario - Traditional Irrigation Practices (without sDRIPS) 

In this scenario, we illustrate traditional irrigation practices from the perspectives of both water providers 

and water consumers. The traditional practice from the water provider's perspective involves allotting water 

without knowledge of the specific needs of command areas and without accounting for precipitation. From 

the water consumers' perspective, traditional irrigation involves watering crops based solely on the water 560 

allocated to them, again without considering precipitation. It is important to remember that the TBP operates 

mostly from January to April, prior to the next monsoon season. During this period, farmers do not account 

for precipitation events in their irrigation practices. We illustrate the scenario simulation using the panels 

shown in Fig. 11.  

 565 
Fig. 11: Scenario 1 example without the s.D.R.I.P.S - Simulation of traditional irrigation practices i.e. without 

understanding and quantifying the actual water need of the crop and command area. 

Panel (a) of Fig. 11 shows the water requirements estimated for each command area for rice crops using 

the FAO-recommended Penman-Monteith equation. Panel (b) of Fig. 11 depicts the amount of water 

applied to each command area by farmers (for the week of March 14, 2023), including water added from 570 

precipitation events. However, farmers do not anticipate these precipitation events and fully utilize the 

allotted water, disregarding previous irrigation cycle and precipitation. Panel (c) of Fig. 11 illustrates the 

excess water present in the fields, calculated as the difference between the total water applied to the 

command area and the Penman-Monteith based water requirements of the crops. The positive values in 

Panel (c) of Fig. 11 indicate that excess water has been used, which is unsustainable as it can wash away 575 

vital nutrients needed by crops, ultimately affecting yield. 
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6.3.2. Second Scenario - Adaptive Irrigation Practice (With sDRIPS) 

In this scenario, we consider the same time frame as in Scenario 1 and for the same week; however, here, 

water providers use the sDRIPS system. This system accounts for water applied in the previous irrigation 

cycle (and whether it was sufficient or deficit), current precipitation events, and forecasted precipitation. 580 

Water is allocated based on the actual needs of the command areas, considering these factors. The 

simulation is illustrated with the panels shown in Fig. 12. 

 
 

Fig. 12: Illustration of Scenario 2 with the s.D.R.I.P.S - Simulation of adapting irrigation practices i.e. understanding and 585 
quantifying the actual water need of the crop and command area.  

Panel (a) of Fig. 12 is similar to Panel (a) of Fig. 11 and is estimated using the Penman-Monteith equation. 

Panel (b) of Fig. 12 shows the combined response, considering the previous irrigation cycle, the recent 

precipitation event, and forecasted precipitation before the next irrigation cycle. Including these factors 

reduces the stress on water providers and guides them to allocate water only where it is needed. Panel (c) 590 

of Fig. 12 illustrates the amount of water applied by the farmers. The water was allocated to each command 

area specific to its needs and was fully utilized by the farmers.  

 

By comparing Scenario 1 (traditional irrigation practices) and Scenario 2 (optimized irrigation with 

sDRIPS), approximately 475 acre-feet of water could have been saved using sDRIPS for the specific week 595 

as an example. The saved water could then be diverted to water deficit regions outside the TBP or stored 

for future TBP needs. This comparison focused on March 14, 2023, when the available water supply 

exceeded the water demand of the region. However, there are instances where the net demand exceeds the 

total water supply, as illustrated in the panels of Fig. 13 for February 25, 2023. 

 600 

Panel (a) of Fig. 13 shows the Penman-Monteith based water needs for each command area. Panel (b) of 

Fig. 13 depicts the combined response, including the effects of the previous irrigation cycle and 

precipitation. Panel (c) of Fig. 13 illustrates the water applied to the command areas with the limited water 

supply. Panel (d) of Fig. 13 presents the water stress map, highlighting regions where water demands were 

not met. In situations where the water demand exceeds the supply, if water providers or canal operators 605 

have greater control over the irrigation canals, they should reconsider the DF of the command areas. This 

would allow for the redistribution of water from surplus regions to deficit regions. If such control is not 

feasible, water providers should either manage the water needs by diverting water from outside the TBP to 

required command areas or encourage farmers to grow less water intensive crops in those regions. 
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 610 

 
Fig. 13: sDRIPS simulation for 25th March 2023, when the net water demand was higher than the water supply. 

7. User Friendliness of sDRIPS and Limitations 

7.1. User Friendliness 

The sDRIPS system is designed to address the gaps identified in the current literature, as mentioned in 615 

section 1 of the study, by providing a user-friendly and customizable tool for analyzing various irrigation 

scenarios. These are discussed in detail in Section S2 of the supplementary material. 
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7.2. Limitations 

While sDRIPS provides a scalable and data-driven framework for surface water irrigation optimization, it 

is not without limitations. These limitations arise from sensor constraints, practical assumptions required 620 

for scalability, and certain challenges that lie outside the scope of this study. The following key limitations 

are acknowledged:  

 

1. sDRIPS relies on optical sensors - Landsat series, to estimate actual ET using SEBAL. High cloud 

cover, common in certain regions or seasons, can compromise the framework's effectiveness by 625 

hindering the energy balance. 

2. sDRIPS identifies crop fields using the Copernicus Global Land Cover dataset, though land cover 

maps may not always fully capture dynamic changes over time, potentially affecting net water 

requirement estimates. However, the framework is designed to be flexible, allowing users to refine 

or integrate higher-resolution local land cover data, when available, to better distinguish between 630 

irrigated and rainfed areas for improved water management. 

3. Groundwater contributed minimally or negligibly to crop evapotranspiration during the study 

period due to the considerable depth of the water table relative to crop root lengths. However, in 

regions with shallower water tables or highly conductive soils, groundwater may influence 

evapotranspiration estimates. Current state-of-the-art satellite-based techniques often lack the 635 

spatial resolution needed to precisely quantify groundwater contributions at the farm scale. 

Integrating model-based simulations or in situ groundwater flow measurements into the 

framework’s water balance equations could enhance estimation accuracy and provide a more 

comprehensive understanding of water dynamics. 

4. The framework assumes stable climatic conditions over a weekly timescale to estimate the 640 

cumulative ET. While this assumption aligns with regional climatology in the study area and is 

supported by other studies (Bose et al., 2021), it may not hold true in regions where climatology 

exhibits high variability within a week. Consequently, users should carefully evaluate the 

applicability of this assumption when deploying sDRIPS in areas with high dynamic climatic 

conditions. 645 

5. The framework does not account for the behavior of water-providers and water-consumers, which 

can significantly influence the effectiveness of any irrigation planning scheme. Behavioral change, 

particularly among farmers, is a gradual and long-term process that falls outside the direct scope of 

this study. While this study demonstrates the utility of a satellite data-driven surface water irrigation 

optimization tool, stakeholder-led interventions, such as economic incentives (e.g., price 650 

differentiation), may be necessary to accelerate behavior change, as discussed by Portoghese et al., 

(2021). Furthermore, behavioral dynamics can vary across different regions and countries, 

necessitating tailored approaches for each context. 

6. Hydraulic constraints are assumed to be invariant in the study. Users can integrate the sDRIPS 

framework with different hydraulic designs and can check the flexibility (see Sawassi et al., 2022). 655 

7. The assumption that water percolation below the 100 mm depth is lost to deep percolation may lead 

to an overestimation of irrigation needs, especially for crops that are known to utilize water beyond 

this depth. This simplification is a conservative approach that prioritizes caution in estimating crop 

water requirements, which is particularly important in water-scarce regions where slight 

overestimating water needs could lead to more effective water management decisions. However, it 660 
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also introduces uncertainty, and future work could refine this aspect by incorporating models that 

predict root zone soil moisture or by using satellite-based soil moisture estimates for deeper layers. 

Additionally, methodologies such as those proposed by (Baldwin et al., 2017) could be explored to 

improve the estimation of water availability in deeper soil layers. 

8. Conclusion  665 

In this study, we co-developed and implemented a water-provider-centric irrigation advisory system, 

sDRIPS, to manage water resources sustainably and robustly while addressing existing gaps in the 

literature. sDRIPS integrates satellite and model data to estimate the actual water needs of command areas. 

This crucial information aids water providers in determining the appropriate water allocation for each 

command area. The actual water need depends on several factors, including the amount of water applied in 670 

the previous irrigation cycle, current precipitation, and forecasted precipitation. By considering these 

factors and the available water supply, sDRIPS advises canal operators on which command areas require 

water and the amount needed. During periods of excess water supply, sDRIPS advises canal operators on 

how much water can be stored for future irrigation needs or diverted to water-deficit regions outside the 

irrigation project. Conversely, during water shortages, sDRIPS generates water stress maps to identify 675 

regions experiencing water shortages and guides on the amount of water needed in deficit areas. sDRIPS 

also allows for the simulation of various scenarios using historical data on different crops. This capability 

enables stakeholders to evaluate the impact of future policies on water supply conditions if these policies 

are implemented today and to devise science-based responses. By offering a flexible and comprehensive 

tool for water management, sDRIPS has the potential to contribute significantly to sustainable irrigation 680 

practices globally, addressing the challenges posed by a changing climate and inefficiency in managing 

surface water and groundwater resources. 
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