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Abstract. This study proposes a satellite remote sensing-based water-provider-centric irrigation advisory
system designed to manage surface water resources and allocate water efficiently to areas in need, thereby
promoting sustainable irrigation practices in the context of a changing climate. The system utilizes satellite
remote sensing based SEBAL (Surface Energy Balance Algorithm for Land) and Penman-Monteith
15  evapotranspiration models to estimate crop water use. By integrating the responses from the previous
irrigation cycle, current precipitation, forecasted precipitation, and evapotranspiration-based water needs,
the framework calculates the net water requirements for command areas within irrigation canal networks.
Operating on a weekly basis, the system generates advisories that enable the irrigation water provider to
make informed, science-based decisions about water allocation. These advisories quantify the net water
20 requirement, giving water providers the flexibility to dispatch water to areas of higher need based on their
on-ground judgment. Additionally, the proposed framework can simulate future cropping patterns by
assuming potential policy changes or net reduction in water supply in the main canal due to climate change
or increased transboundary withdrawal. The advisory system is co-developed and implemented with the
irrigation management agency called Bangladesh Water Development Board on the Teesta River Irrigation
25  System located in Northern Bangladesh. The study demonstrates its effectiveness when compared against
actual water supplied for irrigation. However, the application of sDRIPS is not limited to Bangladesh, as it
is scalable to other regions with similar water management challenges for agriculture.

Keywords: Irrigation, Surface Water Management, Optimization, Satellite Remote Sensing, Cloud
30  Computing, Teesta River, Bangladesh

1. Introduction

Freshwater is an essential resource for human survival and underpins a wide range of economic activities.
Among the various sectors that are dependent on freshwater, agriculture is the largest consumer, accounting
for approximately 85% of all human freshwater water consumption (D’Odorico et al., 2020). Projections
35  for the year 2050 indicate a global population increase to more than 9.0 billion, which will further
exacerbate the pressure on existing freshwater resources for food production, particularly groundwater
(Boretti & Rosa, 2019). Recent studies have highlighted the significant depletion of groundwater resources
in major food-producing regions and other areas worldwide (Feng et al., 2013; Jasechko et al., 2024; Kuang
et al., 2024; Liu et al., 2022). In response to this issue, there is an urgent need for the conjunctive and
40  optimal use of groundwater and surface water resources. Nations such as India, Pakistan, and Bangladesh
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have increasingly promoted the use of surface water resources to alleviate pressure on groundwater reserves
(Paul & Hasan, 2021). To enhance the effectiveness of these efforts, systematic and frequent water
accounting is essential. This process should comprehensively account for direct human water use—
including agricultural, municipal, commercial, and industrial consumption, as well as indirect losses due to

45  reservoir evaporation and evapotranspiration (Richter et al., 2024). Such analyses are critical for
quantifying stress on different water sources and informing strategies for their sustainable and efficient
management to meet growing water demands.

Assuming a scenario where both surface water and groundwater resources are sufficient to meet food
50  production needs, and we have a robust infrastructure for supplying from both sources, surface water is the
more sustainable source due to its multifaceted benefits. Firstly, surface water often contains higher nutrient
levels than groundwater, which can lead to increased crop yields. Secondly, by reducing the reliance on
groundwater pumping, surface water allows aquifers to recover naturally by acting as a "storage battery"
during dry seasons and ensuring a long-term water supply for agricultural and other uses. Thirdly, and
55  perhaps most importantly, surface water irrigation systems are mostly gravity-driven and require less
energy than groundwater pumping systems. This reduction in energy consumption translates to lower
greenhouse gas emissions, thereby reducing the carbon footprint of agricultural practices (Qin et al., 2024).
Accounting for government policies, over-exploitation of existing irrigation water resources, and the
benefits of surface water irrigation, there is a need to manage surface water resources sustainably and
60  efficiently.

To manage surface water irrigation more efficiently, adapting traditional irrigation practices to address the
challenges posed by climate variability and increasing demand is crucial. Rising temperatures and changing
rainfall patterns significantly impact crop growth and surface water availability. This in turn, demands that
65  current surface water irrigation practices become more optimized. Studies led by Kovenock and Farhat
(2018, 2021) highlight the complex relationship between rising temperatures and biomass production.
Kovenock & Swann (2018) have reported that increased carbon dioxide (CO.) concentrations can
negatively affect biomass productivity and alter the leaf area, which reduces the resilience against climate
change. Farhat et al. (2021) showed that the elevated temperature leads to a higher uptake of toxic
70  substances in groundwater such as arsenic. This bioaccumulation eventually results in plant failure at
elevated temperatures, affecting both food quality and quantity. In many places, such as in Bangladesh
where groundwater can often be contaminated by arsenic (Pogorski and Berg, 2020), the surface water
usually has a better quality for irrigation applications. Overall, surface water can present a better alternative,
in many places, in the light of climate change, for mitigating these adverse effects on food production in
75  terms of quality and sustainability.

To fully leverage the benefits of surface water and adapt to climate variability, it is essential to overcome
the limitations of traditional irrigation practices. Traditional-irrigation-practices specifically refer to those
employed by the water-providers, encompassing temporal, intensity-based, and spatial components of
80  irrigation decision-making. These components are broken down into the following:
1. When to irrigate (time - T) — determining whether water should be distributed in the current cycle
based on the combined effects of the previous irrigation cycle, precipitation response, and crop
water need;



https://doi.org/10.5194/egusphere-2025-4574
Preprint. Discussion started: 16 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

2. How much water is needed (intensity — L*) — evaluating the volume of water required by analyzing
85 the intensity of the combined effects of the previous irrigation cycle, precipitation events, and crop
water need; and
3. Which region to irrigate (space - Location) — identifying regions requiring irrigation by assessing
the spatial distribution of the previous irrigation cycle, precipitation events, and crop water need.

90  In reality, traditional irrigation practices are not limited to water-providers but extend to water-consumers
(farmers), who rely heavily on traditional irrigation calendars. These calendars, which are static and
developed based on the historical climatology of the previous century assume a fixed cropping pattern.
These calendars inform farmers of the irrigation schedule to follow but are becoming increasingly
inadequate in the face of rising food production demands. The reliance on these static crop calendars leads

95  to inefficiencies in water management and reduced agricultural productivity, as evidenced in many
countries such as India, Bangladesh, Pakistan, and Australia (Bose et al., 2021; Bretreger et al., 2020;
Hossain et al., 2017). Regardless of the region, farmers typically are not adaptive to rapid climate variability
and cannot accurately predict precipitation events and their amounts at sub-seasonal irrigation timescales.
This uncertainty often leads to overwatering of the fields to avoid the risk of crop loss due to rising

100  temperatures. Overwatering, however, can inadvertently wash away essential soil nutrients, while
underwatering can stress crops, both resulting in reduced yields. These practices lead to inefficiencies in
water use and diminish soil fertility and agricultural productivity (Hossain et al., 2017).

Considering the effects on agricultural yield due to altered rainfall patterns and rising temperatures, there

105  is an urgent need for a scientific-data-driven approach to optimize existing irrigation practices to achieve
maximum crop water productivity. The potential of using satellite data for sustainable agriculture and
efficient irrigation has been widely acknowledged in recent years (Deines et al., 2019; Sishodia et al., 2020;
Zhang et al., 2022). Several studies have employed crop coefficients (Kc) based evapotranspiration
techniques to enhance the understanding of irrigation schedules and irrigate fields based on actual water

110 needs (Bretreger et al., 2020; Gabr & Fattouh, 2021). Tools like the Food and Agriculture Organization's
(FAO) CROPWAT, which utilizes the Penman-Monteith equation (Allen et al., 1998), have provided
valuable insights into regional water requirements (Dong, 2018; Khaydar et al., 2021; Solangi et al., 2022;
Surendran et al., 2015).

115  Despite significant advancements, substantial gaps remain in the current body of research that need to be
addressed. These gaps arise from limitations in the temporal and spatial resolution of past studies. The
trade-off between temporal and spatial resolution of satellite data makes it challenging to estimate
evapotranspiration (ET) at high temporal and spatial resolutions simultaneously. Typically, temporal
resolution ranges from daily to monthly time steps. When the temporal resolution is one day, the spatial

120 resolution is usually at the kilometer scale (Chen et al., 2021). Conversely, if a medium spatial resolution
sensor having 30-meter pixels is selected, the temporal resolution is typically around 16 days from polar-
orbiting optical satellites (Tasumi, 2019). To achieve an optimal balance between spatial and temporal
resolution, a combination of satellites needs to be used. Additionally, challenges exist in operationalizing
findings or tools due to the latency of the available latest meteorological data. For instance, the Global Land

125  Data Assimilation System (GLDAS), which provides global meteorological forcing data, can be used in
estimating evapotranspiration (Pareeth & Karimi, 2023), has an early product stream with a latency of about
1.5 months. This latency hinders the ability to use these datasets for near real-time operational studies.
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Tools available for surface water irrigation also suffer from an inability to accurately distinguish between

130 the actual water provided to plants and the water needed by plants. This arises from the difficulty in
estimating ET under ambient water stress conditions for each crop and lack of metering and monitoring.
The incomplete information makes it difficult to estimate net water requirements and project potential water
savings. Additionally, there is a lack of integration of precipitation forecasts at the operational level to
optimize irrigation even further. It is important to acknowledge that, to the best of our knowledge, there is

135 no freely available open-source tool that addresses these gaps in optimizing surface water irrigation
schemes based on satellite data.

In this study, we present Satellite Data Rendered Irrigation using Penman-Monteith and SEBAL (sDRIPS.,
pronounced as “drips”), a cloud-based optimized surface water irrigation advisory system that leverages
140  earth observations and weather models. sSDRIPS. utilizes publicly available data from the Landsat satellite
series, the Global Forecast System (GFS), and the Global Precipitation Measurement’s (GPM) IMERG data
(precipitation dataset). The founding concept of SDRIPS originated from the Irrigation Advisory System
(IAS) first prototyped by Hossain et al. (2017). Later, Bose et al. (2021) integrated Gravity Recovery and
Climate Experiment (GRACE) satellite-based water storage data with Landsat data to quantify the impact
145  of IAS. Bose et al. (2021) also used satellite and model weather data to estimate ET using the Penman-
Monteith method (Allen et al., 1998) and the Surface Energy Balance Algorithm for Land (SEBAL;
Bastiaanssen et al., 1998) as proxies for crop water demand and actual water consumed, respectively.

The core concept of IAS has been implemented in various regions under different names, such as IAS for
150  Pakistan (Hossain et al., 2017), Provision for Advisory on Necessary Irrigation (PANI) in India (Hossain
et al., 2020), and Integrated Rice Advisory System (IRAS) in Bangladesh (Hossain et al., 2022). IRAS
represented a significant technological leap in achieving higher spatial resolution from the km scale of [AS
to the 30m scale using Landsat Thermal Infrared (TIR) data to estimate actual ET based on SEBAL.
Combined with crop water demand from Penman-Monteith FAO 56 (Allen et al., 1998) that could already
155  be estimated at comparable scales, IRAS offered the prediction of potential over or under-irrigation based
on the comparison of actual ET estimates from SEBAL and crop water demand estimates from Penman-
Monteith (Bose et al., 2021). Additional improvements in IRAS include cloud-based operationalization and
automation that requires minimum internet bandwidth or local computing resources for the stakeholder
agency. Climatic variables like precipitation, temperature, and wind speed are incorporated to generate
160  advisories for farmers on how much they should water their crops based on potential over or under-irrigation
in the previous week (Hossain et al., 2022). These advisories are then automatically transmitted to relevant
users comprising farmers, irrigation district managers and water agency staff. With the combined use of
two Landsat missions 8 and 9, the temporal resolution of IRAS has been improved from biweekly to weekly
frequency. Additionally, dynamic crop coefficient values based on planting dates are used in IRAS to
165  accurately estimate the actual water need for a given date.

Due to these innovative features, IRAS has been adopted by the Department of Agricultural Extension
(DAE), of the Ministry of Agriculture of Bangladesh (https://iras.bamis.gov.bd/ or visit
https://bamis.gov.bd and click “Satellite Products™). Currently, IRAS operates on DAE servers, providing

170  irrigation advisories to farmers across approximately 2,000 agricultural districts located in the Northwestern
and Northeastern regions of Bangladesh (Landsat Science, 2023).
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Given the recent adoption of the farmer/user-centric advisory system of IRAS that optimizes water use at
the consumer side, we believe there is now an opportunity for an operator-centric or water-provider-centric

175  irrigation advisory system for surface water irrigation at the supply side. This proposed operator-centric
(hereafter alternated with ‘provider-centric’) advisory can potentially guide irrigation water managers to
optimize water delivery at the supply side where water is being centrally withdrawn from a river for dispatch
to the irrigation command areas. Water suppliers and canal operators can be informed as to how much water
should be allocated or delivered to each region or canal based on the water needs of all the farmers of that

180  region. By assimilating nowcast and forecast precipitation data that are now available from weather forecast
systems with the previous week's water allotment to the region and the current crop water demand, an
accurate estimate of net water requirement for each region can be estimated. This net water requirement
can be translated to the flux of surface water (L3/T) that would need to be maintained in water-supplying
canals at the supply side for water managers. Consequently, such a system can support dispatch decisions

185 for surface water irrigation based on data-driven science, crop water needs, and ambient environmental
conditions.

In this study, our central research question is: How can we dynamically optimize a multi-branched canal
irrigation system using earth observation satellites? We believe that addressing the sustainable use of

190  surface water requires tackling it from both the consumer side (by farmers/users) and supply side (by water
managers/canal operators) with an operator-centric system as a complement to the user-centric system. The
key goal of this study is to guide canal operators and help them make informed decisions on how much
surface water to dispatch centrally from the source at the river for the command areas to maximize
agricultural water productivity. We developed and implemented sDRIPS for the Teesta River Irrigation

195  system located in Northern Bangladesh where there is currently an urgent need to optimize the use of
surface water resources.

2.Study Area

The sDRIPS study focuses on the Teesta Barrage Project (TBP) in Bangladesh, the country's largest surface
water irrigation project. Established in 1990, the TBP supplies irrigation water from January to April and

200  spans the Teesta River at Dalia-Doani Point in the Lalmonirhat district (Fig. 1 Middle Panel). This project
features a 615-meter-long concrete structure equipped with 44 radial gates, providing a discharge capacity
of 12,750 cubic feet per second and supporting a command area of 154,250 hectares through a 4,500-
kilometer network of canals (River Research Institute, 2023). For more details on TBP, readers are referred
to (River Research Institute, 2023).

205
The main TBP canal divides into three primary canals: Dinajpur Canal, Rangpur Canal, and Bogra Canal (
Fig. 1 Middle Panel), which further branches into an intricate network of secondary and tertiary canals.
Selecting the TBP as a study site offers two primary advantages: the utilization of in-situ water supply data
at the head canal and the opportunity to study a complex canal network system. A successful

210  implementation of our study to implement sDRIPS for TBP here means it can be adapted and applied to
surface water irrigation systems around the world. For this study, irrigation canal shapefiles, command
areas, and in-situ water supply data were provided by the Bangladesh Water Development Board (BWDB).
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Fig. 1: The Teesta Barrage Project (TBP). The left panel displays the map of Bangladesh with the location of TBP on the Teesta
215 River. The middle panel illustrates the network of irrigation canals. The right panel highlights the command areas served by the
primary, secondary, and tertiary canals. Satellite basemap from Bing Maps (© Microsoft).

3. Datasets Used

The publicly available datasets used in sSDRIPS allow for accurate assessments of the actual water needs of

command areas while considering climatic factors. To facilitate implementation and reduce technical
220  Dbarriers, the cloud computing platform Google Earth Engine (GEE), developed by Gorelick et al. (2017),

was utilized. The cloud computing platform helps sDRIPS to eliminate the need to download and process

satellite and weather data on the local machine. Table 1 provides a comprehensive list of the datasets utilized

by sDRIPS. Some of the key datasets, which are referenced by their initials in Table 1 but not previously

mentioned in the text are - Shuttle Radar Topography Mission (SRTM), Global Land Cover
225  Characterization (GLCC), and National Oceanic and Atmospheric Administration (NOAA).

Table 1: Datasets used in sSDRIPS

Band

Dataset ID on . e atial Temporal

Dataset Name/Derived Description Sp . P .
GEE Resolution Resolution

Products
Global NOAA/GFSOP25  temperature 2m_a . 25 km 6 hours
. — Air Temperature
Forecasting bove ground

System (GFS)
u_component of

wind_10m_above Wind Speed (u
- = component)
_ground

u_component_of .

wind_10m_above Wind Speed (v
- = component)

_ground
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EGUsphere\

specific_humidity

_2m_above_groun  Specific Humidity
d
Pressure
(Estimated using
o Hypsometric
Equation)
GEE and NOAA total_precipitation 16$-h0qr
_surface Precipitation
Landsat 8 and LANDSAT/LCO08/ B2 Blue 30 m 16 days
Landsat 9 satellite  C02/T1_TOA and individual, 8 days
series LANDSAT/LCO09/ B4 Red combined
C02/T1_TOA
B5 NIR
B6 Shortwave IR
Low Gain
B10 Thermal
High Gain
Bl Thermal
Single co-
polarization,
Sentinel 1 satellite COPERNICUS/S \'A% vertical 10 m 10 days
1 GRD . .
- transmit/vertical
receive
Shuttle Radar ;¢ 6 /s pTMGL1 Digital Elevation
Terrain Mapping 003 - Ma 30m -
(SRTM) - P
GlobalLand  copppNicUSL .
Cover discrete_classifica Land Use Land
. . andcover/100m/Pr - 100 m -
Classification oba-V-C3/Global tion Cover
(GLCC)
IMERG GPM - - Precipitation 10 km Around 4 hours

4. How sDRIPS Works

An overview of sDRIPS is first provided along with an illustration (Fig. 2), followed by a brief description
230  of the steps of the processes. These steps are then covered in detail in the methodology section.
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Fig. 2: lllustration of how sDRIPS works. Green represents the regions where surplus irrigation has been provided, while red
regions are deficit regions needing more irrigation.

235  When a Landsat satellite overpasses a command area, SDRIPS collects crucial information required to
estimate the actual water needs of the crop based on its growth stage using Penman-Monteith ET, and the
amount of water applied to the crop using SEBAL ET. The impact of precipitation is also considered to
refine the water demand estimation. This includes both nowcast precipitation data and forecasts of incoming
precipitation. The system then compares these estimates to determine whether the water needs of all crops

240  in the given command area are met. If the net water need is not satisfied, the area is classified as a deficit
region, and the volume of water needed for dispatch for the coming week is quantified (Fig. 2). Conversely,
if the water demand is met and there is an excess of provided water, the area is classified as a surplus region,
The volume of surplus water that can be potentially stored locally and used later for nearby deficit regions
is quantified (Fig. 2). This quantification allows water providers to monitor and adjust the water supply and

245  dispatch decisions from the main canal efficiently to meet the specific needs of each command area.

Fig. 3 illustrates the proposed methodology for the irrigation advisory system, sDRIPS. Before starting,

users need to have a GEE account (https://signup.earthengine.google.com/) to estimate Penman—Monteith

and SEBAL evapotranspiration and a Precipitation Processing System (PPS) account
250  (https:/registration.pps.cosdis.nasa.gov/registration/) to download the GPM IMERG precipitation data.
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Fig. 3: Flowchart illustrating the proposed data processing methodology for the irrigation advisory system.

Step 1: Create command areas based on the availability of command area data: This includes creating
255  configuration files for the command areas and updating the script configuration files accordingly to run the

system.

Step 2: Estimate Penman-Montieth and SEBAL ET: Use GEE to calculate evapotranspiration using the

Penman-Monteith method and SEBAL.

Step 3: Estimate net water requirements for each command area: Estimating soil moisture and
260  percolation using Sentinel 1. Download IMERG precipitation data and use it to estimate the net water

requirements by combining past precipitation with GFS precipitation forecasts.

Step 4: Estimate the water supplied to each command area: Calculate the water supply at the head canal

and distribute it across the command areas based on the supply.

Step 5: Assess irrigation status and generate plots: Evaluate the irrigation status using the estimated ET
265  and water supply and generate water stress plots for analysis.

5. Methodology

5.1. Creation of Configuration Files (Step 1)

The configuration files provide the essential information required for the sDRIPS system to tailor the
advisory system to the specific needs of the user. Readers are requested to refer to Section S1 of the
270  supplementary material for more details.
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5.2. Penman-Monteith and SEBAL Based Evapotranspiration
Estimation (Step 2)

After the creation of the configuration files, the next step is to estimate Penman-Monteith and SEBAL-
based evapotranspiration using Landsat data. sSDRIPS checks the latest Landsat imagery from both Landsat

275 8 and Landsat 9 collections for each command area at the specified time. Once an image for the given area
is found, the timestep of the image is noted and used to estimate the Kc value by calculating the difference
between the planting date and the image timestep and using the crop configuration file. Similarly, other
useful information, as mentioned in Table 1, is stored temporarily on the cloud.

5.2.1. Penman-Monteith Evapotranspiration

280  Penman-Monteith evapotranspiration (ETo) serves as a proxy for potential water demand for a reference
crop. ETo is estimated for the Landsat overpass date and for all command areas following the methodology
of Allen et al., (1998). The equation for ETo is as follows:

900
ETo — 0.408A(Rn - G) + YWU,Z (es - ea) ;
°= A+7(1+ 0.34uy)

Where ETo is reference evapotranspiration (mm/day), R, is net radiation at the crop surface (MJ/m?day),
G is soil heat flux density (MJ/m?/day), T is mean daily air temperature at 2 m height (°C), u, is wind speed

285  at2 mheight (m/s), e; is saturation vapor pressure (kPa), e, is actual vapor pressure (kPa), es—e, is saturation
vapor pressure deficit (kPa), A is slope of the vapor pressure curve (kPa/°C), y is psychrometric constant
(kPa/°C).

ETo calculated using

1 is the evapotranspiration for a reference crop. It is then adjusted for the actual crop growing in the given
290  command area by considering the crop type, development stage, and water stress on crop transpiration for
that command area using the following equation

ET = ETo x K. X K, 2

Where ET is the potential evapotranspiration (mm/day), K. is the crop coefficient and K; is the soil water
stress coefficient. Unless otherwise specified, hereafter, PET will be used as a term to refer to crop water
295  demand ET based on the Penman-Monteith equation.

5.2.2. SEBAL Evapotranspiration

In our study, we employed the SEBAL algorithm developed by Bastiaanssen et al. (1998). The SEBAL
model has been effectively implemented in more than 30 countries (Bastiaanssen et al., 2005). The SEBAL
model has demonstrated high accuracy in estimating evapotranspiration. A few examples are - Zahid et al.
300  (2023) compared SEBAL ET with lysimeter ET in Pakistan, finding the Coefficient of Determination (R?)

10
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of 0.9 and a Root Mean Square Error (RMSE) of 1.26 mm/day with maximum error as 24.3%. Similarly,
Zoratipour et al. (2023) found an R? of 0.9 and an RMSE of 2.15 mm/day in Iran, and Rawat et al. (2017)
validated SEBAL ET estimates in India with an R? of 0.91. Typically the accuracies of the estimated
SEBAL ET model are 85%, 95%, and 96% at daily, seasonal, and annual scales, respectively (Tang et al.,

305  2013). SEBAL used in the sDRIPS framework was originally employed and validated by Bose et al. (2021)
and Hossain et al. (2022).

The SEBAL model solves the surface energy balance equation to estimate evapotranspiration using satellite

images and meteorological forcings data. SEBAL computes an instantaneous ET flux for the Landsat
310  overpass time. A series of equations are incorporated in the SEBAL model that computes net surface

radiation, soil heat flux, and sensible heat flux to the air. The residual energy flux is then calculated by

subtracting the soil and sensible heat fluxes from the net radiation at the surface. This residual energy (latent

heat) enables liquid water to transition to the water vapor phase, that is, the required evapotranspiration.

Thus, for each pixel of the image, the ET flux is calculated as a residual of the surface energy budget shown
315  in Equation 3.

AE=Rn—-G—-H 3

Where AE is latent heat flux (energy used for evapotranspiration), R, is net radiation at the surface, G is soil
heat flux, and H is sensible heat flux. SEBAL-based evapotranspiration (SEBAL ET) serves as a proxy for
the actual water consumed by the crop, a concept validated by Bose et al. (2021). In our study, daily or 24-
hour evapotranspiration was computed by assuming that variations in instantaneous evapotranspiration are

320  not significant over the 24-hour period (Allen et al., 2007). For weekly evapotranspiration calculations, we
estimated evapotranspiration on the day of Landsat acquisition and considered this steady-state
evapotranspiration value for the next seven days until the availability of the next Landsat image. In this
study the term SEBAL ET will refer to actual ET estimated using the SEBAL method (Equation 3)

5.2.3. Deficit Irrigation

325  To quantify the evapotranspiration-based water requirements from a command area, we estimate the deficit
for each command area or region. The deficit was calculated using the Equation 4.

Deficit Irrigation = SEBAL ET — PenmanMonteith ET 4

Fig. 4 Panel (a) represents the cumulative sum of Penman-Monteith based ET for 7 days, depicting the total
water demand based on the rice crop water requirements. Similarly, Panel (b) is the cumulative sum of
SEBAL-based ET for 7 days, providing an estimate of the actual water consumed by the crops, factoring
330  inthe actual conditions of the fields. Panel (c) shows the deficit and sufficient regions. The intensity of the
deficit or sufficient is estimated using Equation 4 for every pixel. The deficit regions indicate areas where
the water demand exceeds the supplied water, while sufficient regions indicate areas where the supplied
water meets the demand. This detailed mapping allows water managers to identify critical areas needing

11
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more precise water management interventions. Additionally, an uncertainty analysis of the SEBAL ET

335  estimates was performed using Monte Carlo simulations, revealing a normalized deviation of 8.6% from
the ensemble mean for the operational period of TBP. For further details, please refer to Section S3 of the
supplementary materials.

7-Day Cumulative Penman-Monteith ET for 14 March 2023  7-Day Cumulative SEBAL ET for 14 March 2023 7-Day Cumulative Deficit and Sufficient ET for 14 March 2023
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340 Fig. 4: Map of estimation of ET-based deficit and sufficient irrigation regions.

5.3. Estimation of Net Water Requirement (Step 3)

To accurately determine the net water requirement, several factors must be considered, with soil moisture
being a critical component. Soil moisture plays a pivotal role in understanding the interactions between
surface and groundwater and in generating accurate irrigation advisories, as it governs the amount of water

345  percolating through the soil. Water lost through percolation, which moves beyond the crop root zone,
becomes unavailable for crops. To account for percolation in our framework, we utilized Sentinel-1
Synthetic Aperture Radar (SAR) data available on GEE. While global soil moisture products have been
developed at coarser resolutions ranging from 9 km to 40 km (Chan et al., 2016; Kerr et al., 2012; Kim et
al., 2023), these products are unsuitable for field-scale applications. SAR sensors, on the other hand, achieve

350  finer spatial resolutions (10 m), making them suitable for agricultural field-scale analysis (Arias et al.,
2023). Sentinel-1 C-band (wavelength of 5cm) data has been extensively used in soil moisture estimation
studies and has demonstrated promising results up to 100 mm depth (Arias et al., 2023; Bauer-
Marschallinger et al., 2019; Bhogapurapu et al., 2022; Wagner et al., 1999). While ground sensors provide
ideal soil moisture measurements, installing them is often impractical on a large scale. To maintain the

355  global scalability of the framework, Sentinel-1 C-band data was selected as the most viable alternative for
estimating soil moisture. After estimating soil moisture from Sentinel-1 data, soil moisture at field capacity
was derived using the Hengl & Gupta, (2019) dataset available on GEE. Percolation was subsequently
calculated using Equation 5.

360 Percolation = Soil Moisture — Field Capacity 5

Fig. 5 Panel (a) shows the average soil moisture estimated using the Sentinel 1 C band for each command

area, Panel (b) shows the soil moisture at field capacity from Hengl & Gupta, (2019) and Panel (c) shows

the average percolation that happened in each command area. Since percolation only happens when the soil

moisture is greater than the soil moisture at field capacity, percolation was estimated using the following
365  equation (Equation 6) for each pixel and then averaged over the command area.

12



https://doi.org/10.5194/egusphere-2025-4574
Preprint. Discussion started: 16 October 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

Soil Moisture — Field Capacity; =0

Percolation = { 0; else

Average Soil Moisture for the week of 6 March 2023 within 100mm Soil  Soll Moisture at Field Capacity within 100mm Soil Average Percolation for the week of 6 March 2023 within 100mm Soil
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370 Fig. 5: The left panel shows the average soil moisture estimated using Sentinel 1 C band on 6th March 2023, the middle panels
show the soil moisture at field capacity, and the right panel shows the estimated percolation on 6th March 2023

Another crucial factor in determining the net water requirement is precipitation. Both Penman-Monteith
and SEBAL evapotranspiration models do not inherently account for the effect of precipitation. To estimate

375  the net water requirement accurately, it is essential to incorporate the precipitation events (if any). For this
purpose, the precipitation for the current week or the operational week is estimated using the GPM IMERG
data. Given the operational objective of the framework, only IMERG's early run data is utilized. The
cumulative precipitation for the seven days preceding the latest Landsat overpass date is considered.
Additionally, to provide accurate advisories to water managers, the cumulative sum of forecasted

380  precipitation for the next seven days from the Landsat overpass date is also included in the calculations.
Consequently, the net water requirement can be determined using the following equation:

Net Water Requirement = SEBAL ET — PET — Per + P, + Py, 7

Here in Equation 7, SEBAL ET is the estimated evapotranspiration, PET is the evapotranspiration estimated
using the Penman-Monteith (proxy of actual water demand of crop), Per is the percolation, P, is the
nowecast precipitation, and Py is the forecasted precipitation.

385  Based on the constituents of the above equation, the net water requirement is assessed as follows:

e If the net water requirement is positive, it indicates that the combined effect of last week's water
supply, the amount of percolation that happened (Equation 6), the current week's precipitation, and
the next week's forecasted precipitation has met or exceeded the water demand. In this case, the net
water requirement for the given command area is considered to be null, as no additional water is

390 needed in the coming week.

e Ifthe net water requirement is negative, it signifies that the combined effect of the last week's water
supply, the amount of percolation happened, the current week's precipitation, and the next week's
forecasted precipitation was insufficient to meet the upcoming demand. Consequently, additional
water is required for the given command area in the coming week.

395
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It must be remembered that to calculate the surplus or deficit regions with precipitation factored in, we do

not require to know the system losses, such as canal seepage, canal evaporation or sluice gate efficiency.

This is because our calculations are based on the field conditions after the water has been delivered or

consumed on the field. The actual ET estimated from the SEBAL algorithm is assumed to be a proxy of
400  on-field water use or on-field irrigation.

5.4. Command Area Irrigation Status (Step 4-5):

After estimating the net water requirements for each command area, SDRIPS evaluates whether the current
water supply conditions can meet these demands or not. To perform this evaluation, the water supply at the
head canal is proportioned according to the area of each command area. This proportioning is based on the

405  assumption that a larger command area will have more cropped land, resulting in higher evapotranspiration
and, consequently, a greater water demand compared to smaller command areas. A distribution factor (DF)
is created using the following equation:

Ai 8

DF, = ——

l =1 A

410  Where DF; is the distribution factor for i command area, N is the total number of command areas, A; is an
area of i command area. After estimating the distribution factor for each command area, the available
water supply at the head canal is multiplied by this factor to determine the amount of water distributed to
each command area. Subsequently, the amount of water passing through each canal is estimated based on
the distribution to the command areas.

415
Fig. 6 illustrates this distribution process, showing how water is allocated to various command areas within
the irrigation canal network. In Fig. 6, let the total water supply at the head canal be denoted as 7. The main
canal (C) branches into secondary canals (S/C, S2C, and S3C) and further into tertiary canals (T1S2C,
T1S3C, T2S3C). The distribution factor (DF) for a command area b is calculated as shown in 9:

DF, b g
P T a+b+c+d+te

420  The water supplied to command area b is then determined by:

WSb =T X (DFb) 10

14
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Fig. 6: Illustration of how water distribution( dispatch) advisory for the command areas of an irrigation canal network.

Similarly, the water passing through canal S2C includes the amount of water supplied to its command area
425  and the water distributed to its sub-canals (Fig 6). This can be expressed as below:

WSZC = WSb + WSC 11

6. Results

6.1. Water Needs and Distribution in Command Areas

Fig. 7 illustrates the four panels generated by sDRIPS after running it for 14th March 2023 for TBP. For a
better understanding of the readers, these panels are discussed in detail as follows. Fig. 7 Panel (a) depicts
430  the main Teesta canal bifurcating into three primary canals and the percentage distribution of water in each
canal. Using the DF, it is estimated that the Dinajpur canal receives approximately 27%, the Bogra canal
receives around 17%, and the Rangpur canal receives about 18% of the total water supply withdrawn from
the Teesta River for that week. Similarly, the water distribution for each canal is also quantified. Overall,
the Teesta main Canal, carrying 100% of the water, supplies around 62% to these three primary canals,
435  with the remaining 38% distributed to smaller canals serving command areas upstream of the primary
canals. Quantifying this information is beneficial for any canal system (not limited to TBP) with some
control over the distribution of water to its secondary and tertiary canals. This allows water managers to
monitor and adjust the water distribution to each command area based on current needs. The percentage of

15



https://doi.org/10.5194/egusphere-2025-4574
Preprint. Discussion started: 16 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

440

445

450

water flowing in each canal was estimated using the basic principles of network theory, where the amount
of water from the lowest canal with no bifurcations was summed up to the primary canal.

. Canal Water Distribution (Percentage) 100 Water Provided via Teesta For 06 March 2023
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Fig. 7: (a) Canal water distribution based on the distribution factor where head canal is assumed to have 100% water at the
source; (b) amount of water allotted to each command area from the water supply based on (a); (c) net water requirement of each
command area after the inclusion of previous week’s water supplied to crops, nowcast, and forecast precipitation, and amount of
water percolated (d) surplus or deficit command areas after the integrating all the components of water supply (panels b and c).

Fig. 7 Panel (b) illustrates an example of the amount of water that provided to each command area by the
water supply from the Teesta River using the canal network. This is calculated by multiplying the DF with
the available water supply at the head canal and following the hierarchical canal network (primary to
secondary; secondary to tertiary and so on).
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Fig. 7 panel (c) illustrates the net water requirement, calculated by integrating multiple factors. These
factors include the water applied to plants during the previous week, the current water needs of the plants,
455 the precipitation received, the forecasted precipitation for the upcoming week and the amount of total water
percolated. This estimation follows 7. The combined effect of these factors, excluding the canal water
supply, met the needs of 60% of the command areas for the given date. This information is crucial for the
hydrologic community, including water managers and researchers, as it identifies regions dependent on
precipitation variability. Over an extended period, water managers and researchers can study the areas that
460  are primarily reliant on precipitation and are sensitive to changes in precipitation patterns. When
precipitation is adequate, these regions lessen the stress on water managers. Conversely, insufficient
precipitation exacerbates the stress on water resources. Additionally, these regions can vary based on crop
type, growth stage of crop, and precipitation intensity. Researchers can leverage this data to study the long-
term sensitivity of various crops to precipitation variability, informing crop selection in regions with high
465  precipitation variability and recommending robust crops capable of withstanding such conditions.

Fig. 7 panel (d) is derived by integrating the net water requirements of the command areas (Panel c) with
the water provided by the available water supply (Panel b). This panel highlights regions within the TBP
that have either surplus or deficit water. This information is crucial for water managers to make informed

470  decisions about adjusting and optimizing water supply across different regions in the upcoming dispatch
cycle. To provide a clear understanding to readers, we have discussed the various colored regions depicted
in Panel (d) below.

Red and Blue Regions: These areas have either surplus water (blue) or deficit water (red). These regions

475  pose a significant challenge to water managers. To address this, water managers can divert water from
surplus areas to nearby deficit areas if the supply infrastructure allows it and there is buy-in from farmers.
Additionally, they can also advise farmers in the deficit regions to cultivate less water-intensive crops to
balance water distribution more effectively.

480  Light-Colored Regions: These areas exhibit low intensity of surplus or deficit water. Water managers
should aim to stabilize the red and blue regions to fall within this range. These regions typically include
areas where - i) The water needs were already met by precipitation, and additional water was supplied. ii)
The water needs were only partially met by precipitation, but the combined effect of the water supply
sufficiently met the requirements, albeit with a slight surplus.

485 6.2. Reliability of sDRIPS

To promote the applicability of SDRIPS in other regions where the proposed framework might be suitable
and to instill confidence in its reliability among readers, we conducted a two-pronged investigation: i)
comparing the estimates of SDRIPS with in-situ data, and ii) comparing the estimates of sDRIPS with
OpenET. In the first approach, we evaluated the net water requirement for the entire TBP by aggregating
490  the net water requirement estimates for each command area. These estimates were calculated based on the
combined response of the previous irrigation cycle, nowcast and forecast precipitation, and the amount of
water percolated, as outlined in Equation 7. For consistency in the analysis, we assumed rice, a water-
intensive crop, was cultivated uniformly across all regions of the TBP. We then compared the sDRIPS-
derived net water requirement with the actual amount of water supplied through the main canal system of
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495  the TBP during the period from January 2023 to April 2023. Additionally, an uncertainty analysis was
performed on the net water requirement by introducing perturbations in the parameters of the
evapotranspiration models and running Monte Carlo simulations. For more details, readers are referred to
Section S3 of the supplementary materials.
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Fig. 8: Timeseries of net water required by TBP vs amount of water supplied to TBP.
From Fig. 8, we can infer the following:
1. Early Crop Stage: At the early stage of crop growth, the water supplied through the TBP canal
sufficiently met the crop's water requirements. However, during this period, there can be instances
505 where the water supplied exceeded the crop water needs, indicating potential inefficiencies in water

allocation.
2. Mid-Crop Stage: During the mid-stage, the water supply from the TBP canal was insufficient to
meet the crop water requirements, resulting in unmet water demand.
3. Precipitation Effects: Precipitation intensity significantly reduced the water burden on the TBP
510 canal during certain weeks:

a. 14th March 2023, 7th April 2023, and 23rd April 2023: Precipitation alone satisfied the
crop water needs for the TBP region, demonstrating that the TBP region could have
significantly benefitted from integrating precipitation and its forecasting into its water
allocation planning. This could reduce unnecessary reliance on canal water during times of

515 sufficient rainfall.

b. 30th March 2023: Despite the precipitation, the combined effect of rainfall and TBP water
supply was inadequate to meet crop water demands due to low precipitation intensity.

4. Late Crop Stage: Toward the end of the crop cycle, both water demand and TBP water supply
decreased. During this period, precipitation also occurred, further reducing the canal's burden.

18
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In the second approach, we compared the sDRIPS estimates (SEBAL ET as implemented within the
sDRIPS framework) with the OpenET. OpenET leverages 30m Landsat imagery and employs six state-of-
the-art satellite based energy balance models, that is, ALEXI/DisALEXI, eeMETRIC, geeSEBAL, PT-JPL,
SIMS and SSEBop (details on these models can be found in Volk et al., (2024)). These models have been

525

extensively applied and evaluated in the United States for various water management and agricultural

applications (Volk et al., 2024). According to Volk et al., (2024), a comparison of OpenET data with 152
in-situ datasets across the USA showed that the daily ensemble results for cropland sites had a mean
absolute error of 23.6% and an RMSE of 31.1% of the mean. However, OpenET is currently limited to use
within the USA. To enable a fair comparison, we applied the sSDRIPS framework to regions within the USA

530
Fig. 9 and Fig. 10
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Fig. 9: Location of the region of interest in California with the timeseries of estimates from OpenET and sDRIPS-based SEBAL
ET. Satellite basemap from ESRI.
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Fig. 10: Location of the region of interest in Nebraska with the timeseries of estimates from OpenET and sDRIPS. Satellite
basemap from ESRI.
In both Fig. 9 and Fig. 10, the upper panel shows the location of the region of interest where SDRIPS
was applied, and the lower panel shows the timeseries of the estimates. The sDRIPS estimates align
540 closely with the OpenET ensemble range, although some outliers are observed. Excluding the
outliers, two key inferences can be drawn from the comparison:
1. Both sDRIPS and OpenET exhibit similar trends in ET estimates across the studied regions.
2. During peak periods (e.g., July), sDRIPS estimates slightly underpredict ET, or OpenET slightly
overpredicts it (noting that OpenET itself is not 100% accurate). This discrepancy is likely due to
545 differences in the spatial resolution of meteorological input data that comes from different sources.

OpenET utilizes Gridded Surface Meteorological (gridMET) (Abatzoglou, 2013) and North
American Land Data Assimilation System (NLDAS) products (Xia et al., 2012). Both gridMET
and NLDAS are limited to the USA with spatial resolution of 4 km and around 13 km respectively;
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whereas sDRIPS relies on a global (GFS) product with a coarser spatial resolution of 25 km to

In this section, we perform a comparative assessment of SDRIPS with the help of two scenarios. In scenario
one, we simulate traditional irrigation practices, whereas in scenario two, we simulate scenario one using

6.3.1. First Scenario - Traditional Irrigation Practices (without sDRIPS)

In this scenario, we illustrate traditional irrigation practices from the perspectives of both water providers
and water consumers. The traditional practice from the water provider's perspective involves allotting water
without knowledge of the specific needs of command areas and without accounting for precipitation. From
the water consumers' perspective, traditional irrigation involves watering crops based solely on the water
allocated to them, again without considering precipitation. It is important to remember that the TBP operates
mostly from January to April, prior to the next monsoon season. During this period, farmers do not account
for precipitation events in their irrigation practices. We illustrate the scenario simulation using the panels

Water Applied Based on Teesta Supply and Precipitation for 14 March 2023
2621 6000 227

Net Water Abundant Map for 14 March 2023
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§
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Fig. 11: Scenario 1 example without the s.D.RIP.S - Simulation of traditional irrigation practices i.e. without

Panel (a) of Fig. 11 shows the water requirements estimated for each command area for rice crops using
the FAO-recommended Penman-Monteith equation. Panel (b) of Fig. 11 depicts the amount of water
applied to each command area by farmers (for the week of March 14, 2023), including water added from
precipitation events. However, farmers do not anticipate these precipitation events and fully utilize the
allotted water, disregarding previous irrigation cycle and precipitation. Panel (c) of Fig. 11 illustrates the
excess water present in the fields, calculated as the difference between the total water applied to the
command area and the Penman-Monteith based water requirements of the crops. The positive values in

550 obtain the meteorological variables (see Table 1).

6.3. Comparative Assessment of SDRIPS Scenarios
555  sDRIPS. More details are provided in the following subsections.
560

shown in Fig. 11.

SR

565 ongie

understanding and quantifying the actual water need of the crop and command area.
570
575

Panel (c) of Fig. 11 indicate that excess water has been used, which is unsustainable as it can wash away
vital nutrients needed by crops, ultimately affecting yield.
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6.3.2. Second Scenario - Adaptive Irrigation Practice (With sDRIPS)

In this scenario, we consider the same time frame as in Scenario 1 and for the same week; however, here,
water providers use the SDRIPS system. This system accounts for water applied in the previous irrigation
cycle (and whether it was sufficient or deficit), current precipitation events, and forecasted precipitation.
Water is allocated based on the actual needs of the command areas, considering these factors. The

Water Applied Based on Teesta Supply for 14 March 2023
2 () 0

8
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200 &
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Fig. 12: Illustration of Scenario 2 with the s.D.R.IP.S - Simulation of adapting irrigation practices i.e. understanding and

Panel (a) of Fig. 12 is similar to Panel (a) of Fig. 11 and is estimated using the Penman-Monteith equation.
Panel (b) of Fig. 12 shows the combined response, considering the previous irrigation cycle, the recent
precipitation event, and forecasted precipitation before the next irrigation cycle. Including these factors
reduces the stress on water providers and guides them to allocate water only where it is needed. Panel (c)
of Fig. 12 illustrates the amount of water applied by the farmers. The water was allocated to each command

By comparing Scenario 1 (traditional irrigation practices) and Scenario 2 (optimized irrigation with
sDRIPS), approximately 475 acre-feet of water could have been saved using sDRIPS for the specific week
as an example. The saved water could then be diverted to water deficit regions outside the TBP or stored
for future TBP needs. This comparison focused on March 14, 2023, when the available water supply
exceeded the water demand of the region. However, there are instances where the net demand exceeds the

Panel (a) of Fig. 13 shows the Penman-Monteith based water needs for each command area. Panel (b) of
Fig. 13 depicts the combined response, including the effects of the previous irrigation cycle and
precipitation. Panel (c) of Fig. 13 illustrates the water applied to the command areas with the limited water
supply. Panel (d) of Fig. 13 presents the water stress map, highlighting regions where water demands were

580
simulation is illustrated with the panels shown in Fig. 12.
P M ith Based Water for 14 March 2023 Combined Response of SEBAL and Precipitation for 14 March 2023
: @) 5]
oo w000 §
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585
quantifying the actual water need of the crop and command area.
590
area specific to its needs and was fully utilized by the farmers.
595
total water supply, as illustrated in the panels of Fig. 13 for February 25, 2023.
600
605

not met. In situations where the water demand exceeds the supply, if water providers or canal operators
have greater control over the irrigation canals, they should reconsider the DF of the command areas. This
would allow for the redistribution of water from surplus regions to deficit regions. If such control is not
feasible, water providers should either manage the water needs by diverting water from outside the TBP to
required command areas or encourage farmers to grow less water intensive crops in those regions.
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Fig. 13: sDRIPS simulation for 25th March 2023, when the net water demand was higher than the water supply.

7. User Friendliness of sDRIPS and Limitations

7.1. User Friendliness

615  The sDRIPS system is designed to address the gaps identified in the current literature, as mentioned in
section 1 of the study, by providing a user-friendly and customizable tool for analyzing various irrigation
scenarios. These are discussed in detail in Section S2 of the supplementary material.
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7.2. Limitations

While sDRIPS provides a scalable and data-driven framework for surface water irrigation optimization, it
is not without limitations. These limitations arise from sensor constraints, practical assumptions required
for scalability, and certain challenges that lie outside the scope of this study. The following key limitations
are acknowledged:

1. sDRIPS relies on optical sensors - Landsat series, to estimate actual ET using SEBAL. High cloud
cover, common in certain regions or seasons, can compromise the framework's effectiveness by
hindering the energy balance.

2. sDRIPS identifies crop fields using the Copernicus Global Land Cover dataset, though land cover
maps may not always fully capture dynamic changes over time, potentially affecting net water
requirement estimates. However, the framework is designed to be flexible, allowing users to refine
or integrate higher-resolution local land cover data, when available, to better distinguish between
irrigated and rainfed areas for improved water management.

3. Groundwater contributed minimally or negligibly to crop evapotranspiration during the study
period due to the considerable depth of the water table relative to crop root lengths. However, in
regions with shallower water tables or highly conductive soils, groundwater may influence
evapotranspiration estimates. Current state-of-the-art satellite-based techniques often lack the
spatial resolution needed to precisely quantify groundwater contributions at the farm scale.
Integrating model-based simulations or in situ groundwater flow measurements into the
framework’s water balance equations could enhance estimation accuracy and provide a more
comprehensive understanding of water dynamics.

4. The framework assumes stable climatic conditions over a weekly timescale to estimate the
cumulative ET. While this assumption aligns with regional climatology in the study area and is
supported by other studies (Bose et al., 2021), it may not hold true in regions where climatology
exhibits high variability within a week. Consequently, users should carefully evaluate the
applicability of this assumption when deploying sDRIPS in areas with high dynamic climatic
conditions.

5. The framework does not account for the behavior of water-providers and water-consumers, which
can significantly influence the effectiveness of any irrigation planning scheme. Behavioral change,
particularly among farmers, is a gradual and long-term process that falls outside the direct scope of
this study. While this study demonstrates the utility of a satellite data-driven surface water irrigation
optimization tool, stakeholder-led interventions, such as economic incentives (e.g., price
differentiation), may be necessary to accelerate behavior change, as discussed by Portoghese et al.,
(2021). Furthermore, behavioral dynamics can vary across different regions and countries,
necessitating tailored approaches for each context.

6. Hydraulic constraints are assumed to be invariant in the study. Users can integrate the sDRIPS
framework with different hydraulic designs and can check the flexibility (see Sawassi et al., 2022).

7. The assumption that water percolation below the 100 mm depth is lost to deep percolation may lead
to an overestimation of irrigation needs, especially for crops that are known to utilize water beyond
this depth. This simplification is a conservative approach that prioritizes caution in estimating crop
water requirements, which is particularly important in water-scarce regions where slight
overestimating water needs could lead to more effective water management decisions. However, it
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also introduces uncertainty, and future work could refine this aspect by incorporating models that
predict root zone soil moisture or by using satellite-based soil moisture estimates for deeper layers.
Additionally, methodologies such as those proposed by (Baldwin et al., 2017) could be explored to
improve the estimation of water availability in deeper soil layers.

665 8.Conclusion

In this study, we co-developed and implemented a water-provider-centric irrigation advisory system,
sDRIPS, to manage water resources sustainably and robustly while addressing existing gaps in the
literature. sSDRIPS integrates satellite and model data to estimate the actual water needs of command areas.
This crucial information aids water providers in determining the appropriate water allocation for each

670  command area. The actual water need depends on several factors, including the amount of water applied in
the previous irrigation cycle, current precipitation, and forecasted precipitation. By considering these
factors and the available water supply, SDRIPS advises canal operators on which command areas require
water and the amount needed. During periods of excess water supply, sDRIPS advises canal operators on
how much water can be stored for future irrigation needs or diverted to water-deficit regions outside the

675  irrigation project. Conversely, during water shortages, sDRIPS generates water stress maps to identify
regions experiencing water shortages and guides on the amount of water needed in deficit areas. sSDRIPS
also allows for the simulation of various scenarios using historical data on different crops. This capability
enables stakeholders to evaluate the impact of future policies on water supply conditions if these policies
are implemented today and to devise science-based responses. By offering a flexible and comprehensive

680  tool for water management, SDRIPS has the potential to contribute significantly to sustainable irrigation
practices globally, addressing the challenges posed by a changing climate and inefficiency in managing
surface water and groundwater resources.

685
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