Supplementary Information

S1. Creation of Configuration Files (Step 1):

The configuration files provide the essential information required for the sDRIPS system to tailor the
advisory system to the specific needs of the user. There are three configuration files, namely - the Script
Config File, Crop Config File, and Command Area Config File. These files store necessary file paths,
information about the crops grown in each command area, the dates for which the system must run, and
other pertinent details. Below are the details of the functionality of each of the configuration files.

Script Config File: This file stores the path to the command area shapefile, the date for which the system is
to be run, and whether the user wants to run the system for the current week, last week, or both. Furthermore,
script configuration file holds Boolean statements (“True” or “False”) to consider different modules (say
percolation or precipitation forecast) into the analysis

Crop Config File: This configuration file stores the crop coefficient (Kc) values as a function of days. By
default, it includes Kc values for several crops. Having a configuration file for Kc values gives users the
flexibility to update Kc values as needed, especially with the introduction of high-yielding crops or when a
cropping pattern needs to be simulated for changing climate conditions. Additionally, the simple structure
of the file allows users to add new crops and drop existing crops for water management analysis.

Command Area Config File: This file is created based on user inputs and is automatically scaled to each
command area. It includes data such as the planting date, crop type, and soil coefficient (default is 0.5) for
each command area. This setup provides users with the flexibility to input specific values for each command
area. Additionally, users can set default values that will be automatically applied to all command areas,
simplifying the configuration process.

In cases where users do not have the command area shapefile, SDRIPS can iteratively generate buffer
regions around each canal until it reaches the required serving area. This approach requires information on
how much area each canal serves. The method back calculates the command area boundary based on the
canal's serving capacity. While this method may not be entirely accurate, it provides a reasonably precise
boundary to begin with.

S2. User Friendliness of sDRIPS

The sDRIPS system is designed to address the gaps identified in the current literature, as mentioned in
section 1 of the study, by providing a user-friendly and customizable tool for analyzing various irrigation
scenarios. The primary key features that enhance the usability of sSDRIPS are as follows:

1. Ease of Use and Customization: sDRIPS employs configuration files that allow users to modify
variables without altering the main script. To implement sDRIPS in a specific region, requirements are
minimal, users need to have a Google Earth Engine (GEE) account and a Precipitation Processing System
(PPS) account. Additionally, users must provide the canal network shapefiles, the command area of each



canal (recommended but optional), the types of crops to be included in the analysis, and the planting
dates.

2. Debugging Support: sDRIPS supports debugging by logging detailed information at every step.
This includes completion reports, error messages, and the corresponding line numbers, which assist users
in identifying and resolving issues efficiently.

3. Real-Time Analysis Status: During the execution of its algorithms, sSDRIPS displays a progress
bar for each algorithm, along with an estimated time to completion allowing users to monitor the status of
ongoing processes.

4. Low Computational Power: sDRIPS leverages the GEE cloud computing platform for core
processes such as Penman-Monteith and SEBAL-based ET estimation, thereby eliminating the need for
high-performance computing resources. This ensures that users can run the system effectively without
requiring advanced computational infrastructure.

S3. Uncertainty Analysis

S3.1.  Through changing input parameters

We conducted Monte Carlo simulations by perturbing the six key input parameters, listed in Table S1. Two
methods of perturbation were employed:

1. Applying fixed percentage changes based on satellite retrieval uncertainty, and
2. Randomly sampling values within realistic bounds informed by observational variability and
literature.

Both methods yielded similar results in terms of ET distribution, reinforcing the robustness of the
uncertainty propagation approach. Here we have focused on the approach (a).

Table S1: Parameters perturbed in Monte Carlo Simulations

Sr. No Parameter Range
1 Normalized Difference Vegetation Index (NDVI) +20% from estimated
2 Albedo +20% from estimated
3 Leaf Area Index (LAI) +20% from estimated
4 Surface Roughness +20% from estimated
5 Aerodynamic Resistance +20% from estimated
6 Emissivity +20% from estimated

Using these perturbed inputs, we generated an ensemble of 1,000 Monte Carlo simulations over the selected
command area, covering multiple timestamps throughout the study period. The relative spread of each



ensemble was calculated using equation S1, where Qs and Q; denote the 75™ and 25™ percentiles of the ET
distribution, respectively. Fig. S1 presents the boxplot of ET ensembles at a representative timestamp,
demonstrating that the ensemble mean and median closely align with the deterministic (unperturbed)
estimate for all time periods.
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Fig. S1: Box plots for ET estimates across 1000 Monte Carlo Simulations.

This non-parametric measure of uncertainty (relative spread) allowed us to generalize the uncertainty
bounds to other TBP command areas with similar agro-climatic conditions. The mean relative spread was
used as a scaling factor for extending uncertainty estimates region wide. Subsequently, the upper and lower
bounds of the ET estimates were derived using the equations S2 and S3, where ETaq. is the deterministic or
unperturbed estimate. The final uncertainty-propagated estimates for net water requirements are
summarized in Table S2 and visualized in Fig. S2.
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Furthermore, the deterministic SEBAL-derived ET values were compared to the ensemble mean generated
through the Monte Carlo simulations. Specifically, we computed the normalized deviation of the
deterministic estimate from the ensemble mean using equation S4, where SEBAL ETg is the deterministic
SEBAL estimate and Ensemblesqis the standard deviation of the ensemble.

SEBAL ETq. — Ensemble
Normalized Deviation = det MeAn % 100
Ensembleg:,

S4

The mean normalized deviation over the operational period of the Teesta Barrage Project (January—April)
was found to be 8.6%, indicating that the deterministic SEBAL values deviated by an average of 8.6% from
the ensemble mean. This indicates that, on average, deterministic SEBAL estimates deviated by 8.6% from
the ensemble mean, offering a quantitative measure of uncertainty. The relatively low deviation supports
the validity of using deterministic SEBAL outputs as central estimates and justifies the scaling of results to
other TBP command areas with similar climatic conditions.
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Fig. S2: Timeseries of net water required by TBP along with the uncertainty bounds vs amount of water
supplied to TBP.



Table S2: Net water required with uncertainty bounds.

Date Net Water Net Water Net Water Bounds in
Required Required Required Percentage
(acre-feet) (acre-feet) (acre-feet) (%)
(Lower Bound) (Upper Bound)
2023-01-17 1776.25 1798.64 1821.02 1.24
2023-01-25 1960.36 1982.79 2005.21 1.13
2023-02-03 2017.60 2039.27 2060.94 1.06
2023-02-18 2316.17 2344.74 2373.32 1.22
2023-02-28 3682.03 3716.43 3750.83 0.93
2023-03-05 5436.24 5471.47 5506.70 0.64
2023-03-14 1290.84 1316.70 1342.70 1.96
2023-03-30 5455.14 5497.57 5540.00 0.77
2023-04-07 1441.59 1453.87 1466.14 0.84
2023-04-14 6436.03 6479.01 6521.99 0.66
2023-04-23 56.02 61.67 67.32 9.16

S3.2.  Through Sensitivity Analysis:

Sensitivity analysis focusing on two key drivers of evapotranspiration - air temperature and precipitation
was conducted. According to Zhang et al., (2025) these parameters significantly influence
evapotranspiration depending on the climatic regime. The analysis evaluates how uncertainties in these

inputs impact evapotranspiration estimates and, consequently, the net water requirements.

1.

Sensitivity to Air Temperature: We perturbed the air temperature by +1°C and analyzed the
response in both Penman-Monteith ET (potential ET under optimal water conditions) and SEBAL
ET (actual ET under water stress). Fig. S3 illustrates the results, where the upper panel presents the
time series of seven-day cumulative Penman-Monteith evapotranspiration (mean of the region) and
the lower panel displays the SEBAL evapotranspiration under the same perturbation. The expected
trend is observed, with an increase in air temperature leading to a corresponding increase in
evapotranspiration and a decrease in temperature resulting in lower evapotranspiration estimates.
Furthermore, the temporal variation in evapotranspiration aligns with the crop growth cycle - initial,
development, and harvesting phases. In terms of magnitude, a £1°C change in air temperature leads
to an approximate change of 1.4 mm in Penman-Monteith evapotranspiration and around 1 mm in
SEBAL evapotranspiration, indicating that potential evapotranspiration under ideal conditions is



slightly more sensitive to temperature variations compared to actual evapotranspiration under the
water-stressed conditions.
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Fig. S3: Sensitivity Analysis in Evapotranspiration Estimation

To further understand the implications of this variation, we assessed how these changes in
evapotranspiration translate into changes in net water requirement. Fig. S4 presents the sensitivity analysis
in this context, consisting of two panels: the upper panel illustrates the volume of water required and the
amount provided by in-situ supply, while the lower panel depicts the contribution of precipitation. The
results indicate that a +1°C change in air temperature leads to an approximately 0.4 million m? variation in
net water requirement, emphasizing the role of temperature fluctuations in water demand estimation.
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Fig. S4: Sensitivity Analysis for Net Water Required w.r.t. Change in Air Temperature

2. Sensitivity to precipitation: Given its direct role in balancing water demand, we investigated the

impact of a =1 mm change in precipitation over the entire Teesta Barrage Project (TBP) region.
Fig. S5 presents this analysis, and the results indicate that a 1 mm increase in precipitation reduces
the net water requirement by approximately 1 million m?, demonstrating a more pronounced impact
than air temperature fluctuations. This highlights the significance of precipitation uncertainty, as
even minor deviations in precipitation estimates can substantially alter water demand calculations.

Net Water Required Vs Water Supplied

16

8 Total Water Provided (m?}
= Het Water Required (m?) with -1 mm Change in both GFS & IMERG Precipitation
[ Net Water Required (m?) with Ne Change in both GFS & IMERG Precipitation

I Nel Waler Required tm?) with +1 mm Change in balh GFS & IMERG Precipilalion
5

‘Mean Sensitivity: —9.9x10° m*/mm ﬂ
3

—

~

@

Volume of Water
IS

N

-

[0 Met Precipitation (mmj with -1 mm Change in bath GFS & IMERG Precipitation
10{ 0 Net Precipitation (mm) with Mo Change in bath GFS & IMERG Precipitation
I Met Precipitation (mm} with +1 mm Change in both GFS & IMERG Precipitation

Precipitation

0 = . [ . ||
A 5 & A2 4% © AN 0 & AB 43
xS %m” QY 25 ,lm'ﬂ 55 A0 5 o 59 ,B.n‘ﬂ
i ol S bt 2 2 e 25 il & ol

Dates

Fig. S5: Sensitivity Analysis for Net Water Required w.r.t. Change in Precipitation



A comparison of these two factors suggests that in a hypothetical scenario, if water managers had control
over modifying either air temperature or precipitation, increasing precipitation by 1 mm over entire TBP
would be more beneficial than reducing air temperature by 1°C over entire TBP, as the former leads to
greater water savings. This underscores the importance of accurate precipitation forecasting in improving
water resource management and planning. Overall, our sensitivity analysis highlights the extent to which
uncertainties in key meteorological inputs influence water demand estimations, emphasizing the need for
robust data sources and improved forecasting methods to enhance the reliability of net water requirement
assessments.
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