
 

Answer to Reviewers’ Comments 
 

We thank the editor for the overall guidance. We also thank the reviewers for taking the time to 

review our manuscript and offer constructive comments and wisdom for improvement. We have 

considered all the comments and addressed the questions raised by the reviewers to improve our 

work presented in the paper. In the following text, the reviewer’s questions/comments are listed in 

black font and the response by the authors in blue font. All line number references mentioned in 

this response to reviewers refer to the revised version of our manuscript.  

As part of the revision process, we have substantially revised the manuscript. Detailed, point-by-

point responses to each reviewer are provided below, with a brief summary of the major revisions 

included at the beginning of each reviewer’s section. 

Reviewer #1  

The authors propose a framework for providing spatially distributed irrigation advices by 

leveraging Earth Observation, which is for sure a timely topic in the broader context of water 

resources management. However, three main issues critically affect the manuscript quality: 

We sincerely thank Reviewer #1 for the thorough and constructive review of our manuscript, as 

well as acknowledging the timeliness of the study. Overall, reviewers’ comments primarily focused 

on:  

1) the clarification of the study period, 

2) validation or providing any referenced study in the region,  

3) manuscript length 

4) clarification on the estimation of soil moisture. 

To address the reviewer’s point, we have substantially revised the manuscript by: 

1. Expanding and clarifying the soil moisture estimation, including a correction on the scaling 

approach used to convert relative soil moisture to volumetric estimates. 

2. Providing the scientific validation of the study, along with the referenced studies using the 

Surface Energy Balance Algorithm (SEBAL) in similar agroclimatic settings, including 

Bangladesh. 

3. Shortening the introduction section of the manuscript. 

Below, we have provided detailed answers to each comment raised by the reviewer. 

 

1.    Implementation over just few days/weeks. This is a gap, at least an entire irrigation season 



should be covered to prove the method robustness. Fig. 8 is where a 3-month period is shown for 

the first time, but it is not clear whether it is a whole season or not. Since water allocation managers 

often have control on seasonal volumes, I believe that comparing seasonal-aggregated advices with 

availabilities is meaningful. 

We thank the reviewer for this constructive comment. We agree that demonstrating robustness over 

a full operating season is important, and we clarify here that our study already covers the entire 

irrigation period of the Teesta Barrage Project (TBP). 

The TBP provides canal-based surface water irrigation only during the dry months, i.e, January 

through April. Outside this period, fields in the command area rely on rainfall, and TBP (whose 

purpose is for dry-season irrigation) does not operate. Accordingly, the period shown in Fig. 8 

represents the complete operational irrigation season for TBP rather than an exploratory interval. 

Although the TBP operating season is described in the first paragraph of Section 2 (Study Area), 

we appreciate the reviewer’s concern regarding clarity for readers. To make this explicit, we have 

revised the caption of Fig. 8 as follows: 

“Fig. 8. Time series of net water required by TBP vs. water supplied. TBP operates from January 

to April each year; outside this period, fields rely mainly on rainfall.” 

 

2.    Validation: even though I appreciate authors’ efforts in this sense, it is not carried out in a 

rigorous way. It targets other areas (with different climate conditions) and likely different 

vegetation/crop patterns. In addition, SEBAL, which is the basis for ET calculation for sDRIPS, 

is involved in OpenET also. If a direct validation is not possible, authors should just look for and 

mention previous studies validating SEBAL in several climate context (possibly involving the 

one of interest) to support the method reliability. 

We thank the reviewer for this constructive comment. While direct field-scale validation within 

the TBP command area was not feasible due to the absence of lysimeter or flux-tower 

measurements, we have strengthened the manuscript by explicitly referencing validation studies 

of SEBAL and Penman-Monteith ET in agroclimatic conditions comparable to our study region. 

Notably, the study by Bose et al. (2021), which underpins the original development of the sDRIPS 

framework, conducted lysimeter-based validation at the Bangladesh Agricultural Research 

Institute (BARI) in Gazipur from 2017 to 2018. Their results demonstrated: 

• strong correlation between Penman-Monteith estimates and lysimeter observations (r ≈ 

0.87-0.88; errors 2-10% for wheat/maize), and 

• SEBAL errors ranging from ~8% to 46%, which Bose et al. (2021) largely attributed to 

pixel-point mismatch and mixed land cover near the lysimeter site.  



 

Fig. 1: Taken from supplementary material Figure S1 of Bose et al. (2021). 

 

Fig. 2: Taken from supplementary material Figure S2 of Bose et al. (2021). 

Importantly, Bose et al. (2021) relied on Landsat 7 thermal data (100 m), whereas the current study 

uses Landsat 8/9 thermal bands (30 m), which substantially reduce mixed-pixel effects and are 

expected to improve ET estimation accuracy. 

Consistent with Bose et al. (2021), several independent studies in comparable agroclimatic settings 

have also demonstrated strong agreement between SEBAL-derived ET and lysimeter observations, 

as shown in Table 1 below.  



Table 1: Studies validating SEBAL ET with lysimeters in a similar agroclimatic setting. 

Sr. No Region Sensor Used Metrics for 

comparison 

between SEBAL 

ET and Lysimeter 

ET 

Source 

1.  Pakistan Landsat 8 TIR RMSE = 1.26 

mmd−1, R2 = 0.9, 

Nash-Sutcliffe 

Efficiency (NSE = 

0.92) 

Zahid et al., 

2023 

2.  Bangladesh Landsat 8 TIR R2 = 0.99, RMSE = 

0.16 mmd−1 

Islam et al., 

2023 

3.  India Landsat 7 TIR R2 = 0.91 Rawat et al., 

2017 

  

Altogether, these studies in similar agroclimatic regions and also in Bangladesh provide strong 

empirical support for the reliability of SEBAL as well as Penman-Montieth ET. In the manuscript, 

we have added the aforementioned references on the validation of SEBAL and Penman-Monteith 

for similar agroclimatic regions. 

3.    Manuscript organization: the paper is too long and a bit confused in several parts. 

Although we have shortened the Introduction section in the revised manuscript, we note that a 

substantial portion of the manuscript length is attributable to essential visual material, including a 

table summarizing the datasets used (approximately one page) and thirteen figures that together 

occupy a significant fraction of the manuscript. These elements are included to clearly document 

the data sources, methodology, and results that are directly relevant to the study. 

 

Please find additional comments as follows: 

 

L 90-94: some initiatives to fill this gap are under development, e.g., ESA (European Space 

Agency) WorldCereal (https://esa-worldcereal.org/en) 

We thank the reviewer for highlighting this relevant initiative. To acknowledge ongoing efforts 

addressing this gap and to further inform readers, we have incorporated a reference to the ESA 

WorldCereal program (Franch et al., 2022) in the Introduction section of the revised manuscript 

(Line 97 of the updated manuscript). 

 

L 138-147: it concerns data used, should not be in the introduction 

https://esa-worldcereal.org/en


We agree with the reviewer’s comment. The description of the datasets previously included in 

Lines 138-147 has been removed from the Introduction, as these details are already summarized 

in Table 1 of the manuscript.  

 

L 149-186: should be sharply shortened 

We thank the reviewer for this suggestion. The section corresponding to Lines 149-186 has been 

shortened in the revised manuscript (now Lines 140-175) to improve conciseness and readability. 

 

L 198-204: keep units’ consistency and use the International System 

We have now updated the lines with the SI units. The lines now read as the following: 

 

“The sDRIPS study focuses on the Teesta Barrage Project (TBP) in Bangladesh, the country's 

largest surface water irrigation project. Established in 1990, the TBP supplies irrigation water 

from January to April and spans the Teesta River at Dalia-Doani Point in the Lalmonirhat 

district (Fig. 1 Middle Panel). This project features a 615-meter-long concrete structure 

equipped with 44 radial gates, providing a discharge capacity of 361 m3/s (12,750 cfs) and 

supporting a command area of 1.5425x109 m2 (154,250 hectares) through a 4,500-kilometer 

network of canals (River Research Institute, 2023). For more details on TBP, readers are 

referred to (River Research Institute, 2023).” 

 

Eq 2: here is an underlying assumption that evaporation from bare soil is negligible, the Kc you 

are calculating is basically Kcb. If so, please detail on this. A question on top of this. At this stage 

soil moisture is already needed to compute Ks, isn’t it? 

We agree that under the formulation used in Eq. (2), the crop coefficient corresponds to the basal 

crop coefficient (Kcb) rather than the full crop coefficient (Kc). In the context of the TBP, irrigation 

operations occur predominantly during the dry season (January-April), when rainfall events are 

infrequent, and soil evaporation following wetting is minimal. Under these conditions, Kc ≈ Kcb, 

consistent with the FAO-56 framework.  

Furthermore, we would like to reiterate that the reliability of this formulation is supported by the 

in situ lysimeter-based evaluation conducted by Bose et al. (2021), which used the above 

coefficients and demonstrated the accuracy of both Penman-Monteith (where crop coefficients are 

utilized) and SEBAL evapotranspiration under similar agroclimatic conditions.  

Estimation of soil moisture using Sentinel 1 is already covered in the manuscript in a later section. 

 

L 334-336: sounds like results 



We appreciate reviewers’ comments and have relocated this line to the results section (Line 495-

499 of the updated manuscript). 

 

Fig 4: it seems that some coarse resolution input drives this result 

We acknowledge the comment and note that, in any modeling framework (not limited to sDRIPS), 

the use of coarse resolution inputs can influence outputs generated at finer spatial scales; sDRIPS 

is not an exception in this regard. The sDRIPS framework relies on a subset of meteorological 

forcing variables obtained from the Global Forecast System (GFS), as summarized in Table 1 of 

the updated manuscript. These globally available and near-real-time datasets are provided at a 

coarser spatial resolution, reflecting a common trade-off between spatial resolution, global 

coverage, and low latency in operational meteorological products.  

If higher spatial resolution, globally consistent meteorological datasets with comparable latency 

were available publicly on the cloud, they could be readily incorporated into the sDRIPS 

framework. Therefore, this limitation arises from the current characteristics of global 

meteorological datasets rather than from the sDRIPS methodology itself. This limitation and its 

implications have now been explicitly acknowledged and discussed in the revised manuscript 

(Lines 675-679). 

“sDRIPS relies on meteorological forcings from the GFS, which has relatively coarse spatial 

resolution. This limitation may affect ET and water requirement estimates in regions with strong 

spatial heterogeneity. In the TBP region, however, irrigated fields are extensive and relatively 

homogeneous, reducing the sensitivity of results to coarse resolution meteorological inputs.” 

 

Soil Moisture: how was it calculated? This is an important omission. In addition, it is expressed 

as water height (mm). This implies that the reference volume is known. Soil layer is fixed at 100 

mm (as seen by Figures), what about the porosity? 

We thank the reviewer for bringing this to our attention. In the manuscript, we stated that soil 

moisture was estimated from Sentinel 1 C-band SAR and used to quantify percolation (Eq. 5–6), 

but we did not sufficiently describe (i) the Sentinel 1 soil moisture retrieval framework employed 

and (ii) how soil moisture was expressed in millimeters.  

We clarify here that soil moisture is first retrieved at the field scale from Sentinel 1 IW GRD SAR 

backscatter using the established change-detection framework developed by Bauer-Marschallinger 

et al., (2019), which is a widely used and validated approach for Sentinel 1 surface soil moisture 

retrieval and underpins several large scale and operational soil moisture products (Bauer-

Marschallinger et al., 2019; Copernicus, 2018; Rahmati et al., 2025).  

Importantly, no novel soil moisture retrieval methodology was developed in this study; rather, we 

implemented this existing framework, and readers are referred to Bauer-Marschallinger et al. 



(2019) and Meyer et al. (2022) for full methodological details. In brief, the Sentinel 1 backscatter 

value σ0 (t) at time t is normalized to dry and wet reference states observed in the past, yielding 

relative surface soil water saturation SSM(t) in percent as follows: 

𝑆𝑆𝑀(𝑡) =  
𝜎0(𝑡) − 𝜎0

𝑑𝑟𝑦

𝜎0
𝑤𝑒𝑡 − 𝜎0

𝑑𝑟𝑦
  

Because this change detection approach yields relative soil moisture, we subsequently scale the 

Sentinel 1 derived signal to volumetric soil moisture (m³/m³) using Soil Moisture Active Passive 

(SMAP) volumetric soil moisture observations as a reference, following the methodology 

described in Bauer-Marschallinger et al., (2019) and Meyer et al., (2022). We note that, in the 

earlier version of the manuscript, the scaling step required to convert relative soil moisture to 

volumetric soil moisture was not explicitly implemented; this has now been. After implementing 

this correction, we found no change in the overall conclusions of the study, although minor 

quantitative differences required updates to several figures.  

Volumetric soil moisture is converted to an equivalent water depth (mm) by multiplying by an 

effective soil depth Z. Given that Sentinel 1 C-band observations (wavelength ≈ 5 cm) are 

primarily sensitive to the near-surface soil layer and have demonstrated reliable performance up 

to approximately 100 mm depth, we set Z = 100 mm: 

𝑆𝑀𝑚𝑚 = 𝑓𝑆𝑀𝐴𝑃(𝑆𝑆𝑀(𝑡)) × 𝑍 

Regarding soil physical properties, porosity is not explicitly required in this conversion because 

volumetric soil moisture already represents the fraction of pore space occupied by water. However, 

soil hydraulic properties are required to determine soil water storage limits. Accordingly, field 

capacity was obtained from the ISRIC SoilGrids dataset (https://isric.org/explore/soilgrids, Poggio 

et al., 2021), using the volumetric water content at -33 kPa matric potential, which is widely 

accepted as a proxy for field capacity. SoilGrids-derived hydraulic properties have been 

extensively used in large-scale hydrological and agricultural modeling studies and are readily 

available within Google Earth Engine. Grid level estimates were aggregated to the command area 

scale using the median and multiplied by irrigated area to estimate net water requirements.  

To avoid over-lengthening the manuscript and diverting attention from the main methodological 

contribution, we have added a concise description of the Sentinel 1 soil moisture estimation, 

scaling to SMAP, and conversion to water depth in the revised Data and Methods section, while 

explicitly referring readers to Bauer-Marschallinger et al. (2019) and Meyer et al. (2022) for full 

technical details. 

 

Eq 6: maybe you could directly mention this one instead of eq 5 – which is a specific case of eq 6 

We appreciate the constructive feedback, and we have now directly mentioned it in Eq. 6 (Eq. 6 of 

the previous manuscript, now Eq. 7 of the submitted manuscript), and have removed the separate 

presentation of Eq. 5 (Eq. 5 of the previous manuscript) to improve clarity and avoid redundancy. 

https://isric.org/explore/soilgrids


 

Fig 5: How did you handle the soil moisture estimate at the command area level? 

We have addressed this in the “How soil moisture was estimated” comment. 

 

Eq 7: even though it is explained afterwards, this equation could be misleading, as rainfall 

reduces net water requirement 

We respectfully disagree with this point, as Eq. 7 clearly mentions the rainfall component, and 

also accounts for it, which is explained in the subsequent paragraph.  

 

L 399-400: this should be proved 

We thank the reviewer for pointing this out. However, this line was also mentioned in the 

introduction with the reference (now Line 145-146 of the revised manuscript).  

 

L 474-484: not needed 

We thank the reviewer for this suggestion. After careful consideration, we have chosen to retain 

these lines as the content is relevant to the interpretation of the results. 

 

L 495: more details on this in the “Data” Section? 

We thank the reviewer for this suggestion. We have now added the in situ data to the table in the 

Data section and updated it to include other datasets that were previously missed. 

 

Fig 9 and 10: On top of the criticism to the significance of validation, description here is 

qualitative only, as no metrics are provided 

We thank the reviewer for their constructive feedback. In the revised manuscript, we have 

complemented the qualitative discussion of Figs. 9 and 10 with quantitative performance metrics 

(Lines 540–548). For the California region (Fig. 9), sDRIPS shows strong temporal agreement 

with the OpenET ensemble mean (r = 0.72), with an RMSE of 1.37 mm/d, MAE of 0.99 mm/d, 

and a moderate negative bias of -0.68 mm/d. The corresponding Kling-Gupta efficiency (KGE = 

0.59) indicates good overall agreement when jointly accounting for correlation, bias, and 

variability. 



 

Fig. 3: OpenET Timeseries along with sDRIPS estimates for the studied region in California 

For the Nebraska region (Fig. 10), agreement is stronger, with a correlation coefficient of r = 0.86, 

RMSE of 1.25 mm/d, MAE of 0.88 mm/d, and a bias of -0.48 mm/d. The KGE value of 0.50 

likewise reflects good consistency between the two products. We emphasize that these 

comparisons are intended as benchmarking and consistency assessments, rather than independent 

validation, as the input datasets in the OpenET are relatively finer than input datasets in sDRIPS. 

 

Fig. 4: OpenET Timeseries along with sDRIPS estimates for the studied region in Nebraska 
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