Reply to Reviewer Comments

The manuscript proposes a machine-learning counterfactual framework to estimate the
impact of the Chinese Spring Festival (CSF) on PMas in Hangzhou and the “2+26”
cities. The study is timely and policy-relevant, with a clear intention to distinguish air-
quality changes from emissions, and the manuscript is well organized and clearly
presented. However, several aspects of causal ML practice, the temporal validation
strategy, and issues of data representativeness need to be strengthened before

publication.

Major Comments

Comment #1:

The manuscript frames its analysis within a causal framework, treating the Chinese
Spring Festival (CSF) as a “treatment” and using the XGBoost model to predict a
counterfactual business-as-usual (BAU) scenario. While this is a conceptually
appropriate starting point, the current methodology does not yet meet a rigorous causal
ML design. The CSF is a composite factor, bundling the effects of fireworks, altered
traffic patterns, and changes in industrial/construction activity. This complexity
challenges the core identification assumptions required for causal claims.
Furthermore, the analysis does not adequately address potential influence of these
assumptions, such as the inconsistent overlap in covariate distributions between festival
and non-festival periods. Some features, like the lunar calendar day, are inherently
confounded with the treatment, violating conditional independence. The study could be
characterized as a causally inspired counterfactual prediction for BAU rather than a
causal estimator under verified identification conditions. Hence, the authors may wish

to reconsider the title and tone down the causal claims to avoid overstatement.

Response:



We sincerely thank the reviewer for this important and constructive comment. We agree
that the Chinese Spring Festival (CSF) represents a composite intervention involving
multiple concurrent behavioral and emission changes (e.g., fireworks activities,
reductions in traffic volume, and modifications in industrial or construction operations).
As aresult, several key identification assumptions required for strict causal inference—
such as conditional independence, adequate covariate overlap between treated and
untreated periods, and the independence of certain covariates (e.g., lunar-day indicators)
from the intervention—cannot be fully validated in this context. We appreciate the
reviewer’s clarification, which has helped us refine the conceptual framing of the paper.
Following the reviewer’s suggestion, we have revised the manuscript in several ways
to ensure that the study is presented as a causally informed counterfactual analysis

rather than a strict causal estimator:

(1). Revised the title to remove any implication of strong causal identification.
The new title is:
“Impact of the Chinese Spring Festival on PM> s air quality in the Beijing-Tianjin-Hebei

and surrounding region: A machine-learning-based counterfactual modeling approach”.

(2). We have modified the methodological description in the Introduction to clearly
state that the proposed framework is not intended to identify structural causal effects.
The revised text now clarifies that our approach provides a causally informed

counterfactual prediction of the BAU scenario rather than a formal causal estimate.

(3). We have added a dedicated clarification paragraph at the end of Section 2.2 (lines
127-137), explicitly acknowledging the composite nature of the CSF intervention, the
challenges associated with validating causal identification assumptions, the inherent
confounding of calendar-related variables such as the lunar-day index, and the resulting

limitations for making strict causal claims.

(4). Adjusted wording throughout the manuscript (e.g., replacing “causal impact” with



“holiday-related effects” or “deviations relative to BAU”) to avoid overstating causal
interpretation while preserving the inferential value of the counterfactual framework.

These revisions ensure that the manuscript’s framing is fully aligned with the reviewer’s
recommendation. We again thank the reviewer for helping us improve the rigor, clarity,

and conceptual precision of the study.

Comment #2:

The current modeling approach, which relies on instantaneous covariates, does not
account for the temporal auto-correlation inherent in air pollution. The concentration at
any given time is also influenced by the emissions and meteorological conditions of
previous periods. The choice of a random 80/20 split for model validation may
introduce data leakage when evaluating the model performance. A blocked or rolling
time-based cross-validation would be more appropriate here.

Separately, uncertainty quantification has been extensively discussed in ML-based
atmospheric remote sensing, yet is not addressed in the present manuscript; providing

calibrated predictive uncertainty would improve the interpretability of the results.

Response:
We appreciate the reviewer’s suggestions regarding the treatment of temporal

dependence, model validation strategy, and predictive uncertainty.

(1) Temporal autocorrelation and validation scheme.

We agree that air pollution data exhibit temporal autocorrelation and that random
splitting may overestimate performance if used for forecasting tasks. However, the
purpose of this study is not to predict future concentrations, but to estimate
counterfactual business-as-usual (BAU) concentrations under the same meteorological
conditions during the Chinese Spring Festival (CSF) period. The model therefore serves
as a nonlinear regression tool to capture the contemporaneous relationships between

PM: s and its covariates, rather than the temporal evolution of pollution.



To examine the reviewer’s concern, we additionally tested a blocked time-based cross-
validation (five-fold TimeSeriesSplit) using only instantaneous covariates. Under this
scheme, the cross-validated R? dropped to -0.50 and the test-set R? to 0.09 (RMSE = 20
pug/m?), indicating that instantaneous features alone cannot represent temporal
dependence.

We then introduced simple lagged predictors (1-3 h lags of PMy s, temperature, and
wind speed), after which the time-block cross-validated R? increased to 0.69 and the
test-set R% to 0.94 (RMSE = 5.4 ug/m?). These results confirm that explicit short-term
history improves robustness under sequential validation. Nevertheless, because lagged
PM, s values could leak information from neighboring time steps and obscure the
interpretation of “instantaneous” BAU conditions, the main analysis retains the model
without lagged terms. The lagged-feature experiment was used only to verify the
reviewer’s concern regarding temporal dependence, and its results support our choice

of focusing on contemporaneous covariates in the counterfactual analysis.

(2) Predictive uncertainty.

Following the reviewer’s recommendation, we implemented an ensemble-based
bootstrap approach to quantify predictive uncertainty (Text S3). Fifty XGBoost models
with identical hyperparameters were trained on bootstrap-resampled training sets,
producing an ensemble of counterfactual BAU predictions. The ensemble mean was
taken as the point estimate, and the 2.5%-97.5" percentile range as the 95% prediction
interval. The ensemble-mean predictions achieved an R? = 0.95 on the test set, slightly
lower than the single model but providing calibrated uncertainty estimates. The new
Figure S2 in the revision visualizes observed PM, 5, ensemble-mean predictions, and
their 95 % prediction intervals, along with the deviation (A = Observed - Predicted).
These additions address the reviewer’s concerns by (a) verifying temporal dependence
through lag-feature tests, (b) clarifying the rationale for using a random split in a
counterfactual, non-forecasting context, and (c) incorporating calibrated uncertainty
quantification to improve interpretability.

We sincerely thank the reviewer once again for these helpful suggestions.
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Figure S2. Observed PM> 5 concentrations and ensemble-based counterfactual
predictions from the XGBoost model, together with their 95% prediction intervals and

the corresponding deviations (A = observed - predicted).

Comments #3:

The abstract opens with acute short-term health risks from extremely high PM: s, but
the regional result emphasizes an average decrease of 19.0 = 17.5 ug/m* over the
extended holiday period. These two statements are not contradictory but currently feel
weakly connected. Besides that, Section 3.2 (Hangzhou) explicitly reports large
concurrent source changes (e.g., vehicles -31%; dust +2790%), yet Section 3.5 (“2+26”)
estimates fireworks’ contribution “under the assumption that emissions from other
sources remained unchanged.” The authors need to address this inconsistency or

provide sensitivity analysis under alternative assumptions.

Response:

We thank the reviewer for this insightful comment. We address both aspects raised in
this comment below.

(1) Connection between acute PM; 5 risks in the abstract and the regional mean decrease.
We agree that these two points were initially presented in a way that appeared only
loosely connected. Following the reviewer’s suggestion, we have revised the abstract

to explicitly clarify that the regional mean decrease (-19.0 + 17.5 ug/m? across the “2



+ 26” cities) reflects the multi-day reduction in anthropogenic activities during the
extended holiday period, whereas the acute short-term health risks refer specifically to
the sharp, short-lived PM 5 spikes caused by concentrated fireworks during the peak
window on New Year’s Eve. These two patterns are therefore not contradictory but
operate on different temporal scales. The revised abstract now clearly links the regional
baseline reduction with the episodic, fireworks-driven PM2 s peaks.

(2) Consistency between Sections 3.2 and 3.5 regarding the “unchanged sources”
assumption. We thank the reviewer for highlighting the apparent inconsistency between
the detailed source changes reported for Hangzhou (Section 3.2) and the simplifying
assumption used in the regional “2 + 26” analysis (Section 3.5). We agree that assuming
“other emission sources remained unchanged” is a strong simplification. In the regional
analysis, this assumption was intentionally used as part of the counterfactual BAU

framework to isolate the incremental effect of fireworks.

Importantly, as shown in Section 3.2 for Hangzhou, concurrent source changes did
occur. Traffic activity decreased substantially (vehicle-related emissions = -63%),
while local dust emissions increased due to fireworks fallout. Regional gas-phase
tracers further confirm this pattern: NO,, a traffic indicator, decreased by about 12%,
whereas CO, a combustion tracer, increased by = 18% on New Year’s Eve. These
observations demonstrate that non-fireworks sources were not constant but generally
weakened.

Therefore, the “unchanged-source” assumption does not overstate the fireworks-related
contribution; instead, it yields a conservative lower-bound estimate. If other
anthropogenic emissions declined, the fraction of observed PMys attributable to
fireworks would, in reality, be even higher. This interpretation is now explicitly stated

in Section 3.5, supported by independent evidence from NO; and CO behavior.

In the revised manuscript, we have:

(a) clarified this rationale in Section 3.5 (lines 400-408),

(b) softened the original wording regarding “unchanged sources” and

(c) explicitly emphasized that the resulting fireworks contribution represents a
conservative BAU-based lower-bound estimate.

We sincerely thank the reviewer once again for this important comment, which

significantly improved the clarity and consistency of the manuscript.



Comment #4:

Section 2.1 requires several clarifications. First, key details for the ERAS dataset,
including its temporal/spatial resolution and a reference link, should be provided in the
manuscript or SI (Text S1/Table S1). To address the potential for reanalysis data to
smooth over urban-scale extremes, a brief comparison of ERAS variables against
ground-station data would strengthen the analysis. Additionally, the usage of total
precipitation (TP) needs to be explained; since it is an accumulated value, please
describe any transformation performed to make it suitable for an hourly model. The
specific parameters or a reference for Emanuel’s saturated vapor pressure formula

should be included.

Response:

We thank the reviewer for these detailed and constructive suggestions. All points raised
have now been fully addressed in the revised manuscript, as summarized below.

(1) ERAS dataset details

Section 2.1 (lines 98-100) and Table S1 have been revised to explicitly state that hourly
single-level ERAS reanalysis data were used, with a horizontal resolution of 0.25° X
0.25° and hourly temporal resolution. A reference link to the Copernicus Climate Data
Store has also been added to ensure full reproducibility.

(2) Evaluation of ERAS representativeness

To assess the representativeness of the ERAS variables used in this study (20 December
2023-16 February 2024), we compared hourly ERAS5 data at the grid cell centered over
downtown Hangzhou with observations from the Hangzhou Xiaoshan International
Airport station (~20 km away). The comparison reveals that ERAS exhibits very small
mean biases for near-surface temperature (= 0.36 °C) and wind speed (= 0.40 m/s),
demonstrating its high fidelity in capturing regional meteorological states. While
inherent discrepancies exist between a 0.25° grid average and point measurements due
to spatial smoothing and local micro-terrain, ERAS’s reliability in representing

synoptic-scale transitions and atmospheric dynamics is well documented (Hersbach et



al., 2020). Importantly, the objective of this work is to represent regional and synoptic-
scale forcing to drive the counterfactual PM» s prediction. This requires key predictors
such as boundary-layer height and solar radiation that are typically unavailable from
surface stations. ERAS provides a spatially and temporally consistent dataset that
avoids the localization and discontinuity, such as 3-hour intervals or missing records,
often found in ground observations. Given the study’s focus on regional-scale
meteorology, ERAS offers a more appropriate and robust basis for the machine-
learning-based modeling framework.

3. Processing of total precipitation (TP)

ERAS total precipitation (TP) represents liquid and frozen water accumulated over the
previous hour and is expressed in meters of water equivalent. Since the hourly dataset
already reflects accumulation over a one-hour period, no additional differencing or
temporal transformation was required prior to its use in the model.

4. Emanuel’s saturated vapor pressure formula

The specific formulation and reference have been added to Text S1 in the
Supplementary Information. Saturation vapor pressure (E, Pa) is computed using

Emanuel’s empirical equation (Emanuel, 1994):

6743.769
InE = 53.67957 — — 48451 InT

where T is absolute temperature (K). The equation is applied to 2-m air temperature
(T2) and dew-point temperature (D2) to obtain saturation (Es) and actual vapor pressure
(Ea), respectively, with relative humidity calculated as RH = (E/Es) x 100%.

Together, these revisions substantially improve the transparency, rigor, and
reproducibility of the meteorological data processing procedures in the manuscript. We

sincerely appreciate the reviewer’s helpful suggestions.

Ref:
Hersbach, H., et al. The ERAS5 global reanalysis, Quarterly journal of the royal meteorological

society, 146, 1999-2049, https://doi.org/10.1002/qj.3803, 2020.




Comment #5:

There is the spatial representativeness mismatch between the machine learning model,
which uses a 14-site city average, and the DN-PMF analysis, which uses chemical data
from a single site. This difference could introduce a bias, particularly for localized
sources like fireworks. The authors could discuss this limitation and its potential impact
on their findings. Given the team’s related work (e.g., Journal of Environmental
Sciences), a brief comparison of the methodological advantages and efficiency gains

relative to prior work would also help position the contribution.

Response:

We thank the reviewer for this important comment, which was also raised by Reviewer
#1. Please see our responses to reviewer #1 for details. Below we also provide a concise
clarification regarding (1) the spatial representativeness mismatch and (2) the
methodological contribution relative to prior work.

1. Spatial representativeness mismatch

We agree that the ML model (city-wide average) and the DN-PMF analysis (single-site
composition) operate at different spatial scales. To directly assess this issue, we
performed a linear regression between hourly PM: s at the Wolonggqiao site and the 14-
site city average over the full study period. The strong correlation (R? = 0.78, slope =
1.11) demonstrates that Wolongqiao reliably captures the same temporal pollution
dynamics as the broader urban area, particularly during winter episodes and the Spring
Festival period.

Although absolute levels differ slightly, fireworks emissions during New Year’s Eve
form a city-wide, highly synchronized plume. Their chemical signatures (e.g., sharp K*
and EC enhancements) are consequently spatially coherent, making the single-site DN-
PMF analysis suitable for identifying and tracking this dominant source. We have added
this clarification as a discussed limitation in the revised manuscript (Section 3.4, lines

357-370).

2. Methodological advantages relative to prior work



We have also clarified the methodological contribution of this study. Compared with
traditional receptor modeling approaches, our ML-based counterfactual framework
provides a direct “no-holiday” baseline, enabling cleaner attribution of fireworks
impacts. The method requires only routine monitoring and reanalysis data, is highly
scalable (as demonstrated in the “2+26 region), and can be applied rapidly to large city
networks. This represents a clear efficiency gain relative to chemical-speciation-based
source apportionment. The consistency between the ML results and the DN-PMF
source apportionment further supports the robustness of the approach.

We have added these points to better position the contribution in the revised manuscript.
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Figure S9. Linear regression analysis of hourly PMas concentrations between the
Wolonggiao site (x-axis) and the Hangzhou city-wide average (14 sites, y-axis) during
the study period (2023/12/20 - 2024/2/20). The strong correlation (R? = 0.78) supports
the representativeness of the Wolonggqiao site in capturing city-scale pollution trends

during the observation period.

Minor corrections:
- Line 22: twenty-eight -> 28
- Line 119: meterorology -> meteorology

- Line 164: A -> An



- Line 207: in the midnight of the New Year Eve -> at midnight on New Year’s Eve
- Line 244: Please add units for RMSE and MAE.

- Line 260: reliablity -> reliability

- Line 261: techique -> technique

- Line 323: deterioriation -> deterioration

- Table S1: Please use Pa (not pa) for pressure unit.

Response:
All minor corrections listed (typos, unit formatting, and grammatical adjustments) have
been implemented in the revised manuscript, including those on Lines 22, 119, 164,

207, 244, 260, 261, 323, and in Table S1.



