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Abstract

The spatial influence of faults on the crustal stress field remains-is a topic of ongoingactive debate. -While itis
wel-deecumented-thatffaults are often known to perturbeauseperturbationsin the stress field at a meter scale,
their lateral lateratinfluence over a -greaterdistances,from-afew hundred meters to several kilometers; remains
poorly understood. Fhi ; ~To address
this_knowledge gap, we use a 3D geomechanical numerical model based on 3D seismic data from northern
Switzerland. The model istzerland—Fhe-modelis—calibrated calibrated with 45 high-guality-horizontal stress
magnitude-eata- data obtained from micro-hydraulic fracturing (MHF) and sleeve re-opening (SR) tests conducted
in two boreholes in the Ziirich Nordost (zNnO) siting_g—regi—snregion, northern Switzerland. Ihe%D—seism‘reanel

rodicactizevaste—This 3D—geemeehan+e34—nameﬁea4—model with seven faults |mplemented as contact surfaces

serves as the reference model in our study.—are-ineludessevenfaulisimplemented-as—contactsurfaceswith
Coeulomb-frietion- The reference model# is then-systematically compared to three fault--agnostic models, e

models-witheutany-implemented-faults which share —Fhesefaultagnresticmedelsuse-identical rock properties,
model —and—medel—mpa{—parame%ersdlmensmns,, and calibration data with the reference modelare-calibrated
o ’ , but differ in their
element resolutiondiseretizatior and mechanical properties’ assignment procedure. lhe—requ-t—sResults show
that at distances-ef <-1 km from faults, differences in maximum horizontal maximum-herizentalstress orientation
between models range from 3°—6°, and horizontal stress magnitude differences are apabeutproximately 1-2
MPa. Beyond 1 km, —distanee~these differences reduce to <-1.5° and <-0.5 MPa, respectively. These-stress
differences are fsignificantlyar smaller than the calibration data uncertainties asseciated-with-the-herizental
stressmaghitude-measurements-at ZNOthe ZNO-sitingregion, which average to 0.7 MPa and 3.5 MPa for the
minimum horizontal stress-magnitude-and £3.5-MPaforthe-maximumaximumm- horizontal stress magnitude,
respectively, and +11° for the maximum horizontal stress orientation.- An important implication ef-thislateral
guantification-of faultinfluence-on-stressstateof our results is that, under the specific geological, mechanical,
and stress conditions observed at the ZNO siting region, explicit representation of faults may not be necessary in
geomechanical models predicting the stress state of rock volumes located a kilometer or more from majeractive
faults;en-impertantprerequisite foranyBGR-campaign. Thisisstruetural simplification substantially reduced our
model setup time from 2 months to 2 davsmmeﬁa%%medel%w—and—mse%%n—t&aémﬁe—a

, without compromising

the reliability of stress field predlctlons.

Short sSummary

We assess the fault impactfaut—impaect—_on the stress field in northern Switzerland using 3D geomechanical
models, calibrated with stress datadata. We seesee that faults affect the stresses only locally, with negligible
impact beyond 1 km, suggesting that faults may not be necessary -in reservoir-scale models predicting stresses
of undisturbed rock volumes, such as for a deep-geological repository. Omitting them can substantially reduce
model set-uphng time and computational cost without compromising prediction reliabilityaeeuraey.
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1. Introduction

Characterizing the crustal stress field is essential for understanding both global and local tectonic deformation
processes. On a large scale, it provides insights into plate tectonics (Richardson et al., 1979; Cloetingh and Wortel,
1985; Rajabi et al., 2017b) and earthquake mechanics (Sibson, 1992; Sibson et al., 2011; Brodsky et al., 2020),
while on a local scale, it plays a critical role in the safe planning of many subsurface applications, including
subsurfaee—oil and gas exploration and storage (Berard et al., 2008; Zoback, 2009; Fischer and Henk, 2013),
geothermal exploration (Catalli et al., 2013; Schoenball et al., 2014; Azzola et al., 2019) and deep geological
repositories for nuclear waste (Long and Ewing, 2004; Gens et al., 2009; Jo et al., 2019). The present day stress
state also significantly impacts wellbore stability and trajectory optimization, reducing risks and improving drilling
operations (Kingsborough et al., 1991; Henk, 2005; Rajabi et al., 2016). Moreover, knowledge of the regional and
local stress field aids in assessing seismic hazards and understanding the potential generation or reactivation-er
generation of faults (Zakharova and Goldberg, 2014; Seithel et al., 2019; Vadacca et al., 2021).

The stress state at a point is described by the Cauchy stress tensor, a symmetric second-order tensor with six
independent components. This tensor can be transformed into athe principal stress system, where only three
mutually perpendicular normal stresses, known as the principal stresses (S1 = maximum principal stress; Sz =
intermediate principal stress, and Ss =is-the minimum principal stress), remain, and the shear stresses are zero.
In reservoir geomechanics, where the target area is the upper crust, it is typically assumed that the principal
stresses are the vertical stress (Sv), the maximum horizontal stress (Stmax), and the minimum horizontal stress

(Shmin). Based on this, the reduced stress tensor is defined by established-by-fourkeyparameters-the magnitudes
of Sv, Svmax, and Shmin, and the orientation of Sxmax (Jaeger et al., 2007; Zoback, 2009).

The Sumax Orientation is the most widely available, systematically documented, and freely accessible characteristic
of the reduced stress tensor-cempenent, compiled in a_publicly available database of the World Stress Map
project (Heidbach et al., 2018; Heidbach et al., 2025a). Analyzing the patterns of the Sumax orientation shows
consistent trends over hundreds of kilometers in intra-continental areas, primarily driven by first-order plate
tectonic forces and second-order buoyancy forces (Zoback et al., 1989; Zoback, 1992; Rajabi et al., 2017b;
Heidbach et al., 2018). At the same time, in some regions, significant rotations exceeding 30° are observed on
spatial scales ranging from a few tens to a few hundreds of kilometers. It is hypothesized that these variations in

Stmax Orientations, among other reasons, arise fromm-third-erdersourcesmainlytheactive faults (Zoback et al.,
1987; Yale, 2003; Heidbach et al., 2007; Tingay et al., 2009; Rajabi et al., 2017b).

A common approach to understanding the fault impact on the stress field is to visually interpret laterally
scattered Sumax orientation data. This often leads to attributing the observed variability in Shmax Orientation to the
faults present within their respective study areas (Yale et al., 1994; Bell, 1996b; Yale, 2003; Aleksandrowski et
al., 1992). While these studies are often convincing, they face two key issues: First, even in areas with relatively
high data coverage, such as northern Switzerland (Heidbach et al., 2025a; Heidbach et al., 2025b); and the
northern Bowen Basin (Rajabi et al., 2024; Heidbach et al., 2025a), the-usablepubliclavailable-datarecordsand
theirreselutionarethe data density is fairly low, with, on average, appreximately-abeutone data record per 138
km? lateral spatial distance, and one data record per 80 km? lateral spatial distance, respectively. Second,
individual Shmax orientations-usually have an average standard deviation of £15° (A-Quality) to £25° (C-Quality),
as defined in the World Stress Map (Heidbach et al., 2025a). Together, these issues do not allowmake-it-diffieutt
for teattributeattributing with confidence the-small perturbationsinthestressrotations in the Sumax orientations
to the faults, especially at spatial scales of 0.1-10 km.

Notable studies from regions with a comprehensive Sumax Orientation dataset show that large-scale faulting does
not necessarily result in abrupt rotations in the Shmax Orientation—retatiens over continental (>-500 km) and
regional scales (100-500 km). For instance, in eastern Australia, the Sumax orientation rotates smoothly, by up to
50° over less than 100 km despite varying dip and strikes of the major fault systems, from northern Bowen Basin
to southern Bowen and Surat basins (Brooke-Barnett et al., 2015; Tavener et al.,, 2017; Rajabi et al,,
2024){Brocke-Barnettetal;2015;Rajabi-etal;2024) (Fig. 1aA--bB). However, in the adjacent Clarence-Moreton
Basin, rotation of Sumax orientations is prominent and abrupt when viewed in eenjugation-conjunction with the
faults_(Rajabi et al., 2015; Rajabi et al., 2017b; Rajabi et al., 2017c) {Rajabi-etal2017b;Rajabietat2017c;
Taveneretal2017-Mukherjee-etal-2020)-(Fig. 1aA--bB). Comparable conflicting trends have been reported



99
100
101

102
103
104
105
106
107
108
109
110
111
112
113

114
115
116
117
118
119
120
121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

137

in other studies as well (Bell and Gough, 1979; Gough and Bell, 1982; Bell and Grasby, 2012), suggesting that the
influence of fault systems on the rotation of Sumax orientation retatiens-at continental and regional scales is not
straightforward, and often not resolvable without ambiguity.

notcapture potentialchangesinSuwa—orientation-with-depth-due to-interaction-with-the faults-At the borehole
scale-studies, distinct variations in Sumax orientation have been observed vertically on a spatial scale of a few
meters. For instance, Fig. 1dB shows an image log of a borehole from the Clarence-Moreton Basin, where the
Shmax Orientation abruptly changes by 90° when the borehole intersects a fault. This is also observed in fa-the San
Andreas Fault Observatory Drilling Borehole, where borehole breakouts (BO) and é+ilting-drilling-induced tensile
fractures (DITF) indicate a change in Skmax Orientation from 25° + 10° at 10001500 m-{true-verticaldepth-tvedim
to 70° £ 14° at 2050-2200 m {v-e}-(Chéry et al., 2004; Hickman and Zoback, 2004; Boness and Zoback, 2006;
Zoback et al., 2011). Also, inta the KTB drilling program, Sxmax orientation along the borehole remained consistent

with the regional tectonic-induced patterns except at a depth of 7200 m-{t=+¢}, where a major fault zone caused
a localized reorientation by about 60°, confined to only a few meters above and below the fault (Brudy et al.,
1993; Barton and Zoback, 1994; Brudy et al., 1997).

: ~However, borehole-scale studies are generally conducted
in vertical wells and do not capture the potential lateral variations in stress caused by faults. Therefore, it remains
unclear whether these localized findings can-be directly be extrapolated to explain stress field variations at larger
spatial scales away from the fault zone. This leads to a significant knowledge gap regarding fault’s influence on
stress field variations at the reservoir scale (Fig. 1c€), a scale particularly important for many subsurface

applications.

o d RA d S d d d v d

£The only viable approach for predicting the variations in the stress field at this scale is geomechanical numerical
modelling. Over the past few decades, 2D and 3D geomechanical numerical models have been developed for this
purpose (Henk, 2009, 2020; Treffeisen and Henk, 2020). These can broadly be grouped into three categories: 1)
site-specific models without fault representation (Lecampion and Lei, 2010; Rajabi et al., 2017c; Ahlers et al.,
2021), 2) site-specific models that include faults but are not explicitly focused on assessing influence of faults on
the predicted stress (Reiter and Heidbach, 2014; Hergert et al., 2015; Bérard and Desroches, 2021) and 3) generic
models that explicitly investigates the impact of faults (Homberg et al., 1997; Su and Stephansson, 1999; Reiter
et al., 2024; Ziegler et al., 2024). While models without faults are understandably not suitable for evaluating
fault-related stress perturbations, the latter two categories often have limited or no access to reliable in situ
stress magnitude data. This hinders their ability to reliably represent fault-related stress variations in real-world

scenarios.-as-seen-in-studies-by-Ziegleret-al-{2016}-and-Hergert-and-Heidbach-{2011) The-necessity-to-incluc
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Figure 1: Sumax Orientation stress maps from eastern Australia at aA)} Continental Sscale; b8) Regional Sscale; c€) Reservoir
Sscale, and dB) Borehole sScale. O©n continental and regional scales, visual observations suggest that faults may have
differing influences, as seen in the uniform stress orientation_(orange lines) across eastern Australia despite the presence of
faults. However, on a borehole scale, faults can cause local perturbations, evident in the shift of borehole breakout
orientations (blue box), which reflect stress variations across the fault (red line) —\Whileresearch-primariyfocuses-on-these

(Image adopted from Rajabi et al. (2017c)).

In our study, we use 45 reliable and robust stress magnitudes data records, obtained from two deep boreholes,
Trillikon (TRU1-1) and Marthalen (MAR1-1)-{Marthalen}, using microhydraulic fracturing (MHF) and dry sleeve
re-opening (SR) test (Desroches et al., 2021a; Desroches et al., 2021b; Desroches et al., 2023) to calibrate 3D
geomechanical numerical models of the Zirich Nordost (ZNO) siting region, northern Switzerland (Fig. 2). The
data records were collected during a comprehensive 3D seismic and drilling campaign to support site selection
for a deep geological repository (DGR) of radioactive waste (Nagra, 2024c, a). The stress magnitudes presented
in this study are the total stresses, and any reference to the stress magnitudes must be taken as such. Four
variants of the 3D geomechanical numerical model of the siting region, each with lateral dimensions of 14.7 km
x 14.8 km, and a vertical depth of 2.5 km (below sea level; b.s.l), are used within this study. All models use
identical mechanical properties and the same representation of geomechanically relevant subsurface units. One
of the models includes seven contact surfaces with an assigned Cewlemb-friction coefficient representing faults,
and serves as the reference model (REF model) (Nagra, 2024d, c), while the other three models are fault-agnostic,
i.e., faults are excluded from the model. By systematically comparing the predicted stress fields across all the
models, we illustrate the observed perturbations in the stress field with respect to the reference model and
quantify the spatial extent of the stress perturbations caused by faults.
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2.3D gGeomechanical Mnumerical mModel with Efault rRepresentation
2.1 Geological bBackground and mModel gGeometry

The ZNO study arearegion is located in the northern Alpine Foreland of northern Switzerland, approximately 30
km NNE of Zurich (Fig. 2). It is close to the-Black-Ferestin SW of Germany, where pre-Mesozoic basement rocks
locally outcrop (Nagra, 1984, 2002a). The geological evolution of this region was influenced by the development
of a WSW-ENE striking Permo-Carboniferous basin (Gorin et al., 1993; Mccann et al., 2006; Nagra, 2014), formed
in response to the Variscan orogeny and subsequent post-orogenic transtensional processes (Nagra, 1991;
Marchant et al., 2005).

During the Mesozoic, a sequence of sedimentary successions was deposited on the-top of the Variscan basement.
This depositional process was prominent, especially from the Early to Middle Jurassic due to a combination of
regional tectonic subsidence and sea level changes (Coward and Dietrich, 1989; Nagra, 2024c). The sedimentary
rocks were originally deposited directly on the ocean floor as a result of the landmass corresponding to the
present day nNorthern Switzerland being submerged in a broad and shallow epicontinental marine setting
(Jordan, 2008; Reisdorf et al., 2011). The Opalinus Clay formation, deposited during the Jurassic Period of the
Mesozoic Era, is of particular importance as it has been selected as the host rock for Switzerland’s DGR. Factors
contributing to the effectiveness of Opalinus Clay as a long-term geological barrier are its favorable mineralogy
and associated low permeability, and good sorption and self-sealing properties (Nagra, 2001, 2002b, 2008).

At the late Cretaceous and onset of the Cenozoic, the Alpine orogeny, formed by the collision of Adriatic and
Eurasian tectonic plates, led to a significant tectonic activity in the European northern Alpine Foreland (lllies,
1972; Schmid et al., 1996; Schmid et al., 1997; Cloetingh et al., 2006). This resulted in the formation of basement-
rooted, NNE-striking normal faults, forming the Upper Rhine Valley in combination with the uplift of the Black
Forest and Vosges Mountain Massifs. The formation of the flexural Molasse Basin during the Late Oligocene to
Early Miocene is a result of-the downbending of the European plate, in response to the orogenic loading of the
Alps, and caused a gentle rerth-seuth-dip_from north to south in the Mesozoic strata (Sinclair and Allen, 1992;
Kempf and Adrian, 2004; Sommaruga et al., 2012). In our study arearegion, the Mesozoic strata gently dips SSE
(Fig. 3). In the Late Miocene, continued Alpine deformation propagated into the nNorthern Foreland, resulting
in the formation of the Jura Mountains and their associated fold-and-thrust belt, primarily further to the west,
and reactivating the pre-existing basement structures (Diebold and Noack, 1997; Burkhard and Sommaruga,
1998; Laubscher, 2010). These tectonic processes, along with the glacial-interglacial cycles during the Pleistocene
(Fiebig and Preusser, 2008; Preusser et al., 2011), have established the present day geological and stratigraphic
setting in the region.

The reference model (REF mModel) is rectangular, spanning 14.7 km E-W x 14.8 km N-S laterally, and extending
to a depth of 2.5 km below sea level (b.s.l). The upper boundary is defined by the local topography. In the siting
arearegion, Sumax Orientation is 170° £ 11°_according to the BO and DITF observations from the boreholes, in
agreement with the regional trend (Nagra, 2013; Heidbach et al., 2025b). To align the model geometry with the
Sumax Orientation, the entire model domain is rotated by 10° counterclockwise from geographic north, such that
its sides are parallel and perpendicular to the mean Sumax orientation (Fig. 2).

The present day geomechanically relevant layers were constructed using SKUA-GOCAD v19 software. Successive

lithologies with comparable mechanical properties were combined (Table 1), eventually leading to 14
geomechanically different units in the REF model (Fig. 3). A total of seven faults and flexures, named Neuhausen,
Uhwiesen, Wildensbuch, Marthalen-Rafz Flexure, Rheinau, D2, and Trillikon, were implemented in the model
(Fig. 2). These structures are modeled as contact surfaces, weakly interpreted from the regional 3D seismic
sections, and are highly simplified for ease of implementation in the model. Here, simplification means merging
much smaller segments interpreted on 3D seismics into larger, continuous fault planes to represent what is, in
reality, a volumetric fault zone structure (Nagra, 2024a) (Fig. 2, 3).
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Figure 2: GFhe-geographical location and the model boundaries of the ZNO siting region. The red lines_within the model
extents represent the surface trace of the faults and flexures, interpreted from the seismic sections of the siting region and
extrapolated to the surface. The location of the boreholes Triillikon (TRU1-1), Benken (BEN), MARLI-1-Marthalen (MAR1-
1Marthalen), and Rheinau (RHE1-1) are-is shown, along with the Symax orientation data records from each borehole_(black

lines with the centre at the boreholes). The light brown line is the surface trace of a W-E cross-section, along which all the
results in our study are plotted H i Hmax-oFientationvalues.

The black arrows on the sides of the model are th di splacement boundary condltlons%eemp%es&eﬂ—a-ppled—eﬂ—t—he—mede#

W ~The grey circles
en-in the north of the model indicate that the dlsplacements are constrained perpendlcular to this boundary. The co-ordinate
reference system used is CH1903/-/83. -The insert at the bottom left is the 3D view of the faults (light-redresa) within the
model geometry (grey box).
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flexures;Both Neuhausen and Uhwiesen_faults dip at 60° toward the northeast, while the others are vertical.
Neuhausen is the only fault that hasdisplays a stratigraphic offset, with a vertical displacement of approximately
50 m at the base of the Mesozoic units that decreases towards the surface (Nagra, 2002a, 2008, 2024d). The
Marthalen-Rafz Flexur and Wildensbuch Flexur are monoclines that dominate the overlying Mesozoic strata in
the siting region through a step-like bending rather than a discrete break in an otherwise dipping strata
(Madritsch et al., 2024; Nagra, 2024c). Other than the Neuhausen fault, the remaining faults and flexures show
no clear displacement but are included in the model as they represent the first-order geological structures of the

ZNO siting region.{Madritsch-et-al2024{Nagra;2024-#350}1}
E
E
s 0 =
[= 1
@
(=]
-1000 Neuhausen
T | T T | T T | T T | T T | T T | T T | T T
684000 686000 GABO0D Easting [m] 632000 694000 G000
|:| Cenozoic Sediments |:| Wutach-Park.-Wirit.-Sch. Fm. |:| Klettgau Fm. |:| Kaiseraugst Fm.
|:’ Felsenkalke + Massenkalke l:l Humph.-Oal -Murch.-Ool. Em. |:| Bankerjoch Fm. Dinkelberg, Weitenau Fm.
I:l Schwarzbach-Villigen Fm. |:| Opalinus Clay l:l Schinznach Em. + Crystalline Basement
[ widegg Fm. [ staffelegg Fm. [ zeglingen Fm.
Iw EL
. N
E \
£ B = e
B -400 ——— - - s
a
-800- Rheinau
-1200

T ‘ T T T I T T I ‘ T T T ‘ T T T

| ‘
684000 686000 688000 Easting [m] 692000 694000 696000

D Sediments [:‘ Wautach - «Park.-Wurtt.-Sch.» D Klettgau Fm. D Kaiseraugst Fm.

D «Felsen» + «Massenkalke» l:l «Humph.-Ool.»- «Murch.-Ool.» l:l Bankerjoch Fm. I:I Dinkelberg, Weitenau Fm.
o ’ : + Crystalline Basement
l:l Schwarzbach/Villigen Fm. |:| Opalinus Clay l:] Schinznach Fm.

|:| Wildegg Fm. - Staffelegg Fm. -Zeglingen Fm.

Figure 3: W-E c€ross-section of the geomechanical units passing through the Triillikon borehole (Bold white line, TRU1-1) and
a constant northlng 277548 m W|th|n the REF model domaln The depth is referenced to the sea level. The-medekincludes

A Vertlcal exaggeratlon by a
factor of 2.5 is applled to enhance the V|S|b|I|ty of th|n Iayers such as the Wlldegg Formatlon The respective mechanical
properties are shown in Table 1. Only depths down to —1400 m (b.s.l) are shown for clarity, although the REF model extends
to —2500 m (b.s.1). The co-ordinate reference system used is CH1903/-/03.

2.2 Reference mModel (REF model) setup

2.2.1 Model aAssumptions
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The primary objective of the REF model is to reliably predict the present day in-situ-stress state within the ZNO
siting region —usiagtheredcrenertiosand stressmagnitudedotaebininodfrem—densbaorcheleciilling To
achieve this, two key simplifying assumptions are made. First, transient effects such as time-dependent tectonic
deformation; or human-induced changes ean-be-are neglected while considering only the stress contributions
from the gravitational and tectonic forces. Since the model focuses on static stress field prediction, the rock
volume is assumed te-retnot to undergo any transient deformation. Second, linear isotropic elasticity is assumed
in the geomechanical units within the rock volume. This assumption simplifies the+reguired material parameters
needed to explain the behavior of the rock under stress to just the Young’s modulus which characterizes the
elastic stiffness of the rock (E), Poisson’s ratio_which describes the lateral strain response (v), and density (p) of
each geomechanical unit-. Throughout this work, we will refer to Young’s modulus as stiffness and the contrast
in Young’s modulus as stiffness contrast. The equilibrium condition between the gravitational and the tectonic
forces is governed by a second-order partial differential equation (PDE), with displacement as the field variable
(Jaeger et al., 2007). Since this PDE cannot be solved analytically, a numerical solution appreach-is needed.
Therefore-and-forthis, we use the Finite Element Method (FEM). FEM allows the use of unstructured meshes to
represent the model volume, which is particularly useful when modeling complex geological features; and
variations in material properties (Mao, 2005; Henk, 2009).

Although several studies have shown that the stress state can be dominated by inelastic deformations once the
elastic limits of the geomechanical units are exceeded (Smart et al., 2012; Pijnenburg et al., 2019; Yan et al.,
2025), linear elasticity remains an appropriate first-order approximation for predicting the present day stress
state in the ZNO siting region. This assumption is supported by several geological factors (Nagra, 2024d, c). The
tectonic strain rates in northern Switzerland are extremely low, in the order of 1-3 m/Myr/km, and the region is
tectonically stable, with no significant deformation observed since the Miocene. More importantly, the observed
differential stresses (S1-S3) within the geomechanical units range between 0.5-13 MPa, which are significantly
lower than their measured uniaxial compressive strength limits of 33—180 MPa. Because the differential stresses
in the geomechanical units are far below their peak strength, plastic deformation is not expected under the
current stress state.

2.2.2 Model dBiscretization

The model setup follows a standard series of steps, previously used in other regional geomechanical studies
(Buchmann and Connolly, 2007; Reiter and Heidbach, 2014; Hergert et al., 2015; Ziegler et al., 2016; Rajabi et al.,
2017a). The model volume is discretized into 3D elements, collectively referred to as a mesh. The 3D element
resolution plays a significant role in capturing predicted stress variations, where smaller elements capture a
higher spatial resolution but at increased computational cost (Ahlers et al., 2021; Ahlers et al., 2022). To ensure
areasonably accurate representation of each geomechanical unit, a minimum of three finite elements are-is used
in the vertical direction. Accordingly, the top 13 geomechanical units, which are relatively thin (Fig. 3), are
discretized with smaller element sizes vertically, whereas the deeper and thicker Basement unit is represented
with larger element sizes in the vertical direction. A total of 1,923,139 finite-tetrahedral and hexahedral finite
elements are used, providing a high-resolution representation of the geomechanical units, with model
resolutions varying from 100-150 m laterally and 5-20 m vertically. We use first-order elements in this study,

study-with-Hirearshapefunetions;and-theand the discretization is done using Altair HyperMesh 2023-1 software
package.

2.2.3 Mechanical rRock properties and fFault properties.

Geological units; with similar mechanical properties; are grouped into the same geomechanical unit for simplicity.
Each element in the mesh is assigned mechanical properties based on the corresponding geomechanical unit.
The mechanical properties E [GPa], v [-], and p [kg/m3]; used in the models are derived from petrophysical logs
and from uniaxial and triaxial compression tests eere-testsperformed on the core samplesand-petrophysicaHogs
obtained from the TRU1-1 and MAR1-1 boreholes (Nagra, 2024c, b). From the range-distribution of values for
each geomechanical unit, the median values (P50) are used for the model, summarized in Table 1. Geological
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faults are implemented as contact surfaces that can slip under mechanical loading as a structural response to
stress conditions, depending on their frictional properties. In the REF model, contact surfaces are assigned a
friction coefficient of 1 and a zero cohesion, values chosen to best represent the fault properties in the region
(Nagra, 2024c).

Table 1: Different geological formations with respective mechanical properties. The abbreviations are used solely to indicate
the respective formations in the figures of this paper. Geelegi ormations—with-similar-geomechanicalproperties—are

~Throughout the rest of this paper, the respective units can also be matched with the corresponding colors shown in
Fig. 3 and te-with the abbreviations given here{Nagra,2024¢-b}. Detailed information on the lithology is given in (Nagra,

2024c, b).Nagra{2024¢)

System Group Formation Lithology | Abbreviation | p [kg/m?] | v [-] E
used [GPa]
Quaternary, Paleogene, Cenozoic Sediments Sandstone CeSe 2350 0.30 15
and Neogene (calc.)
«Felsenkalke» + Limestone MaFeMa 2685 0.18 31
Malm «Massenkalk»
Schwarzbach-Villigen | Limestone MaScVi 2685 0.20 40
Jurassic Fm. (argill.)
Wildegg Fm. Limestone MaWi 2610 0.26 18
Wutach Fm. Calc. marl
Dogger Variansmergel Fm. Silty marl DoWuVaPa 2530 0.32 13
«Parkinsoni- Silty marl
Wiittembergica-Sch. »
«Humphriesoolith Fm. | Silty marl
» DoHuWeMu 2540 0.28 14
Wedelsandstein Fm. Silty marl
«Murchisonae-Oolith Silty marl
Fm.»
Opalinus Clay Fm. Silty DoOp 2520 0.37 11
claystone
Lias Staffelegg Fm. Argill. marl LiSt 2540 0.26 18
Keuper Klettgau Fm. Dol. Marl KeKI 2570 0.23 17
Bankerjoch Fm. Anhydrite KeBa 2700 0.22 23
Schinznach Fm. Dolostone MuSc 2710 0.24 32
Triassic Muschelkalk Limestone
Zeglingen Fm. Anhydrite MuZe 2840 0.19 36
Kaiseraugst Fm. Argill. MuKa 2620 0.30 23
Marl
Bundsandstein Dinkelberg Fm. Sandstone
Permian | Rotliegend Weitenau Fm. Argill. DiwecCr 2540 0.27 34
Sandstone
Crystalline Basement Crystalline basement. | Crystalline
basement

2.2.4 Model c&alibration

The present day stress state is computed by applying verticaHeadingsimulating-the gravitational forces and
lateral displacement boundary conditions to simulate the tectonic loading from the geological history. These

boundary conditions are chosen so that the modeled stresses best fit te—the _measured horizontal stress
magnitude data, a process known as model calibration (Reiter and Heidbach, 2014; Ziegler and Heidbach, 2020).
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#eethe—medel—eahb#aﬁen—ln totaI[ we have 30 30 Shmin.and 15 Smax magnltudes (Fig. 5).- The Shmin magnltude ranges
(Fig. 5: red bars) are derived from the miere-hydraulicfracturing (MHF) tests and dry sleeve reopening (SR) tests
(Desroches et al., 2021a; Desroches et al., 2021b; Desroches et al., 2023; Nagra, 2024d) provide the basis to
bracket the ranges for the Sumax magnitudes (Fig. 5: blue bars). However, the mean of these ranges was used for

the model calibration.

0-Spnina i e = —S3=HThe model calibration is done using the
PyFast Calibration tool (Ziegler and Heldbach 2021) wh|ch uses a linear regression-based algorithm to compute
the best-fit lateral displacement boundary conditions by minimizing the differences between the modeled and
measured horizontal stress magnitudes. The resulting best fit for the boundary conditions of the model volume
was found to be aFe-achieve-the-bestfit-of theboundary—conditions,—a total shorteningtetal- perpendicular
dﬁp«taeemeﬂt—ofo 8822 m-is applied in the east—westeast-west dlrectlon and 4.2 min the north-south direction;

g volumew g ig—2}. Displacements parallel
to the boundarles are permitted on all lateral faces of the model. At the base, vertical displacement is constrained
to zero, while horizontal displacement is permitted; the model top remains fully unconstrained. The numerical
solution is computed using the Simulia Abaqus V#2021 finite element solver. The results are analyzed using
Tecplot 360 EX 2023 R2 along with the Geostress ¥v2.0 add-on library (Stromeyer et al., 2020).

3. Model set-up of 3D gGeomechanical Mnumerical Mmodels without
fRault Rrepresentation

3.1 Model diseretizatien-discretization sStrategies

Removing the fault implementation from the 3D models allowskelps us to use different model discretization
strategies, which in turn significantly accelerates the model setup and stress prediction workflow. -Using two
different discretization strategies, we developed three additional fault-agnostic 3D geomechanical numerical
models. The reference model and the three fault-agnostic models are then compared to quantify the spatial
influence of faults on the far-field stress state. In our study, the time required to build a model was reduced from
approximately two months for the reference model, the model that mcludes contact surfaces, to just two davs
for the fault-agnostic models. j

‘ o3 . . ‘

The standard procedure discretizes each geomechanical unit individually using the definition of its top and
bottom interface surfaces, and later connected by matching the nodes along the common interfaces. Each
element of the unit is assigned to the appropriate mechanical properties (Fig. 4aA) directly from the stratigraphic
definition. While this approach results in a smooth unit boundary, it requires substantial manual effort and is
particularly time-consuming when working with models containing many geomechanical units.

In order to simplify the setup and discretization procedure of the fautfault-agnostic models, we use ApplePy
(Automatic Partitioning Preventing Lengthy Manual Element Assignment), a Python-based tool that automates
the discretization and element property assignment process (Ziegler et al., 2020). The entire model volume is
discretized in a single stepfirst as a largely homogeneous mesh, ignoring both lithological interfaces and fault
structures. ApplePy uses the depth values of the stratigraphic boundaries to decide which element belongs to
which lithological unit/geomechanical unit (Fig. 48b). Although this approach introduces step-like transitions at
unit boundaries which looks optically unrealistic, it significantly reduces manuatthe meshing time, especially for
large or complex models, like the REF model without compromising the stress prediction capability of the final
3D geomechanical numerical models, as discussed in Sect. 4.

10
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Figure 4: A conceptual Mvisual comparison of aA) the standard procedure and 8b) the ApplePy procedure for discretization
and mechanical property assignment to geomechanical units. The four colors represent distinct geomechanical units, each

W|th unlque I|tholog|es and mechanical propertles m%eﬁandﬂd—meee@%e—eaeh—geemeehmal—w%d&emeé

3.2 Model rRealizations and cConfigurations

Building on the discretization strategies described in Sect. 3.1, three fault-agnostic 3D geomechanical numerical
model realizations were developed. The three fault--agnostic 3D geomechanical numerical models follow the
general model workflow of the REF model, i.e., the model parameterization and calibration are the same (Sect.
2.2), along with the similar-same model extents (Sect. 2.1). —They are calibrated to the same dataset of 45
horizontal stress magnitude measurements used for calibrating the REF model. The only differences lie in the
model discretization strategies (Sect. 3.1) and finite element resolutions. Out of these three models, one is set
up using the standard procedure, and two are set up using the ApplePy procedure. Table 2 presents the technical
details on the number of elements and spatial resolution of each model used, along with the corresponding best-
fit displacement boundary conditions obtained after applying FAST Calibration tool. The brief description of the
three fault-agnosticmedels-withoutfaultsstruetures models is-are:

e  REF-NF mModel: REF-NF-medel-is—directly—dDerived_directly from the REF model with;—maintaining

identical geometry, mesh and mechanical property assignments but —Fhe-enly-differencebetween-this
modeland-the-REFmeodehisthatwith faults removed-are-emitted-. Contact surfaces are eliminated, and

opposing nodes are equivalenced, except for the Neuhausen Fault, where a 50 m lithological offset
prevents node equivalencing. In this case, slip is prevented by assigning an artificially high friction

coeff|C|ent of SOMWHH%%%NW%MW
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o AP mModel: MaintainsFhe-AP-medelmaintains the same extents and mechanical properties as the REF
and REF-NF models but uses ApplePya-medified-diseretization,rottracking geologicalinterfaces— for
Pgroperty aSS|gnment to the eIements—os—eI-ene—usmg—t—he—AppJePy—tee«l It does not incorporate faults;

and has approximately 50% more

elements than the REF and REF-NF models.
e AP-H model: AFhe-AP-H-medekisa higher resolution version of the AP model, with twice the number of
elements. All the other features of the model are the same as the AP model.

 —

Table 2: Summary of technical specifications for all model realizations used in this study. Reported vertical resolutions refer
only to the Mesozoic units and are approximate for the ApplePy models due to depth-dependent variation. Minor differences
in displacement boundary conditions reflect the presence of contact surfaces in the reference model, which allow elastic

energy d|55|pat|on that is absent in the fault- agnostlc models. Summaw—ef—teehmea#speerﬂe&ﬂens—fe%nede#mﬂeaﬂens

Model Discretization | Number of Vertical Lateral Displacement Bboundary
rRealization pProcedure | Eelements | rResolution of the | Rresolution Cconditions
mMesozoic [m] North-South | East-West
eElements shortening | shortening
[m] [m] [m]
REF mModel 1,923,139 5-20 100-150 4.1 0.82
REF-NF 1,923,139 5-20 100-150 4.2 0.90
mModel Standard
procedure
AP Mmodel 2,826,240 | ~7 (non-basement 80-110 4.23 0.93
units)
AP-H ApplePy 5,974,150 | ~4 (non-basement 60-80 4.25 0.90
mi4odel procedure units)
4. Results

4.1 1-B—results—of-the-horizontal-stressStress magnitudes along the-borehole
trajectories

The resulting predicted horizentalstress magnitudes from all the model realizations are presented together with
the measured Shmin (red bars) and estlmated SHmax (blue bars) magnltude ranges along the TRU1-1 and MAR1-1
borehole trajectories in Fig. 5.

In general, the predicted-herizentat horizontal stress magnitudes from the REF model-{Fig—5;-verticalred-line
changing-with-depth}; align reasonably well with the measured stress ranges across different geomechanical
units. However, some discrepancies are present, particularly in the Klettgau and Bankerjoch formations, where
the REF model underestimates Shmin magnitudes, and in the Schinznach formation, where iteverestimates-Shmin

magnltude is overestlmateds These deviations arise because+he—R—EHnedel—uses—P59—(—med+aa—)—s%#ﬂ%ss—va+ues

o, for the model

callbratlonn—wmh—the—measweﬁm&e%m-s#e&s—magmﬂ*des the REF model uses P50 (medlan) horizontal stress
magnitude values despiteir-spite-oft the MHF tests resulting in ranges (red and blue bars in Fig. 5). Therefore,

the stress predictions may vary from the assumed P50 value at a particular point in the subsurface. The vertical

12
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stress magnitude (Sv) is calculated from the weight of the overlying rock mass, considering the densities of the
individual lithologies. From Fig. 5, it can be seen that Sv increases linearly with depth.

The predicted results from all the model realizations, regardless of fault implementation or exclusion, also align
well with the measured horizontal stress magnitude ranges along both borehole trajectories across different
geomechanical units, and are consistent with the REF model. Minor but negligible differences of <1 MPa in the
Shmax_Magnitudes can be found at ~475 m (t.v.d) along the TRU1-1 borehole and at ~250 m (t.v.d) along the
MAR1-1 borehole in the AP and AP-H models (Fig. 5). This is likely due to a high stiffness contrast between the
Cenozoic sediments (E = 15 GPa) and Felsenkalke + Massenkalke (E = 31 GPa) units, the transition boundary of
which is differently discretized due to ApplePy usage. A similar difference can be found at the Zeglingen Fm. (E =
36 GPa), Kaiseraugst Fm. (E = 23 GPa) and the Dinkelberg, Weitenau Fm. and Crystalline basement (E = 34 GPa),
which is also due to the widely varying stiffness contrasts.

Stiffer formations such as the Schwarzbach-Villigen Fm., Zeglingen Fm., and the basement have broader stress
ranges in the measured data due to their statistically larger stiffness variability, while weaker formations like the
Opalinus Clay exhibit narrower, more consistent stress distributions. Moreover, stiffer layers shield the weaker
layers above and below, reducing stress variability in these formations. In short, Fig. 5 clearly indicates that the
differences between the profiles from all the models are smaller than the measurement errors, represented by
the length of the horizontal red and blue bars, and that the differences between the fault agnostic models and
the REF model are insignificant. The variation of Sv_ magnitude with depth is consistent across all the model
realizations, with differences <0.05 MPa observed between the models using ApplePy and the standard

procedure.

The AP and AP-H models yield identical results. This indicates that increasing model resolution would not
significantly improve stress predictions in our study and that the resolution of the AP model is already sufficient.
This rules out resolution effects within the ApplePy models on the predicted stress magnitudes with respect to
the REF model.

13
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4.2 Model 2B—+results along a vertical-a cross-section and a horizontal layer

4.2.1 Spatiebvariatienet-hHorizontal differential stresses (Shmax-Shmin)

Along the W-E cross-section through borehole TRU1-1, the horizontal differential stress (Stmax-Shmin) Of the four
models displayed in Fig. 6a-d shows only small differences, except near the contact surfaces where noticeable
localized stress concentrations in the REF model occur. Similar result shows up when comparing the values of
Stmax-Shmin along the mean Opalinus clay layer from the REF model (Fig. 6e) with those of REF-NF model (Fig. 6f).
To quantify the difference of the three fault-agnostic models w.r.t the REF model, Fig. 7a-c displays the difference
in the horizontal differential stress A(SHmax-Shmin) between the models. The values of A(SHmax-Shmin) exceed +2 MPa
only within 100 m of the fault. Beyond approximately 200 m from the faults, A(SHmax-Shmin) across all models
becomes more similar to each other, and differences relative to the REF model typically remain below +0.4 MPa.
As the distance from the faults increases, the value of A(Sumax-Shmin) differences rapidly decreases.

In addition to the spatial proximity to contact surfaces, the variation of SHmax-Shmin depends on the stiffness of the
geomechanical units. In specific Mesozoic units characterized by lower stiffness, such as from the Wildegg Fm.
of the Malm Group to the Klettgau Fm. of the Keuper group, and the Kaiseraugst Fm. of the Muschelkalk group
(Table 1), the SHmax-Shmin typically is <3.5 MPa. In contrast, units with high stiffness can exhibit Sxmax-Shmin
exceeding 7 MPa, such as in the «Felsenkalke» + «Massenkalk» and the Schwarzbach-Villigen Fm. of the Malm
group, Schinznach and Zeglingen Fm. of the Muschelkalk group and the Dinkelberg Fm., Weitenau Fm. and
Crystalline basement (Fig. 6a-d, Table 1). This trend is expected, as lower stiffness materials accommodate
deformation more readily, resulting in lower differential stresses, whereas stiffer units resist deformation,
leading to higher differential stresses. The Opalinus Clay layer has a Young’s modulus of 11 GPa, which is relatively
low compared to the other geomechanical units present in the siting region. The adjacent stiffer geomechanical
units act as stress-bearing members, effectively shielding the soft layer and further reducing the stress
magnitudes concentrated within it. The Shmax-Shmin in the mean Opalinus Clay layer, as predicted by the models,
is <2 MPa irrespective of fault inclusion or exclusion from the model (Fig. 6e-f).
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A particularly notable observation is that the differential stress near the Neuhausen fault remains relatively
comparable across all models when compared to the magnitude of differences in SHmax-Shmin @t other contact
surfaces. Despite the Neuhausen fault being either fully removed or mechanically disabled via a high friction
coefficient, the differential stress pattern across the 50-meter offset between the footwall and the hanging wall
is well replicated in the AP and the AP-H models in Fig. 6a-d. This is attributed to the abrupt contrast in mechanical
properties across the Neuhausen Fault (Fig. 3; Table 1), which effectively mimics the local stress response, even
in the absence of explicit fault representation.
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Figure 6: a-d) Cemparisen-oftheh Modelled horizontal differential stress (Symax-Shmin). a-d) W-E cross section (brown line in
Fig. 2) through the TRU1-1 borehole (white vertical bar) with depths referenced to below sea level (b.s.l). The location of
faults is indicated by black lines. e-f) Mean Opalinus Clay layer of the REF and REF-NF model, indicated by the white lines on
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Figure 7: a-c)-Cemparison-of-the-A Difference of {Sumax-Shmin} between the models without faults and the REF model with
active faults along the same cross-section as in Fig. 6. The cross-sectionsshiees show the difference with respect to the REF

mModel a

nd are indicated at the bottom left of each slice. key-differencesareprimarily-concentrated-nearcontactsurfaces

within-appreximately100-m—Although faults have not been directly indicated on the cross-sections, the location of the faults
can be V|suaIIy seen as sudden lateral changes dﬁeen%m&mes in an otherwise continuous change in A (SHmax-Shm.n) A/-isuauy—
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4.2.2 SpatiohbvariatienofShmax Orientation

Along the same W-E cross-section as in Fig. 6a-d, traddition—+to-Sumax-Shmin—We—also—examined-thethe —Shmax
orientation of the four models is displayed in {Fig. 8a-d, and the variability of the Shmax orientation w.r.t the REF

model is displayed in }and-itsvariabilityalong the same W-Ecrosssection{Fig. 9a-c}. Fig. 8e-f shows the variability

of Sumax orientation along the mean Opalinus clay layer from the REF model and the REF-NF model respectively.

The largest Sumax Orientation variability is reoriented more within a distance of 100—200 m around the contact
surfaces, similar to the observations of A(Sxmax-Shmin). At this distance, differences greater than 6° w.r.t. the REF
model are observed-{Fig—108}. These differences tend to reduce to less than +2° at lateral distances greater than
500 m from the contact surfaces. Within the near-field zone, which is <-300 m from the contact surfaces, stress
concentrations are probably artifacts arising from the numerical resolution I|m|ts ef—the—ﬁw%eeiemen%s—u%c—h
y vy W ien—This shift
in Shmax_orientation can also be observed in Fig. 8e-f along and near the contact surfaces. Even under a
hypothetical assumption that the observed variations are entirely fault-induced, Sumsx-erientation-changesare
within10°relative-to-theregionaltrend—Given-thatthe current stress indicator techniques cannot resolve Stmax
variations within 10°. Therefore, ns-with-a-correspondingprecision-these differences can be considered inare

aetsignificant and non-resolvable. Finally, increasing model resolution does not change our results, as seen when
comparing the AP and AP-Htwe-ApplePy model results in Fig. 8 and Fig. 9.
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584 Figure 8: Absolute Spmax orientation. a-d) W-E cross-section through borehole TRU1-1 (T) indicated with the white vertical
585 bar. e-f) Mean Opalinus Clay layer of the REF and REF-NF model, indicated by the black lines on the W-E cross sections. Capital
586 Ietters indicate the location of the four boreholes TRU1 1 (T), BEN (B), MAR1 1 (M) and RHE1-1 (R).
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4.3 Quantification of the lateral extent of fault-induced stress changes.

To better quantify the impact of faults on stress, we interpolated the results of the four models on a SW-NE
oriented horizontal line at 300 m (b.s.l) crossing five of the seven faults (Fig. 10a-c). ToFe-furtherinvestigate the

improve readability, the results from the AP model were not plotted, as it is clear from Fig=s. 5, 7, and 9 that the
that AP and AP-H model results are almost identical.

The Shmax and Skmin magnitudes of different model realizations largely overlap each other along the horizontal
line. (Fig—106}-A difference of ~0.5 MPa is observed in Sumax magnitude (Fig. 10b), and ~1 MPa is observed in the
Shmin magnitudes (Fig. 10a) between the REF- mModel and the fault--agnostic models, within ~500 m te-of the
faults. However, these differences are less than the widths of the stress magnitude measurementrangesdata,
which in turn, represent the uncertainty of the measurements (Fig. 5). In general, the horizontal stress
magnitudes from the REF model have an abrupt change in the vicinity of the faults, deviating from the continuous
trend followed by other model realizations. The differences in the Simax magnitudes reduce to <0.2 MPa beyond
a distance of about 500 m away-from the fault. The differences in the Shmin magnitudes follow the same pattern
as the Sumax magnitude, and also reduce beyond a distance of about 500 m away from the fault.

Similarly, the Sumax orientation of the REF model shows negligible deviations of <2° in the undisturbed rock
volume, away from the faults, and a deviation of 2°-6° up to 1 km from the modeled faults (Fig. 10c). According
to the quality ranking scheme of the Sumax orientation from the World Stress Map, the A-quality dataset, data of
the highest quality, has an—uncertaintya standard deviation of +15° (Heidbach et al., 2025a). Even Shmax
orientations derived from the DITF and BO in the MAR1-1 and TRU1-1 boreholes exhibit standard deviations of
approximately +11°. Considering this, the orientation deviations seen in Fig. 10c are not resolvablereglgible and
well below the uncertainties of the in situ indicators.

Near the Neuhausen fault, there is a localized abrupt change in the stress-tenserecempenentshorizontal stress
magnitudes within ~100 m on either side of the modelled fault for all the model realizations. An important
observation is that this abrupt change occurs not only in the REF model but also in the models without any faults.
These stress changes are primarily controlled by the lateral stiffness contrasts due to the offset and not by the
mere presence of the faults.

Overall, the differences are <-0.2 MPa in stress magnitudes and <-2° in Sumax Orientations beyond 1 km from the
fault, which is far less than the uncertainties of the horizontal stress magnitude measurementsdata from the
MHF and the SR tests, as well as the stress indicators for the Sumax Orientation from the boreholes. Even in a
conservative approach, it is clear that the effect of faults on the stress field is within about 1 km from the fault
core. This conclusion aligns with the findings by Reiter et al. (2024), who, through generic model studies, found
that significant stress changes due to faults only occur within a distance of a few hundred meters, partly up to 1
km next to the fault.
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Figure 10:_Magnitudes of Shmin_and Sumax, and the Sumax orientation along a SW-NE horizontal profile at 300 m (b.s.l.), shown
inthe 3D figure as a red line. Green vertical lines with the respective fault names denote the location where the profile crosses
the modelled faults.

5. Discussion

5.1 Comparison with observed Shmax Orientation data

The erientation—of—the—maximum—horizontal—stress—{Shumax} orientation is the most widely available
characteristiceempenent of the reduced stress tensor. It is also the easiest eempenentto analyze because it can

be averaged and visualized with respect to the fault on stress maps (Fig. 1))}—Fhis-tepic-was-a-subjectofseveral
earlierstudies (Yale et al., 1993; Yale et al., 1994; Yale and Ryan, 1994; Yale, 2003; Rajabi et al., 2017c; Heidbach

et al., 2018). The Shmax oOrientation can be determined from different stress indicators, such as from direct
borehole-based measurementsindicators, earthquake focal mechanisms, geological indicators, or passive
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seismic methods (Amadei and Stephansson, 1997; Zang and Stephansson, 2010; Heidbach et al., 2025a). Among
these, direct borehole-based indicatorsdata- such as borehole breakouts (BOs), drilling-induced tensile fractures
(DITFs), and hydraulic fracturing (HFs)- are commonly considered regarded-asto be the most reliable -technigues
(Bell, 1996a; Zang and Stephansson, 2010).

In the ZNO study region, 11 Skmax orientation data records are available from HFs, DITFs, and BOs. The mean SHmax
orientation from these data is 170° with a standard deviation of + 11°(Nagra, 2024d, c; Heidbach et al., 2025b).
The individual standard deviation of each data record is between + 9° and + 19°, indicating that rotations smater
thanr<-+-11° cannot be resolved. As the differences between the REF model and the three fault-agnostic
models,reatizations-witheutfaults as displayed in Fig. 9, is-are smaller than + 10°, the potential impact cannot be
resolved with_any-the stress indicator. Furthermore, most of the rotations observed are located closein to-the
near-field-of the fault. At a distance of 1000 m from athe fault, the rotation is <-* 2° and thus clearly below the
uncertainties of any measurementreselution-timit..

The stress regime of the rock volume, by itself, would not have an influence on the Shmax Orientation. A rotation
of Shmax_orientation would primarily be driven by the horizontal differential stresses, i.e., the greater the
horizontal differential stresses, the lesser the possibility of any rotation in the Sumax orientation (Bell, 1996a;
Yale, 2003; Reiter et al., 2024).

The 1 km spatial distance limit can also be confirmed by viewing the Shmax orientation from the boreholes in
correlation with their distance from the nearest faults. The TRU1-1 borehole is less than 1 km from the
Neuhausen fault. Similarly, the MAR1-1 and RHE1-1 boreholes are closest to the Rheinau fault. The average Stmax
orientation from the BO, DITF, and HF is ~165° along the TRU1-1 borehole, ~175° along the MAR1-1 borehole,
and ~172.5° along the RHE1-1 borehole (Nagra, 2024c, d). Comparing the Shmax orientation values from these
three boreholes to the regional Sumax orientation value of 170° + 11° already strengthens the argument that the
faults have minimal effects on Sumax orientation even at a distance of less than 1 km.

5.2 Impact of varying fault friction coefficient of the implemented faults
In geomechanical modelling, the fault strength is commonly deseribed-byMehr-Coulomb—eriteria—and-hence

characterized by its friction coefficient (1) and cohesion (Brandes and Tanner, 2020). In most geological settings,
the friction coefficient varies between 0.6 and 1.0 in reservoirs with depths where -normal stresses are <-200
MPa on a pre-existing fracture plane (Byerlee, 1978; Zoback and Healy, 1984). In stark contrast, significantly
lower friction coefficient values are found in geological settings with extremely weak lithologies, overpressured
fault cores, and in faults with very large offset and/or high slip rates (Morrow et al., 1982; Morrow et al., 1992;
Di Toro et al., 2011; Hergert et al., 2011; Li et al., 2022). Cohesion varies with different lithologies, but for-the
pre-existing faults, it is commonly assumed to be zero. In general, the value of the friction coefficient values
varies between 0.4 and 0.8, and is standardly taken as 0.65 (Hawkes et al., 2005; Kohli and Zoback, 2013). In
northern Switzerland, taking the lithology and the geological setting into consideration, the values of apparent
fault friction coefficient alsovaluesecemmeonly range from 0.6 to 1.0, and very rarely to 0.4 (Kastrup, 2002; Vigano
et al., 2021). Asseen-in-thestudiesby-Kastrup (2002); states that the apparent fault friction values of 0.2 are-is
extremely rare in the-Switzerland and only occurs at depths of more than 10 km.

We investigate the effect of varying the friction coefficient of the contact surfaces on the predicted in situ stress
state and re-calibratinge the REF each-model with a different friction coefficient-seperately.Weconsideral-the

magnitudes and orientation from friction coefficients 0.2, 0.4, 0.6, and 0.8 are compared to the friction
coefficient of 1.0, the value we use in the REF model (Fig. 11). We see that changes in friction coefficient do not
significantly affect our model results beyond lateral distances of 1 km. Even within 1 km from the faults, beth-the
horizontal stress magnitudes have observable variations of <-1 MPa and <-5° for the Sumax orientation variations.
These variations reduce to <-0.25 MPa in both minimum and maximum horizontal stresses, and <-2.5° in the Sxmax
orientation beyond 1 km from the faults. The maximum variations, still far less than the uncertainties in the
measurements-in situ stress data of the stress magnitudes and resolvable Shmax orientations, occur at a friction

28



708
709
710
711
712
713
714

715
|716
717
718
719
720

coefficient of 0.2. For the other values of the friction coefficient, the results are very much comparable to the
REF mModel, with a friction coefficient of 1. This is to show that changing the friction coefficient has a negligible
effect on the predicted stresses in our model. -but-mightretbethecaseinotherstudiessMinor amounts of slip,
in the order of a few tens of cm, occur along the faults in the REF model during the application of boundary
conditions. However, the stress change along the fault due to this slip is expected to be far less than the much
larger background stresses and the differential stresses. Therefore, the minor slip occurring along the contact
surfaces does not influence the overall stress field analysis.

These findings are in line with the results from the generic studies by Homberg et al. (1997) and Reiter et al.
(2024), who studied the impact of variable friction coefficient on adifferent-stress tensoreempenents and found
that lower values of friction coefficient lead to a higher stress perturbation near the modelled fault. This is also
seen in Fig. 11 and is because of possible decoupling at the fault and consequently a better dissipation of stress
at the faults, facilitated by lower friction coefficients. The studies also showed that this effect is limited to a
distance of 1 km from the fault zone.
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Figure 11: Impact of friction coefficient (1) on the stress tensor components. The model used here is the REF model. The
results are plotted along the SW-NE horizontal profile at 300 m (b.s.l.), shown in the 3D figure as a red line. Green vertical
lines with the respective fault names denote the location where the profile crosses the modelled faults.

5.3 Dependence of the modeling results on fault implementation

Faults in the REF model are represented as contact surfaces, a common and effective approach for large-scale
geomechanical simulations. Using contact elements to model faults seems to be a reasonable simplification for
large, field-scale reservoir models, where the actual width of the fault core is much smaller than the overall size
of the model. Hence, contact surfaces are computationally efficient for reservoir-scale models where actual fault
zone widths are negligible compared to model dimensions (Caine et al., 1996; Treffeisen and Henk, 2020). Since
our interest is on reservoir scale, alternative fault representation using, e.g. continuous rectangular finite
element grid, or a continuous curvilinear finite element grid in a homogenized continuum (Henk, 2009, 2020) are
is not used in our study. Furthermore, the results from Treffeisen and Henk (2020) and Reiter et al. (2024) show
that the stress and strain perturbations from different technical fault implementations vary only within a few
tens to a few hundred meters from the fault representation. As we focus only on the far-field stress state, it can
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be safely assumed that the choice of fault implementation approach does not significantly affect the far-field
results.

Although a numerical value does not exist for what is universally defined as far-field stresses, our model indicates
that at a distance of >-500 m from the faults, the impact of the faults on the stress field is clearly smaller than
the uncertainty of the model itself and smaller than the expected variability of the stress fieldld-{Nagra, 20247,
As seen in Fig. 910, the influence of faults on the stress field is limited to within 1 km from the contact surfaces.
Beyond this distance, the choice of the fault representation approach would ret-have no significant impact on
the predicted in situ stress state.

5.4 Limitations of the study’s results and future outlook

In the REF model, the faults, represented by contact surfaces, are simplified and a unified representation of
numerous small fault patches that were interpreted from the 3D seismic interpretation. This simplification is
necessary for an easier and reasonable representation of fault structures and the consequent computational
simulation feasibility of the model. However, the reality is more complex. In the subsurface, faults often occur in
clusters and display heterogeneous geometry, composition, and structure (Tanner and Brandes, 2020). Large
faults are often accompanied by zones of secondary faults, which can extend the spatial influence of faults on
the stress state. Small fault segments of the primary fault and the associated secondary faults can lead to a higher
stress concentration along the fault surfaces, complicating the interaction between faults and the in situ stresses
(Jones, 1988; Maerten et al., 2002). A single fault may also have complex geometry with multiple bends (Saucier
et al,, 1992; Roche et al., 2021), increasing its influence on stresses compared to the planar faults.

Our study focusses on a reservoir scale, in the order of a few kms, to predict present- day stress variation in the
area of interest. While seven faults were implemented in the REF model, many more fractures or joints exist in
reality but cannot be resolved at our current lateral resolution of approximately 70—100 m, and the available
structural geological data. Including these would significantly increase the element count and computational
demand, far beyond the scope or need of most studies. It is important to emphasize that the focus of ourthe
results is only the far-field present day stresses, and in an intact and undisturbed rock volume.

While previous studies (Homberg et al., 1997; Nicol et al., 2020)have documented significant stress rotations
near fault tips, they also emphasize that these perturbations are typically localized, rarely extending beyond a
few hundred meters from the termination point (Homberg et al., 1997; Nicol et al., 2020). Our findings are in
general agreement with this observation. In our model, fault tips ending within the Mesozoic sediments indeed
exhibit localized stress concentrations and enhanced stress rotations. However, because these effects are
spatially restricted, they do not significantly alter the regional stress field predicted by the fault-agnostic models
at distances greater than a few 100 m from the structural discontinuities.

FurthermoreextremeExtreme cases exist where large-scale faulting separated the crust into distinct fault blocks,
each having an independent Shmax Orientation between adjacent fault blocks of the same field (Yale et al., 1994;
Yale and Ryan, 1994; Bell, 1996b; Kattenhorn et al., 2000; Hergert and Heidbach, 2011; Hergert et al., 2011; Li et
al., 2019; Qin et al., 2024). While complex stress patterns and large Sumax rotations have been reported for major
fault systems such as the Mgre—Trgndelag Fault Complex and the San Andreas Fault, these systems differ
fundamentally from the Alpine Foreland Basin in terms of tectonic setting, fault displacement magnitude, and
fault frictional properties (Zoback et al., 1987; Pascal and Gabrielsen, 2001; Roberts and Myrvang, 2004). In
particular, the large offsets and anomalously low friction coefficients reported for these systems are not
representative of the fault conditions in northern Switzerland. (Zoback et al., 1987; Pascal and Gabrielsen, 2001;
Roberts and Myrvang, 2004)-BuBut, as seen in our study arearegion, if the Mesozoic sediments are not massively
faulted or fractured, and-have sufficiently large differential stresses, and are located in an intraplate Foreland
Basin setting, it could be expected that the impact of faults on the stress state would only be within 1 km from
the fault zone. However, further investigation is needed for other geological settings, with different lithologies
such as salt domes, anhydrite, or crystalline rock formations, or regions where faults exhibit more complex
geometry with more curvature/ bends, or with extremely large total offsets and high slip rates, to confirm the
broader applicability of our results.
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6. Conclusion

We evaluated the influence of faults on the regional stress state using 3D geomechanical models of the Ziirich
Nordost siting region, which are calibrated on a robust dataset of 30 minimum horizontal and 15 maximum
horizontal stress magnitudes from two boreholes. We directly compare the predicted stress states between
models where faults have been modelled as contact surfaces and models where faults have been excluded or
mechanically deactivated. Our findings show that faults cause only local stress perturbations, within 500 m from
the contact surfaces, with their impact becoming negligible beyond 1 km from the fault-eere. At this scale, stress
variations are mainly controlled by contrasts in rock stiffness on the juxtaposed formations rather than just the
relative mechanical weakness presented by the fault plane. The variations between the model realizations must
also be viewed in conjunction with the rock stress variability, which in turn results from stiffness variability. The
fault-induced stress effects at distances >-1 km are smaller than the typical resolution limits of stress data and
uncertainties of the stress magnitude measurements, which is-are +151° for Sumax orientation and 0.7-3.5 MPa
for stress magnitude, derived from the description of stress magnitudes as ranges. Importantly, omitting faults
from the modeling workflow can reduce model- setup and computational time from months to 1-2 days using
alternative discretization strategies, without sacrificing stress prediction reliabilityaeewraey. These findings
provide valuable guidance for efficient and reliable reservoir-scale geomechanical modeling, including-repesitery
site assessments for a deep geological repository, where predicting far-field in situ stresses in intact rock volumes
is essential, given that the storage sites are located away from active faults (>1_km) in an intact and undisturbed
rock volume. However, further studies in different geologic settings and under different stress conditions are
required to verify the general applicability of our results from northern Switzerland.
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