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Abstract. The degradation of marginal permafrost is a sensitive indicator of climate change, with far-reaching implications 

on regional ecosystems, hydrology, and infrastructure. Located near the southern limit of latitudinal permafrost (SLLP) in 

Eastern Asia, Northeast China has experienced pronounced permafrost retreat and persistent ground warming in recent 

decades. This study develops a physics-informed machine learning (PIML) framework that integrates the Temperature at the 

Top of Permafrost (TTOP) model, observed changes in land use and land cover (LULC), and climate projections from the 25 

Coupled Model Intercomparison Project 6 (CMIP6) to improve the understanding and prediction of permafrost dynamics in 

the region. Results indicate that, under the SSP5-8.5 scenario, permafrost extent may decline by more than 90% by the end 

of the 21st century, primarily driven by a sharp reduction in the air freezing index (AFI), especially in high-latitude and high-

elevation zones. Land use and cover changes (LUCC), particularly urban expansion and deforestation, further exacerbate 

ground thermal disturbances. Spatially, mountainous forested areas, such as the Da Xing’anling Mountains, exhibit relatively 30 

greater resilience to warming due to dense vegetation and complex topography that help buffer surface energy fluxes. 

Feature attribution analysis identifies surface temperature, snow cover duration, and vegetation as dominant drivers of 

permafrost stability, while Uniform Manifold Approximation and Projection (UMAP) clustering reveals distinct degradation 

trajectories across different land cover types. This study highlights the complex interplay of climatic and anthropogenic 

factors in permafrost evolution and demonstrates the utility of integrating physical modelling with machine learning to 35 

support ecological conservation and infrastructure risk management in cold regions environment. 
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1 Introduction 

Permafrost, a crucial component of the Earth's cryosphere, underlies approximately 11% of the currently exposed land 

surface and is highly sensitive to climate warming (Obu, 2021). Recent decades have seen disproportionately rapid climate 

warming in northern high-latitude regions, a phenomenon known as Arctic amplification (You et al., 2021). Correspondingly, 40 

Arctic and subarctic permafrost has experienced unprecedented warming; for instance, a synthesis of observational records 

indicates that average global permafrost temperature have increased by approximately 0.29 ± 0.12 °C over the past decade 

(Biskaborn et al., 2019). As a result, previously stable permafrost terrains are beginning to thaw, underscoring their acute 

vulnerability to ongoing climate change (Tang et al., 2024). 

The degradation of permafrost has cascading impacts on ecosystems, hydrology, geomorphology, infrastructure, and 45 

biogeochemical cycles. By decoupling carbon and nitrogen dynamics, thawing permafrost accelerates greenhouse gas 

emissions, weakening the carbon sink capacity of northern ecosystems and potentially tipping them toward becoming net 

carbon sources (Mackelprang et al., 2011; Koven et al., 2015; Chen et al., 2018; Liu et al., 2022). The thaw of ice-rich 

permafrost can also induce ground subsidence and surface deformation, transforming stable terrain into wetlands and peat 

bogs, disrupting hydraulic connectivity, and altering ecosystem structure and function (Olefeldt et al., 2016, 2021; Walvoord 50 

and Kurylyk 2016; Jin et al., 2021). Moreover, thawing permafrost may release viable microorganisms, ancient viruses, 

radon, and sequestered contaminants, posing emerging threats to public health and environmental security (Miner et al., 2021; 

Zhang et al., 2024a). 

Northeast China, once characterized by relatively delayed and dwindled warming, has experienced a marked climatic shift 

since the mid-20th century, signaling a distinct regional climate shift (Jin et al., 2000, 2007, 2016, 2019, 2020, 2025; Li et al., 55 

2020). Following the end of the global warming hiatus (Chang et al., 2024), permafrost extent in the region has declined 

significantly, shrinking by approximately 12%, from 2.39×105 km² in the late 1990s to 2.10×105 km² in the late 2010s 

(Wang et al., 2024a). Concurrently, the southern limit of latitudinal permafrost (SLLP) has retreated northward by 50-120 

km, and permafrost thawed or detached, forming taliks of various types in some southern areas (Jin et al., 2007, 2025; Li et 

al., 2022a). As a sensitive indicator of climate change near the Eastern Asian cryospheric fringe, the permafrost in Northeast 60 

China is preserved in a delicately balanced state, making it particularly susceptible to early degradation under warming 

scenarios (Jin et al., 2007). These changes not only offer a preview of future transformations in more northerly continuous 

permafrost zones but also serve as forerunners of large-scale cryospheric transitions. The rapid thaw observed in Northeast 

China (Li et al., 2022b; Huang et al., 2023; Wang et al., 2023) foreshadows broader permafrost responses under sustained 

warming. Moreover, the degradation of this marginal permafrost threatens hemiboreal ecosystems and cryospheric 65 

hydrological regimes, potentially triggering disproportionate ecological shifts—such as boreal forest retreat, wetland loss, 

and other biogeographic reorganizations (Baltzer et al., 2014; Li et al., 2021). Consequently, modeling and predicting 

permafrost changes in this region holds not only regional but also global significance for understanding climate-cryosphere 

feedbacks. 
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Accurate prediction of permafrost dynamics requires robust modeling of permafrost-climate interactions. Over the past five 70 

decades, three primary classes of permafrost models have emerged: empirical, equilibrium, and physical (numerical) models 

(Riseborough et al., 2008). Empirical models rely on statistical relationships between permafrost conditions and 

environmental variables, such as air temperature, vegetation cover, and elevation, and include approaches such as the basal 

temperature of snow cover (BTS) model (e.g., Lewkowicz and Ednie, 2004), Gaussian model (e.g., Cheng, 1984; Li, 2024), 

and frost indices (e.g., Nelson and Outcalt, 1987). Although these models are computationally efficient and well-suited for 75 

regional mapping, they are constrained by data availability and exhibit limited generalizability under non-stationary climate 

conditions.  

Equilibrium models take a semi-analytical approach, such as the Kudryavtsev model (Kudryavtsev et al., 1974), the 

Temperature at the Top of Permafrost (TTOP) model (Smith and Riseborough, 2002), and the Stefan model (Shiklomanov 

and Nelson, 2002), assume a steady-state ground thermal regime in response to long-term climate averages (Riseborough et 80 

al., 2008). They have been widely applied in various permafrost regions, such as Northeast China (Li et al., 2022b; Huang et 

al., 2023), High-mountain Asia (Kim et al., 2024), and the Northern Hemisphere (Obu et al., 2019) but cannot capture 

transient dynamics or short-term variability in permafrost hydrothermal dynamics, limiting their application under rapid 

climate change.  

Physical (numerical) models simulate heat transfer through soil using the Fourier heat conduction equation with phase 85 

change, often incorporating snow insulation, latent heat, and soil moisture dynamics (Riseborough et al., 2008; de Bruin et 

al., 2023; Tubini et al., 2023). Examples range from site-specific ground thermal models to large-scale land surface models 

within climate models (Qin et al., 2017; Sedaghatkish et al., 2024). While highly process-based and suitable for transient 

simulations, these models mandate extensive and detailed input data (e.g., soil properties, vegetation cover, and geothermal 

flux) and are computationally intensive. Moreover, uncertainties in parameterization and incomplete representation of sub-90 

grid heterogeneity can result in substantial variability in model projections (Groenke et al., 2023; Wang et al., 2024b).  

The emergence of machine learning (ML) techniques and the proliferation of large environmental datasets have opened new 

avenues for permafrost modeling (Luo et al., 2024). ML approaches can learn complex, non-linear relationships from 

satellite observations, reanalysis datasets, and in situ measurements. Recent studies have employed ML to map permafrost 

distributions and predict active layer thickness or ground temperatures with high spatial resolution (Ran et al., 2021; Thaler 95 

et al., 2023; Chance et al., 2024; Zhang et al., 2024b; Zou et al., 2025). ML can also emulate computationally expensive 

physical models once adequately trained (Luo et al., 2024). However, challenges remain, especially the scarcity of high-

quality observational data in remote permafrost areas (Fatolahzadeh Gheysari and Maghoul, 2024; Chang et al., 2024).  

Additionally, a key limitation of conventional ML approaches lies in their lack of physical interpretability and inability to 

explicitly incorporate governing processes. This becomes especially problematic when modeling permafrost thaw, which is 100 

often governed by threshold behaviors and nonlinear feedbacks (e.g., retrogressive thaw slumps) that are difficult to capture 

from limited training data alone (Painter et al., 2013; Chang et al., 2024). To address these issues, hybrid approaches such as 

physics-informed machine learning (PIML) have gained traction (Karniadakis et al., 2021; Pilyugina et al., 2023). These 
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approaches combine physical laws with data-driven ML, either by embedding known physical constraints into ML 

algorithms or by using ML to calibrate and enhance physical models, thereby improving interpretability and generalizability. 105 

Despite these advances, one critical gap persists: the limited incorporation of land use and cover changes (LUCC). While 

climate is the primary driver of permafrost degradation, human activities, such as deforestation, agriculture, urbanization, 

and infrastructure expansion, can significantly alter ground thermal conditions (Wang et al., 2022; Jin et al., 2024). These 

processes are particularly impactful in regions such as Northeast China, where centuries of land transformation have 

drastically reshaped the natural landscape. Since the mid-19th century, following national development policies and land 110 

exploitation, the region has experienced widespread destruction of its original boreal forests, leading to sharp declines in 

natural insulation and hydrological stability. However, many current permafrost models continue to assume static land cover 

conditions (e.g., Hu et al., 2022; Zhang et al., 2022; Peng et al., 2023), thus failing to capture the complexity and magnitude 

of degradation in dynamically evolving landscapes. This modeling simplification has been shown to significantly 

underestimate of ground temperature increases and active layer deepening (Șerban et al., 2021; Peplau et al., 2023). For 115 

example, long-term monitoring by remote sensing in the Hola Basin, Northeast China revealed rapid forest loss and 

anthropogenic land expansion from 1973–2019, which coincided with accelerated permafrost degradation and the onset of 

thermokarst hazards (Șerban et al., 2021). Similarly, field experiments in subarctic Canada demonstrated that agricultural 

conversion led to soil warming exceeding regional climate trends, highlighting the direct role of LUCC in amplifying ground 

heat flux and organic matter decomposition (Peplau et al., 2023). Modelling studies based on Earth system simulations and 120 

paleoclimate experiments further confirm that LUCC exerts both biogeophysical and biogeochemical influences on 

permafrost, through altered albedo, evapotranspiration, and carbon cycling (Peng et al., 2020, 2025). Ignoring these drivers 

in predictive frameworks not only limits the accuracy of permafrost extent projections but also undermines assessments of 

permafrost carbon feedbacks, hydrological change, and engineering or ecological risk under future scenarios (Ward Jones et 

al., 2024; Jin et al., 2025). This discrepancy can lead to fundamental errors in downstream estimations of carbon emissions, 125 

water resource shifts, infrastructure stability, and environmental adaptation strategies. Therefore, incorporating dynamic 

LUCC trajectories into permafrost modelling is not only scientifically necessary for capturing coupled land–climate 

feedback, but also practically critical for delivering reliable projections in regions undergoing rapid land transformation. 

In response to these challenges, this study develops a PIML-based permafrost modelling framework that integrates the TTOP 

model with ML to enforce physical constraints. The framework incorporates LUCC projections from the Patch-generating 130 

Land Use Simulation (PLUS) model and uses downscaled CMIP6 outputs in combination with meteorological station data to 

drive permafrost forecasts. By simulating ground temperature evolution and permafrost extent under future climate and land 

use scenarios, this study offers a physically grounded, data-enhanced approach to understanding permafrost dynamics in 

Northeast China. The findings provide a valuable basis for ecological conservation, infrastructure planning, and climate 

adaptation in cold regions, while contributing broader insights into permafrost-climate feedbacks on a global scale. 135 
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2 Methods 

2.1 Meteorological data downscaling 

Daily observational meteorological data from 225 weather stations in Northeast China covering the period 1961–2020) were 

obtained from the National Meteorological Information Centre of China (NMICC) (Fig. S1). These station records served as 

baseline climate data for downscaling. To properly represent a range of climate projections for the study area, 14 global 140 

climate models (GCMs) were selected from the CMIP6 ensemble: ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, 

CESM2-WACCM, CMCC-ESM2, CNRM-CM6-1, CNRM-ESM2-1, INM-CM4-8, INM-CM5-0, IPSL-CM6A-LR, 

MIROC6, MRI-ESM2-0, NorESM2-LM, and NorESM2-MM. Key characteristics of each model, including modeling center, 

land surface scheme, and native resolution, are summarized in Table S1 for comparison. A statistical delta downscaling 

method is applied to bias-correct the GCM outputs using the NMICC station baseline as reference data (Navarro Racines et 145 

al., 2020). The corrected future air temperature is calculated as: 

𝑇𝑇fut
bc = 𝑇𝑇fut

mod + �𝑇𝑇hist
obs − 𝑇𝑇hist

mod� ,          (1) 

where 𝑇𝑇fut
mod  is the raw model-projected future temperature; 𝑇𝑇hist

obs , the observed historical mean temperature from 

meteorological stations, and; 𝑇𝑇hist
mod, the model-simulated historical temperature. 

In this approach, long-term monthly air temperature anomalies (future changes relative to a historical reference period) were 150 

first computed from each CMIP6 model for variables such as daily mean air temperature. These model-derived anomalies 

were then superimposed onto the historically observed station data, generating localized climate projections. This procedure 

preserves the observed temporal patterns and extremes at each station while incorporating model-projected climate change 

signals. The resulting delta-downscaled dataset comprises daily air temperature series at each station, reflecting the climate 

trends projected by each GCM. This downscaled meteorological dataset, which captures local climate variability, is used in 155 

all subsequent analyses within the permafrost modelling workflow (Fig. S2). 

2.2 Land use projection using PLUS model 

Land use changes at an 1-km resolution were projected using the PLUS model (Liang et al., 2018, 2021). As inputs, the fine-

resolution China Land Cover Dataset (CLCD) for the years 2000 and 2020 were utilized as the baseline LULC maps. The 

CLCD provides 30-m land cover classifications for all of China (Yang and Huang, 2021), which were resampled to 1-km 160 

resolution to support regional-scale modelling. The two time slices (2000 and 2020) were used to calibrate LUCC dynamics 

over the 20-year period. The PLUS model is a raster-based cellular automata framework for patch-level LUCC, extending 

the conventional Cellular Automata (CA)–Markov approach with the Land Expansion Analysis Strategy (LEAS) module and 

self-adaptive patch generation mechanism (Cellular Automata for Refined Simulation (CARS) module) (Liang et al., 2018). 

We first derived the land transition demand by applying a Markov chain analysis to the LUCC during 2000–2020, which 165 

yielded transition probabilities and the expected area of each land cover type in future years. In other words, the Markov 
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chain embedded in PLUS was used to predict the quantity of land use demand for a future target year based on observed 

class changes. Next, the spatial allocation of these changes was handled by the CA-based patch generation module of PLUS, 

which converts the demand into realistic land use patterns by accounting for neighbourhood effects and drivers of change. 

A set of 16 driving factors was supplied to the PLUS model to influence the probability of land conversion in each 1-km grid 170 

cell. These variables include natural factors (e.g. elevation, slope angle, soil types, and soil erosion types) and climatic 

factors (e.g., mean annual precipitation and air temperature from 2000 to 2020), and socio-economic and accessibility 

indicators (e.g., distances to the nearest expressway, primary, secondary, and tertiary roads, railway, water bodies, existing 

settlements, and administrative centres, as well as gridded GDP and population density) (Table S2). Each driving factor was 

prepared as a gridded layer at an 1-km resolution. The LEAS module within the PLUS model employed RF algorithms to 175 

quantify relationships between historical LUCC and its driving factors, producing a probability surface of future 

development for each land-cover category (Fig. S3). The model was calibrated by simulating land use in 2020 using 2000 as 

the baseline and validated against the actual 2020 map. The Kappa coefficient and overall accuracy were found to be high 

(both >0.85 in calibration tests), confirming the reliability of the PLUS model in reproducing the observed land changes. 

After validation, a future land use scenario was generated under a “natural development” assumption (continuation of 2000–180 

2020 trends, without new policy interventions). All model parameters and outputs, including the driver importance and 

scenario assumptions, are documented in Table S3 for transparency. 

2.3 TTOP model 

The TTOP model (Smith and Riseborough, 2002) was applied to estimate mean annual ground temperatures (MAGTs) based 

on near-surface air temperature inputs. The model relates ground thermal conditions to the air freezing and thawing degree-185 

days (FDDa and TDDa), adjusted by empirical n-factors and thermal offsets as follows: 

MAGT = �
1
𝜏𝜏
�𝑛𝑛𝑓𝑓 ⋅ FDDa + 𝑛𝑛𝑡𝑡 ⋅ 𝑟𝑟𝑘𝑘 ⋅ TDDa�   for  𝑛𝑛𝑓𝑓 ⋅ FDDa + 𝑛𝑛𝑡𝑡 ⋅ 𝑟𝑟𝑘𝑘 ⋅ TDDa ≤ 0

1
𝜏𝜏
� 1
𝑟𝑟𝑘𝑘
𝑛𝑛𝑓𝑓 ⋅ FDDa + 𝑛𝑛𝑡𝑡 ⋅ TDDa�     for  𝑛𝑛𝑓𝑓 ⋅ FDDa + 𝑛𝑛𝑡𝑡 ⋅ 𝑟𝑟𝑘𝑘 ⋅ TDDa > 0

 ,    (2) 

where 𝜏𝜏 is the number of days in a year (typically 365), and; FDDa and TDDa are the freezing and thawing degree-days of air 

temperature, respectively. The empirical parameters 𝑛𝑛𝑓𝑓 , 𝑛𝑛𝑡𝑡  and 𝑟𝑟𝑘𝑘  serve to account for snow insulation, surface energy 

exchange, and the ratio of soil thermal conductivity in frozen to thawed states, respectively. 190 

The model parameters nf, nt and rk were assigned based on LULC classifications. Each LULC type was associated with a 

predefined parameter range reflecting differences in surface insulation (e.g. snow cover), vegetation structure, and soil 

properties, as summarized in Table S4. 

The simulated MAGT was derived from 200 realizations, each calculated by randomly sampling the parameters nf and nt 

within a ±20% perturbation range around their LULC-specific values. From these simulations, we calculated both the 195 
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average MAGT and the Permafrost Zonation Index (PZI), defined as the probability that MAGT is below 0 °C across the 200 

samples. 

To classify the spatial-continuity-based zones of permafrost, we adopted a categorization scheme based on the PZI 

thresholds originally proposed by Westermann et al. (2015). This approach has been widely adopted and validated in 

subsequent permafrost modelling, including Obu et al. (2019) and Kim et al. (2024), particularly in applications of TTOP-200 

based models. Specifically, we adopted the classical classification scheme based on areal continuity of permafrost (Brown et 

al., 1997) and employed the PZI as a quantitative analogue to represent it. Based on PZI values, permafrost was classified 

into four categories: continuous permafrost (PZI ∈  [0.9, 1.0]), discontinuous permafrost (PZI ∈  [0.5, 0.9)), sporadic 

permafrost (PZI ∈ [0.1, 0.5)), and isolated patches permafrost (PZI ∈ [0.005, 0.1)). This approach enables a probabilistic 

representation of areal continuity of permafrost, allowing for a quantitative characterization of its distribution status 205 

Westermann et al. (2015). 

To establish a direct relationship between PZI and MAGT, we performed regression analysis on the simulated results (Fig. 

S4) and determined threshold MAGT values corresponding to the different permafrost continuity classes. It is noteworthy 

that under the probabilistic framework of the PZI classification, certain regions with simulated MAGT slightly above 0 °C 

may still exhibit permafrost-present (i.e., PZI > 0), indicating the potential presence of (buried/detached) marginal 210 

permafrost. This arises from the sub-grid heterogeneity incorporated in the ensemble simulations, where variability in snow 

insulation, vegetation cover, and soil thermal properties allows some realizations to yield MAGT below 0 °C even when the 

ensemble-averaged MAGT at that grid cell is above 0 °C. Specifically, thick snow cover can substantially weakens the 

ground cooling in winter, while variations in soil moisture and organic matter content modulate thermal conductivity, 

leading to localized cold zones that preserve permafrost beneath a relatively warm surface (e.g., Jin et al., 2008; He et al., 215 

2021). Consequently, the PZI-based approach offers a more physically consistent representation of permafrost continuity, 

especially near the SLLP. 

2.4 PIML framework 

Accurate mapping of ground thermal regimes demands a method that is simultaneously physically plausible, data-adaptive, 

and computationally tractable. Traditional empirical models, such as the TTOP, incorporates first-principles energy balance 220 

constraints; however, their simplified parameterizations limit their accuracy in heterogeneous landscapes. Classical data-

driven ML models excel at capturing nonlinear relationships among multiple variables, but their black-box nature prevents a 

faithful representation of key physical processes, such as heat transfer and phase changes, thereby limiting their ability to 

generalize beyond the training domain. 

To improve the spatial prediction of thermal state of permafrost (TSP), we developed a PIML framework that integrates 225 

process-based TTOP model outputs with data-driven modelling. For each 1-km grid cell, we extracted a set of environmental 

driving variables related to ground thermal conditions, including topographic features (slope angle and slope aspect), 
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geographic location (latitude, longitude, and elevation), soil properties (bulk density, texture fractions, and organic carbon 

content), and surface and climatic characteristics (e.g., snow cover duration, land surface temperature, vegetation index, and 

LULC) (Table S5). 230 

We then constructed a training dataset using the TTOP-estimated MAGT as the target variable, allowing the supervised 

learning models to capture the relationships between environmental predictors and ground temperature. The dataset was split 

into a training set (70%) and a testing set (30%) using stratified random sampling to preserve the distribution of key 

environmental features across the study area (Kuhn et al., 2013). Six commonly used supervised learning algorithms were 

tested, including DT Regressor, MLP, CatBoost, RF, SVM, and XGBoost. The trained PIML models were subsequently 235 

evaluated on the test set and used for spatial mapping of MAGT across the study area. 

2.5 Variable importance and interpretability 

To evaluate the contribution of each environmental predictor to the output of ML models, we employed two model-agnostic 

interpretability techniques: permutation feature importance and SHAP. Permutation importance quantifies how much a 

model relies on a given feature by measuring changes in prediction errors when the values of this feature are randomly 240 

permuted (Breiman, 2001). In our analysis, model performance was evaluated using RMSE. The importance Ij of a feature xj 

is defined as: 

𝐼𝐼𝑗𝑗 = RMSEpermuted(j) − RMSEbaseline ,                             (3) 

where RMSEbaseline is the RMSE of the model on the original validation dataset, and RMSEpermuted(j) is the RMSE after 

permuting feature xj. A greater increase in RMSE indicates more predictive information relevant to the target variable 245 

(MAGT). 

To further interpret how individual features contribute to specific predictions, we applied SHAP based on cooperative game 

theory (Lundberg and Lee, 2017). SHAP expresses the model output for a given input x as the sum of the contributions of all 

features: 

𝑓𝑓(𝑥𝑥) = 𝜙𝜙0 + ∑ 𝜙𝜙𝑗𝑗𝑀𝑀
𝑗𝑗=1  ,                                                 (4) 250 

where f(x) is the predicted value, 𝜙𝜙0 is the base value (i.e. the mean model output over the training data), and 𝜙𝜙𝑗𝑗 is the SHAP 

value representing the contribution of feature xj to the prediction. SHAP values are locally accurate and consistent, making 

them suitable for interpreting complex models, such as ensemble trees and neural networks. By computing SHAP values for 

all training samples, we obtained a matrix 𝛷𝛷 ∈ 𝑅𝑅𝑁𝑁×𝑀𝑀, where each element represents the contribution of a given feature to a 

particular prediction. 255 

To visualize the structure in these high-dimensional SHAP value profiles, we applied UMAP, a nonlinear dimensionality 

reduction technique that preserves both local and global structure (McInnes et al., 2018). The SHAP value matrix 𝛷𝛷 was 

projected into a two-dimensional embedding 𝛹𝛹 ∈ 𝑅𝑅𝑁𝑁×𝟚𝟚 as: 
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𝛹𝛹 = UMAP(𝛷𝛷),  𝛹𝛹 ∈ 𝑅𝑅𝑁𝑁×𝟚𝟚 ,                                                (5) 

Each point in the two-dimensional UMAP space represents a sample characterized by its SHAP value contribution pattern 260 

and is color-coded according to its LULC category. This SHAP–UMAP visualization enables the identification of clusters 

exhibiting similar model behaviours associated with distinct LULC types, thereby enhancing interpretability by linking 

model responses to recognized landscape classes. Together, permutation importance, SHAP values, and UMAP visualization 

form a robust interpretability framework, ensuring that predictions from the PIML model reflect physically meaningful 

relationships. 265 

3 Results 

3.1 Temporal changes in climate and land surface processes 

As essential components of the TTOP model, the air freezing index (AFI), air thawing index (ATI), and LULC serve as key 

indicators of climate change and directly influence the TSP. Accordingly, we analysed the spatiotemporal trends of AFI, ATI, 

and land use and cover changes (LUCC) under four Shared Socioeconomic Pathways (SSPs). Figure 1 shows the projected 270 

temporal trajectories of AFI and ATI from 2015 to 2100, calculated as the arithmetic average across 14 CMIP6 climate 

models. Under all SSPs, AFI consistently declines while ATI increases. Specifically, average AFI is projected to decline at 

annual rates of –2.1 °C·d/yr under SSP126 and up to –10.0 °C·d/yr under SSP585. In contrast, ATI is projected to increase at 

annual rates ranging from +3.2 °C·d/yr under SSP126 to +17.4 °C·d/yr under SSP585, with the largest changes occurring in 

high-emission scenarios after 2040. These trends align well with the phenomenon of Arctic amplification (You et al., 2021) 275 

and suggest rising thermal stress on permafrost. However, substantial inter-model variability has been observed. For example, 

under SSP126, the CMCC-ESM2 model projects the largest decline in AFI (–7.0 °C·d/yr), whereas the MRI-ESM2-0 model 

indicates a slight increase (+1.0 °C·d/yr), highlighting divergent responses in cold-season conditions. Under SSP585, AFI 

decline rates would range from –14.9 °C·d/yr (IPSL-CM6A-LR)to  –6.7 °C·d/yr (INM-CM5-0). Similarly, projected ATI 

increase rates would range from +0.2 °C·d/yr (MRI-ESM2-0) to +27.5 °C·d/yr (CanESM5). A full comparison of model-280 

specific rates is provided in Table S6. 
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Figure 1. Trends and changes in air freezing and thawing indices (AFI and ATI) from 2015 to 2099 under four SSP scenarios (SSP126, 
SSP245, SSP370, and SSP585) in Northeast China. The indices represent the arithmetic averages computed from site-level downscaled 
data at 225 meteorological stations, using the delta downscale method applied across 14 CMIP6 models. Trends were estimated using the 285 
Sen's slope method. 

To further examine the spatial dynamics of freeze–thaw responses, we have conducted a case analysis under the low-

emission scenario SSP126 (Fig. 2). The results reveal pronounced amplification effects of the AFI along both latitudinal and 

elevational gradients. Specifically, annual AFI declines are projected to be more pronounced in higher-latitude and higher-

elevation regions, consistent with the effects of Arctic amplification and elevation-dependent warming. Between the 2020s 290 

and 2100s, AFI reductions are projected to exceed –250 °C·yr in northern mountainous areas, whereas relatively moderate 

declines are expected in southern lowland zones.  

In contrast, ATI is projected to exhibit an inverse gradient. While increases in ATI are expected across all zones, the rate of 

amplification is lower at higher latitudes and elevations. The most substantial increases are anticipated in low- to mid-

elevation areas, likely driven by urban expansion and changes in land use. This spatial asymmetry in ground freeze–thaw 295 

responses suggests that reductions in freezing intensity are primarily driven by climate warming, particularly in colder 

regions, whereas increases in thawing intensity are more constrained and potentially moderated by local surface conditions 

and anthropogenic disturbances. 
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Figure 2. Latitudinal and elevational gradients of changes in air freezing and thawing index changes in Northeast China from the 2020s to 300 
the 2100s under SSP126. Notes: Insets (a) and (b) show latitudinal and elevational changes in the air freezing index (ΔAFI), respectively, 
and; insets (c) and (d) depict latitudinal and elevational changes in the air thawing index (ΔATI) between across four future periods (2040s, 
2060s, 2080s, 2100s), relative to the 2020s baseline. 

Similarly, significant LUCCs are projected (Fig. 3a and 3b). Between 2020 and 2100, cropland area is expected to decline 

slightly from 454,148 to 432,359 km², while impervious surfaces are projected to expand substantially from 43,763 to 305 

95,973 km². Forest and grassland areas are expected to contract steadily, especially in the south-central transitional zones. As 

shown in Fig. 3b, land use patterns may exhibit distinct temporal transitions over the 21st century. Forest remains the most 

stable cover type, with minimal change across all time periods. In contrast, cropland is projected to undergo frequent 

transitions, although its total area is expected to remain relatively stable. This stability is primarily driven by substantial 

inflows from grassland conversion, with more than 5,000 km² of grassland projected to be converted to cropland between 310 

2020 and 2040. Impervious surfaces (urban land) are projected to experience the most dramatic expansion, doubling in area 

from 43,763 km² in 2020 to 95,973 km² by 2100, primarily through conversions from cropland and grassland. These 

transitions reflect intensifying anthropogenic disturbances, particularly in south-central parts of Northeast China. Such land 

transformations are likely to accelerate ecosystem fragmentation and reduce surface thermal buffering capacity, ultimately 

increasing permafrost vulnerability. Together, these results indicate a dual pressure mechanism: rising potential ground 315 

thawing due to climate warming, and localized permafrost disturbance driven by anthropogenic land transformation. Both 

factors have been incorporated as dynamic inputs in our integrated PIML-based permafrost modelling framework. 
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Figure 3. Projected land use and land cover (LULC) changes in Northeast China from 2020 to 2100 and associated area transitions. Notes: 
(a) Spatial distribution of dominant LULC types at decadal intervals, and; (b) Sankey-style visualization of areal changes among seven 320 
LULC classes. 

3.2 Assessment of model performance and MAGT estimation accuracy 

To evaluate the capability of different ML algorithms in simulating TSP, we have compared model-predicted MAGTs with 

observed values using six ML methods: decision tree (DT), multilayer perceptron (MLP), CatBoost, random forest (RF), 

support vector machine (SVM), and extreme gradient boosting (XGB). The validation results are summarized in Fig. 4. All 325 

models have successfully captured the overall trends of MAGT variations. However, their predictive accuracies vary notably. 

Among them, CatBoost and MLP exhibit the best performance, achieving the lowest mean squared error (MSE) (1.21 and 

1.28 °C) and highest R² values (0.89 and 0.88), respectively (Fig. 4b and 4c). The RF and XGB models also demonstrate 

strong performance (R² = 0.85), albeit with slightly higher RMSE values of 1.25 and 1.27 °C, respectively. The DT model 

show moderate performance (R² = 0.74), whereas SVM model yields the weakest fit (R² = 0.69; RMSE = 1.81 °C), likely 330 

due to its limited ability to generalize nonlinear and high-dimensional relationships under complex variable interactions. 
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These results indicate that ensemble learning algorithms, particularly CatBoost and XGB, consistently outperform single-tree 

or kernel-based methods in modelling MAGT across ecologically heterogeneous landscapes. CatBoost, in particular, 

demonstrates strong robustness due to its capacity to handle missing data and categorical variables while mitigating 

overfitting, making it a reliable core model within the proposed PIML framework. The high-performing models are 335 

subsequently employed to simulate future MAGT patterns and permafrost extent under projected scenarios. 

 
Figure 4. Validation of mean annual ground temperature (MAGT) predictions using six machine learning models. Notes: Panels (a–f) 
compare model-predicted MAGT values with observed ones for: (a) decision tree (DT), (b) multilayer perceptron (MLP), (c) CatBoost, (d) 
random forest (RF), (e) support vector machine (SVM), and; (f) extreme gradient boosting (XGB). Each panel includes an 1:1 reference 340 
line (dashed), a linear regression fit (red), and a 95% confidence band (shaded). Performance metrics (MSE, RMSE, and R²) are shown in 
each plot. 

3.3 Projected changes in MAGT and permafrost extent 

Simulations based on the PIML framework indicate a substantial and accelerating degradation of permafrost across 

Northeast China throughout the 21st century. This process is closely tied to rising ground temperatures and a progressive 345 

reorganization and northward shifting of permafrost zones, with the severity of change varying across emission scenarios. As 

shown in Fig. 5, MAGT exhibits a clear rising trend across all SSPs, with the most pronounced increases occurring under 
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SSP370 and SSP585. By the end of the 21st century, most lowland and mid-elevation regions are projected to exceed the 

0 °C threshold of MAGT, signalling widespread thermal destabilization of permafrost. Even under the low-emission scenario 

of SSP126, permafrost degradation is evident, with the SLLP and permafrost zones gradually shifting northward. 350 

 
Figure 5. Projected mean annual ground temperatures (MAGTs) across Northeast China under four SSPs scenarios based multilayer 
perceptron model. 
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Correspondingly, the areal extent and spatial continuity of permafrost zones undergo notable reductions (Fig. 6). 

Discontinuous permafrost is replaced by sporadic or isolated patches over time. Under high-emission pathways (SSP370 and 355 

SSP585), discontinuous near-surface permafrost is projected to nearly disappear by the 2080s. These transformations begin 

on the northern Song-Nen river Plain, eventually encroaching upon the central Da and Xiao Xing’anling mountains. 

 
Figure 6. Projected changes in permafrost extent in Northeast China under four SSPs scenarios based on multilayer perceptron model. 
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Across all future scenarios (SSP126–SSP585), the MLP-TTOP model projects a substantial decline in total permafrost extent 360 

by the end of the 21st century. As shown in Fig. 7, under the low-emission SSP126 scenario, the total permafrost area is 

expected to shrink from 2.51×105 km² in the 2040s to 2.16×105 km² in the 2100s, i.e., a reduction of ~14%. In stark contrast, 

under the high-emission SSP585 scenario, permafrost extent is projected to plummet from 2.39×105 km² in the 2040s to just 

6,000 km² by 2100, a loss of over 97%.  

Regionally, the DXAM retain the highest absolute permafrost coverage, followed by the Hulun Buir Plateau (HBP). The 365 

most severe losses are projected to happen on the northern Songhua-Nen rivers Plain (NSNP) and in the XXAM, where 

permafrost is expected to nearly vanish by mid-century under SSP370 and SSP585. Notably, even under the mitigated 

SSP126 pathway, significant degradation of permafrost is projected near the SLLP, indicating heightened sensitivity to 

warming.  

These findings highlight the pronounced spatial heterogeneity of climate-induced permafrost degradation and underscore the 370 

disproportionate vulnerability of discontinuous and sporadic permafrost zones, particularly in ecologically sensitive 

transitional areas, to ongoing and future climate warming. 

 
Figure 7. Temporal change of permafrost area in Northeast China and subregions under four SSPs scenarios based on multilayer 
perceptron model results. (Notes: Panels a to e: Temporal change of permafrost area in (a) total Northeast China; (b) Xiao Xing'anling 375 
Mountains; (c) Da Xing'anling Mountains; (d) northern Songhua-Nen rivers Plain, and; (e) Hulun Buir Plateau) 
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3.4 Interpretation of key predictors: SHAP and model-based importance 

To identify the key drivers of permafrost extent and degradation, predictor importance was evaluated using both model-

derived rankings and SHAP values. Fig. 8 summarizes the relative importance of 15 environmental variables across six ML 

models.  380 

Mean annual land surface temperature (MALST) consistently ranks as the most influential predictor across all models, 

highlighting its dominant role in governing ground thermal regimes. Its high average importance and low inter-model 

variability, particularly in ensemble models, such as RF, CatBoost and MLP, highlight its robustness across algorithmic 

approaches. LULC also emerges as a key predictor, ranking among the top two predictors in three out of six models. This 

reflects the strong influence of surface cover and anthropogenic modifications on near-surface energy exchange and 385 

permafrost stability.  

Other cryo-climatic variables, such as mean annual snow cover duration (MASCD), latitude and elevation, show moderate-

to-high importance. These likely capture the combined effects of snow insulation and latitudinal/elevational climate 

gradients. In contrast, topographic and edaphic variables, such as slope angle, slope aspect, soil organic matter contents 

(SOC), bulk density (BD), and sand and clay contents, generally rank lower, though they may modulate soil thermal 390 

properties and hydrological processes as secondary controls. 

 
Figure 8. Model-derived feature importance rankings across six machine learning algorithms. (Acronyms: MALST represents mean 
annual land surface temperature; LULC, land use and land cover; MASCD, mean annual snow cover duration; SOC, soil organic carbon; 
BD, bulk density; MANDVI, multiyear average normalized difference vegetation index; DT, decision tree; MLP, multilayer perceptron; 395 
RF, random forest; SVR, support vector regression, and; XGB, XGBoost) 
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Interestingly, while elevation is not consistently ranked highly, SHAP dependence plots reveal nonlinear relationships, 

particularly under ~1000 m a. s. l., likely reflecting microclimatic or terrain-induced variability (Fig. 9). Among edaphic 

predictors, SOC, BD, and clay content exhibit moderate effects with unimodal or threshold-type SHAP patterns, suggesting 

their roles in modulating soil thermal conductivity and moisture retentions.  400 

Topographic predictors, such as slope angles, slope aspect, and normalized difference vegetation index (NDVI), show 

limited importance, though asymmetries in SHAP values indicate minor contributions. The UMAP projection (Fig. 9n) 

further supports the distinctiveness of LULC categories in predictor space. Forest and cropland form well-separated, 

compact clusters, linked respectively to lower MALST, higher SOC, and longer SCD in forests, versus flatter terrain and 

altered albedo in croplands. Urban (impervious) surfaces form in a narrow, isolated cluster, reflecting starkly modified 405 

surface and soil conditions. Partial overlap between grassland and barren land may indicate transitional ecotones or similar 

soil-climate features in degraded landscapes. 

https://doi.org/10.5194/egusphere-2025-4544
Preprint. Discussion started: 17 November 2025
c© Author(s) 2025. CC BY 4.0 License.



19 
 

 
Figure 9. SHAP-based interpretation of key predictors and LULC clustering. (Notes: Panels a to m show SHAP dependence plots for 
major predictors. Panel n presents a Uniform Manifold Approximation and Projection (UMAP) visualization of land use and land cover 410 
(LULC) categories in the multidimensional predictor space) Acronyms: SHAP stands for SHapley Additive exPlanations; MALST, mean 
annual land surface temperature; LULC, land use and land cover; MASCD, mean annual snow cover duration; SOC, soil organic carbon; 
BD, bulk density, and; MANDVI, multiyear average normalized difference vegetation index. 

Together, the model-derived and SHAP-based analyses reveal a hierarchical structure of environmental controls on 

permafrost distribution. Thermal variables and land cover dominate, followed by snow-related, geographic, and edaphic 415 
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factors. These findings provide physically plausible insights into permafrost dynamics and validate the interpretability of the 

ML framework. 

4 Discussion 

4.1 LULC dynamics in permafrost modelling 

This study has demonstrated the significance of LUCC in modeling permafrost dynamics. Traditional permafrost models 420 

often assume static LULC and minimal anthropogenic influences in permafrost regions. For instance, many simulations over 

the Qinghai-Tibet Plateau presume relatively stable LULC over recent decades (Hu et al., 2022; Zhang et al., 2022; Pan et al., 

2023; Li et al., 2024a), thereby underestimating the scale and impact of anthropogenic disturbances.  

Such assumptions overlook the critical role of surface disturbances (e.g., deforestation, wetland drainage, infrastructure 

development, or wildfires) in reshaping the land–atmosphere energy exchange. These processes alter surface roughness, 425 

albedo, vegetation cover, and soil insulation, leading to profound changes in ground thermal regimes (Carpino et al., 2021; 

Jin et al., 2024; Li et al., 2024b, 2024c). Ground-based observational studies have consistently shown that variability in 

vegetation and ground covers significantly modify net radiation, sensible and latent heat fluxes, and soil moisture, ultimately 

influencing the TSP (Chang et al., 2015; Fisher et al., 2016; Fedorov et al., 2019). Neglecting such processes compromises 

the accuracy and generalizability of permafrost models, especially in regions undergoing ecological transformation or 430 

anthropogenic disturbances. 

To address these limitations, our modelling framework incorporates time-varying LULC information, enabling the 

simulation to account for both spatial and temporal landscape dynamics. This approach closes a critical gap in previous 

studies that focus predominantly on climatic drivers while neglecting direct human impacts. Our results show that areas 

experiencing substantial LUCC (e.g., the conversion from forest to grassland or infrastructure expansion) exhibit markedly 435 

different TSP compared to undisturbed areas. These differences are physically consistent, with the altered surface energy 

balance and soil thermal properties associated with LUCC.  

The role of LUCC in permafrost degradation is further supported by previous work. For instance, Wang et al. (2022) showed 

that deforestation, agricultural development, and urbanization substantially accelerate the degradation of Xing’an permafrost 

(XAP) by increasing soil thermal conductivity and reducing vegetation-mediated insulation. In contrast, intact forests and 440 

wetlands act as thermal buffer through thick organic layers and high evapotranspiration, mitigating ground warming (Jin et 

al., 2008, 2025).  

By incorporating LULC trajectories into a PIML model, we capture both climatic and anthropogenic influences on 

permafrost evolution, leading to a more comprehensive and realist assessment. This emphasizes the urgent need to consider 

land surface dynamics, not just air warming, as critical determinants of permafrost stability in a changing environment. 445 
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4.2 Nonlinear permafrost degradation trajectories response to climate warming 

Our projections reveal a nonlinear trajectory of permafrost degradation over the 21st century. Although ground thawing 

persists throughout the period from 2040 to 2080, the rate of degradation markedly accelerates after 2080, particularly under 

high-emission scenarios. This late-century acceleration suggests that critical thermal thresholds may be crossed beyond 2080, 

triggering nonlinear and potentially abrupt degradation of the Xing’an permafrost.  450 

While this study does not explicitly analyse climate anomalies, prior observations from Northeast China provide important 

context, reporting the localized ground cooling or delayed warming during recent decades. For instance, Chang et al. (2022) 

reported localized ground cooling at shallow depths and a thinned active layer in the Yituli'he region during 2009–2020, 

despite the broader trend of regional climate warming. These anomalous conditions were attributed to stable mean positive 

air temperatures, reduced snow cover, and decreased anthropogenic pressure due to local population decline, possibly 455 

followed by declining anthropogenic influences and recovering vegetation. Similarly, He et al. (2021) documented ground 

temperature decreases in the Nanwenghe Wetland Reserve, lined to elevated water tables and the insulating effects of 

wetland soil. Such findings underscore that, in some areas, even under a broader warming trend, regional climatic and 

ecological feedbacks (e.g., snow dynamics, vegetation succession, and surface moisture conditions), can temporarily buffer 

permafrost against climate warming.  460 

However, our results suggest that while these feedbacks may temporarily moderate thaw in certain subregions, they are 

insufficient to halt or prevent long-term degradation. As air temperatures continue to rise, especially in the latter half of the 

century, these buffering mechanisms are progressively overwhelmed. This is particularly evident in regions near the southern 

limit of latitudinal permafrost (SLLP), such as Northeast China, where permafrost exists under marginal thermal conditions 

and is highly sensitive to external forcing. 465 

The spatiotemporal heterogeneity observed in permafrost degradation patterns reflects the complex, nonlinear interplay 

between climate drivers and land-surface processes (Jin et al., 2025). While some areas may exhibit delayed or attenuated 

responses due to ecological insulation or topographic shading, these effects are limited in both magnitude and temporal 

persistence. Our model results clearly show that, under continued warming, even regions with transient stability are likely to 

experience rapid thaw once thermal thresholds are exceeded. 470 

This trajectory highlights the need for permafrost models to account for both short-term variability and long-term trends. 

Apparent deceleration or temporary reversal of degradation, whether due to vegetation cover, snowpack fluctuations, or 

hydrological changes, should not be misconstrued as evidence of permafrost resilience. Rather, such signals reflect the 

thermal inertia of geocryological system prior to abrupt transitions. The sharp increase in projected degradation after 2080, 

particularly under high-emission scenarios (SSP370 and SSP585), serves as a clear warning: without significant mitigation 475 

of carbon emissions, the preservation of XAP at shallow depths (<5 m) beyond the 21st century is highly unlikely. 
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4.3 Spatial heterogeneity and resilience of XAP 

As shown in Fig. 7, permafrost in Northeast China exhibits pronounced spatial heterogeneity in its response to climate 

warming, particularly among the subregions of Da and Xiao Xing’anling mountains, northern Songhua-Nen Rivers Plain, 

and Hulun Buir High-Plain. Among these, the densely forested Da Xing’anling Mountains demonstrate relatively greater 480 

resilient, preserving permafrost longer and exhibiting slower degradation rates compared to surrounding regions.  

Several factors are likely to contribute to this resilience. The Da Xing’anling Mountains is characterized by dense boreal 

forest cover, primarily larch and other mixed boreal deciduous species, and complex topography with varied slope aspects 

and elevations. These ecological and geomorphic features act as natural thermal buffers. Forest canopies reduce incident 

solar radiation during summer, while thick organic soil layers (e.g., moss and peat) dampen seasonal temperature 485 

fluctuations and insulate the permafrost (Jorgenson et al., 2010; Guo et al., 2018). Field studies on the southern slopes of the 

Da Xing’anling Mountains show that undisturbed larch forests maintain relatively stable ground temperatures, in contrast to 

adjacent open areas that experience significant ground warming. This thermal buffering arises from a combination of surface 

shading, reduced radiation input, and insulation from organic-rich soils, producing a combination of surface and thermal 

offsets of up to 3-4°C (Chang et al., 2015; He et al., 2021). Additionally, the region’s complex terrain fosters diverse 490 

microclimates: north-facing slopes and valley bottoms receive less solar radiation and tend to drain cold air, resulting in 

locally lower ground temperatures than surrounding lowlands or upper slopes (Jin et al., 2008, 2024; Huang et al., 2025). 

This persistence of XAP in this region is shaped by interacting ecological, topographic, and hydrogeological processes, 

garnering growing scientific interest. Numerous studies have shown that such interactions can sustain permafrost under mean 

annual air temperatures exceeding +2 °C (Jorgenson et al., 2010). This class of permafrost, often referred to as ecosystem-495 

dominated (i.e. -driven, -modified or -protected) permafrost, is especially prominent in the Xing'an–Baikal region, where 

dense forest canopies and organic-rich soils shield the subsurface from warming (Jin et al., 2007, 2025; Zhang et al., 2024c).  

Microtopography also plays a significant role in shaping spatial thaw dynamics. For instance, field measurements in boreal 

Alaska revealed that elevated, forested hummocks experienced active layer thickening of only ~8 cm/year, while nearby low-

lying, sparsely vegetated areas showed rates as high as ~44 cm/year (Eklof et al., 2024). These differences highlight the 500 

influence of canopy shading and surface roughness in modulating ground heat flux. Hydrogeological conditions further 

affect thermal stability: long-term drying and surface drainage can increase ground albedo and reduce soil thermal 

conductivity, thereby cooling the ground (Göckede et al., 2019). Conversely, poor drainage or thick insulating snowpack can 

enhance heat penetration and promote thaw, even in relatively cold settings (Göckede et al., 2019).  

Comparative studies across boreal and subarctic regions, such as Siberia, Canada, and Alaska, consistently demonstrate that 505 

vegetation, topography, and moisture regimes jointly determine permafrost vulnerability under climate change. In our study, 

the relative resilience of XAP reflects the synergistic effects of several of dense forests, insulating organic soils, and 

topographically driven microclimates. By contrast, more rapid degradation observed in the Xiao Xing’anling Mountains, 

northern Song-Nen river Plain, and Hulun Buir Plateau subregions likely stems from less favourable conditions: widespread 
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grasslands and agriculture (with lower insulation capacity), more uniform terrain, and greater exposure to solar radiation on 510 

south-facing slopes.  

These findings underscore heterogeneity in permafrost vulnerability to climate warming, even under similar climate forcing, 

but the vulnerability is strongly modulated by local surface characteristics. This aligns with prior research emphasizing the 

importance of vegetation cover, snow dynamics, and organic layers in controlling climate–permafrost interactions (Jin et al., 

2024). For reliable projections, especially in the marginal zone of isolated patches of permafrost near the SLLP, it is crucial 515 

that models incorporate spatial heterogeneity in land cover, terrain and soil properties.  

By integrating these factors, the proposed PIML framework captures how protective ecosystems favourable 

microtopography can substantially delay permafrost thaw relative to more exposed landscapes. Overall, this highlights the 

need to embed local-scale variability into regional and global permafrost models, reducing the risk of overgeneralizing the 

timing and magnitude of thaw under a warming climate. 520 

4.4 Further prospects and inadequacies 

Many widely used permafrost models are limited by shallow simulation depths and simplified physics. These models focus 

on near-surface thermal conditions and may not capture permafrost extending tens of meters deep (Alfaro Sánchez et al., 

2024). In Northeast China, for example, permafrost can exceed 50–100 m in thickness. Because simple models do not 

account for these residual permafrost layers at depths, they might overestimate the rate of thaw and exaggerate how soon 525 

permafrost will completely thaw. Actually, even after shallow layers thaw, warmer and ice-rich permafrost at depth can 

persist for decades, delaying complete thaw beyond what shallow models predict (Peng et al., 2023). This highlights the 

inadequacy of models that only simulate the upper soil and underscores that permafrost degradation is a 3-dimensional 

problem. 

Permafrost thaw is governed by 3-dimensional processes such as lateral heat advection, moisture transport, and talik 530 

development, yet these critical physical mechanisms are often absent in traditional one-dimensional models (Sun et al., 

2019). The formation and lateral expansion of taliks illustrate this complexity. Taliks can grow not just from the surface 

downwards, but also laterally (for instance, under thermokarst lakes or along subsurface water channels), making thaw 

progression highly heterogeneous (Sun et al., 2022). Lateral heat transfer through groundwater and convective flows can 

significantly accelerate thaw and these processes are not considered in many models (Vasheghani Farahani et al., 2021). 535 

Simulations have demonstrated that including lateral and vertical advection of heat (e.g. from infiltrating rain or snowmelt) 

in modelling research raises ground temperatures and advances the thaw front (Shook et al., 2024). In essence, preferential 

flow of water through soil macropores or along taliks delivers heat deep into the ground within a short time, greatly speeding 

up permafrost degradation that purely conductive models would underestimate (Walvoord and Kurylyk 2016). 

In addition, the classification of permafrost presents significant challenges, particularly in regions such as the XAP zones. 540 

The conventional scheme classifies permafrost by areal continuity of permafrost (e.g. continuous (>90% area), discontinuous 

(50–90%), sporadic (10–50%), and isolated patches or patchy (<10%)). In practice, however, applying and validating these 
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categories is challenging. Field surveys often reveal that mapped discontinuous or sporadic permafrost zones contain a 

patchwork of frozen and unfrozen ground that is difficult to quantify by aerial percentage alone (Jin et al., 2025). In XAP 

zones, permafrost is sustained by local boreal forest and wetland conditions and tends to be warm (near 0 °C), thin, and in a 545 

delicate thermal balance (Zhang et al., 2024c). Studies suggest a symbiotic relationship between permafrost and the 

overlying ecosystem that grants it a degree of ecological resilience to climate warming (Jin et al., 2008). For instance, 

insulating organic matter and shading effects can maintain or cool permafrost despite rising air temperatures, meaning that 

XAP may still survive in locations where climate-based models would predict degradation (Jin et al., 2024). Traditional area 

continuity-based classifications do not fully capture such resilience or the unique hydrothermal properties of XAP. Near the 550 

SLLP, finding a reliable classification scheme that reflects not just climate and area fraction but also ecological and 

geotechnical stability and in areal density of permafrost or in 3-dimensional distribution of dynamically changing permafrost 

is an open challenge (Jin et al., 2025), especially under extreme hydroclimate (e.g., heat waves, storm or melt induced 

floods), disruptions from natural (e.g., wildfires) or anthropogenic (e.g., engineering, land cultivation, urbanization) activities. 

Any new scheme must serve practical needs in ecosystem conservation, engineering stability, and hydrology, which 555 

demands integrating field observations with nuanced criteria beyond simple percentage cover. 

5 Conclusions 

To address the modelling bias introduced by assuming static LULC in permafrost prediction, this study develops a hybrid 

modelling framework that integrates the TTOP model with dynamic LULC simulations from the PLUS model. Meanwhile, 

ML models are imbedded within the TTOP structure to improve predictive performance while maintaining physical 560 

interpretability. This PIML approach offers a novel pathway for simulating the spatiotemporal evolution of permafrost under 

changing environmental conditions. The main findings are summarized as follows: 

1) Model performance and predictive accuracy 

Among the six ML models evaluated, the MLP and CatBoost perform exhibit the highest predictive accuracy for MAGTs. 

MLP achieves RMSE and MAE values of 1.13 and 1.28 °C, respectively, while CatBoost attains 1.10 and 1.21 °C. 565 

Compared to traditional physically based models, the PIML framework yields superior performance, particularly in areas 

near the SLLP, where the ground thermal regime is governed by complex, coupled climatic, ecological, and anthropogenic 

drivers. This underscores the ability of PIML to capture nonlinear interactions in transitional permafrost zones. 

2) Importance of LUCC 

LUCC, often neglected in earlier permafrost studies, emerges as a key driver of permafrost thermal dynamics. Model-based 570 

feature importance analyses highlight that MAGST, LULC, and SCD are dominant predictors of MAGT and TSP. Future 

land surface alterations due to urban expansion, deforestation, or other anthropogenic and natural LUCC processes will 

significantly affect land–atmosphere energy exchanges and ground hydrothermal dynamics. These impacts must be explicitly 

incorporated into next-generation permafrost models to improve their predictive fidelity under realistic landscape dynamics. 
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3) Future permafrost trajectories under emission scenarios 575 

Model projections indicate strong scenario-dependent divergence in permafrost degradation. Under the low-emission 

SSP126 pathway, the near-surface permafrost area in Northeast China is projected to decline by 14% by the end of the 21st 

century. In contrast, under the high-emission SSP585 scenario, up to 97% of the current extent of near-surface permafrost is 

expected to be lost. Regional sensitivity also varies considerably. The northern Songhua-Nen Rivers Plain and the Xiao 

Xing’anling Mountains are projected to experience near-complete permafrost loss, whereas the Da Xing’anling Mountains 580 

and the Hulun Buir High-Plain demonstrate higher climatic resilience and slower thaw rates of the XAP. 

4) Future research prospects and challenges 

Despite the advances achieved in this study, considerable uncertainties remain in permafrost modeling. Current models often 

neglect deep residual permafrost layers and 3-dimensional hydrothermal processes such as lateral heat advection, preferential 

flow, and talik development, which can significantly alter thaw trajectories. Addressing these limitations requires integrating 585 

deeper subsurface processes and hydrological dynamics into next-generation models. Moreover, conventional permafrost 

classifications based solely on areal continuity fail to capture the ecological resilience and spatial heterogeneity of warm, 

thin permafrost in the XAP zone. Developing refined classification schemes that incorporate ecological, hydrothermal, and 

geotechnical stability criteria will be critical for improving predictions and supporting ecosystem conservation, engineering 

safety, and hydrological management. 590 
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