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Abstract. A comprehensive model-based study is designed to provide optimal flight paths for airborne top-down emission 10 

rate retrieval methodologies. The meteorology and plume dispersion were modelled using the Weather Research and 

Forecasting (WRF) modelling platform with the Advanced Research WRF (ARW) dynamical core at 50-m resolution. 

Multiple flight path designs and parameters were investigated to determine emission rate retrieval accuracy as a function of 

downwind distance and transect spacing, which are ultimately related to flight time and cost. Three unique source types 

(multiple smokestack plumes, small area sources, and a large area source) were investigated for 4 summer afternoon flight 15 

cases over 2 days. The results demonstrate that emissions estimate uncertainty is primarily due to storage and release. The 

average advective flux estimates are within 12% of the known emissions for downwind distance of 𝐷𝐷 ≥ 4 km. Variability 

between flights decreases with 𝐷𝐷. For stack sources the variability near 𝐷𝐷 = 10 km is approximately half that at 𝐷𝐷 = 4 km. 

For small area sources, there is less reduction with 𝐷𝐷, and for the large area source, variability reaches a minimum at 𝐷𝐷 = 8 

km. For stack sources, transect spacing is optimized at 100 m, while for area sources, a spacing of 50 m reduces uncertainty. 20 

Error due to extrapolation below the lowest flight path is less than 20% for stack sources and less than 30% for area sources 

for non-dimensionalized downwind distance of 𝐷𝐷′ ≥ 3. Results demonstrate the need for surface sampling coincident with 

the flights to reduce extrapolation error, and the use of modeling with reanalysis data to account for storage and release 

effects. 

1 Introduction 25 

During airborne field studies for top-down retrieval of source emission rates, the environmental fields (meteorology and 

pollutant concentrations) are sampled around and/or downwind of emission sources. Typically, the aircraft flies in a 

repeating pattern that either encloses the source area (e.g., Peischl et al., 2010; Kalthoff, 2002; Gordon et al., 2015; Kim et 

al., 2025), or that captures the extent of a downwind plume (e.g. Cambaliza et al., 2014). The time and spatial resolutions of 

such measurements are determined by the sampling frequency and range of the measuring instruments, the speed of the 30 
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sampling platform, the sampling path and geographical locations (Gordon et al., 2015; Conley et al., 2017). The sparse 

spatial measurements that are made over time are processed and analyzed according to various assumptions regarding how 

representative they are of the mean and real-time environmental conditions (e.g., wind field, emissions: Alfieri et al., 2010). 

The post-processed data are then used for estimating emission rates from sources of pollution (Ryoo et al., 2019; Karion et 

al., 2015; Gordon et al., 2015). 35 

Regardless of the measurement approach, the spatial heterogeneity and temporal variability of meteorology and 

concentration fields can result in large uncertainties in top-down estimates. Previous studies have attributed large 

uncertainties (20% to 40%) to the gap of information (spatial and temporal) in the sampled data (e.g., Angevine et al., 2020). 

For instance, airborne measurements are commonly made at elevations above 150 m agl for safety considerations. Gordon et 

al. (2015) identified the unsampled region below the lowest flight level as a large source of uncertainty in mass-balance 40 

analysis (e.g., up to 26% for CH4 plumes). The gap of information in the sampled data, due to limitations on spatio-temporal 

resolution and range of the sampling method, can be partially filled by combining data from different measurement 

platforms. For instance, airborne samplings (aircraft, UAV) can be complimented by ground-based measurements (Brus et 

al., 2021b; Bell et al., 2021; Islam et al., 2021). Fixed location in-situ measurement techniques of meteorology and tracer 

concentrations include tower measurements at heights of up to 350 m agl (Heintzenberg et al., 2011; Andreae et al., 2015), 45 

and radiosonde (tethered/balloon) measurements include heights up to 2 km agl (Nygård et al., 2017; Nambiar et al., 2020). 

Ground-based remote-sensing can also be conducted from mobile surface land vehicles (de Boer et al., 2021; Davis et al., 

2019), generating column measurements at higher spatial (horizontal) resolution. Remote-sensing datasets can be analyzed in 

conjunction with airborne measurements for both validation (Davis et al., 2020) and as complementary information (Krings 

et al., 2018; Brus et al., 2021a) in air quality studies. In a study based on the same model output used in this study, Fathi 50 

(2022) suggests augmenting airborne in-situ measurements with aircraft-based remote sensing (lidar) towards improving 

aircraft mass-balance retrievals. 

Dispersion models have also been used to infer emissions from aircraft measurements, as alternative to the more common 

mass-balance approach. For example, Karion et al. (2019) used an inverse approach comparing different dispersion models 

(HYSPLIT, STILT, LPDM, FLEXPART) that optimizes emission rates to best fit observation. However, there was 55 

significant range in the predicted emission rate depending on the model used. Simpler, Gaussian footprint models can also be 

used to similar effect (Kim et al., 2025). These techniques offer the advantage of being able to estimate emission rates from 

multiple sources when the plumes overlap (e.g. Kostinek et al., 2021; Raznjevic et al, 2022). This is more difficult to do with 

the mass-balance method and requires induvial plumes to be well defined and separate (e.g. Baray et al., 2018). 

To better understand the mass-balance method and to quantify uncertainties, models can also be used to optimize the mass-60 

balance measurement technique. Virtual aircraft can fly through model output fields, where emissions are known and the 

relative contributions of advection, turbulence, and flux below the lowest flight path can be determined. This also allows 

different flight configurations to be compared and optimized to increase emission measurement accuracy as a function of 

flight time (cost). Panitz et al. (2002) were the first (to our knowledge) to use model output to evaluate the aircraft mass-
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balance method. They used the KAMM/DRAIS model system to evaluate box flight measurements described in Kalthoff et 65 

al. (2002). They determined advective fluxes were 85% of NO emissions and 95% of CO emissions, suggesting that total 

emissions estimated based on downwind advective flux measurements, could be underestimated by up to 15% (for NO) or 

5% (for CO) by neglecting other terms in the mass-balance equation. Conley et al. (2017) appear to be the first to fly a spiral 

(or cylinder) flight pattern, which was proposed in Gordon et al. (2015) and used in Han et al. (2024). Conley et al. (2017) 

ran LES simulations to optimize the spiral radius and the number of passes. It is demonstrated that a minimum non-70 

dimensional radius can be determined, as 

𝑅𝑅′ = 𝑅𝑅𝑤𝑤∗
𝑈𝑈𝑧𝑧𝑖𝑖

,            (1) 

where 𝑅𝑅 is the actual radius, 𝑤𝑤∗ convective velocity, 𝑈𝑈 mean wind speed, and 𝑧𝑧𝑖𝑖 boundary-layer height. A value of 𝑅𝑅′ > 0.45 

resulted in nearly constant concentration below the lowest flight path (150 m), which reduces the uncertainty due to 

extrapolation of these unknown values. Using order-of-magnitude estimates of 𝑤𝑤∗ = 1 m/s, 𝑧𝑧𝑖𝑖 = 1000 m, and 𝑈𝑈 = 10 m/s, 75 

gives 𝑅𝑅 = 4.5 km (as an example). Conley et al. (2017) also test the number of laps around the source required to reach 

convergence over multiple tests and find that 15 or more laps (at a normalized radius of 𝑅𝑅′ = 0.25) are required to repeatedly 

produce the most accurate results (which is an accuracy of near 85% in this case). However, a real-life controlled release 

experiment suggests that as many as 25 laps are required to reach comparable accuracy. 

This study aims to optimize flights to determine emission rates from large emitting stacks in industrial complexes such as the 80 

Canadian oil sands (Liggio et al., 2019; Li et al., 2017). These kinds of operations typically include stack emissions, dust and 

vehicle exhaust from roadways that connect different operations, surface sources of pollution that span over a large area such 

as surface mine excavation sites, and larger area sources such as tailings ponds (Baray et al., 2018; Davis et al., 2020).  

Various emission scenarios (e.g., point, area sources) and tracer dispersion and transport under different meteorological 

conditions were simulated using a high-resolution WRF model described in Fathi et al., 2023. The output data from this 85 

high-resolution (with LES parameterization) WRF model is assessed here as a proxy for real-world environmental fields 

(virtual sampling). The range of spatial and temporal variability in fields sampled by a mobile platform for top-down 

retrievals can impact the accuracy of the estimates. For example, spatio-temporal variability in sampled fields is dependent 

on the downwind distance and hence investigating the optimized sampling distance using model data (following Conley et 

al., 2017) is desirable and can provide valuable advice in terms of observational flight planning and data processing. By 90 

studying the output fields from several different WRF simulation scenarios, we investigate the impact of different sampling 

strategies on the accuracy of top-down estimates and provide operational recommendations for general and specific cases. 
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.2 Methods 

2.1 Case Studies and Locations 95 

This analysis uses WRF output data described in Fathi et al. (2023). The model is run at a resolution of Δ𝑥𝑥 = 50 m, Δ𝑧𝑧 ≈ 12 

m, and Δ𝑡𝑡 ≤ 1 s, which is often referred to as “super-resolution” (Wu et al., 2021; Onishi et al., 2019; and Watson et al., 

2020). The WRF model output data span a geographical location over the northwest portion of Athabasca oil sands region, 

Alberta, Canada. Although three different cases were simulated in Fathi et al. (2023), we focus here on Case 1 on Aug 20 (all 

dates in 2013) and Case 3 on Sep 2. Case 2 on Aug 26 was a stagnant, low-wind speed case with high vertical wind shear. 100 

For this case, the vertical motion of the plume in the presence of strong wind shear resulted in plume recirculation causing 

significant storage within the control volume during the flight time. Hence. Case 2 was not considered suitable for the mass-

balance technique (see also Fathi et al., 2021 for more discussion of this effect). The dates of Case 1 and 3 coincide with 

aircraft emission retrieval flights over the CNRL facility in the northwest area of the oil sands region, during the 2013 JOSM 

(Joint Canada-Alberta Implementation Plan on Oil Sands Monitoring) field campaign (JOSM, 2013) and they are the two 105 

flights described in detail in Gordon et al. (2015). Both cases (summer, afternoon flight times) demonstrate thermally and 

dynamically unstable conditions in both the measurements (Gordon et al., 2015) and model output (Fathi et al., 2023). 

In this study, we simulate aircraft measurements around and downwind of the CNRL facility using the model output data as 

proxy for real-world environmental fields (virtual sampling). To achieve this, we extract data from the model 4D fields for 

time periods and along flight paths similar to those conducted during airborne field campaigns. The super-resolution of our 110 

model-generated atmospheric fields allow us to sample data at temporal and spatial scales of airborne measurements without 

the need for interpolation of model generated fields. The model simulations are also capable of resolving atmospheric 

dynamical processes (turbulence) at airborne sampling scales and therefore provide us with ample information for 

investigating the impact of spatio-temporal variability in sampled fields on the accuracy of top-down estimates. We analyze 

the model-generated data as if they were observational data to retrieve emission rates from various sources within the 115 

facility. We then evaluate these estimates against the known modelling conditions (i.e. emission rates, meteorology) to 

optimize the flight parameters.  

2.2 Model Description 

Model details are discussed in Fathi et al. (2023) and are summarized here. The Weather Research and Forecasting model 

(WRF, version 3.9) was used with the ARW dynamical core. In this analysis, we use the velocity components (u, v, w), 120 

meteorological parameters (temperature, 𝑇𝑇, pressure, 𝑝𝑝, and moisture, 𝜒𝜒), and 11 tracer scalars, corresponding to different 

point, line, and area emission sources (described below). ARW solves for advection of momentum, scalars, and geopotential 

in flux form (the governing equations).  

Five nested grid domains are used in both the horizontal and vertical, with increasing horizontal resolution from ~31 km to 

50 m, and vertical resolution of 11.2 m (for the lowest 40 grid levels in the finest domain), and a time step of 0.16 s (in the 125 
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finest domain).  The coarsest domain was driven with North American Regional Reanalysis (NARR) GRIB (GRIdded 

Binary) data (at 3 h intervals) from NOAA (National Oceanic and Atmospheric Administration) archives. Our WRF-ARW 

model configuration conserves mass within 1–5% and successfully resolves turbulent eddies at aircraft-observed scales by 

leveraging the full suite of large-eddy simulation (LES) options. For details of the super-resolution modelling setup, see 

Fathi et al. (2023). 130 

The 11 tracer emission locations comprise a combination of real and hypothetical sources, which include 7 elevated (stack) 

sources, two small area surface sources (surface mines), a large area source (tailings pond), and a multi-section line source 

(heavy-hauler roadway). 7 of the 11 source locations are shown in Figure 1. A hypothetical super-elevated stack with a 

height of 483 m (CNRL0), 2 hypothetical upwind 102 m tall stacks (CNRLw and CNRLs), and a highway (HWY) were used 

in Fathi et al. (2023) for model testing but these sources are not used in this analysis. The existing stacks (CNRL1-4) range 135 

in height from 30 to 114 m in height. The large area source (POND) is approximately 50 km2, and the small area sources 

(MINE1 and MINE2) are 550 m × 550 m and 350 m × 550 m, respectively. Each source emits a known amount, 𝐸𝐸𝑆𝑆, which 

can be compared to the emissions determined from the TERRA mass-balance method, 𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, discussed in Section 2.3. 

Emissions from each source are independent in the model and are treated separately. Here we evaluate three emissions 

scenarios: stacks (the sum of CNRL1, 2, 3, and 4), small area sources (the sum of MINE1 and MINE2), and the large area 140 

source (POND).  

Meteorological and tracer values were output from the finest domain every 1-second over the area shown in Figure 1 (also 

extending south of what is shown in the figure to 57.15 N). Model runs start at 09:00 local time (15:00 UTC).  The Aug 20 

run stops at 18:47 UTC and the Sep 2 run stops at 18:09 UTC. As discussed in Fathi et al. (2023), meteorological fields 

converge in under 1 hour of simulation. All analysis discussed herein starts after 16:20 UTC (80 minutes after startup) to 145 

allow more than enough model spin-up time for the meteorological fields to converge over the modelling domain and ensure 

that all the plumes have reached the edge of the model domain.  

2.3 Mass-Balance Calculation 

Airborne top-down emission rate retrievals are usually accomplished by flying at a distance downwind of the emission 

source and at several altitude levels. Although flights that are far enough downwind of a source (or over a large homogenous 150 

surface source) can assume a well mixed boundary layer and fly at a single altitude (e.g. Turnbull et al., 2009; Karion et al., 

2013; Hiller et al., 2014), we restrict our analysis here to relatively short flights (~10’s of kms) where the plume is not 

uniformly mixed and flights at multiple heights are required to characterize the plume (Fig. 1).   

 

https://doi.org/10.5194/egusphere-2025-4542
Preprint. Discussion started: 30 October 2025
c© Author(s) 2025. CC BY 4.0 License.



6 
 

 155 

 
Figure 1: Topography (meters above sea-level) of the finest model domain showing source locations for the stacks (plus symbols), 

two small area sources, and the large area source (black rectangles). All stacks are combined as stack sources, and the two small 

areas are combined as the small area sources. Plumes (integrated total concentrations with arbitrary scales) are shown as 

instantaneous snapshots at Aug 20 16:20 (a) and 17:20 (b), and Sep 2 16:20 (c) and 17:10 (d).  Flight paths are shown for each of 160 
the three source locations at downwind distances of 𝑫𝑫 = 2, 4, 6, 8, 10, and 12 km for the stack sources (red lines), the small area 

sources (blue lines), and the large area source (green lines). The model domain extends to 57.15 N, but only north of 57.30 N is 

shown here. 

 

Following the TERRA algorithm outlined in Gordon et al. (2015) the emission rate within a control volume can be 165 

calculated as 

𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐸𝐸𝐻𝐻 + 𝐸𝐸𝐻𝐻𝐻𝐻 + 𝐸𝐸𝑉𝑉 + 𝐸𝐸𝑉𝑉𝑉𝑉 + 𝐸𝐸𝑉𝑉𝑉𝑉 − 𝐸𝐸𝑀𝑀 − 𝐸𝐸𝑋𝑋 + 𝑆𝑆,       (2) 
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where 𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is the total emissions rate integrated over all activities within the facility, 𝐸𝐸𝐻𝐻 is the horizontal advective flux 

through the box walls, 𝐸𝐸𝐻𝐻𝐻𝐻 is the horizontal turbulent flux through the box walls, 𝐸𝐸𝑉𝑉 is the advective flux through the box 

top, 𝐸𝐸𝑉𝑉𝑉𝑉 is the turbulent flux through the box top, 𝐸𝐸𝑉𝑉𝑉𝑉 is the deposition to the surface, 𝐸𝐸𝑀𝑀 is the increase in mass within the 170 

volume due to a change in air density, and 𝐸𝐸𝑋𝑋 is the increase in mass due to chemical changes of the compound within the 

box volume. As demonstrated in Fathi et al. (2021), a storage term (𝑆𝑆) must be included to account for emissions trapped 

within the control volume or released from the control volume after a previous build-up. Fathi et al. (2021) demonstrate that 

storage/release is related to non-steady state wind conditions, changes in stability, vertical wind shear, and upwind emissions 

(for enclosed flight patterns). 175 

As past studies have shown (Kalthoff et al., 2002; Gordon et al., 2015), the most significant term in Equation 2 is the 

horizontal advective flux. This is calculated by first creating a 2-dimensional screen from the flight measurements (using 

some form of interpolation), with horizontal dimension 𝑠𝑠, and vertical dimension 𝑧𝑧, transformed from the 4-dimensional 

(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡) measurements The advective flux is then calculated as 

𝐸𝐸𝐻𝐻 = ∬𝐶𝐶 𝑈𝑈⊥𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑,           (3) 180 

where 𝑠𝑠 is the distance along the flight path, 𝑧𝑧 is the height from the ground, 𝐶𝐶 is the species concentration at each screen 

location (𝑠𝑠, 𝑧𝑧), and 𝑈𝑈⊥ is the wind speed perpendicular to the screen at that location, calculated as 𝑈𝑈⊥ = 𝑈𝑈��⃗ ⋅ 𝑛𝑛�, where 𝑛𝑛� is the 

unit vector (horizontal) normal to the flight path, 𝑠𝑠 (positive outward). 

The simplest and lowest cost approach (i.e. least flight time) is to ignore the control volume and fly in a single screen 

downwind of the plume (e.g. Mays et al., 2009; Cambaliza et al., 2014). A background concentration must be calculated 185 

either from an upwind pass or from the plume edges. The terms 𝐸𝐸𝑉𝑉, 𝐸𝐸𝑉𝑉𝑉𝑉, and 𝐸𝐸𝑀𝑀 in Equation 2 must be ignored, although 

𝐸𝐸𝐻𝐻𝐻𝐻, 𝐸𝐸𝑉𝑉𝑉𝑉, and 𝐸𝐸𝑋𝑋 can be estimated if the plume source location is known. When multiple downwind screens are used, this 

method can be used to estimate deposition (𝐸𝐸𝑉𝑉𝑉𝑉) in the area between the screens (e.g. Liggo et al., 2019; Hayden et al., 

2021).  

To assess the upwind fluxes and to better estimate all the terms in Equation 2, the plane can fly in a repeating closed circuit 190 

at different heights to trace a 3-dimensional prism. In actual flights at this location (Gordon et al., 2015; Liggio et al., 2019; 

He et al., 2024), rectangular “box” shapes (or a 5-sided near-rectangle with a cut corner) were flown with sides aligned with 

compass directions (and facility roads and layouts). In this study, we focus only on screen flights and then extrapolate these 

results to estimate the uncertainties in enclosed flight patterns. To calculate the emission rate for an enclosed cylinder or box 

flight, the perpendicular wind speed (𝑈𝑈⊥) in Equation 2 must take into account the changing flight path direction.  195 

Interpolation of the 2D screens is done with the kriging method, which is standard for multiple-path screen flights (e.g. 

Cambaliza et al., 2014, Gordon et al., 2015, Ryoo et al., 2019, Kim et al., 2025). The kriging algorithm used here 

(Wavemetrics) fits a spherical function to the variogram to determine the appropriate range value. Here, the screens are 

interpolated to a resolution of 40 m × 20 m (𝑠𝑠 and 𝑧𝑧 respectively). 

https://doi.org/10.5194/egusphere-2025-4542
Preprint. Discussion started: 30 October 2025
c© Author(s) 2025. CC BY 4.0 License.



8 
 

Although various extrapolation methods are available to fill the values between the lowest flight path and the ground 200 

(Gordon et al., 2015), for simplicity we assume a constant value between the ground and lower flight path equal to the 

concentration at the height of the lowest flight path, representing a well-mixed concentration in the boundary-layer. As 

discussed above, Conley et al. (2017) determine the optimized flight radius (𝑅𝑅′ in Eq. 1) for a cylindrical pattern as the 

minimum downwind distance at which the concentration is uniformly mixed (constant) below the lower flight path. Here, we 

use known model output to optimize the flight distance based on downwind distance of the screen and we investigate the 205 

accuracy of this extrapolation method, and whether other extrapolation methods (e.g. linear to zero at the surface, half-

Gaussian) would improve emission estimation. 

The second largest term in Equation 2 is typically the storage term, although it is never (to the authors’ knowledge) 

accounted for in mass-balance estimation. Conley et al. (2017) include the flux divergence (analogous to storage/release) in 

their derivation but demonstrate that it is at least an order of magnitude less than the gradient term (as estimated by the 210 

advective flux) under ideal conditions. Reproducing actually flown box-flight patterns (as part of the JOSM campaign) on 

the same days simulated in this study (Aug 20 and Sep 2), and sampling SO2 (primarily from stack sources), Fathi et al. 

(2021) found that 𝑆𝑆/𝐸𝐸𝑆𝑆 was –3% for the Aug 20 flights and –29% for the Sep 2 flights (negative storage is termed release 

and represents net loss from the control volume enclosed by the box flight after a previous build-up). Using the same model 

setup discussed in this paper, Fathi et al. (2023) determined the storage term for a box flight enclosing all the sources with an 215 

east wall 5 km downwind of the stack locations. The normalized storage term, 𝑆𝑆/𝐸𝐸𝑆𝑆, for the emissions released from the 4 

existing stacks (CNRL1-4), the surface mines (MINE), and the tailings pond (POND), ranged from –10.9% to –2.9% for 

Aug 20 and –27.5% to 15.4% for Sep 2. Hence, storage can be significant even when winds appear to be steady state, and 

optimization of flight parameters must consider how to reduce this uncertainty. 

2.4 Flight Parameters 220 

Screen and circuit emission retrieval flights can be flown with a variety of aircraft sizes, including UAVs (Han et al., 2024; 

Yong et al., 2024), small aircraft such as Cesna (Krings et al. 2018; Fiehn et al., 2020; Conley et al., 2017), or larger aircraft, 

such as Convair (Gordon et al., 2015; Liggio et al., 2019; Kim et al., 2025). UAV speeds range from 2 to 18 m/s, small 

aircraft typically fly between 40 and 75 m/s, while larger aircraft flight near 100 m/s and up to 150 m/s.  Sampling rates can 

vary from 0.5 to 2 Hz, depending on the instrument used, resulting in a wide variety of horizontal sampling scales. In this 225 

study, we use a sample distance of 100 m (100 m/s at 1 Hz) to fly through the model space, following the scale of actual 

studies done at this location (e.g. Gordon et al., 2015; Liggio et al., 2019). These results can potentially be scaled to smaller 

aircraft sizes (or UAVs). 

The lowest flight path is taken as 150 m agl (above ground level), following standard restrictions (e.g. Gordon et al., 2015; 

Conley et al., 2017). We assume an upward flight path, starting at 150 m agl and moving upward to a new height after each 230 

circuit or screen transect. During an actual field campaign, the concentrations can be monitored in real time, and sampling 

can be stopped after the last transect samples only background concentration (to avoid wasted flight time). To mimic this in 
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model space, the aircraft flies through the model up to a height of 800 m (well above all tracer emissions), but upper 

transects above the first background-level transect are removed from the analysis and not counted towards the total flight 

time.  235 

Multiple screens are flown at distances 𝐷𝐷 = 2, 4, 6, 8, 10, and 12 km downwind of the smokestack location or edge of the 

line or area source. To account for plume spread, the screen length is determined as 𝐿𝐿 = 𝐿𝐿0 + 2𝐷𝐷 sin𝜑𝜑, where 𝐿𝐿0 is the 

width of the line or area source perpendicular to the wind (𝐿𝐿0 = 0 for smokestack sources), and 𝜑𝜑 accounts for the spread of 

the plume with downwind distance. Based on visual inspection of the plume spread in the model, we choose 𝜑𝜑 = 30o to 

ensure the entire plume is captured under varying wind conditions. For smokestacks, this simplifies to 𝐿𝐿 = 𝐷𝐷. Figure 1 240 

shows the resulting screen lengths. In actual flights, the screen length would likely be determined in real time by observing 

concentrations while flying through the plume. 

For these screens, the vertical transect spacing (i.e. the height between each subsequent pass along the screen length) is 𝑇𝑇 = 

100 m, to match the horizontal spacing. Once the screen distance is optimized, the transect vertical spacing is optimized for 

that distance by analyzing flights with 𝑇𝑇 values of 50, 100, 150, and 200 m.  At the end of each transect, 1 minute is added to 245 

turn the aircraft around and elevate to the next transect level but no measurements are taken during these maneuvers.   

For each value of 𝐷𝐷 or 𝑇𝑇, 10 flights are flown to provide a statistical evaluation of the variability and uncertainty in the 

emissions estimates. Assuming the values are normally distributed, we are 95% confident that the calculated mean is within 

±0.62𝜎𝜎 (S.E. = 1.96𝜎𝜎/√𝑛𝑛, where 𝜎𝜎 is the standard deviation of the 𝑛𝑛 =10 measurements). Based on our estimation of 𝜎𝜎 we 

can estimate the uncertainty that would be associated with a “real” single flight (S.E. = 1.96𝜎𝜎/√𝑛𝑛, with 𝑛𝑛 = 1). When 250 

comparing variability, it is noted that, for 10 samples, we are 95% confident that our estimate of 𝜎𝜎 is within 45% of the true 

value. 

Each flight begins at the most NW location at a height of 150 m agl. There are two sets of flights on each of the two days for 

each of the three sources. The first set starts at 16:20 UTC. The second set starts at 17:20 UTC on Aug 20 and 17:10 UTC on 

Sept 2. For each set, each of the 10 flights starts 1 minute later than the previous flight (e.g. start times = 16:20, 16:21… 255 

16:29).  To simulate turbulent fluctuations in the flight, at each 1-s timestep of the flight, the horizontal aircraft speed is 

randomly offset by a Gaussian random number with a standard deviation of 3 m/s and the vertical position is offset by a 

Gaussian random number with a standard deviation of 1 m. Although these offsets are less than the model grid sizes, they are 

cumulative in effect during the flight, and they change the kriging results of the interpolated screen relative to an even 

spacing with no offsets.  The temporal and spatial offsets ensures that each of the 10 flights (for each 𝐷𝐷 and 𝑇𝑇 value) is 260 

distinct but generally sampling the same meteorological and emission conditions. Although Conley et al. (2017) normalize 𝑅𝑅 

(to give 𝑅𝑅′ in Equation 1), here we present 𝐷𝐷 as dimensional (km) lengths and investigate non-dimensionalization further in 

Section 3.4. 

For comparison, we also output the full model screen at one instant in time. In this case, the concentration at all grid cells 

along the screen (between the surface and 800 m agl) is output. This calculates all the tracer mass passing through the screen 265 
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at a given time, removing the effect of spatially sampling a temporally changing environment. By sampling at the grid square 

spacing from the surface (i.e. no lowest flight path height restriction), this removes the uncertainty associated with both 

kriging interpolation and extrapolation below the lowest flight path. These screens are flown at downwind distances of 𝐷𝐷 =

 2, 6, and 10 km. To investigate the variability of the 𝐸𝐸𝐻𝐻 value estimated by this method (primarily associated with the 

storage term, 𝑆𝑆), 10 flights are flown at each distance, starting at 16:20 UTC with each subsequent screen 1 minute later. We 270 

refer to these flights and the calculated emission rate values as “instantaneous”. 

2.5 Meteorological Conditions 

Figure 2 show the temperature (𝑇𝑇) and winds (𝑈𝑈, 𝑉𝑉) from the model at a height of 150 m above ground level for the two 

dates at three locations: the stacks, the centre of the small area sources, and the centre of the large area source. The flight 

durations are also shown for comparison (straight lines on the 𝑇𝑇 -axis) for the two sets of flights on each date. The 275 

instantaneous flights (the shortest lines) span 9 minutes (e.g. 16:20, 16:21… 16:29). The longest screens downwind of the 

stack sources (at 𝐷𝐷 = 12 km) span approximately 27 minutes, including 18 minutes of flight time plus 9 minutes since each 

of the 10 flights is offset by 1 minute each. Similarly, the longest small area and large area flight span 32 and 49 minutes, 

respectively. Screen flights closer to the source are always shorter in duration since the screens lengths are shorter, the plume 

tends to be lower to the ground and less transects are required to capture the entire plume.  280 

The friction velocity (𝑢𝑢∗) and the bulk Richardson number (𝑅𝑅𝑅𝑅) demonstrate the turbulence and the and stability conditions, 

respectively. The largest bulk Richardson number (shown in Fig. 2 as a negative value on a log scale) is 𝑅𝑅𝑅𝑅 = –0.49, which 

demonstrates that the conditions are always unstable during these model runs (using a criteria of 0.25 > 𝑅𝑅𝑅𝑅 > –0.25 for 

neutral conditions). Temperature rises consistently during both afternoons, rising approximately 3oC on Aug 20 and 4oC on 

Sept 2. Although these two afternoons were chosen for their steady-state conditions, the winds can vary considerably over 285 

time and between different locations, demonstrating potential for storage and release during the flights. 

2.6 Enclosed Flights 

Although the single-screen flight is the most efficient way sample emissions since it captures the greatest downwind area 

without expending flight time flying upwind of the emission source, there are sometimes situations where an enclosed flight 

path (such as a cylinder or box flight) is necessary. For a small downwind distance, it could be more economical to continue 290 

in a circle (or spiral) pattern around the source, eliminated the need for the tight turning circle at the end of each screen 

transect. Or the aircraft could be equipped to measure multiple pollutants (potentially from multiple sources), and a single, 

large, enclosed flight path can capture a volume containing all the emission sources better than a single screen much further 

downwind. Or there may be upwind sources of the pollutant (or a strong background value) that must be subtracted from the 

horizontal advective flux. 295 
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Figure 2: Meteorological variables during the model runs at 3 locations: (red) stacks, (blue) centre of small area sources, (green) 

centre of large area source. Temperature (𝑻𝑻) and winds (𝑼𝑼, 𝑽𝑽) are at a height of 150 m.  Friction velocity (𝒖𝒖∗) and negative bulk 300 
Richardson number (−𝑹𝑹𝑹𝑹) are shown. The bulk Richardson number is based on a 10-m to 150-m height difference. The straight 

lines on the 𝑻𝑻 axis show flight durations. From shortest to longest lines, they are: 10 instantaneous flights (spanning 9 minutes), 

stack flights, small area flights, and large area flights. 

 

For the stack (i.e. point) sources, the calculation of the screen length based on an assumed ±30o lateral plume spread means 305 

that the screen length is approximately 1/6 of a total circle circumference. The difference in distance from the source 
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between a circle arc (radius 𝑅𝑅) and a straight line over a ±30o range is less than 7% of 𝑅𝑅. Hence the only significant 

differences between a spiral or cylinder flight and the downwind screens investigated here would be the extra time required 

to complete the remaining 5/6 of the circle for each transect (assuming no upwind sources or background concentration). For 

the stack emissions, we can investigate the difference in emissions estimates by using the same screen configuration, but we 310 

add a time offset after each transect to account for the time required to complete the flight path around the source. 

We compare the difference between the screen flights and a circular enclosed flight pattern for a downwind distance of 𝐷𝐷 = 

10 km for the stack sources only. For the stack sources, the screen length at 𝐷𝐷 = 10 km is 𝐿𝐿 = 10 km. Thus, each screen 

transect (at a speed of 100 m/s) takes 100 seconds. For the circular enclosed flight comparison, we recalculate the flight, 

adding a 500 second offset to each transect to account for the time required to complete the loop. The flight time required 315 

(for all 10 circular enclosed flights) is 91 minutes in total (16:20 to 17:51 UTC), effectively spanning most of the model 

output duration and overlapping with both the 16:20 and 17:20 or 17:10 flights (Figure 2). 

3 Results and Discussion 

3.1 Stack Sources 

3.1.1 Optimizing Screen Flights for 𝑫𝑫 320 

Figure 3 shows the calculated horizontal advection fluxes (𝐸𝐸𝐻𝐻, Eq. 2) for screens at given downwind distances (𝐷𝐷) for the 4 

cases: Aug 20 at 16:20 and 17:20, and Sept 2 at 16:20 and 17:10. The fluxes are calculated for the emissions from the 4 

stacks (CNRL1-4) and are normalized by these known emissions (𝐸𝐸𝑆𝑆).  Each calculated advection flux (𝐸𝐸𝐻𝐻/𝐸𝐸𝑆𝑆) is the 

average of 10 flights. The standard deviation of 𝐸𝐸𝐻𝐻/𝐸𝐸𝑆𝑆 from the 10 flights is shown as both error bars on the average values 

and absolute values (to clearly demonstrate how 𝜎𝜎 changes with 𝐷𝐷). For clarity, in the discussion below all values of 𝐸𝐸𝐻𝐻/𝐸𝐸𝑆𝑆 325 

are given as a ratio (e.g. 1.0), while all values of the standard deviation are given as percentages (e.g. 10%). 

At a downwind distance of 2 km the instantaneous screen captures nearly all the stack emissions, with 𝐸𝐸𝐻𝐻/𝐸𝐸𝑆𝑆 values ranging 

from 0.90 and 0.98. This ratio generally increases with downwind distance, except for the Sep 2 17:10 flights. Deviation 

from a ratio of 𝐸𝐸𝐻𝐻/𝐸𝐸𝑆𝑆 = 1 may be due to uncertainty in the mean (which ranges from 0.10 to 0.25 for these results at a 95% 

CI), or one (or more) of the 7 other terms on the right side of Equation 2 may be non-negligible. As demonstrated in Fathi et 330 

al. (2023) there is negative mass creation in the model near the plume emission point (where concentration gradients are 

large) due to the turbulent diffusion scheme. This is generally consistent with the slight underestimation near the source and 

the increase in 𝐸𝐸𝐻𝐻/𝐸𝐸𝑆𝑆 with downwind distance (for 3 of the 4 cases). 

At a downwind distance of 2 km, there is substantial variation between the instantaneous flights (𝜎𝜎 ranges from 28% to 

41%). Further from the source, 𝜎𝜎 generally decreases with 𝐷𝐷, with values ranging from 19% to 28% at a downwind distance 335 

of 10 km. From Equation 2, there may be some variation in horizontal turbulent flux (𝐸𝐸𝐻𝐻𝐻𝐻) for different flights. Fathi et al. 

(2023) estimated 𝐸𝐸𝐻𝐻𝐻𝐻 as < 0.4% and < 1.8% of 𝐸𝐸𝑆𝑆 for Aug 20 and Sep 2 respectively. Since the screen captures the full 
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vertical extent of the plume, 𝐸𝐸𝑉𝑉 and 𝐸𝐸𝑉𝑉𝑉𝑉 (flux through the box top) should be zero. There is no deposition or chemistry in the 

model, so 𝐸𝐸𝑉𝑉𝑉𝑉 and 𝐸𝐸𝑋𝑋 are zero.  𝐸𝐸𝑀𝑀 (the change in mass within the volume due to density change) is zero, since the screen is 

an instantaneous snapshot. Hence, this substantial variation between flights must be due to storage, with changes in wind 340 

speed and direction temporarily changing the advection flux through the screen (i.e. accumulation or subsequent release of 

pollutant between the stack and the screen). The storage terms estimated for 8 flights in Fathi et al. (2021), excluding a 

rejected flight, varied from –27% to 20%, which is comparable in scale to the variation seen between instantaneous cases 

here. 

  345 

 
Figure 3. The variation in the ratio of horizontal advection flux (𝑬𝑬𝑯𝑯) to the known emission rate (𝑬𝑬𝑺𝑺) with downwind screen 

distance (𝑫𝑫) for the 4 flight cases: Aug 20, starting 16:20 and 17:20, and Sep 2, starting 16.20 and 17:10. The black squares are the 

“instant” 𝑬𝑬𝑯𝑯/𝑬𝑬𝑺𝑺 values and red circles are the flights through the model (assuming a constant value between the lowest flight path 

at 150-m and the surface). Error bars show one standard deviation (𝝈𝝈) calculated from 10 flights (offset horizontally for clarity). 350 
The dashed lines show 𝝈𝝈 as absolute values to highlight the change in 𝝈𝝈 with 𝑫𝑫. The blue circles are the same variables (𝑬𝑬𝑯𝑯/𝑬𝑬𝑺𝑺 and 

𝝈𝝈) for 2 enclosed cylindrical flight patterns (on Aug 20 and Sep 2) starting at 16:20 and ending at 17:51. 
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For the non-instantaneous flights, which include uncertainty due to kriging interpolation and the extrapolation below the 

lowest flight path height in addition to the uncertainty of storage, the emission rate near the source (at 𝐷𝐷 = 2 km) is 

underestimated by the horizontal advective flux in all cases (ranging from 0.60 to 0.71). Further from the source, at 𝐷𝐷 = 6 355 

km, the emissions are either nearly correct (0.99) or overestimated (up to 1.19). Beyond 𝐷𝐷 ≥ 8 km, the estimations vary 

considerably for different cases (ranging from 0.79 and 1.37). Much of this underestimation and overestimation is likely due 

to the extrapolation to the surface below the lowest flight path. Figures 4a-d show the profiles of the instantaneous flights, 

averaged for all 10 flights across the entire flight length. At 𝐷𝐷 = 2 km, the plume concentration below 150 m increases with 

concentration towards the surface, which results in an underestimation of the emission rate (lower than the underestimation 360 

of the instantaneous results in all cases). At 𝐷𝐷 = 6 km, there is some decrease in concentration towards the surface in 3 of the 

4 cases, which results in an overestimation of 𝐸𝐸𝑆𝑆 for that flight. At 𝐷𝐷 = 10 km, the concentration is nearly constant with 

height for the Sep 2 flights, although there is still substantial variability for the Aug 20 flights.  

The standard deviation of 𝐸𝐸𝐻𝐻/𝐸𝐸𝑆𝑆 generally decreases with downwind distance, from as high as 41% at 𝐷𝐷 = 2 km to 12% at 

𝐷𝐷 = 12 km. The standard deviations of the instantaneous, known flights for the same downwind distances is similar in 365 

magnitude to the variability in the flown sampled flights, suggesting that no substantial variability is added due to either the 

extrapolation below the lowest flight path, the kriging interpolation of the sparse sampling, or the sampling over an extended 

period of time (as opposed to an instantaneous snapshot). The decrease in variability with downwind distance suggests that 

uncertainty in individual flight estimations can be reduced with greater downwind distance, likely due to increased mixing 

and dispersion with downwind distance and the resulting smoothing of the plume across a larger area. 370 

The estimation of 𝐸𝐸𝑆𝑆 is generally higher in the non-instantaneous flight, relative to the instantaneous flights, for 𝐷𝐷 ≥ 6 km. 

This may be due to the kriging interpolation causing an overestimation of the screen concentrations. To test the interpolation, 

the concentration screen of the first single instantaneous Aug 20 flight (at 16:20) at 𝐷𝐷 = 6 km was sampled using a typical 

flight path and then interpolated (and extrapolated below 150 m with constant values) to compare against the original screen. 

It was found that above 150 m, the kriging screen overestimated the average concentration of the original screen by 15%. 375 

The extrapolated concentrations below 150 m were overestimated by an average of 29% (consistent with the concentration 

profile at 𝐷𝐷 = 6 km shown in Figs. 4a, which is an average of all 10 flights). 

The non-instantaneous emission estimates may also be higher than the instantaneous emission estimates due to oversampling 

of a vertically moving plume. If the plume is moving in the same direction as the sampling (upwards in these cases), then the 

aircraft can sample the same plume multiple times. Conversely an opposite moving plume (downward for upward sampling) 380 

will result in under-estimation relative to the instantaneous estimates. This effect should be reduced with downwind distance 

as the plume becomes more vertically mixed and spread across a larger height range. 
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385 

 
Figure 4. The concentration profiles from the instantaneous screens for the 4 flight cases and 3 source types at various downwind 

distances. These profiles are ensemble averages of 10 flight profiles averaged across the flight length (𝑳𝑳) at each height. The dashed 

lines compare constant concentration below the lowest flight path (at 𝒛𝒛𝒍𝒍 = 150 m).  
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 390 

The results demonstrate that it is difficult to determine an optimal flight distance, since there are multiple criteria that include 

optimization of 𝐸𝐸𝐻𝐻/𝐸𝐸𝑆𝑆, reduction of 𝜎𝜎, or correct extrapolation below the lowest flight path, and it will depend on the goals 

of the investigation. Generally, flying too close to the source (𝐷𝐷 = 2 km) results in an underestimation of the emission rate. 

For 𝐷𝐷 ≥ 4 km, the variation between flights decreases with distance, reaching approximately half its value at 10 km (relative 

to the value at 𝐷𝐷 = 4 km). Flying at a downwind distance of 𝐷𝐷 = 10 km, generally results in a constant concentration below 395 

the lowest flight path, but the results are still inconsistent at this distance. At a distance of 𝐷𝐷 = 10 km, the emission rate at 

𝐷𝐷 = 10 km varies from 0.83 to 1.37, and the uncertainty in a single flight (S.E. with 𝑛𝑛 = 1) is as high as 51% (1.96𝜎𝜎).  

3.1.2 Optimizing Screen Flights for 𝑻𝑻 

To further optimize the emission estimation as a function of flight time, we test the sensitivity of 𝐸𝐸𝐻𝐻/𝐸𝐸𝑆𝑆 to the vertical 

spacing of the transects at a downwind distance of 𝐷𝐷 = 10 km. For simplicity, we only compare 2 cases: Aug 20 and Sep 2 400 

with 16:20 flight start times. Figure 5 demonstrates the variation in 𝐸𝐸𝐻𝐻/𝐸𝐸𝑆𝑆 with transect spacing. For the Aug 20 flights, 

emissions are overestimated by a factor between 1.27 and 1.32 with no dependence on 𝑇𝑇.  For the Sep 2 flights, the 

emissions estimate ratio decreases with transect spacing from 1.15 at 𝑇𝑇 = 50 m to 0.94 at 𝑇𝑇 = 200 m. The variability shows 

no strong pattern with 𝑇𝑇 and is lowest at a 150-m spacing (18%) for the Aug 20 flights, and at a 100-m spacing (15%) for the 

Sep 2 flights. For the Aug 20 flights, there is little dependence on 𝑇𝑇 for either 𝐸𝐸𝐻𝐻/𝐸𝐸𝑆𝑆 and 𝜎𝜎, suggesting that spacing could 405 

optimally be increased to 150 m or 200 m to reduce flight time; however for the Sep 2 flights, the ratio 𝐸𝐸𝐻𝐻/𝐸𝐸𝑆𝑆 changes 

significantly with increased spacing, suggesting that spacing of 𝑇𝑇 > 100 m will modify the emissions estimation and result in 

underprediction. This transition from overestimation at small spacing to underestimation at larger spacing could be due to 

vertical movement of the plume opposite to the sampling direction, resulting in transects missing the plume centre at larger 

spacing.  410 

3.1.3 Comparing Enclosed Circular Flights 

The results form the screen flights show that different conditions at different times of day can lead to error in the emissions 

estimation, most likely due to storage and release. As discussed above, sometime enclosed flight designs are necessary. The 

enclosed flight designs extend the flight time due to the time required to complete the circuit. For our investigated cases here, 

2 circular enclosed flights span the flight times of the two screen flight times on each day. On Aug 20, the 16:20 screen flight 415 

at 𝐷𝐷 = 10 km (Fig. 3a) overestimates the emissions (1.37), while the 17:20 screen flight (Fig. 3b) underestimates the 

emissions (0.95). The circular enclosed flight (Figs. 3a and b) is in the middle of these values (1.13), as might be expected 

since the sampling is spread out over a longer time. However, this is not the case for the Sep 2 flights. On Sept 2, the 16:20 

screen flight at 𝐷𝐷 = 10 km (Fig. 3c) similarly overestimates the emissions (1.12), while the 17:10 screen flight (Fig. 3d) 

underestimates the emissions (0.83), but the circular enclosed flight (Figs. 3c and d) overestimates the emissions (1.26) more 420 
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than the 16:20 screen flight.  For both days, the variability (16% and 29%) is not substantially different from the variability 

of the screen flights. Hence, based on this analysis, we cannot conclude that the longer sampling time of the enclosed 

circular flights modifies the sampling efficiency in any predictable way. 

 

 425 
Figure 5. The variation in horizontal advection flux (𝑬𝑬𝑯𝑯) to the known emission rate (𝑬𝑬𝑺𝑺) with transect spacing (𝑻𝑻) for both the 

Aug 20 (blue, open symbols) and Sep 2 (green, closed symbols) cases with 16:20 flight start times. Error bars and dashed lines 

show one standard deviation (calculated from 10 flights).  

3.2 Area Sources 

3.2.1 Optimizing Screen Flights for 𝑫𝑫 430 

The analysis described above was repeated for the small area (mines) and large area (tailings pond) sources. These sources 

emit uniformly from the surface within the areas shown in Figure 1. The resulting horizontal advective fluxes (normalized by 

the known emission rates) are shown for the small area sources in Figs. 6a-d and for the large area source in Figs. 7a-d. The 

instantaneous results are inconsistent for the different sources and flights, suggesting that storage may affect the advective 

fluxes significantly. For the small area sources (Figs. 6a-d), the instantaneous flight horizontal advective fluxes 435 

underestimate (or slightly overestimate) the emission rate close (𝐷𝐷 = 2 km) to the source, ranging from 0.74 to 1.01. Beyond 

this distance, 𝐸𝐸𝐻𝐻/𝐸𝐸𝑆𝑆 ranges from 0.87 to 1.15. The non-instantaneous flights closely estimate the emissions in most cases, 

except for the Sep 2 16:20 case, where the emissions are overestimated. For the large area sources on Aug 20 (Figs. 7a-b), 

the emissions estimates are generally consistent, ranging from 0.91 to 1.18 (for both instantaneous and non-instantaneous 

flights). The Sep 2 flights (Figs. 7c-d) show a strong dependence on 𝐷𝐷, with both instantaneous and non-instantaneous 440 

flights showing similar values. Opposite patterns are seen for the Sep 2 16:20 flights (Fig. 7c), emissions are overestimated 

near the source for 𝐷𝐷 < 10 km and underestimated for 𝐷𝐷 ≥ 10 km. For the Sep 2 17:10 flights (Fig. 7d), emissions are nearly 
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1.0 near the source for 𝐷𝐷 ≤ 4 km, underestimated for 6 ≤ 𝐷𝐷 ≤ 10 km and overestimated at 𝐷𝐷 = 12 km. This implies that 

high variability in winds in these cases is leading to storage and release, resulting in build-up and subsequent release of 

pollutants at different distances downwind of the source.  The relatively good agreement between instantaneous and non-445 

instantaneous estimates implies that vertical motion of the plume does not result in over- or under-sampling. 
 

  

 
Figure 6. As Figure 3 for the flights downwind of the small area sources. Error bars and dashed lines show one standard deviation 450 
(calculated from 10 flights). 

 

For the small area sources (Figs. 6a-d), the variability between the flights is consistently reduced with distance from the 

source, ranging from 26% to 48% at 𝐷𝐷 = 2 km to between 8% and 12% at 𝐷𝐷 = 12 km. The variability of the large area 

source measurements is much lower and does not consistently decrease with 𝐷𝐷, with values ranging from 2% to 13%. The 455 

lower variation for the large area source is expected since the wide plume from such a large area would be much less 

susceptible to wafting and the smaller-scale variation due to local wind effects. This indicates that a single flight sampling a 
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large area source would show substantially less uncertainty relative to a single flight sampling small area sources. For 

example, at 𝐷𝐷 = 6 km, we expect an uncertainty (based on the variability between flights) of 16% for the large area source, 

compared to 43% for the small area sources. 460 

 

 

 
Figure 7. As Figure 3 for the flights downwind of the large area sources. Error bars and dashed lines show one standard deviation 

(calculated from 10 flights). 465 
 

The concentration profiles from the instantaneous area source flights are shown in Figure 4(e-l), where they are compared to 

the extrapolation of a constant concentration below the lowest flight path. For the small area sources (Figs. 4e-h), the 

concentration is nearly constant below 150 m at 𝐷𝐷 = 6 km for Aug 20, but it is overestimated by the constant extrapolation 

at 𝐷𝐷 = 6 km for Sep 2. At 𝐷𝐷 = 10 km, the concentration is nearly constant for all except the Aug 20 16:20 case, where it is 470 

overestimated by the extrapolation. For the large area source, the profiles for the Aug 20 flights (Figs. 4i-j) approach 

constant below the lowest flight path at 𝐷𝐷 = 6 km; however, at 10 km downwind the concentration increases toward the 

ground for the 16:20 flights. For the Sep 2 flights at 16:20 (for the large area source), the profiles (Fig. 4k) do not deviate 
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from an exponential increase towards the surface at all distances, while for the 17:10 flights, they approach nearly constant at 

𝐷𝐷 = 10 km (with a slight underestimation by the extrapolation). It would be expected that an underestimation due to 475 

extrapolation (most prominent for the Sep 2 17:10 flights) would result in an underestimation of the emission rate for the 

non-instantaneous flights (relative to the instantaneous flights); however, this is not seen in Figure 7c, where the 

instantaneous advection flux is lower than the non-instantaneous advection flux (which includes the extrapolation).  

As with the flights sampling the stack sources, it is difficult to determine an optimized downwind distance for these flights. 

For the small area sources, the minimum distance with consistent emission estimation, minimum variability, and close to 480 

constant concentration below 150 m is 𝐷𝐷 = 6 km; however, the non-constant concentrations below 150 m during the Sep 2 

flights (at 𝐷𝐷 = 6 km) suggests that the optimized value of 𝐷𝐷 may be further downwind in some circumstances. For the large 

area sources, there is little variation in the concentration profile shape with downwind distance and the variance between 

flights is relatively small and independent of downwind distance. For this source, we can suggest an optimum downwind 

distance of 𝐷𝐷 = 4 km. However, it is noted that, for both sources, the horizontal advection flux (𝐸𝐸𝐻𝐻) differs significantly 485 

from the known emission rate (𝐸𝐸𝑆𝑆), with factors between 0.96 and 1.22 for the small area sources (at 𝐷𝐷 = 6 km) and between 

0.99 and 1.30 for the large area sources (at 𝐷𝐷 = 4 km). The overestimation is likely due to kriging errors or negative storage 

(release), or a combination of the two. 

3.2.2 Optimizing Screen Flights for 𝑻𝑻 

Using these optimal downwind distances (6 km and 4 km), we investigate the change in estimated emissions with transect 490 

spacing, 𝑇𝑇 using only the 16:20 flights. For the small area source (at 𝐷𝐷 = 6 km), there is no change in 𝐸𝐸𝐻𝐻/𝐸𝐸𝑆𝑆 (≈ 1.06) with 𝑇𝑇 

for the Aug 20 flights (Fig. 8a); however, the variance between flights increases from 11% at 𝑇𝑇 = 50 m to 19% at 𝑇𝑇 = 200 

m. For the Sep 2 flights, 𝐸𝐸𝐻𝐻/𝐸𝐸𝑆𝑆 decreases with increasing 𝑇𝑇, from 1.29 to 1.02, and the variance is lower at 𝑇𝑇 = 50 m (10%) 

and highest at 𝑇𝑇 =  100 m (20%). These results suggest that the uncertainty due to variation between flights can be 

minimized with a 50 m spacing; however, the emission rate estimation for the Sep 2 flights at this spacing is high (𝐸𝐸𝐻𝐻/𝐸𝐸𝑆𝑆 = 495 

1.29).  Increasing the spacing to 200 m will reduce the flight time by a factor of 4 but nearly doubles the uncertainty due to 

variation between flights.  

The variation of 𝐸𝐸𝐻𝐻/𝐸𝐸𝑆𝑆 and 𝜎𝜎 with 𝑇𝑇 for the large area source (Fig. 8b) is similar to the variation seen for the small area 

source. For the Aug 20 flights, 𝐸𝐸𝐻𝐻/𝐸𝐸𝑆𝑆  increases with 𝑇𝑇, from 1.08 at 𝑇𝑇 = 50 m to 1.15 at 𝑇𝑇 = 150 m and the variance 

increases from 6% at 𝑇𝑇 = 50 m to 10% at 𝑇𝑇 = 200 m. For the Sep 2 flights, 𝐸𝐸𝐻𝐻/𝐸𝐸𝑆𝑆 decreases with increasing 𝑇𝑇, from 1.31 to 500 

1.26, and the variance ranges from a minimum of 4% at 𝑇𝑇 = 50 m to ~7% for other values. Similar to the small area source, 

the spacing is optimized (based on variation between flights) at 50 m or 100 m but increasing the spacing to 200 m increases 

the uncertainty from 6 to 10% (Aug 20) or 4% to 6% (Sep 2), which could be acceptable depending on the required accuracy 

and the cost of flight time. 
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 505 
Figure 8. As Figure 5 for the flights downwind of the small (a) and large (b) area sources.  Aug 20 shown as blue, open symbols, 

and Sep 2 shown as green, closed symbols. 

3.3 Scaling 

Following Conley et al. (2017), we non-dimensionalize the downwind distance following Equation 1 (with 𝐷𝐷′ and 𝐷𝐷 instead 

of 𝑅𝑅′ and 𝑅𝑅).  As with Conley et al. (2017), we approximate the convective flux as 𝑤𝑤∗ = 𝜎𝜎𝑈𝑈/0.6, where 𝜎𝜎𝑈𝑈 is the standard 510 

deviation of the wind speed. The boundary-layer heights are taken as 𝑧𝑧𝑖𝑖 = 470 m for the Aug 20 flights, and 𝑧𝑧𝑖𝑖 = 480 m for 

the Sep 2 flights, as can be inferred from the profiles in Figure 4. The boundary layer heights are assumed not to change 

significantly during the duration of the flights. Using these values with the average wind speeds for each flight duration, 𝐷𝐷′ is 

calculated for each set of 10 flights.  

Figures 9a and 9b compare the emission flux estimates and variation for all the sources for both dimensionalized downwind 515 

distance, 𝐷𝐷 (Fig. 9a), and non-dimensionalized downwind distance, 𝐷𝐷′(Fig. 9b). The results are not collapsed due to non-

dimensionalization as substantial variation is seen in the results using either 𝐷𝐷 or 𝐷𝐷′. There is significant variability in the 

average values of 𝐸𝐸𝐻𝐻/𝐸𝐸𝑆𝑆 for all sources over a wide range of 𝐷𝐷′ values, and the results do not asymptote to a value of 

𝐸𝐸𝐻𝐻/𝐸𝐸𝑆𝑆 = 1.0. For the small area sources, the standard deviation, 𝜎𝜎 (the variability between the 10 flights) is lowest for 𝐷𝐷′ ≥

 6, while for the large area source flights it is smallest over the range 2 ≤ 𝐷𝐷′ ≤ 4. For the stack source flights, 𝜎𝜎 tends to 520 

decrease with 𝐷𝐷′, but there is no apparent minimum or asymptotic 𝐷𝐷′ value. 

We also investigate the effect of non-dimensionalization on the accuracy of the constant concentration extrapolation below 

the lowest flight path. The average concentration below the lowest flight path <𝐶𝐶> is calculated from the instantaneous 

flights (see Fig. 4) and this is normalized by the extrapolated concentration at the lowest flight path level, 𝐶𝐶(𝑧𝑧𝑙𝑙), where 𝑧𝑧𝑙𝑙 = 

150 m. When the results are non-dimensionalized, <𝐶𝐶>/ 𝐶𝐶(𝑧𝑧𝑙𝑙) varies from 0.79 to 1.22 for 𝐷𝐷′ ≥ 3, suggesting that the 525 

extrapolation should be within approximately 20% beyond that distance. However, this analysis ignores the significant 
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overestimation of <𝐶𝐶> for the Aug 20 17:20 stack flights at 𝐷𝐷 = 10 km (see Fig. 4b), and it is unclear what would happen at 

further downwind distances for that flight. 

 

  530 

 
Figure 9. A summary of the results shown in Figures 3, 4, 6, and 7, compared to both downwind distance 𝑫𝑫 (a, c), and non-

dimensionalized downwind distance, 𝑫𝑫′ (b, d). Panels (a) and (b) show the ratio of estimated advection flux, 𝑬𝑬𝑯𝑯, to the known 

emission rate, 𝑬𝑬𝑺𝑺, and the standard deviation of the ratio, 𝝈𝝈. In Panel (a), the thicker line is the average of all 4 flight times. Panels 

(c) and (d) show the ratio of average concentration below the lowest flight level (𝒛𝒛𝒍𝒍 = 150 m) to the constant concentration 535 
extrapolation (see Fig. 4). 

4 Conclusions 

The results of this study demonstrate that emissions estimates can be substantially varied under different conditions. This 

reinforces the importance of storage and release discussed in Fath et al. (2021) and Fathi et al. (2023). A vertically moving 

(rising or falling) plume may also lead to under- or over-estimation of the emissions for the non-instantaneous flight, 540 
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although this would not explain under- or over-estimation in the instantaneous flights. Further uncertainty is introduced by 

the kriging interpolation, which is shown in one case (for stack sources) to overestimate the average concentration by 15% 

(using an instantaneous flight example).   

When all the different flight times are averaged, the storage/release conditions tend to cancel and the average 𝐸𝐸𝐻𝐻 values are 

within 12% of 𝐸𝐸𝑆𝑆 for a downwind distance of 4 km or more. Hence, based on the average estimate of 𝐸𝐸𝐻𝐻/𝐸𝐸𝑆𝑆 alone, a screen 545 

at a downwind distance of 4 km or more provides the same level of accuracy for the three types of sources investigated here 

(i.e. elevated stacks, small surface area sources, or a large surface area source). 

However, variability between individual flights is a very large source of uncertainty. This variability is likely due to changes 

in storage/release over the flight times, since similar variability is seen instantaneous results. At a downwind distance of 4 

km, for elevated stack sources, this variability between flights can be as much as 𝜎𝜎 = 42%, which suggests an uncertainty of 550 

82% (at a 95% CI) in that particular case. At the same distance, variability for the surface area sources is much less (𝜎𝜎 = 

25% for small area sources, and 7% for the large area source). The variability between flights tends to decrease with 

increasing downwind distance. For the stack and small area sources, 𝜎𝜎 reaches half the 𝐷𝐷 = 4 km value between 𝐷𝐷 = 10 and 

12 km. However, flight time also increases with downwind distance. For the case of the stack sources, the screen at 12 km 

takes 3 times as long to complete as the screen at 4 km (since 𝐿𝐿 = 𝐷𝐷 for the smokestack screens). Hence, 3 flights can be 555 

flown at 𝐷𝐷 = 4 km in the same time it takes to fly one flight at 𝐷𝐷 = 12 km. Taking the average of these 3 flights, reduces the 

uncertainty by a factor of 0.58 (1/√3). Hence, comparable accuracy can be achieved by taking multiple flights closer to the 

source relative to a single flight further downwind. This is not the case for the large area source, where the variation is small 

and reaches a minimum (average 𝜎𝜎 = 5%) at 𝐷𝐷 = 8 km. For this source type, increasing the downwind distance of the screen 

does not reduce uncertainty due to variability between flights. 560 

For elevated stack sources, the results show that reducing the transect spacing below 100 m does not offer any benefits in 

emission estimation, but increasing the space beyond 150 m can increase uncertainty and modify the 𝐸𝐸𝐻𝐻 estimates. For area 

sources, the variability between flights is minimized with a transect spacing of 𝑇𝑇 = 50 m. For small area sources, increasing 

the spacing to 200 m (reducing flight time by a factor of 0.25) doubles the uncertainty, while for the large area source, 

increasing the spacing to 200 m increases the uncertainty by a factor of ~1.5. As with the optimization of downwind flight 565 

distance, multiple flights with a larger transect spacing may results in similar uncertainties compared to a single flight at 

smaller transect spacing. 

These results further demonstrate that one of the most substantial sources of error in the emissions estimate is due to the 

extrapolation of the results between the surface and the lowest flight path level (as outlined by Gordon et al., 2015 and 

Conley et al. 2017 for example). Extrapolation error is most significant close to the source, as would be expected, but it can 570 

be surprisingly persistent further downwind, in one flight case (for the stack sources), overestimating the concentration 

below 150 m by a factor of 3 at 𝐷𝐷 = 10 km. For the area sources, the extrapolation error is less than 30% for distances of 4 

km or greater. Non-dimensionalization of the results suggests that the extrapolation error is within 20% for non-dimensional 
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distance of 𝐷𝐷′ ≥ 3, with the caveat that more results at this distance are required to confirm this result. These results 

emphasize the need to constrain aircraft measurements with coincident surface or near-surface measurements whenever 575 

possible. Substantial improvements in emission estimation accuracy can be achieved by mobile vehicle, UAV, or remote 

sensing (e.g. lidar) sampling beneath the aircraft. 

The results demonstrate that it is difficult to provide a single optimized distance and transect spacing given the variability of 

conditions and the effects of storage and release. However, the results do demonstrate the potential to improve emission rate 

retrieval by accompanying any flight campaign with a strong modelling effort. This approach seems to be the only way to 580 

account for storage and release once the campaign is complete. Reanalysis data combined with tracer release can be used to 

mimic flight actual patterns and estimate storage and release during actual flight time, thus reducing the most substantial 

uncertainty in the emission rate estimation. 
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