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Abstract. The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), in its passive tracer option 15 

(WRF-GHG), was used to simulate CO2 concentrations over Western Europe during summer 2018. The model performance 

was evaluated against ground-based observations. Due to the large variety of anthropogenic emissions, we conducted five 

sensitivity tests using a combination of three different inventories (CAMS-REG-ANT, EDGAR, and TNO) and source-specific 

vertical emission profiles. Compared with observations from five Integrated Carbon Observation System (ICOS) atmospheric 

stations, the model captures diurnal CO₂ variations at different heights. At the ICOS site in Karlsruhe, Germany, simulated 20 

near-surface CO₂ mole fractions are highly sensitive to the choice of anthropogenic emission inventory, with discrepancies up 

to 14.99±31.98 ppm, due to large nearby emission sources. Furthermore, incorporating source-specific vertical profiles notably 

improves accuracy, increasing the correlation coefficient from 0.53 to 0.78 when using EDGAR. The column-averaged dry-

air mole fractions of CO2 (XCO2) from the Total Column Carbon Observing Network (TCCON) are well simulated by WRF-

GHG. However, an overestimation of approximately 1.2 ppm was found at the Paris site, likely due to uncertainties in 25 

anthropogenic emissions and boundary conditions. In addition, a negative bias was found in early June at most ICOS and 

TCCON sites, may be attributed to errors in simulated fluxes during the growing season. However, due to the lack of co-

located flux observations, the exact cause remains uncertain. Overall, this study demonstrates the capability of WRF-GHG in 

simulating CO₂ over Western Europe, while showing the need for improving model configuration. 

1 Introduction 30 

Intergovernmental Panel on Climate Change Sixth Assessment Report (IPCC AR6) points out that human-induced climate 

change has significantly influenced the frequency and intensity of extreme events such as heatwaves, heavy precipitation, 
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droughts, and tropical cyclones (Pörtner et al., 2022). In recent years, extreme heat events have become increasingly frequent 

in western Europe, with prolonged durations of heatwaves (Della-Marta et al., 2007; Sousa et al., 2020; Sánchez-Benítez et 

al., 2022). The Paris Agreement proposes to limit the global temperature increase to within 2°C above pre-industrial levels. 35 

To achieve this long-term goal, governments must implement measures to reduce carbon emissions. The atmospheric mole 

fractions of carbon dioxide (CO2), a major greenhouse gas (GHG), have steadily risen due to human activities over the last 

centuries. By March 2025, the global mean mole fractions of CO2 had increased to 426.40 ppm (Lan et al., 2025). Accurate 

estimation of carbon emissions is a crucial prerequisite for formulating scientifically sound and effective emission reduction 

strategies. 40 

The 2019 refinement of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Maksyutov et al., 2019) explicitly 

states that the top-down method, based on atmospheric inverse modelling, can serve as a potential way to support and verify 

national greenhouse gas inventories. However, several studies identified uncertainties associated with atmospheric transport 

models as one of the main sources of error in this approach (Díaz Isaac et al., 2014; Feng et al., 2016). Therefore, reducing 

transport errors and improving simulation accuracy are essential for improving the reliability of inversion results. 45 

Regional atmospheric transport models have been widely applied to simulate CO₂ mole fractions, mainly focusing on national 

or urban scale (Zhao et al., 2019; Zhao et al., 2023; Thilakan et al., 2024; Yang et al., 2025), but their simulation results still 

present some drawbacks and limitations. Previous studies have shown that the quality of model simulations is highly dependent 

on the boundary conditions and emission inventories accuracy (Callewaert et al., 2022; Karbasi et al., 2025). Additionally, 

Brunner et al. (2019) pointed out that using CO₂ emissions only at the surface causes a significant overestimation of the 50 

simulated near-surface CO₂ mole fractions, highlighting the need for properly allocating the vertical signature of emissions. 

In order to support accurate assessments of greenhouse gas budgets, various ground-based observation networks have been 

established to provide consistent and high-precision data, such as Integrated Carbon Observation System (ICOS) Atmosphere 

in Europe. In situ observations provide near-surface CO₂ mole fractions data, which can be used to constrain carbon sources 

and sinks at local scales. Using the ICOS atmospheric measurements, Ramonet et al. (2020) reported that a severe drought 55 

event in Europe in 2018 led to an atmospheric CO₂ signal of 1 to 2 ppm at most stations. Ground-based remote sensing 

observations, on the other hand, offer information on total column abundances. The global Total Carbon Column Observing 

Network (TCCON, Wunch et al., 2011) provides long-term, high-precision column-averaged mole fraction measurements that 

commonly serve as validation data for satellite remote sensing observations (Velazco et al., 2019; Yang et al., 2020; Zhou et 

al., 2022) and for model verification (Saito et al., 2012; Turner et al., 2015; Ostler et al., 2016). A signal of 0.8 ppm was 60 

observed at the Sodankylä TCCON site during the 2018 drought (Ramonet et al., 2020). Since the magnitude of these signals 

is less than 2 ppm, it is still difficult for satellites to detect such variations (Connor et al., 2016).  

Belgium is located in the central part of Western Europe, serving as an important hub connecting France, Germany, the 

Netherlands, and Luxembourg, and positioned at the intersection of continental transportation. To support climate change 

mitigation commitments and policy development, the project Towards a greenhouse gas emission monitoring and VERification 65 

system for BElgium (VERBE), led by the Royal Belgian Institute for Space Aeronomy (BIRA-IASB), proposes to establish 
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an independent, top-down, temporally and spatially resolved Monitoring and Verification Support (MVS) capacity for 

greenhouse gas (GHG) emissions in Belgium. To our knowledge, there are no ground-based CO2 observations, and there aren’t 

any CO₂ model-based studies specifically for the Belgium region currently, while a few studies have been conducted in 

neighbouring Western European countries (Lian et al., 2021; van der Woude et al., 2023; Zhao et al., 2023).  70 

The study presented in this paper has been performed in the framework of the VERBE project. It employs the Weather Research 

and Forecasting Greenhouse Gas model (WRF-GHG; Beck et al., 2011) and multi-source observational data to simulate CO₂ 

mole fractions over Western Europe, with a focus on Belgium and surrounding regions during summer 2018.  The aim is to 

evaluate the model performance in this region and analyse the spatial and temporal variations of CO₂ mole fractions. Different 

sensitivity tests were used to investigate the impact of different anthropogenic emission inventories on the model simulations 75 

performance and to optimize the WRF-GHG configuration, in order to improve the regional greenhouse gas simulation 

accuracy and carbon budget inversion in the near future.  

This paper is structured as follows: the introduction to the WRF-GHG model setup and input datasets is given in Sect. 2. The 

observational datasets and the statistical metrics used to evaluate the model performance are described in Sect. 3. The 

evaluation of the simulation results, focusing on meteorological fields and CO₂ concentration fields are presented in Sect. 4. 80 

The simulation errors looking especially at anthropogenic emissions and biogenic sources are discussed in Sect. 5. Finally, the 

conclusions are drawn in Sect. 6. 

2 WRF-GHG model 

The passive tracer option in the WRF model coupled with Chemistry (WRF-Chem), also known as WRF-GHG, can be used 

to simulate the spatiotemporal distribution of long-lived GHGs like CO₂ and CH₄. In this configuration, the long-lived gases 85 

are transported in a passive way without any chemical reactions (Beck et al., 2011). Here WRF-Chem model version 4.5.1 was 

used. 
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2.1 Model settings 

 

Figure 1. Location and terrain elevation map of the simulated domains, with horizontal resolutions of 9 km (d01) and 3 km (d02).  90 

 

The simulation area covers Western Europe and is centered on Belgium. As shown in Fig. 1 using the Lambert Conformal 

Conic (LCC) projection, two nested domains are configured, with horizontal resolutions of 9 km for the outer domain and 3 

km for the inner domain The vertical grid consists of 60 sigma levels extending from the surface up to 50 hPa. Due to the 

similarity of the simulation domains, the physical parameterization settings were the same as the settings of Poraicu et al. 95 

(2023), except for the urban surface. The Multi-layer Building Effect Parameterization (BEP) model (Martilli et al., 2002) was 

used instead of the Single-layer Urban Canopy Model (UCM) (Kusaka et al., 2001) because the latter is incompatible with the 

GHG option. For the Planetary Boundary Layer, we have chosen the Yonsei University scheme (YSU) (Hong et al., 2006).  

In the summer of 2018, Europe experienced an intense and widespread heatwave that had a significant impact on ecosystem 

processes (Bastos et al., 2020; Thompson et al., 2020; Smith et al., 2020). Meanwhile, this period occurred before the outbreak 100 

of the COVID-19 pandemic, during which the ground-based observation network operated normally and provided abundant 

observational data, laying a solid foundation for model validation and analysis. Therefore, our simulation period covers the 

summer from 1st June to 31st August 2018. In this study, the meteorological fields are re-initialized every 24 hours, with a 6-

hour spin-up applied before each re-initialization. By doing this, we can constrain the meteorological fields. This approach has 

been applied in many studies and has proven to improve the simulations accuracy (Pillai et al., 2011; Zhao et al., 2019; Ho et 105 

al., 2024). 
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2.2 Input dataset 

In WRF-GHG, the simulated CO2 (𝐶𝑂2,𝑡𝑜𝑡𝑎𝑙) is the sum of several tracer contributions distinguishing different sources and 

sinks that are driven by specific emission inventories or flux models, and the so-called background concentrations that are 

driven by the initial and boundary conditions. Thus, the simulated CO2 concentrations are given by:    110 

𝐶𝑂2,𝑡𝑜𝑡𝑎𝑙 =  𝐶𝑂2,𝑏𝑐𝑘 + 𝐶𝑂2,𝑎𝑛𝑡 +  𝐶𝑂2,𝑏𝑖𝑜 +  𝐶𝑂2,𝑏𝑏𝑢 +  𝐶𝑂2,𝑜𝑐𝑒 ,       (1) 

where 𝐶𝑂2,𝑏𝑐𝑘 represents the background concentration, and the remaining terms represent contributions from anthropogenic 

emissions (𝐶𝑂2,𝑎𝑛𝑡 ), biogenic activities (𝐶𝑂2,𝑏𝑖𝑜 ), biomass burning emissions (𝐶𝑂2,𝑏𝑏𝑢), and ocean-atmosphere exchange 

(𝐶𝑂2,𝑜𝑐𝑒), respectively. Table 1 gives an overview of the input datasets employed in the simulation, apart from anthropogenic 

emissions, along with their temporal and spatial resolutions. For initial and lateral boundary conditions, the meteorological 115 

fields are provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) global ERA5 hourly reanalysis 

dataset on model levels, which includes 137 vertical levels (Hersbach et al., 2020), and the chemical fields are provided by the 

3-hourly Copernicus Atmosphere Monitoring Service (CAMS) global greenhouse gas reanalysis (EGG4) which includes 60 

vertical model levels (Inness et al., 2019). For the emissions, the open biomass burning flux is obtained from the daily Fire 

INventory from NCAR (FINN v2.5; Wiedinmyer et al., 2023), and the CO2 fluxes from the oceans are taken from the 120 

observation-based global monthly gridded sea surface pCO2 climatology (NCEI; Landschützer et al., 2017). Given the 

significant influence of anthropogenic activities throughout much of the study area, the choice of anthropogenic emission 

inventory can greatly affect the simulation accuracy. The sensitivity tests using different inventories and setups will be 

discussed later (see Sect. 2.3). 

Table 1. Overview of input datasets, excluding anthropogenic emissions. 125 

 Components Source 
Resolution 

Temporal Spatial 

Initial and lateral 

boundary conditions 

Meteorological ERA5 reanalysis 1h 0.25°×0.25° 

Chemical CAMS global reanalysis for greenhouse gas 3h 0.75°×0.75° 

Fluxes 

Biogenic Online (VPRM) Daily Model resolution 

Biomass burning Fire INventory from NCAR (FINN) v2.5 Daily 1km 

Ocean 
Observation-based global monthly gridded sea 

surface pCO2 fields 
Monthly 1°×1° 

 

Biogenic CO₂ flux from the vegetation also plays a significant role during the summer. Here, we use the Vegetation 

Photosynthesis and Respiration Model (VPRM) (Mahadevan et al., 2008), which is coupled online with WRF-GHG. In VPRM, 

the calculation of net ecosystem exchange (NEE) consists of two components: gross primary production (GPP) and respiration 

(Res). Since vegetation photosynthesis acts as a sink for CO₂, GPP is represented as a negative flux in the WRF-GHG model 130 

calculations. 

𝑁𝐸𝐸 = 𝐺𝑃𝑃 +  𝑅𝑟𝑒𝑠 ,            (2) 
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𝐺𝑃𝑃 = −𝜆𝑇𝑠𝑐𝑎𝑙𝑒 ⋅ 𝑊𝑠𝑐𝑎𝑙𝑒 ⋅ 𝑃𝑠𝑐𝑎𝑙𝑒 ⋅ 𝐸𝑉𝐼 ⋅
𝑃𝐴𝑅

1+
𝑃𝐴𝑅

𝑃𝐴𝑅0

 ,         (3) 

𝑅𝑟𝑒𝑠 =  𝛼𝑇𝑠 +  𝛽 .            (4) 

Here, Photosynthetically Active Radiation (PAR) is assumed to be approximately equal to the downward shortwave radiation 135 

(SW) in the WRF-GHG model (i.e., PAR ≈ SW). The 2m temperature (Ts) and PAR are provided by WRF simulations. Tscale 

represents the temperature sensitivity of photosynthesis, which is defined by a minimum, maximum and optimum temperature 

(Tmin, Tmax, Topt) for photosynthesis for each vegetation class (Evergreen Forest, Deciduous Forest, Mixed Forest, 

Shrubland, Wetland, Cropland, Grassland and Other.). λ, PAR0, α, β are four parameters that depend on the vegetation class. 

Considering their importance, and following sensitivity tests (not shown here), these parameters (see Table A1) are adopted 140 

from Table 3 in Glauch et al. (2025) taking into account that they use PAR ≈ 0.505 × SW, which differs from the default 

setting PAR ≈ SW in WRF-GHG used here. Wscale and Pscale represent the effect of water stress and leaf age on 

photosynthesis, respectively. They are both calculated using the Land Surface Water Index (LSWI) (Xiao et al., 2004). Here, 

the Enhanced Vegetation Index (EVI) and LSWI are derived from the surface reflectance values of 500-m-resolution Moderate 

Resolution Imaging Spectroradiometer (MODIS) (Huete et al., 2002; Gao., 1996). The Copernicus Dynamic Land Cover 145 

Collection 3 (Buchhorn et al., 2020) with a high spatial resolution of 100 meters is used to calculate the fraction of each 

vegetation class in every continental grid cell. The VPRM Preprocessor class in pyVPRM was used to generate the input data 

needed in VPRM (Glauch, et al., 2025). 

2.3 Anthropogenic emission settings 

Considering the importance of anthropogenic emissions inventories and the availability of multiple options, we conducted a 150 

sensitivity analysis of anthropogenic CO₂ emissions using five different input configurations, based on three different emission 

inventories, as summarized in Table 2. (1-2) Monthly sector-specific gridmaps of EDGAR v2024, with a spatial resolution of 

0.1°×0.1° (Crippa et al ., 2024).  (3-4) Yearly CAMS-REG-ANT v8.0 sector-specific gridmaps, with a spatial resolution of 

0.1◦×0.05◦ (Kuenen et al., 2022). (5) Yearly TNO_GHGco_v4.1, with a spatial resolution of 1/60◦× 1/120◦ (∼ 1 × 1 km over 

central Europe) (Super et al., 2020). As the TNO inventory doesn’t encompass the entire simulation domain, emissions in areas 155 

outside its coverage are supplemented using the CAMS-REG-ANT inventory. Considering temporal variation, for EDGAR 

v2024, due to the lack of corresponding sector-specific temporal factors, we assumed constant hourly values within each month. 

For CAMS-REG-ANT and TNO, we downscaled the yearly fluxes to hourly emissions data, using the sector-specific factors 

from CAMS-REG-TEMPO (Guevara et al., 2021) and temporal profile factors from Nassar et al. (2013), respectively. In 

addition to comparing different emission inventories, we also evaluated the impact of accounting for the height of 160 

anthropogenic emission point sources. As pointed out by Brunner et al. (2019), more than 50% of CO₂ emissions in Europe 

are emitted by large point sources, primarily released through stacks and cooling towers, underscoring the importance of 

accurately representing the vertical distribution of anthropogenic emissions in model simulations. Assuming all anthropogenic 

emissions are released from point sources, a vertical disaggregation was applied to the sector-specific emission inventories 
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from (2) EDGAR and (4) CAMS-REG-ANT, using the vertical emission profiles provided by Brunner et al. (2019). The sector 165 

mapping between different inventories is detailed in Table A2. 

Table 2. Overview of the five different anthropogenic emissions inputs. The type “S” represents all emissions released at the surface. 

“P” represents anthropogenic emissions released according to source-specific vertical profiles (Brunner et al., 2019). 

 Test Type Inventory Resolution 

1 EDGAR_S S EDGAR v2024 

(sector-specific) 

Monthly  

0.1°×0.1° 2 EDGAR_P P 

3 CAMS_S S CAMS-REG-ANT v8.0 

(sector-specific) 

Yearly  

0.1°×0.05° 4 CAMS_P P 

5 TNO_CAMS S 
TNO_GHGco_v4.1 + 

CAMS-REG-ANT v8.0 

Yearly  

1/60◦ × 1/120◦ (for TNO) 

3 Observations and methods 

We collected observational data for both meteorological and chemical fields, consisting of three types: meteorological 170 

observations, in-situ and ground-based remote sensing CO2 observations. Unfortunately, CO₂ concentration measurements are 

lacking within Belgium during this period, therefore, we gathered observational data from the surrounding regions of Belgium. 

3.1 Synoptic observations in Belgium 

A meteorological observation network is operated across Belgium by the Royal Meteorological Institute of Belgium (RMI), 

Meteorological Wing of the Air Component of Defense (Meteo Wing), and the Belgian Authority of airways that is the Belgian 175 

air navigation and traffic service provider for the civil airspace (Skeyes). To ensure data quality, the synoptic data provided by 

RMI undergo a quality control (QC) procedure consisting of an automatic process followed by manual supervision, whereas 

the QC of data from stations belonging to Skeyes and Meteo Wing is conducted independently of RMI (Bertrand et al., 2013). 

Figure. 2(b) shows the locations of the 21 stations from which observations are currently available, where red triangles 

represent 13 stations operated by RMI, blue diamonds represent 7 stations operated by Skeyes, and the orange dot represents 180 

1 station operated by Meteo Wing. Their detailed coordinates are listed in Table A3. These sites are mainly situated on areas 

covered by short grass and provide hourly near-surface weather parameters, including temperature, wind speed and wind 

direction. To evaluate the WRF-GHG model performance, the simulated 2-meter temperature (T2) and 10-meter wind speed 

(WS10) and wind direction (WD10) from the grid nearest to each station within the inner domain were compared with the 

observations. It’s worth noting that there are eight stations operated by Skeyes and Meteo Wing where wind speed and wind 185 

direction observations are recorded only as integer values. 
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Figure 2. Locations of ICOS (yellow dots), TCCON (orange diamond) and co-located (red stars) sites within inner domain (a), and 

synoptic stations in Belgium for which data are available for our study period (b). The background color in (a) represents surface 

altitude, consistent with Figure 1. 190 

3.2 ICOS – Atmospheric stations 

The ICOS (ICOS RI, 2023) atmospheric observation network covers the European region and provides standardized, high-

precision scientific data on the carbon cycle and greenhouse gas budgets. It currently comprises 46 stations in 16 countries and 

there are 5 sites located with available observational data within our inner domain, including Observatoire Pérenne de 

l'Environnement (OPE), Saclay (SAC), Cabauw (CBW), Trainou (TRN), and Karlsruhe (KIT). Their locations are shown in 195 

Fig. 2(a), with details on site coordinates and observation heights listed in Table 3. Each site is equipped with meteorological 

instruments and Picarro CRDS (Cavity Ring-Down Spectroscopy) GHG analyzers installed at multiple heights on tall towers, 

providing measurements of hourly meteorological parameters and in situ CO₂ mole fractions. For comparison with the 

simulation results, the simulation data from the inner domain nearest grid cell for each observation site are first extracted. 

Given that the observation heights at each site do not correspond directly to the model levels, the extracted model data are 200 

subsequently interpolated to the corresponding observation heights. 

Table 3. The relevant information for each station. ‘m a.s.l.’ stands for meters above sea level, and ‘m a.g.l.’ stands for meters above ground 

level. 

Station Location 
Altitude  

(m a.s.l.) 

Observation Height 

(m a.g.l.) 

Karlsruhe KIT 49.0915°N 8.4249°E 110 30/60/100/200 

Trainou TRN 47.9647°N 2.1125°E 131 50/100/180 

Saclay SAC 48.7227°N 2.142°E 16 60/100 

Observatoire Pérenne de 

l'Environnement 
OPE 48.5619°N 5.5036°E 390 50/120 

Cabauw CBW 51.9703°N 4.9264°E 0 207 
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3.3 TCCON 

TCCON is a global ground-based observation network of Fourier Transform Spectrometers (FTS). It uses the GGG software 205 

to retrieve gases mole fractions with high precision and is currently widely used for the validation of satellite measurements 

(Zhou et al, 2016; Karbasi et al, 2022; Wu et al, 2018). There are three observation sites, Orléans (47.97°N 2.11°E), Karlsruhe 

(49.10°N 8.44°E), and Paris (48.85°N 2.36°E), located within the inner domain. Among them, the Orléans and Karlsruhe sites 

are co-located with the ICOS TRN and KIT sites, respectively, and the Paris site is located in an urban area. Each site is 

equipped with a Bruker IFS 125HR instrument to record shortwave infrared (SWIR) spectra and use the GGG2020 code to 210 

retrieve the column-averaged dry air mole fractions of CO2 (XCO2) (Laughner et al., 2024). TCCON observations are limited 

to daytime and clear-sky only. To ensure a meaningful comparison with WRF-GHG outputs, the observational data within a 

30-minute interval before and after the corresponding model time step are averaged. Additionally, a smoothing correction to 

account for the a priori profile and averaging kernels (AVKs) associated with the TCCON data was applied to the simulations 

data before comparison (Rodgers and Connor, 2003). Details on this correction can be found in Appendix B1 of Callewaert et 215 

al. (2022). 

3.4 Evaluation metrics 

To evaluate the performance of the WRF-GHG model, we employed several statistical metrics. The mean bias error (MBE) 

quantifies the systematic bias between simulations and observations, the standard deviation (STD) of the simulation-

observation differences reflects the variability of the simulations relative to the observations, the root mean square error (RMSE) 220 

of the difference quantifies the overall magnitude of simulation uncertainties, and the Pearson correlation coefficient (R) 

reflects the strength of the expected linear relationship between simulated and observed values. These metrics have been widely 

used in the assessment of model simulations (e.g. Callewaert et al, 2023; Yarragunta et al, 2025). Their calculation formulas 

are as follows: 

𝐷𝑖𝑓𝑓𝑖 = 𝑚𝑜𝑑𝑖 − 𝑜𝑏𝑠𝑖  ,            (5) 225 

𝑀𝐵𝐸 =
∑ 𝐷𝑖𝑓𝑓𝑖

𝑁
𝑖=1

𝑁
 ,            (6) 

𝑆𝑇𝐷 = √
1

𝑁
∑ (𝐷𝑖𝑓𝑓𝑖 − 𝑀𝐵𝐸)2𝑁

𝑖=1  ,           (7) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ 𝐷𝑖𝑓𝑓𝑖

2𝑁
𝑖=1  ,            (8) 

𝑅 =
∑ (𝑚𝑜𝑑𝑖−𝑚𝑜𝑑̅̅ ̅̅ ̅̅ ̅)(𝑜𝑏𝑠𝑖−𝑜𝑏𝑠̅̅ ̅̅ ̅)𝑁

𝑖=1

√∑ (𝑚𝑜𝑑𝑖−𝑚𝑜𝑑̅̅ ̅̅ ̅̅ ̅)2𝑁
𝑖=1 ∙√∑ (𝑜𝑏𝑠𝑖−𝑜𝑏𝑠̅̅ ̅̅ ̅)2𝑁

𝑖=1

 ,          (9) 

where 𝑚𝑜𝑑𝑖 represents the WRF-GHG simulated values, 𝑜𝑏𝑠𝑖  represents the observed values, and N is the number of data 230 

pairs. 
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4 Model performance 

4.1 Meteorological fields 

The overall evaluation metrics between observed and simulated near-surface temperature, wind speed, and wind direction 

across all 21 synoptic observation stations in Belgium are given in Table 4, and N represents the number of data pairs. The 235 

detailed values at each station can be found in Table A3, and the map is shown in Fig. A1. As mentioned in Sect. 3.1, the wind 

direction and wind speed observations at eight stations are recorded only as integer values, which limits the ability to capture 

fine-scale variations and primarily reflect overall trends. Despite the lack of high-precision observations, the WRF model 

reproduces these variation patterns reasonably well at the trend level. The near-surface temperature was well simulated by the 

model, with MBE of 0.06K and R as high as 0.95. Regarding wind fields, the observed wind speed and direction exhibit more 240 

pronounced fluctuations than the simulations, as also reported by Zhao et al. (2019). This may result from the rapid changes 

in real atmospheric conditions, which are difficult for models to capture. Besides, the model tends to slightly overestimate 

wind speed values in inland areas with dense vegetation cover, which has also been found in previous studies (Duan et al., 

2018; Liu et al., 2022; Che et al., 2024). This bias may be attributed to the complex wind distribution in areas with rugged 

terrain, where the WRF model fails to adequately account for the additional resistance effects of vegetation on unresolved 245 

terrain, ultimately leading to an overestimation of wind speed. In contrast, wind speeds along coastal regions are significantly 

underestimated, which is probably due to the coastal effects in the WRF simulation (Hahmann et al., 2015). 

Table 4. Evaluation metrics between observed and simulated temperature, wind speed, and wind direction across all 21 stations. 

 N MBE STD RMSE R 

Temperature (K) 44426 0.06 1.61 1.61 0.95 

Wind Speed (m/s) 43843 0.20 1.45 1.47 0.63 

Wind Direction (°) 41983 -3.31 43.16 43.29 0.57 

 

In comparison with ICOS observations, there were no meteorological observations available at KIT and CBW stations, as well 250 

as at the 100 m height at TRN site during the simulation period. For the remaining sites, the diurnal cycles of temperature and 

wind speed, along with the time series of wind direction, are shown in Fig. 3. The values in each subplot represent the 

corresponding MBE ± STD values between the simulations and the observations. In the diurnal variation plots, the solid lines 

represent the mean values at the same time of day throughout the simulation period, while the shaded areas indicate the standard 

deviation. Similar to the RMI observation sites, the model simulates temperature well at different heights across all ICOS 255 

stations, with MBE of less than 0.22 K. As for wind speed, the model captures the diurnal variation at each site, showing higher 

wind speeds at night and lower speeds during the day. However, it tends to overestimate the wind speed values, especially as 

the height gets closer to the surface, such as at 50 m at TRN and OPE stations, and at 60 m at SAC station. This agrees with 

Tuccella et al. (2012), who pointed out that the model can capture the upper-level wind speed profile but tends to overestimate 

it in the lower layers. Besides the model tends to significantly overestimate wind speed during the night, as also shown in 260 
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previous studies (Zhang and Zheng, 2004; Ngan et al., 2013; Dayal et al., 2020). These wind speed simulation errors may be 

due to limitations of some parameterization of physical processes during the daytime or nighttime, such as turbulence and 

surface roughness. Additionally, at the OPE and SAC stations, low-level jets (LLJs) frequently occur near the top of the 

nocturnal boundary layer (NBL), where excessive downward momentum transport may also lead to overestimated wind speeds 

(Zhang and Zheng, 2004). For wind direction, the model can simulate it well, except at the height of 50 m at OPE site. We 265 

additionally compared the wind direction observations at the 50 m height at the OPE site, obtained from an independent ICOS 

instrument through personal communication with the Principal Investigator (PI), with the model simulation results (not shown). 

Compared to the ICOS data, this independent observation shows better agreement with the model. There might be uncertainties 

or measurement errors in the wind direction data from the ICOS anemometer at the 50 m height, which could stem from the 

sensor itself or be related to its setup, possibly affected by disturbances from the tower structure. The wind speed measurements 270 

at the 50m level at OPE are also most probably affected by these limitations.   

Overall, the model captures the near-surface variations in meteorological fields well, and exhibits high accuracy in the vertical 

profiles, which are similar to the performances displayed in previous studies (Tuccella et al., 2012; Mar et al., 2016; Zhao et 

al., 2023). 

 275 

Figure 3. The diurnal cycles of temperature (a-f) and wind speed (g-l), and the time series of wind direction (m-r) at different heights 

at various ICOS stations. The time is local time (UTC+2). 
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4.2 Chemical fields 

The simulated CO₂ mole fractions are compared with corresponding observations in this section. 

4.2.1 Comparisons with ICOS – near surface CO2 mole fractions 280 

The statistical metrics for differences of near-surface CO₂ mole fractions between observations and simulations at different 

heights above ground across various ICOS sites using five different anthropogenic emission settings are given in Fig. 4. At 

most sites, the values of STD and RMSE between the simulations and observations tend to increase at lower heights. 

Additionally, when anthropogenic emissions are released only at the surface, the differences in simulation results between 

emission inventories can be significant. For example, using surface emission from either EDGAR or TNO can lead to 285 

differences up to -14.99 ± 31.98 ppm (MBE ± STD) at the KIT site at 30 m height. It reflects that the anthropogenic emission 

inventory has a significant impact on the simulation of near-surface CO₂ mole fractions, especially at lower heights above 

ground-level and for peri-urban stations. 

  

Figure 4. The MBE (a), STD (b), RMSE (c), and R (d) of near surface CO2 mole fractions between observations and five different 290 
simulations at different heights at various ICOS stations. The colors in (a) represent values from negative to positive, with a blue–

white–red gradient: negative values in blue, positive values in red, and values near zero in white, whereas in (b–d), more intense 

colors represent larger values and less intense colors represent smaller values. 

 

At the KIT site, taking into account the vertical distribution of anthropogenic emissions has a significant impact on the 295 

simulation results. Simulations using elevated emissions show much better agreement with observations, especially for the 

lower levels. At the height of 30 m, when using the CAMS-REG-ANT emission inventory and considering elevated emissions, 

the model-observation bias has a low MBE of -5.32 ppm, a STD of 14.37 ppm, a RMSE of 15.33 ppm, and high correlation R 

of 0.79. When only surface emissions are considered, MBE, STD, and RMSE increase significantly to 11.08 ppm, 37.07 ppm, 

and 38.69 ppm, respectively, and R drops to 0.57. The simulations using EDGAR v2024 display similar characteristics, with 300 
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even larger differences between elevated emissions and surface emissions. As shown in Fig. 5(i-l), compared to simulations 

accounting for elevated emissions, the simulations that only consider surface emissions tend to overestimate CO₂ mole 

fractions at 30 m, 60 m and 100 m heights. Their diurnal cycles (Fig. 5(a–h)) indicate that all five simulations are able to 

capture the diurnal variation of CO₂ and reproduce the lower CO₂ mole fractions well in the afternoon, but the simulation 

considering only surface emissions significantly overestimates higher CO₂ mole fractions in the morning, leading to large 305 

discrepancies with the observations. This overestimation is especially pronounced when using the EDGAR inventory. However, 

at the other four observation sites (TRN, SAC, OPE, CBW), the differences among the five simulation results are relatively 

small, and the simulations considering only surface emissions do not show a significant overestimation (see Fig. A2). The 

discussion in Sect. 5.1 will provide a more detailed analysis of this phenomenon. 

 310 

Figure 5. Diurnal cycles (local time) of simulations with different anthropogenic emissions and observations (a-h), where the values 

represent the MBE between the observations and each simulation, along with scatterplots comparing each simulation to the 

observations (i-l) at different heights at the ICOS KIT site. 
 

As shown in Fig. 6, the contributions from biomass burning and oceanic sources to the diurnal cycles are negligible at these 315 

five sites. At the KIT, SAC and CBW sites, the diurnal variability of near-surface CO₂ mole fractions is mainly driven by local 

anthropogenic emissions and biogenic processes, with the biogenic signal systematically stronger. The diurnal variation of 

anthropogenic CO₂ is attributed to planetary boundary layer (PBL) dynamics and regional transport. Between 15:00 and 17:00 

in the afternoon, the PBL (see Fig. A3) reaches its maximum height, coinciding with the minimum anthropogenic CO₂ mole 

fractions. After sunset, the PBL gradually decreases and remains shallow from midnight until sunrise, leading to the 320 

accumulation of anthropogenic emissions. The mole fractions of CO₂ increase during this period and typically peak between 
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06:00 and 10:00 in the morning. As the PBL rises again after sunrise and turbulent mixing emerges, CO₂ mole fractions begin 

to decrease, forming a distinct diurnal cycle. The diurnal variation of biogenic processes is driven by vegetation photosynthesis 

during the day and respiration at night. Biogenic processes are the dominant drivers of the CO2 mole fractions at the OPE and 

TRN sites.  These results align with Storm et al. (2023), which found that in the summer of 2020, the biogenic flux signals at 325 

most ICOS sites were stronger than anthropogenic emissions, and the largest signal is associated with cropland. 

 

Figure 6. Diurnal cycles (local time) of simulated tracer contributions at 30 m at the KIT (a), 50 m at the TRN (b), 60 m at the SAC 

(c), 50 m at the OPE (d) and 207 m at the CBW (e) sites. Here, the anthropogenic emissions are based on EDGAR v2024, taking 

into account the vertical emission profiles. 330 

4.2.2 Comparison with TCCON – XCO2 

Figure 7b shows the time series of observed and simulated XCO2 at three TCCON sites, Figure 7c is the corresponding 

scatterplot, with N representing the number of data pairs, and Figure 7a shows the differences between observations and 

simulations at each site. Here the simulations are based on the TNO inventory. Due to the lack of observational data at the 

Paris and Karlsruhe sites in June, the number of valid data pairs for comparison with the simulations is only 123 and 243, 335 

respectively. It is obvious that at the Orleans site, the simulated XCO₂ values show a significant underestimation in early June, 

which will be discussed in detail in the following section.  

The statistical metrics between the observed and simulated XCO₂ using five different anthropogenic emission inputs at the 

three TCCON sites are given in Fig. 8. Among the three sites, the choice of emission inventory has the largest impact on the 

simulations at the Paris site. At this site, the difference in simulated XCO2 between using the EDGAR and TNO inventories 340 

reaches 0.50 ± 0.34 ppm. Among the five sensitivity tests, all the simulations show an overestimation, with MBEs around 1.2 

ppm, and up to 1.65 ppm when using TNO. An inspection of the different tracer contributions to XCO2 (see Fig. 9) indicates 

that despite uncertainties in the estimation of biogenic carbon fluxes, the overestimation of background XCO₂ from the CAMS 

and anthropogenic emissions plays a dominant role in causing biases in the simulated XCO₂. During the period from late July 

to early August, the simulations show an overestimation, consistent with the relatively large contribution from anthropogenic 345 

tracers during that period. These results indicate that the uncertainty in anthropogenic emission inventories remains relatively 

high in urban areas (Gately and Hutyra, 2017; Super et al., 2020). 
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Figure 7. Time series (local time) of observed and simulated XCO2 at three TCCON sites using TNO inventory (b), their absolute 

differences (WRF-GHG - TCCON) (a), and scatterplots (c). 350 

 

Additionally, as XCO2 is less sensitive to vertical transport processes (Wunch et al., 2011), one expects less impact of 

considering elevated anthropogenic emissions heights on the simulation results for XCO2.  Indeed, at the Orléans and Paris 

sites, the impact is negligible for a given emission inventory, while at the Karlsruhe site, we observe a small improvement in 

the simulation of XCO₂ but not as notable as that observed for near-surface mole fractions. At the Karlsruhe site, when 355 

accounting for elevated emission heights in the CAMS-REG-ANT inventory, the STD and RMSE of differences between 

simulations and observations improves from 1.13 ppm to 1.05 ppm and 1.06 ppm, respectively while R increases from 0.44 to 

0.47; for EDGAR, STD and RMSE decrease from 1.16 ppm to 1.03 ppm and 1.04 ppm, respectively, while R increases from 

0.43 to 0.48.  

 360 

Figure 8. The MBE (a), STD (b), RMSE (c), and R (d) of XCO2 between observations and five different simulations at three 

TCCON stations. 
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Figure 9. Time series (local time) of (a) observed and simulated total, background, and (b) tracer-specific XCO₂ at Paris site. The 

simulated values here are all without AVK smoothing. 365 

5 Discussion 

We will first discuss the anthropogenic emissions sensitivity tests results and then focus on the biogenic fluxes impacts on 

model biases reported in June 2018. 

5.1 Impact of taking into account the height of anthropogenic emissions 

As previously noted, at the KIT site, whether anthropogenic emissions are released according to source-specific vertical 370 

profiles or only at the surface has a significant impact on the simulation of near-surface CO₂ mole fractions, and also shows a 

slight influence on XCO₂. Such large impacts are not observed at the other sites. 

 

Figure 10. The maps of sector-specific CO2 emissions for 2018 from CAMS-REG-ANT (a) public power, (b) industry and (c) 

fugitives sectors, and EDGAR v2024 (d) power industry, (e) industrial combustion and (f) fuel exploitation. All values are shown 375 
on a logarithmic scale (base 10, unit: Tg). 
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Figure 10 shows the 2018 emission maps of the major contributing sectors from two inventories, including the Public Power 

(SNAP 1), Industry (SNAP 3) and Fugitives (SNAP 5) sectors from CAMS-REG-ANT, and the Power Industry (SNAP 1), 

Industrial Combustion (SNAP 3) and Fuel Exploitation (SNAP 5) sectors from EDGAR. Although monthly EDGAR emission 

data for 2018 were used in the simulations, in these maps the monthly EDGAR inventories were aggregated by summing over 380 

all months to produce an annual emission inventory for 2018 for enabling comparison with the CAMS-REG-ANT inventory. 

It is clearly evident that, except for Industrial Combustion, there are large emission sources near the KIT site, whereas no 

obvious emissions are observed near the other sites. According to Google Maps, we found that approximately 6.5 km southwest 

in a straight line from the KIT observation site lies the largest oil refinery of Germany (Junkermann et al., 2011), and about 45 

km north of the site there is a gas-fired combined heat and power (CHP) plant located within the Badische Anilinund 385 

Sodafabrik (BASF) chemical production facility in Ludwigshafen, Germany. These two are likely the main contributors to the 

emissions in the inventory near KIT site. 

In addition, based on footprint simulations from the regional Stochastic Time-Inverted Lagrangian Transport (STILT) model 

(Lin et al., 2003), we calculated the aggregated footprints for each afternoon hour (14:00 LT) over the simulation period (not 

shown here). The results show that, centered on the KIT site, at least 80% of CO₂ enhancements from anthropogenic emissions 390 

are covered within a radius of approximately 1.5°. Therefore, we calculated the CO₂ emission fluxes from the sectors 

corresponding to those in Fig. 10 in 2018, within the area surrounding the KIT site, bounded by 47.6°N to 50.6°N and 6.94°E 

to 9.94°E (see Fig. 11a). For consistency, the SNAP sector classification is used here. The vertical emission profiles applied 

for the corresponding sectors are given in Fig. 11b, and the complete vertical profiles for all sectors can be found in Fig. 2a of 

Brunner et al. (2019). For the EDGAR inventory, emissions from sector SNAP 1 are the dominant source, with the emission 395 

flux in 2018 as high as 52.18 Tg, and for the CAMS-REG-ANT inventory, emissions from sectors SNAP 1 and SNAP 3 are 

the main sources, with fluxes of 24.39 Tg and 32.35 Tg, respectively. According to their respective vertical emission profiles, 

emissions from SNAP 1 and SNAP 3 are primarily concentrated at higher altitudes. In particular, the emission profile of SNAP 

1 begins at approximately 150 meters above ground level, without emissions near the surface. This can explain the finding that 

in Sect. 4.2.1 at the KIT 30 m height, the difference between tests S and P is larger for EDGAR v2024 than for CAMS-REG-400 

ANT. 

In summary, at KIT, where anthropogenic emissions are significant, SNAP 1 and SNAP 3 are the dominant emissions sectors 

explaining the improvement of the simulation results by including vertical emissions profiles. Considering anthropogenic 

vertical profile emissions in the model setup significantly improve the simulations performance, especially in the vicinity of 

large sources. 405 
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Figure 11. (a) CO₂ emission fluxes from different sectors in 2018 within the area (47.6°N - 50.6°N, 6.94°E - 9.94°E) surrounding the 

KIT site, and (b) the vertical emission profiles applied for the corresponding sectors, the height refers to the altitude above ground 

level. 

5.2 Underestimation of model CO2 simulations in early June 410 

A significant underestimation of the simulated XCO2 was found at the Orleans site in early June. According to the contributions 

of each tracer to the total simulated XCO2 (see Fig. 12), a similar pattern is found in the biogenic component. Additionally, a 

comparison between observed and simulated near-surface CO₂ mole fractions at various heights from the co-located ICOS 

TRN site also reveals a clear underestimation in early June (Fig. A4). This site pair is hereafter referred to as Orleans/TRN. 

Figure 12c shows the vertical distribution of the biogenic CO2 tracer at Orleans/TRN over time, revealing a sink spanning a 415 

large vertical extent in early June. At the other two TCCON sites (Paris and Karlsruhe), due to the lack of observational data 

in June, it is difficult to determine whether a similar feature exists. However, the underestimation of CO₂ mole fractions in 

early June is not confined to the Orleans/TRN site. A consistent underestimation during this period is also observed at the other 

ICOS sites (OPE, SAC, CBW, see Fig. A4), except for the KIT site which including significant anthropogenic emissions, 

indicating that this is likely a regional feature rather than a localized effect at a single site. In addition, the STILT simulation 420 

results published on the ICOS Carbon Portal also exhibit an underestimation at these ICOS sites (except for the KIT site) in 

early June. The biospheric fluxes are from the VPRM model (Gerbig and Koch, 2023), with VPRM parameters optimized for 

the year 2007 using 46 sites across Europe, and the land cover classification is based on SYNMAP. 
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Figure 12. Time series (local time) of (a) observed and simulated total, background, (b) tracer-specific XCO₂, and (c) variation of 425 
simulated biogenic CO₂ mole fractions over time (local time) and height above ground at Orleans/TRN site. The simulated values 

here are all without AVK smoothing.  

At most ICOS and TCCON sites included in this study, GPP and daytime NEE in June exhibit a stronger carbon sink compared 

to July and August. Starting from July, LSWI and EVI values, which are used as input to VPRM, across all vegetation types 

declined significantly, reflecting an overall decrease in vegetation activity and greenness. This trend was observed at the 430 

Orleans/TRN site (see Fig. A5), and similar patterns were found at other sites. This could be attributed to a prolonged and 

intense drought that occurred in Europe during the summer of 2018. This event directly affected temperature, soil moisture, 

precipitation, and ecosystem functioning (Buras et al., 2020). Simulations by WRF-GHG and VPRM, driven by meteorological 

fields and vegetation indices, both responded to this drought event. 

Regarding the mismatch between the model and observations in early June, the simulated NEE shows a pronounced carbon 435 

sink at most sites. Unfortunately, the lack of co-located flux measurements at these atmospheric observation sites limits the 

direct evaluation of flux accuracy. Alternatively, we evaluated the four ICOS flux stations within the model’s inner domain: 

two sites in Germany, DE_RuR (50.621914N, 6.304126E; grasslands) and DE_RuW (50.50493N, 6.330963E; forest), and two 

in France, FR_EM2 (49.87211N, 3.02065E; crops) and FR_LGt (47.322918N, 2.284102E; acid fen) (not shown here). The 

simulated RES shows a significant underestimation at all sites, except at FR_LGt site, which is consistent with Hu et al. (2021), 440 

who pointed out that the VPRM model tends to underestimate ecosystem respiration during the growing season, which could 

introduce biases in the simulation of NEE. At the two French sites, the simulated GPP exhibits more gross uptake significantly.  
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Additionally, we tested four different sets of VPRM parameter settings (not show here), all of which resulted in a similar 

underestimation in early June, preliminarily ruling out parameter settings as the primary source of the bias. It could rather be 

the consequences of the limitations either of the model itself. 445 

In summary, the underestimation of simulated CO₂ mole fractions observed at multiple ICOS and TCCON sites in early June 

might be attributed to an underestimation of ecosystem respiration fluxes or an overestimation of GPP. However, owing to the 

lack of co-located flux measurements, the exact source of this bias remains unclear and requires further investigation. 

6 Conclusion 

In this study, we simulated the spatiotemporal distribution of CO₂ mole fractions over Belgium and Western Europe during 450 

the summer (June to August) of 2018 using WRF-GHG. Given the significance of anthropogenic emissions and the diversity 

of emission inventories, we conducted several sensitivity tests and evaluated the model performance from both meteorological 

and chemical field perspectives by comparing with ground-based observations at multiple ICOS and TCCON stations, on the 

purpose of optimizing the modeling set-up and – at a later stage - analyze the CO₂ concentration variations over western Europe. 

Overall, the WRF-GHG model reproduces the meteorological fields well, especially temperature, with high Pearson correlation 455 

coefficients ranging from 0.92 to 0.96 against observations from various synoptic sites. The model can capture the variations 

of wind speed at different heights, on both daily and monthly timescales. Moreover, the diurnal variation of near-surface CO₂ 

mole fractions at different heights across the five ICOS observation sites was well captured by the model. During the summer 

2018, variations in CO₂ mole fractions across Western Europe were mainly influenced by anthropogenic emissions and 

biogenic fluxes.  460 

Sensitivity tests indicate that near large anthropogenic emission sources, the simulated near-surface CO₂ mole fractions are 

highly sensitive to the choice of anthropogenic emission inventory and the adoption of vertical emission profiles. At the KIT 

site in Germany, which is located near a very large oil refinery and power plant, differences between emission inventories can 

lead to discrepancies of up to −14.99±31.98 ppm in simulated near surface CO2 mole fractions. In addition, releasing 

anthropogenic emissions based on source-specific vertical profiles can significantly improve the accuracy of simulations, 465 

which is likely due to a more realistic representation of the real emissions. In contrast, at other observation sites where 

surrounding anthropogenic emissions are relatively low, the impact of vertical emission profiles on simulation results is much 

smaller. 

Regarding XCO₂, the model seems to be less sensitive to the choice of emission inventories and anthropogenic emission 

heights, but certain effects are still evident. At the Paris urban site, all simulations overestimate XCO₂ by approximately 1.2–470 

1.6 ppm. This bias is primarily attributed to the uncertainties introduced by anthropogenic emissions and using CAMS data as 

initial and boundary conditions. In addition, the differences caused by different anthropogenic emission inventories can reach 

up to 0.50 ± 0.34 ppm. Although it is less pronounced than for the near-surface mole fractions at the ICOS site, the simulation 
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results confirm that considering vertical emission profiles leads to a modest improvement in model simulations at the Karlsruhe 

site. 475 

Additionally, biogenic fluxes contribute significantly to CO₂ mole fractions during the growing season. The large negative 

bias observed in WRF-GHG simulations of CO2 mole fractions in early June at most ICOS and TCCON sites may be attributed 

to the underestimation of RES or the overestimation of GPP by the VPRM model. However, due to the lack of flux observations, 

the exact cause remains uncertain.  

This study demonstrates the feasibility of using the WRF-GHG model to simulate CO₂ concentration variations over Western 480 

Europe. However, to further improve simulation accuracy, future efforts should focus on optimizing boundary conditions and 

refining the construction of source-specific vertical emission profiles. Additionally, due to the relatively simple 

parameterization of the current VPRM, it may not perform well under all conditions, whether under normal climate or extreme 

stress. For example, biases in respiration fluxes may arise from nonlinear ecosystem responses to extreme temperature and 

moisture conditions, which are not accounted for in the model. Therefore, a modified VPRM model is necessary (Gourdji et 485 

al., 2022).  At the same time, observational data play a critical role in model evaluation, the availability of time-synchronized 

ground-based observations of CO2 fluxes and concentrations can help assess the performance of the model, thereby enhancing 

the credibility and scientific interpretation of the simulation results. 
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Appendix 

Table A1. Overview of the VPRM parameters. The temperature parameters are all in degrees Celsius. The abbreviations are 490 

as follows: EF - evergreen forest, DF - deciduous forest, MF - mixed forest, SHR - shrubland, WET - wetland, CRO - cropland, 

GRA - grassland. 

 Tmin Topt Tmax Tlow λ Par0 α β 

1 EF -4 15 38 -3 -0.26 263.60 0.21 1.15 

2 DF 1 21 37 0 -0.26 252.90 0.23 1.26 

3 MF -1 18 38 0 -0.28 227.81 0.19 0.93 

4 SHR -1 19 44 2 -0.20 224.27 0.08 0.56 

5 WET -2 26 40 0 -0.24 201.85 0.3 -0.39 

6 CRO -3 16 50 -3 -0.18 485.20 0.17 1.14 

7 GRA -2 17 36 -2 -0.44 223.92 0.27 1.63 

8 OTHER 0 0 0 0 0 0 0 0 

 

Table A2. Sector mapping between different emission inventories (Granier et al., 2019) 

SNAP CAMS-REG-ANT (GNFR) EDGAR v2024 

1 Energy industry A Public Power Power Industry 

2 Non-industrial combustion C Other Stationary Comb Buildings 

3 Combustion in manufacturing industry B Industry Industrial combustion 

4 Production processes  Processes 

5 Extraction of fossil fuels D Fugitive Fuel exploitation 

6 Product use E Solvents  

7 Road transport F Road Transport 

Transport 
8 Non-road transport 

G Shipping 

H Aviation 

I Offroad 

9 Waste treatment J Waste Waste 

10 Agriculture 
K Agrilivestock 

L AgriOther 
Agriculture 

 495 

Table A3. Evaluation metrics for temperature, wind speed, and wind direction between observations and simulations at the 21 

synoptic stations. The eight stations marked with * are operated by Skeyes and Meteo Wing, where wind speed and wind 

direction observations are recorded only as integer values. The three stations marked with c represent coastal sites. 

Site Location 

Temperature Wind Speed Wind Direction 

N MBE STD RMSE R N MBE STD RMSE R N MBE STD RMSE R 

6400*c 51.088N 2200 -0.24 1.27 1.29 0.95 2201 -0.32 1.36 1.40 0.75 2201 -1.14 51.56 51.57 0.61 
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2.652E 

6407*c 
51.200N 

2.887E 
2202 -0.11 1.84 1.84 0.92 2202 -1.19 1.65 2.04 0.67 2202 3.40 37.29 37.45 0.67 

6414 
50.904N 

3.122E 
2180 -0.63 1.56 1.68 0.95 2180 0.21 1.13 1.15 0.75 2149 5.38 36.05 36.46 0.58 

6418c 
51.347N  

3.202E 
2135 -0.38 1.31 1.36 0.93 2134 -2.42 1.55 2.88 0.74 2134 4.99 32.29 32.68 0.68 

6434 
50.980N 

3.816E 
2202 -0.50 1.63 1.71 0.95 2202 0.40 1.16 1.22 0.72 2123 0.47 41.14 41.15 0.58 

6438 
51.325N 

4.364E 
2189 -0.14 1.47 1.48 0.95 2189 -0.56 1.27 1.39 0.70 2100 7.38 39.57 40.25 0.61 

6439 
51.075N 

4.525E 
1624 0.19 1.40 1.41 0.96 1621 -0.20 0.91 0.93 0.77 1523 4.19 41.10 41.32 0.50 

6447 
50.797N 

4.358E 
2202 0.06 1.42 1.42 0.95 2202 -0.37 0.96 1.03 0.69 2193 4.90 40.50 40.81 0.62 

6449* 
50.454N 

4.442E 
2202 0.30 1.53 1.56 0.95 2202 -0.98 1.14 1.50 0.69 2096 4.00 37.09 37.31 0.56 

6450* 
51.191N 

4.452E 
2202 0.01 1.41 1.41 0.95 2202 -1.07 1.20 1.61 0.69 2072 -5.15 38.94 39.29 0.62 

6451* 
50.896N 

4.527E 
2202 0.99 1.46 1.76 0.95 2202 -0.82 1.21 1.46 0.68 2064 -4.61 38.67 38.94 0.60 

6455 
50.095N 

4.595E 
2202 -0.29 1.86 1.89 0.94 2202 0.72 1.08 1.30 0.61 1984 10.96 53.46 54.52 0.48 

6459 
50.582N 

4.689E 
2202 -0.06 1.48 1.49 0.96 2202 0.15 1.17 1.18 0.71 2183 15.95 40.30 43.34 0.49 

6464 
51.221N 

5.027E 
2202 -0.45 1.58 1.65 0.96 2202 0.98 1.12 1.49 0.59 1918 8.15 41.60 42.40 0.50 

6472 
50.194N 

5.255E 
2202 0.23 1.72 1.73 0.94 2202 0.23 1.10 1.12 0.74 2149 9.15 49.61 50.46 0.50 

6476* 
50.039N 

5.404E 
2202 -0.19 1.49 1.50 0.95 1627 0.09 1.15 1.16 0.71 1497 -1.32 40.81 40.84 0.65 

6477 
50.915N  

5.450E 
2202 -0.38 1.89 1.93 0.94 2202 0.43 1.18 1.26 0.69 2029 0.86 47.55 47.55 0.54 

6478* 50.645N 2202 0.43 1.46 1.52 0.95 2200 -0.72 1.18 1.38 0.71 2084 4.98 43.18 43.48 0.58 
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5.459E 

6484 
49.620N 

5.587E 
1147 0.42 1.98 2.02 0.94 1147 0.44 1.26 1.34 0.47 1137 -19.34 56.21 59.47 0.48 

6490* 
50.479N 

5.910E 
2183 -0.15 1.54 1.55 0.95 2174 0.35 1.24 1.29 0.65 2019 -4.65 46.05 46.29 0.47 

6494 
50.511N 

6.073E 
2121 -0.19 1.49 1.51 0.95 2126 0.78 1.03 1.30 0.71 2105 9.10 41.32 42.32 0.55 

 

 500 

Figure A1. Map of evaluation metrics for temperature (a-d), wind speed (e-h), and wind direction (i-l) between observed and 

simulated values at 21 synoptic stations. 
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Figure A2. Diurnal cycles (local time) of simulations with different anthropogenic emissions and observations at 50 m at the TRN (a, 

b), 60 m at the SAC (c, d), 50 m at the OPE (e, f) and 207 m at the CBW (g, h) sites, where the values represent the MBE between 505 
the observations and each simulation. 
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Figure A3. The diurnal cycles (local time) of planetary boundary layer height simulated by WRF-GHG at the KIT (a), the TRN (b), 

the SAC (c), the OPE (d) and the CBW (e) sites. 

 510 
Figure A4. Time series of the between observed and the simulated near surface CO2 mole fractions using TNO inventory at 30 m at 

the KIT (a), 50 m at the TRN (b), 60 m at the SAC (c), 50 m at the OPE (d) and 207 m at the CBW (e) sites, where the values represent 

the MBE ± STD between the observations and simulations. The red curve represents the 24-hour moving average. 
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Figure A5. Time series of EVI (a) and LSWI (b) for different vegetation types from MODIS at Orleans/TRN site. According to the 515 
land cover data provided by Copernicus, there are no Shrubland (SHR) and Wetlands (WET) vegetation types near Orleans/TRN. 

Therefore, their corresponding EVI and LSWI values are 0 and are not shown here. 

Code and data availability. The WRF-Chem model code is distributed by NCAR (https://doi.org/10.5065/D6MK6B4K, 

NCAR, 2020). The model data used to support the results described in this paper are available upon request to the first and 

corresponding authors. The synoptic data were downloaded from https://opendata.meteo.be/download, hosted by Royal 520 

Meteorological Institute (RMI). ICOS observations are available at https://meta.icos-

cp.eu/collections/LKDae89cNpTOKSt1TnK_dRIw (ICOS RI et al., 2023). The TCCON data are available through the 

TCCON wiki at https://tccondata.org/. The ERA5 dataset is freely accessible after registration from the Copernicus Climate 

Data Store at https://cds.climate.copernicus.eu/datasets (Hersbach et al., 2020). CAMS global reanalyses, provided by the 

Copernicus Atmosphere Monitoring Service, were taken from https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-525 

global-reanalysis-eac4?tab=form (Inness et al., 2019). The CAMS-REG-ANT v8.0 emissions (Kuenen et al., 2022) and 

temporal profiles CAMS-REG-TEMPO v3.1 (Guevara et al., 2021) are archived and distributed through the Emissions of 

atmospheric Compounds and Compilation of Ancillary Data (ECCAD) platform. EDGAR emission inventory datasets are 

available at https://edgar.jrc.ec.europa.eu/dataset_ghg2024 (Crippa et al ., 2024). TNO_GHGco_v4.1 emission inventory was 

kindly provided by Ingrid Super. 530 
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