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We would like to thank Reviewer #2 for their valuable comments and suggestions, which improved the
quality of the manuscript substantially. We present herein our responses to the comments of Reviewer #2.
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1 Comments of Reviewer #2

1.1 Comment 1

Please define "calibration" as it has different definitions. For example, see https:
//en.wikipedia.org/wiki/Calibration_(statistics) and https://doi.org/10.1214/
23-BA1404

Response

Thank you for this comment. We use the term "calibration" to refer to the process of inferring model
parameters from observational data within a Bayesian framework. We have now added an explicit
definition in Section 1 (Introduction) to avoid ambiguity.

Resulting changes in manuscript

To address the reviewer’s feedback we have added the definition of calibration (p.2 lines 33-34 ).

1.2 Comment 2

I’m also concerned with use of KL-divergence. I don’t think author’s rebuttal on this is
sufficient. As the authors have used only uniform prior, the measure used is equivalent to
entropy. Entropy is sensible measure for sharpness of the distribution. Instead of talking
about KL-divergence, I suggest the authors would talk about entropy and use entropy also
in case of non-uniform priors. Using entropy would focus on maximizing the sharpness of the
posterior, while using KL can lead also maximal shift of the posterior.

Response

Thank you for bringing this to our attention. We agree that in the context of this study, where we
use uniform priors, KL divergence between the posterior and the prior is equivalent to the entropy of
the posterior. Accordingly, we have modified the method subsection 2.3 (now titled "Data selection
using information-theoretic metrics") to mathematically demonstrate this equivalence and explicitly
acknowledge it in the context of our work.
Our primary objective in this work is to quantify the information gained during calibration with a given
observation. Based on our literature review, KL divergence between the posterior and prior is commonly
used to measure the information gain during calibration[Haeusel et al., 2026, Chowdhary et al., 2024,
Huber et al., 2023, Baptista et al., 2022]. Thus, we adopted the KL divergence framework to follow the
standard convention and facilitate comparison with existing literature. For the landslide models under
consideration, we typically have weakly informative priors for the parameters, since they are conceptual
parameters that cannot be physically measured. In this context, maximizing KL divergence between
posterior and prior is equivalent to minimizing the entropy of the posterior distribution.
Additionally, we have modified the discussion section to address the relative merits of entropy versus
KL divergence for cases with non-uniform priors. In such settings, entropy can be a more suitable
metric when posterior shifts are potentially misleading, since it focuses solely on posterior sharpness. In
contrast, KL divergence is preferable when posterior shifts are informative, as it captures both posterior
concentration and shift. However, both these metrics have limitations under model misspecification
and prior-data conflict; thus, we recommend using posterior predictive validation as a complementary
assessment tool.

Resulting changes in manuscript
To address the reviewer feedback we have modified Section 2.3 (p. 9, lines 233-260 ). We introduced
entropy and explicitly state its mathematical equivalence to KL divergence under uniform priors, and
we added citations showing that KL divergence is the standard metric in the literature for quantifying
information gain.

https://en.wikipedia.org/wiki/Calibration_(statistics)
https://en.wikipedia.org/wiki/Calibration_(statistics)
https://doi.org/10.1214/23-BA1404
https://doi.org/10.1214/23-BA1404
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2.3 Data selection using information-theoretic metrics
In the Bayesian framework, our prior beliefs about the parameters θ are updated by observations,
but the extent of this update varies depending on which observations are used. To quantify how
informative each candidate observation is, we measure the information gained during calibration
with observation y. Observations reduce parameter uncertainty by updating the prior distribution
P (θ) to the posterior distribution P (θ | y). Thus, the information gained during this updating
process corresponds to the reduced uncertainty. A fundamental information-theoretic measure of
uncertainty is the entropy. For a random variable θ with probability distribution P (θ), entropy
H(θ) is given as:

H(θ) = −
∫

P (θ) logP (θ) dθ (1)

Higher entropy indicates greater uncertainty about the parameter. Therefore, the change in
entropy from prior to posterior quantifies the information gained from an observation. A standard
measure to quantify information gain based on change in entropy is KL divergence [Kullback and
Leibler, 1951], also known as relative entropy. In the Bayesian setting, KL divergence between
the posterior distribution (P (θ | y)) and the prior distribution (P (θ)), as defined in Equation (2),
admits a direct interpretation as information gain, since it quantifies the reduction in uncertainty
about parameter θ achieved by conditioning on observation y. Higher KL divergence indicates
greater reduction in uncertainty from prior to posterior, implying that the observation provides
greater information about the parameters. Accordingly, we use this quantity as a criterion for data
selection, consistent with its standard use in Bayesian optimal experimental design and inverse
problems [Haeusel et al., 2026, Chowdhary et al., 2024, Huber et al., 2023, Baptista et al., 2022].

DKL(P (θ | y) ∥P (θ)) =

∫
P (θ | y) log

(
P (θ | y)
P (θ)

)
dθ (2)

In the context of our work, we focus on calibrating landslide runout models with conceptual
parameters that cannot be measured physically. For these parameters, we have limited prior
information such as physically plausible bounds derived from literature and domain expertise. We
therefore use uniform priors within these bounds, following standard practice in landslide runout
calibration [Aaron et al., 2019, Navarro et al., 2018, Moretti et al., 2017]. For uniform priors, the
prior entropy H(P (θ)) is constant, so maximizing KL divergence is equivalent to minimizing the
posterior entropy H(P (θ|y)) (see Appendix A for derivation). In our numerical experiments with
uniform priors, maximizing KL divergence is therefore equivalent to selecting observations that
minimize posterior entropy, yielding the sharpest and most informative posterior distributions.

Additionally we included the limitation on the use of KL divergence as measure of improved parameter
calibration in the presence of model misspecification and prior-data conflict, particularly when using
non-uniform priors, (p. 30, lines 551-559 ).

Second, when model misspecification or prior-data conflict occurs, posteriors can contract to
incorrect regions of parameter space, where higher KL divergence does not necessarily indicate
better calibration. This limitation is exacerbated when using non-uniform priors. For non-uniform
priors, KL divergence between the posterior and the prior no longer reduces to posterior entropy
alone, as it captures both the sharpness of the posterior and its shift from the prior distribution.
This introduces a trade-off: when a posterior contracts to an incorrect region, KL divergence can
assign high information gain to a misleading result because it rewards both concentration and
shift. Conversely, entropy focuses solely on posterior sharpness and does not account for whether
the posterior has shifted toward more plausible parameter regions. When applying this framework
in such scenarios, practitioners should therefore complement these information-theoretic metrics
with robust validation methods such as posterior predictive checks.
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1.3 Comment 3

I found the Figure 2 and 3 schematics confusing, as by first look it looks like information
flows from priors to likelihoods, which doesn’t make sense. I don’t have good suggestion how
to change them, but wanted to mention this if the authors would have other ideas.

Response

Thank you for pointing this out. We agree that current schematics in Figure 2 and 3 could be misin-
terpreted as showing information flowing from the prior to the likelihood. These figures are intended to
illustrate the Bayesian updating process, where the prior distribution is updated by the observational
data through the likelihood function. To clarify this relationship, we have explicitly added a "Bayesian
Updating" box that takes the prior and likelihood as inputs and produces the posterior. The revised
figures are reproduced here as fig. 1 and fig. 2 for your convenience.

Resulting changes in manuscript

To address the reviewer’s comment we have added the revised figures to the manuscript.

1.4 Comment 4

The author’s mention which MCMC algorithm is used, so the authors could also mention
which convergence diagnostics were used from ArviZ package.

Response

Thank you for the suggestion. To assess the convergence of the MCMC chains, we relied on both
qualitative and quantitative diagnostics from the ArviZ package. Qualitatively, we examined trace plots
of the MCMC chains to check for proper mixing and to ensure the chains adequately explored the
parameter space. Quantitatively, we used the Gelman-Rubin statistic (also called the potential scale
reduction factor, R̂), which assesses whether multiple chains have converged to the same distribution by
comparing the variance between chains to the variance within chains. We adopted the standard threshold
of R̂ < 1.01 to confirm adequate convergence as proposed by Vehtari et al. [2021]. The traces plots for
selected experiments are provided here for reference as figs. 3 to 8 and the corresponding R̂-values are
reported in table 1. The R̂ values reported in table 1 satisfy the convergence criterion R̂ < 1.01 for all
but two cases, which attained R̂ = 1.01 and R̂ = 1.011 respectively. For these marginal cases, we found
that the effective sample size (ESS) was adequate, extending the chain length reduced both R̂ values
below the 1.01 threshold, confirming convergence.

Resulting changes in manuscript
We have specified the diagnostics used to assess convergence of MCMC chains in the manuscript (p. 13,
lines 328-329 ). Corresponding trace plots and the table containing R̂-hat values are provided in the
Appendix B of the revised manuscript.

1.4.1 Comment 5

Explicitly define the prior in case study, now it seems based on the plots that it’s uniform,
but the priors were not explicitly defined in the text. This make huge difference for the use of
KL, as it’s then equivalent to entropy which measures just the sharpness. Without explicitly
mentioning the prior in the text, it takes more time and effort from the reader to see what
has been actually used.

Response

Thank you for spotting this. We agree that interpretation of KL divergence results changes based on
the choice of prior. We have therefore revised Section 3.3 (Design of Numerical Experiments) to provide
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a clear description of the prior distributions used in the case study. As you correctly noted, we employ
uniform priors, which we have now explicitly stated along with appropriate justification and citations.

Resulting changes in manuscript

Added description of priors used in Section 3.3 (p.18, lines 408-410 ), repeated below for convenience.

In all the 8 experiments we assume uniform priors for the friction parameters. The bounds
for the priors are chosen from the literature as discussed in Section 2.3, for µ ∈ [0.02, 0.3] and
ξ ∈ [100, 2200] m/s2. Additionally in experiment 7 and 8, we assume an uniform prior for the
discrepancy parameters σvelTS

and σposTS
with bounds [1, 5] and [0, 100] respectively.

2 Figures from manuscript

Bayesian Updating 

Prior Likelihood Posterior

Figure 1: Schematic illustration of the Bayesian inference process. The likelihood function acts as the
core driver of updating the prior distribution to posterior distribution based on observational data. The
resulting posterior depends strongly on type and quality of the observation.
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Prior Likelihood Posterior

Bayesian Updating Bayesian Updating Bayesian Updating

Figure 2: Schematic illustration of the Bayesian data selection process using information-theoretic met-
rics. Multiple calibration routines are performed in parallel, each using the same likelihood function but
leveraging different observations to update the prior distributions. By comparing each resulting poste-
rior distribution against the prior, we can quantify the information gained during calibration relative to
observations.
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Figure 3: MCMC trace plots for (a) Dry Coulomb friction coefficient (µ) and (b) Turbulent friction
coefficient (ξ) based on calibration with maximum velocity (Umax) as observation. Each color represents
an independent chain. Left panels show kernel density estimates of the marginal posterior distributions.
Right panels show trace plots across iterations, demonstrating chain convergence and adequate mixing.
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Figure 4: MCMC trace plots for (a) Dry Coulomb friction coefficient (µ) and (b) Turbulent friction
coefficient (ξ) based on calibration with runout distance (Xend) as observation. Each color represents
an independent chain. Left panels show kernel density estimates of the marginal posterior distributions.
Right panels show trace plots across iterations, demonstrating chain convergence and adequate mixing.
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Figure 5: MCMC trace plots for (a) Dry Coulomb friction coefficient (µ) and (b) Turbulent friction
coefficient (ξ) based on calibration with velocity time series as observation. Each color represents an
independent chain. Left panels show kernel density estimates of the marginal posterior distributions.
Right panels show trace plots across iterations, demonstrating chain convergence and adequate mixing.
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Figure 6: MCMC trace plots for (a) Dry Coulomb friction coefficient (µ) and (b) Turbulent friction
coefficient (ξ) based on calibration with position time series as observation. Each color represents an
independent chain. Left panels show kernel density estimates of the marginal posterior distributions.
Right panels show trace plots across iterations, demonstrating chain convergence and adequate mixing.
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Figure 7: MCMC trace plots for (a) Dry Coulomb friction coefficient (µ) and (b) Turbulent friction
coefficient (ξ) (c) Velocity discrepancy parameter (σvelTS

) based on calibration with velocity time series
as observation. Each color represents an independent chain. Left panels show kernel density estimates
of the marginal posterior distributions. Right panels show trace plots across iterations, demonstrating
chain convergence and adequate mixing.
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Figure 8: MCMC trace plots for (a) Dry Coulomb friction coefficient (µ) and (b) Turbulent friction
coefficient (ξ) (c) Position discrepancy parameter (σposTS

) based on calibration with position time series
as observation. Each color represents an independent chain. Left panels show kernel density estimates
of the marginal posterior distributions. Right panels show trace plots across iterations, demonstrating
chain convergence and adequate mixing.
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Observations R_hat

Dry Coulomb friction coefficient Turbulent friction coefficient Discrepancy parameter

Maximum velocity Umax 1.007 1.007 –
runout distance Xend 1.008 1.009 –
Velocity time series u(t) 1.006 1.005 –
Position time series x(t) 1.010 1.010 –
Velocity time series u(t) (discrepancy) 1.007 1.008 1.011
Position time series x(t) (discrepancy) 1.009 1.009 1.007

Table 1: Gelman-Rubin statistics (R̂) for MCMC sampling of friction coefficients and the discrepancy
parameter. R̂ values indicate successful chain convergence for all parameters across different observations.
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