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Abstract. The subsolar standoff distance r0 of Earth’s magnetopause is a key parameter in understanding the interaction be-

tween the solar wind and the magnetosphere. Despite decades of modeling efforts, significant uncertainties persist between

model predictions and satellite observation of the magnetopause location. This study introduces a new data-driven parameter-

ization of r0, based on a dataset containing over 220,000 dayside magnetopause crossings obtained by the THEMIS (2007–

2022) and Cluster (2001–2020) missions. Each crossing is paired with high-resolution upstream solar wind parameters from5

the OMNI database. Four established empirical models are benchmarked against this dataset, yielding root-mean-square er-

rors (RMSE) of ≳ 1RE globally and ≳ 0.8RE in the subsolar region. To determine the primary physical factors of r0, an

XGBoost regression model is trained and interpreted using SHapley Additive exPlanation (SHAP) values. The solar wind

dynamic pressure is found to be the dominant contributor, followed by geomagnetic indices (AE, SYMH), interplanetary mag-

netic field (IMF) magnitude, dipole tilt angle, and IMF cone angle. The IMF Bz component contributes only marginally when10

geomagnetic indices are included. A support vector regression (SVR) model using the six most influential parameters achieves

a RMSE of 0.68RE, improving on the best analytic model by approximately 17%. A second-order polynomial expression with

14 terms is derived, providing a compact, interpretable, and accurate representation of r0. The SVR model and the polynomial

representation is not able to predict r0 for extreme input conditions, e.g., during the passage of interplanetary coronal mass

ejections. Accordingly, the parameter ranges that define the validity domain of the models are specified. The presented results15

offer improved predictive accuracy of the subsolar standoff distance and highlight the role of so far unconsidered parameters

in modeling Earth’s magnetopause.

1 Introduction

Earth’s magnetopause is the boundary layer between the interplanetary magnetic field (IMF) and the terrestrial magnetic field.

It therewith separates solar wind plasma from Earth’s magnetosphere and controls its size. To first order, the magnetopause20

forms at pressure equilibrium of the solar wind dynamic pressure pdyn and the magnetic pressure exerted by Earth’s magnetic

field. Since the dynamic pressure is the main factor controlling the location of the magnetopause, early models to describe its

shape and location depend on this parameter (e.g. Fairfield, 1971). Additionally, the IMF Bz component is identified as an

important parameter and incorporated in following models (e.g. Roelof and Sibeck, 1993; Shue et al., 1997). That is because
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the direction and magnitude of the Bz component drives dayside magnetic reconnection, where field lines of Earth’s magnetic25

field connect to the IMF, particularly when it is southward (e.g. Petrinec et al., 2022, and references therein). As a result, the

magnetopause moves closer to Earth because of dayside flux erosion (Aubry et al., 1970).

The functional form of the model by Shue et al. (1997) characterizes the magnetopause via the subsolar standoff distance r0,

that is the distance between Earth’s center and the magnetopause on the aberrated (see below) Sun-Earth line, and the flaring

α; a parameter determining how open the magnetopause is on the nightside:30

rmod = r0 ·
(

2

1+ cos(θ)

)α

, (1)

where θ is the solar zenith angle (referred to as zenith angle in the following). Shue et al. (1998) find

r0 = (10.22+1.29 · tanh(0.184 · (Bz +8.14))) · p−
1

6.6

dyn (2)

and

α= (0.58− 0.007 ·Bz) · (1+0.024 · ln(pdyn)) (3)35

empirically, based on mostly equatorial magnetopause crossings (MPCs) by different satellites orbiting Earth. The model is

referred to as Sh98 hereinafter. The Sh98 model is axis symmetric around the aberrated Sun–Earth line and does not include

cusp indentations. Despite, or perhaps because of, its simplicity, the Sh98 model is regularly used to this day (see e.g. Wang

and Sun, 2022; Cucho-Padin et al., 2024). Still, there is an ongoing effort to develop new models that better reflect the actual

shape and position of the magnetopause. A visible trend is the increased model complexity in both the amount of parameters40

used and structure of the parameterization. Newer models account for, e.g., the dawn-dusk asymmetry (Walsh et al., 2014;

Baraka et al., 2021; Janda et al., 2024), and include terms for cusp indentations.

One example is a magnetopause model by Lin et al. (2010), called Lin10 in the hereforth. The magnetic pressure pmag is added

as an input parameter, accounting for the pressure of the IMF on the magnetopause. Additionally, the tilt angle γ of Earth’s

dipole in the (y,z) plane is an input parameter. Because the azimuth angle is also used to parameterize the magnetopause, the45

model is not axis symmetric anymore. The empirical model is based on 2708 MPCs of different satellites. In total, the model

contains 21 coefficients, underscoring the complexity due to the additional input parameters. Based on the MPC dataset used

to construct the model, the Lin10 model outperforms previous magnetopause models, including Sh98, in terms of prediction

accuracy.

Liu et al. (2015) utilizes the same parameters as in Lin10 with the addition of the IMF Bx and By components. Therewith,50

the IMF is included fully and not only by Bz . Liu et al. (2015) use a magnetohydrodynamics (MHD) approach to find depen-

dencies between r0 and the input parameters to construct their model (named Liu15 in the following). The influence of the By

component is discussed in Aghabozorgi Nafchi et al. (2023) with the conclusion that it influences the radial distance of the

magnetopause.

In contrast, Nguyen et al. (2022c) use the clock angle and the IMF Bz component separately to cover the influence of the IMF55

on the shape of the magnetopause in their model (referred to as Ng22 hereinafter). The clock angle represents the projected

2



direction of the IMF in the (y,z) plane and is computed via θclock = arctan2(By,Bz), with a range from −180◦ to 180◦. A

value of |θclock|> 90◦ therefore means southward IMF configuration. While Aghabozorgi Nafchi et al. (2023) find the clock

angle to be important in magnetopause modeling, Case and Wild (2013) see no dependence of model performance and clock

angle.60

The four aforementioned models all use rather typical solar wind and IMF parameters and are either based on MHD simulations

or empirical studies, using a best–fit approach to a given parameterization. However, magnetopause models could potentially be

improved by considering other input parameters (Němeček et al., 2020b) or methods (Wang et al., 2013; Aghabozorgi Nafchi

et al., 2024). In this study, we apply machine learning (ML) techniques to address both ideas. First, the parameters most suitable

for the parameterization of the subsolar standoff distance of the magnetopause are identified. The influence of each parameter65

on r0 is investigated in detail in the following, before a novel parameterization of the subsolar standoff distance is developed.

2 Data and Preprocessing

Empirical magnetopause models are typically based on datasets of MPCs by different spacecraft. This work uses two extensive

MPC catalogs, one for the Time History of Events and Macroscale Interactions during Substorms (THEMIS) (Angelopoulos,

2008) and one for the Cluster mission (Escoubet et al., 2001). The THEMIS catalog (TH–MPC) (Grimmich et al., 2023a)70

contains a total of 184,292 dayside MPCs between 2007 and 2022. All five THEMIS satellites (THA–THE) are included in the

catalog; however, THB and THC are only present until the end of 2009, as they transitioned to the ARTEMIS mission thereafter.

Due to the orbital configuration of the THEMIS spacecraft, the TH-MPC catalog covers the low latitude regime up to about

±30° latitude, with full dayside longitude coverage. The MPCs are identified by a random forest machine learning classifier.

Accordingly, each MPC is associated with a probability that quantifies the algorithm’s confidence in its classification as an75

MPC. For more detail on the process, see Grimmich et al. (2023b). The Cluster catalog (CL–MPC) (Grimmich et al., 2024a)

comprises of 38,322 individual MPCs, by the C1 and C3 spacecraft between 2001 and 2020. The polar orbit of the Cluster

satellites allows for a greater coverage of the high latitude dayside and cusp regions. Although CL–MPC includes considerably

fewer MPCs than the TH-MPC catalog, it thereby remains highly valuable. Note that CL–MPC contains nightside crossings

as well, with a split of roughly 60/40 dayside/nightside crossings. Grimmich et al. (2024b) utilizes a modified version of80

the random forest classifier applied for the TH–MPC catalog to determine magnetopause crossing locations. Combining both

datasets, a maximum of 222,614 MPCs can be used for magnetopause modeling.

In addition to the crossing probability, each MPC entry includes the crossing time in UT and position in Geocentric Solar

Ecliptic (GSE) coordinates, along with other associated parameters. In GSE, the x-axis points towards the Sun, the z-axis is

normal to the ecliptic plane and the y-axis completes the right-handed coordinate system, pointing in antiparallel direction85

of Earth’s orbital motion. In a spherical GSE representation, the zenith angle θ is defined as the angle between r and the

positive x direction (θ = arctan2(ρ,x), where ρ is the distance from the x-axis: ρ=
√
y2 + z2, θ ∈ [0,π]). The azimuth angle

φ= arctan2(z,y) is the angle of the position vector projected onto the (y,z) plane measured from the positive y-axis towards

the positive z-axis (φ ∈ [−π,π]).
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A number of solar wind and IMF parameters for each crossing time are obtained from the OMNI database (Papitashvili and90

King, 2020). The OMNI database comprises mostly WIND and ACE satellite data, monitoring space weather at the L1 point on

the Earth-Sun line. The data is timeshifted to the bowshock nose in order to specify the conditions at Earth at a given time (King

and Papitashvili, 2005). Crucial parameters for this study are, e.g., the IMF components Bx, By , Bz , the solar wind velocity

components vx, vy , vz , the proton density, the alpha particle to proton ratio Na/Np and the ion temperature. All coordinate

dependent quantities are in the GSE system. Derived quantities such as the IMF (B) and solar wind velocity (v) magnitude, the95

proton dynamic pressure pdyn and magnetic pressure pmag, and the alfvenic and magnetosonic Mach number are calculated

for every MPC. As the clock and cone angles of the IMF are characteristic parameters to describe the IMF configuration, they

are also determined for every MPC. The cone angle specifies the angle between the IMF vector and the Bx component and

is calculated via θcone = arccos(|Bx|/B). It has a range of 0◦ to 90◦. The typical Parker-spiral configuration of the IMF is

represented by θcone ≈ 45◦, while smaller values indicate sunward or anti-sunward (radial) IMF and larger values correspond100

to a perpendicular IMF.

Additionally, the geomagnetic Auroral Electrojet (AE) and Symmetric Horizontal Magnetic Disturbance (SYMH) indices at

the time of a MPC are matched to the corresponding MPC. The SYMH index (Imajo et al., 2022) is taken directly from

the OMNI database. It essentially resembles a high resolution (1-minute) version of the Dst index, which is used to study

the activity of geomagnetic storms (Wanliss and Showalter, 2006; Menvielle et al., 2011). The AE index also has 1-minute105

resolution and represents the magnitude of geomagnetic activity associated with the eastward and westward auroral electrojets.

Thus, it is a measure for substorm activity, with increasing values meaning stronger substorm behavior (Menvielle et al., 2011).

The OMNI database provides the provisional AE index up to 2019 (inclusive), and the quick look AE index from 2021 onward

(Nose et al., 2015). The World Data Center (WDC) for Geomagnetism, Kyoto, further provides the provisional AE index for

the first half of 2020. For the second half of 2020, no AE data is available for download at the time of this work.110

The MPC times are aligned to the nearest minute to match the corresponding high-resolution 1-minute OMNI data. The data is

not timeshifted further to account for the time delay between the bowshock and the magnetopause. Because of occasional gaps

in the OMNI database, about 25% of all crossings are missing at least one of the aforementioned parameters. To mitigate this

circumstance and enlarge the percentage of usable MPCs, a symmetric 10 minute interval of OMNI data around the crossing

is looked at. The mean value of the available data for each individual parameter is assigned to the corresponding parameter115

at the time of the MPC. MPCs gaining data via this process are flagged for later recognition. This approach allows 71% of

the MPCs with initially missing parameters to be utilized, increasing the data coverage significantly. Still, a fraction of MPCs

remains, for which some parameters are not available. In cases where essential parameters for further analysis are missing, the

associated MPC is omitted from the analysis.

Due to Earth’s orbital velocity vE, the magnetospheric system is not perfectly aligned with the GSE x-axis but is instead120

aberrated by a few degrees. The aberration angle ψ arises from the relative motion between the solar wind and Earth, and

depends on both the solar wind speed v and Earth’s orbital velocity vE, which is assumed to be constant at 30kms−1. The
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aberration angle can be approximated by

ψ = arctan
(
−vE
v

)
, (4)

and is calculated individually for every MPC. The aberration angle typically lies between −2.7◦ and −5.6◦. Equation 4 is125

a simplification of the exact formula ψ = arctan(v⊥/vx), where v⊥ = vy + vE. Since the vx component dominates the solar

wind direction, vx ≈ v can be assumed safely. The vy component however is often not small compared to vE, especially not

in the fast solar wind where the flow deflection has a median value of 18kms−1 (Němeček et al., 2020a). Including the vy

component would increase the absolute aberration by almost two degrees which especially affects the position of the MPCs

on the nightside. In the subsolar region, the aberration of the position is neglected since the effect is smaller and the absolute130

value of the magnetopause distance, which is unchanged by the aberration correction, is more important for our model than

the exact position of the MPC. By rotating coordinate sensitive parameters, such as the position and the IMF, by ψ around the

z-axis, the system is transformed into aberrated GSE (AGSE) coordinates. Again, the transformation is done for each MPC

separately with its respective aberration angle. Derived quantities (like the clock and cone angles, the zenith angle, etc.) are

then recomputed in AGSE format. A comparison of the AGSE IMF components derived with this method to those obtained135

when the aberration includes the vy component (see above) shows discrepancies of only a few tenths of a nanotesla. We argue

that that the uncertainty in the IMF data is larger than this deviation and therefore use the simplified equation for the aberration.

Including vy could be considered in future studies to account for the aforementioned effects more precisely. MPCs where no

solar wind data is available from OMNI cannot be converted to AGSE by Equation 4. In such cases, the mean aberration angle

(−4.16◦) could be applied to enable the use of these crossings in further analysis. However, crossings with missing solar wind140

data frequently also lack IMF data, which makes them unusable regardless. Consequently, these crossings are excluded from

the dataset. The combined dataset then contains 206,764 MPCs. For the modeling done in this work, the AGSE system is used.

Looking closer at the magnetopause crossings reveals that the random forest algorithm often classifies numerous MPCs by the

same spacecraft in short succession. This is not per se atypical since the magnetopause is in motion and may cross the satellite

multiple times in a short period of time. However, it is likely that the algorithm made false positive detections of a MPC despite145

extensive validation effort. Grimmich et al. (2023b) points out that an additional source for successive MPCs is a Low Latitude

Boundary Layer next to the magnetopause which makes a precise classification more difficult. To filter possible misidentified

MPCs, crossings with a probability of less than 0.75 are excluded from further analysis. As a result, the remaining combined

database comprises 146,478 MPCs (∼ 66% of all MPCs). In the next sections, the maximum number of MPCs is further limited

by the zenith angle and the parameter availability for each crossing.150

3 Magnetopause Model Performance Comparison

In an attempt to better predict the position and shape of the magnetopause, recent models have become increasingly more com-

plex, accounting, e.g., for the cusp indentation, the dawn–dusk asymmetry, Earth’s dipole tilt angle, and effects of the IMF on

the magnetopause position. Hence, it is expected that the shape and location of the magnetopause will vary between different
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Figure 1. Magnetopause shapes of the Sh98, Lin10, Liu15, and Ng22 models in (a) the terminator, (b) the y = 0, and (c) equatorial plane in

AGSE coordinates. Note that for panels (b) and (c) the x-axis is flipped, so that the Sun is located on the left.

models, even under identical input conditions. Cross-sections of the Sh98, Lin10, Liu15, and Ng22 magnetopause models are155

displayed in Figure 1. The (a) terminator, (b) y = 0, (c) and equatorial plane is shown separately. The IMF is in southward

Parker Spiral configuration while the solar wind dynamic pressure is the mean of the whole dataset (2.1nPa). The dipole tilt

angle is set to 25◦ to better identify differences of the models. Notably, the subsolar standoff distance appears to be rather

similar for all models. Also, the equatorial dayside magnetopause only shows small deviations in all models. At the terminator,

the difference between the Sh98/Lin10 and Ng22 model already exceeds 2RE in the southern hemisphere, further increasing160

on the far nightside. While the Sh98 model is circular in the (y,z) plane, all others are not due to the cusp indentations (see

especially Lin10) and a rotation induced by the IMF (mostly notable for Liu15). Liu15 and Ng22 are very similar and symmet-

ric in the equatorial plane. For the far night side, they predict a smaller dawn-dusk extension than the other two models. The

Lin10 model shows a strong dawn-dusk asymmetry. In the y = 0 plane, the Sh98 model exhibits multiple RE deviations in the

cusp regions with respect to the other three models. It also stands out that the dipole tilt has an influence on the nightside mag-165

netopause, rotating it further north (south) in the northern (southern) hemisphere for positive (negative) angles for all but the

Sh98 model, where it is not included. In conclusion, the different magnetopause models largely agree on the subsolar standoff

distance and the low latitude dayside regime, while the magnetopause position at the high latitude dayside and cusp regions and

the nightside vary significantly. For more extensive comparisons of magnetopause models on different datasets, see, e.g., Case

and Wild (2013), Suvorova and Dmitriev (2015), Samsonov et al. (2016), Němeček et al. (2020b), Nguyen et al. (2022b), and170

Lin et al. (2024). In the following, the prediction capability of each model is investigated for the dataset introduced in section 2.

3.1 Dayside Magnetopause

The dayside region is characterized by x > 0 (θ < 90◦). Because the CL–MPC dataset contains nightside crossings, the amount

of usable MPCs reduces to 137,295 after they are filtered out. Since all mentioned magnetopause models rely on the IMF Bz175

component, MPCs with missing IMF data cannot be used for model comparison. This leaves 133,045 usable MPCs. For
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Figure 2. ∆r distributions for four different magnetopause models, based on 133,045 dayside magnetopause crossings. The binsize is 0.5RE,

the mean value is visualized by the red vertical line.
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each crossing, the magnetopause distance rmod is calculated for the four models with their respective formula. The observed

magnetopause distance by the spacecraft is the magnitude of the positional vector of the magnetopause crossing and denoted

as robs. To determine the accuracy of each model, the prediction error

∆r = robs − rmod (5)180

is calculated for each crossing. Histograms of the resulting ∆r distributions are shown in Figure 2. Notably, the four models

perform rather equally with a common root-mean-square error (RMSE) of slightly above 1RE. The mean values of the Sh98

and Lin10 model are close to zero, indicating good magnetopause prediction capabilities on average. For Liu15, the positive

mean error implies a small underestimation of the model, meaning that the magnetopause is more expanded than the model

assumes for given input parameters. Similarly, the Ng22 model underpredicts the real magnetopause extend by almost 0.5RE.185

The standard deviation of of the prediction error is about 1RE for all models, mostly contributing to the RMSE. Figure 3

shows ∆r over the zenith angle in a heatmap for the four models. The red dots with error bars indicate the mean and standard

deviation of the prediction error for a 4.5◦ wide bin. The heatmap reveals larger deviations from zero and an increased error for

larger zenith angles for every model, especially for θ > 60◦. These findings imply that the models exhibit reduced predictive

accuracy in regions approaching the terminator and possibly on the nightside, consistently estimating the magnetopause to190

be at larger distances to Earth than it actually is, on average. As discussed for Figure 1, the models deviate the most in the

nightside low latitude regime, suggesting that the shape of the nightside magnetopause is not fully understood (partly due to

little available data) or fluctuates largely despite similar conditions. Regardless of the differences of the models in that region,

none of the models is able to make accurate predictions. For lower zenith angles (θ < 60◦), the models on average slightly

underpredict the magnetopause distance, especially the Ng22 model, resulting in the high mean ∆r value. The Lin10 model195

seems to be the most accurate for smaller zenith angles.

3.2 Subsolar Region

In this study, magnetopause crossings with θ < 30◦ are considered subsolar. A zenith angle smaller than 30◦ is also chosen

by, e.g., Aghabozorgi Nafchi et al. (2024) to characterize the subsolar region, since then the magnetopause distance rMP is

very close to the subsolar standoff distance r0 due to the approximately spherical shape of the magnetopause for low zenith200

angles. The number of usable MPCs is reduced the same way as for the full dayside magnetopause, resulting in 33,845 usable

MPCs. Again, ∆r is calculated for every crossing and every model. Figure 4 depicts the resulting distributions. The RMSE

decreases for all models compared to the full dayside. Lin10 undergoes the largest improvement, while the Ng22 performance

does not change much. Looking in the region of θ < 30◦ in Figure 3 further explains the positive mean value for every model

(underestimation of the magnetopause distance). For the subsolar region, some models clearly perform better than others.205

While the standard deviation is similar for all models, the mean deviation drives the difference in RMSE. Interestingly, the

standard deviation remains rather high at roughly 0.8RE with an improvement of approx. 20% compared to the full dayside.

The findings suggest, that albeit the different models make similar predictions regarding the subsolar standoff distance, they

still are not able to quantify it accurately.
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Figure 4. ∆r distributions for four different magnetopause models, based on 33,845 magnetopause crossings in the subsolar region (θ <

30◦). The binsize is 0.5RE, the mean value is visualized by the red vertical line.

Grimmich et al. (2023b) computes the equivalent subsolar standoff distance for every MPC and calculates ∆r with respect210

to the Sh98 model. Since in the subsolar region, r0 ≈ rMP, the results are comparable specifically in that region. Grimmich

et al. (2023b) gets a mean deviation of 0.36RE and a standard deviation of 0.76RE, which are nearly the same as in our

investigation, although the analysis methods differ slightly. The performance comparison shows that in spite of more than two

decades of advancement in magnetopause modeling, there remains little measurable improvement in the models’ ability to

accurately predict the magnetopause location.215

4 Parameter Relevance and Impact Evaluation

While the importance of the dynamic pressure on the magnetopause location is evident, the effect of the IMF is highly com-

plex and probably not fully understood yet (see e.g. Wang et al., 2014; Lu et al., 2013; Aghabozorgi Nafchi et al., 2023).

Additionally, apart from Bz , there is little consensus on which IMF parameters are most relevant for magnetopause modeling.

Verigin et al. (2009) even find that the Bz component has no influence at all on the magnetopause location. It is also unclear220

weather the individual IMF components, the clock and cone angle or a combination of both is more suitable for magnetopause

modeling. While Dušík et al. (2010) claim that the IMF cone angle plays a crucial role, Aghabozorgi Nafchi et al. (2023)

focus on the clock angle of the IMF. Case and Wild (2013) on the other hand conclude that the clock angle has no influence

on the radial magnetopause distance. That said, so far the Ng22 model is the only one of the presented models that includes
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the IMF clock angle. A new model developed by Aghabozorgi Nafchi et al. (2024) uses both the clock and cone angle as pa-225

rameters. Němeček et al. (2020b) suggest to consider additional parameters to model the location of the magnetopause. While

the authors claim that the Na/Np ratio has no significant impact, the strength of Earth’s magnetospheric currents does alter

the magnetopause location. Additionally, the solar radio flux at 10.7cm (Tapping and DeTracey, 1990; Tapping, 2013) is used

as a proxy for the Sun’s activity and the authors conclude that the inclusion of the parameter in magnetopause models would

improve the prediction capabilities. Further, the influence of the ring current on the magnetopause location is investigated by,230

e.g., Machková et al. (2019) and Aghabozorgi Nafchi et al. (2024). Aghabozorgi Nafchi et al. (2024) use corrected Dst index

(Dst*) as a representative for the ring current. Additionally, Staples et al. (2020) connect the SYMH index to variations in

observed and measured magnetopause standoff distance.

The main difficulty of choosing appropriate parameters lies in the fact, that it is not easily distinguishable which magnetopause

response originates from which parameter. Since most of the parameters are correlated or interconnected in some way, at-235

tributing effects to individual parameters is hardly possible. Moreover, the magnetopause configuration can appear similar

despite differing external conditions. Conversely, under identical conditions, the magnetopause shape can still vary, introduc-

ing a degree of variability. Therewith, the initial step in constructing a new magnetopause model involves determining the key

parameters that govern its shape and position.

4.1 Machine Learning Setup240

Li et al. (2023) used a machine learning approach to find out which parameters are the most important for magnetopause

modeling. However, the authors used MPCs from the whole dayside, a small dataset and a limited selection of parameters.

Therefore, the same concept is applied again in this work on an extensive dataset.

ML algorithms are often treated as black boxes, where the internal decision-making process remains opaque. While the outputs

can be insightful and empirically validated, the underlying reasons for these results are frequently unclear. This lack of inter-245

pretability makes it difficult to establish meaningful connections between input and output parameters, and thereby to extract

insights into, for example, underlying physical relationships. To address the challenge of interpretability in machine learning

models, particularly those treated as black boxes, various explainable AI (XAI) techniques have been developed. One of the

most widely used approaches is based on Shapley values, a concept originally derived from cooperative game theory. Intro-

duced by Shapley (1953), Shapley values provide a principled method to fairly distribute the "payout" among players based250

on their individual contributions to the total outcome. In the context of machine learning, this framework has been adapted

to quantify the contribution of each input feature to a model’s prediction. By considering all possible combinations of fea-

tures, Shapley values offer a theoretically grounded and model-agnostic approach to explain how and to what extent each input

feature influences the output, thereby enabling a deeper understanding of the learned relationships and supporting scientific in-

terpretation of complex models. However, the exact computation of Shapley values is computationally expensive, as it requires255

evaluating all possible subsets of input features - an operation with factorial complexity relative to the number of features. This

becomes impractical for models with even a moderate number of inputs. To address this challenge, SHAP (SHapley Additive

exPlanations), a Python package introduced by Lundberg and Lee (2017), provides efficient algorithms and approximations
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Figure 5. Beeswarm plot of the SHAP values for 18 selected parameters. 18,787 crossings from the subsolar region are analyzed.

for estimating Shapley values in a tractable manner. The obtained value is called the SHAP value and is used in the place of

the Shapley value in the following. SHAP performs well with tree based random forest ML algorithms (Lundberg et al., 2020).260

Therefore, the Python library XGBoost (Chen and Guestrin, 2016) is used to train a regressor model. The training data consists

of 80% of all MPCs, with the target value being the observed magnetopause distance robs. All but three hyperparameters of

the XGB model are kept at their default values. The adjusted hyperparameters are the number of trees in the random forest

(n_estimators= 1000), the depth, i.e. number of decisions, of each tree (max_depth= 6), and the contribution of each

tree, which also influences how conservative the model is and how it generalizes (learning_rate= 0.05). The SHAP265

value is then evaluated for every parameter per available MPC.

4.2 Feature Importance

To get an overview of which parameters might be important for future magnetopause models, a regressor with 18 parameters

is trained. The parameters are the dynamic and magnetic pressure, the AE and SYMH indices, the clock and cone angle, the

components and the absolute value of the solar wind velocity and the IMF, the ion temperature, the Na/Np ratio, the dipole tilt270

angle and the F10.7 solar flux. The zenith angle is limited to 30◦ to focus on the subsolar region. Because some parameters

are missing for certain MPCs, the total number of usable crossings reduces to 18,787. Especially the Na/Np ratio decreases the

amount of usable MPCs, because it is only available for less than 50% of all detected magnetopause crossings. Figure 5 shows
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a beeswarm plot of the obtained SHAP values for every parameter. The parameters are ordered in decreasing importance from

top to bottom, where importance is quantified by the mean absolute value of all SHAP values per parameter and denoted as275

S(i) where i is the respective parameter. The color assigned to each data point reflects the value of its underlying parameter.

As one can expect, the dynamic pressure is ranked as the most important parameter with S(pdyn) = 0.53RE. On its own, it

accounts for a difference in r0 exceeding 5RE, with higher values leading to magnetopause compression (indicated by low

SHAP values), and lower values associated with expansion (high SHAP values). This is in good agreement with the literature

and empirical models.280

The following two parameters are the AE and SYMH indices (S(AE) = 0.14RE, S(SYMH) = 0.1RE), both capable of chan-

ing the predicted value of r0 up to about 2RE. As a general trend, the magnetopause moves inward for high parameter values.

While the Dst and SYMH index have been used to model Earth’s magnetosphere (Tsyganenko, 2013, and references therein),

they did not get much attention for magnetopause modeling. Machková et al. (2019) investigate the influence of Dst* on the

magnetopause standoff distance and find that the standoff distance decreases for increasing Dst*. A recent neural network285

model by Aghabozorgi Nafchi et al. (2024) uses Dst* as an input and exhibits the same dependency. Both findings agree with

the SHAP values of the SYMH index in this investigation. To the best of our knowledge, the AE index has not been previously

used in modeling the magnetopause location. However, our analysis clearly demonstrates that it may be a significant parameter

that can potentially improve the model results.

The next important parameter is the F10.7 solar flux (S(F10.7) = 0.09RE), which is a direct proxy of the solar activity. Long-290

term variations of the magnetopause due to the solar cycle are investigated by Němeček et al. (2016). The authors draw the

conclusion that the F10.7 index does correlate with the magnetopause location. The derived SHAP values result in a similar

conclusion.

Interestingly, the IMF magnitude B seems to be more important (S(B) = 0.08RE) than the magnetic pressure, which is de-

rived from it (S(pmag) = 0.05RE). Larger IMF strengths and therefore higher magnetic pressure shift the pressure balance295

between the sum of dynamic and magnetic pressure in the magnetosheath and the magnetic pressure from Earth’s magnetic

field closer to Earth, hence the negative SHAP values for high parameter values. This is consistent with magnetopause models

such as Lin10 and Ng22, which use the sum of the dynamic and magnetic pressure. Although the magnetic pressure is signif-

icantly smaller than the dynamic pressure and is considered negligible by Němeček et al. (2020b), the SHAP values from our

analysis suggest that it exerts a non-negligible influence — particularly when the IMF magnitude is used directly instead of the300

magnetic pressure.

Earth’s dipole tilt angle γ is also ranked as an important parameter with an importance of S(γ) = 0.07RE, justifying its use in

many magnetopause models. Based on the SHAP values, our analysis underscores the importance of including the dipole tilt

angle in magnetopause models. The effect of the tilt angle is larger in the high latitude and cusp regions, further away from the

subsolar point. Still, SHAP values show that the tilt angle is also a crucial parameter for the low-latitude regime.305

Nguyen et al. (2022a) examines the influence of different IMF parameters on the shape and location of the magnetopause. One

conclusion is that the IMF cone angle does not impact the subsolar standoff distance. However, the SHAP values suggest the

opposite, with the parameter ranking fairly high, scoring an importance value of S(θcone) = 0.06RE. Also, the feature value is
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systematic across most of the SHAP values. We therefore conclude that the cone angle has the potential to further enhance the

quality of future magnetopause models. Grimmich et al. (2023b) finds that the cone angle is able to explain extreme deviations310

from theoretical to observed r0, further underlining the importance of the parameter. In combination with the IMF magnitude,

the two parameters cover the influence of the IMF in greater extend than the Sh98 and Lin10 models, which only use the Bz

component.

The Na/Np ratio is the only parameter covering the alpha particles in the solar wind. Previously discussed plasma parameters

refer to protons only. Despite their lower abundance in the solar wind (∼ 5%), alpha particles are nearly four times heavier315

than protons and thus can exert a non-negligible influence on the overall dynamic pressure of the solar wind, which is usually

neglected. High values for Na/Np have the potential to decrease the subsolar standoff distance by more than 0.5RE as indicated

by the SHAP values. Němeček et al. (2020b) claim that the observed dependence of the magnetopause location on solar wind

speed cannot be attributed to the contribution of alpha particles to the upstream pressure. Although subtle, the SHAP analysis

ranks this parameter among the top contributors, assigning it an importance of S(Na/Np) = 0.06RE. A crucial restriction is320

that including the Na/Np ratio roughly halves the amount of usable MPCs, since the parameter is available for only about 40%

of all crossings from the OMNI 1 minute high resolution database. Using a lower time resolution (five minute or one hour

averages) ups the percentage of usable MPCs, but decreases the significance of the parameter. It is therefore decided to keep

the one minute time resolution to better reflect the impact of the parameter on the magnetopause position.

All remaining parameters have an importance score of less than 0.05RE and are considered less important for the magne-325

topause standoff distance. Furthermore, the ordering of features with low SHAP importance can fluctuate based on the under-

lying XGBoost model, or rather the composition of the training data, which are randomly selected 80% of all MPCs. Still,

the IMF Bz component and the clock angle rank low across different XGBoost models. Both parameters are used in previous

magnetopause models or standoff distance parameterizations; especially the Bz component, which is generally believed to be

an important parameter by, e.g., the aforementioned magnetopause models. While a correlation between SHAP value and Bz330

value is visible, the performed investigation indicates that theBz component is not as important as widely believed, altering the

standoff distance marginally. Also, the Bx components ranks higher than the Bz component for multiple different XGBoost

models, further justifying the importance of the cone angle. The clock angle ranks as the lowest of all investigated parameters,

supporting the conclusion of Case and Wild (2013).

On top of the discussed parameters, additional quantities have been investigated. They are not shown here since they are either335

not relevant (e.g. magnetosonic Mach number, plasma beta), or too closely connected to already investigated parameters (e.g.

the proton density SHAP values carry the same information as the ones for the dynamic pressure).

The obtained results are somewhat difficult to compare to the ones by Li et al. (2023), because of a different underlying dataset

(including the spatial coverage of MPCs), machine learning model, and parameter choice. Both studies conclude that the dy-

namic pressure and the IMF magnitude rank highest and the cone angle ranks higher than the clock angle. Additionally, the340

dependencies between SHAP value and feature value overlap with our results for most parameters. Still, Li et al. (2023) finds

that the Bz component is more important than the Bx component and ranks high in general (S(Bz) = 0.11RE). The differ-

ences in the results are possibly due to the mentioned differences in the analysis.
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Table 1. Mean, standard deviation, and valid parameter ranges (lower and upper bounds) of the six variables used to model the subsolar

standoff distance.

Parameter pdyn/nPa AE/nT SYMH/nT |B|/nT γ/◦ θcone/
◦

Mean 1.74 138 -9.9 4.56 2.47 52.0

Standard Deviation 1.00 158 13.5 2.20 16.74 22.3

Lower bound 0.35 6 -96 0.68 -34.00 3.5

Upper bound 9.67 1160 25 14.25 34.00 90.0

Based on the SHAP value investigation, the six most important parameters are selected for further use as inputs for a magne-

topause model. The parameters are the dynamic pressure, the AE and SYMH indices, the IMF magnitude, Earth’s dipole tilt345

angle and the IMF cone angle. Despite the F10.7 solar flux being ranked as fourth important parameter, it is not considered in

the following. That is because later analysis shows that the inclusion of F10.7 does not significantly reduce the RMSE of the

models. Therefore, the influence of F10.7 is believed to be already covered by other parameters, thus not contributing much

additional information. As a possible seventh parameter, the alpha particle to proton ratio was considered. Given that including

this parameter would significantly reduce the available training data, we ultimately chose not to incorporate it in magnetopause350

modeling. All other parameters ranked less important than the cone angle (S(i)< 0.05RE) are also disregarded from further

analysis.

4.3 Parameter Influence on r0

SHAP values provide an overview of the influence on the magnetopause distance of individual parameters. Alternative visual-

ization methods also enable a degree of quantitative analysis. However, to better understand the impact of individual parameters355

on the subsolar standoff distance, a second ML approach is utilized. A Support Vector Regression (SVR) model is trained us-

ing the scikit-learn Python module (Pedregosa et al., 2011) with the following nine input parameters: six parameters

from the previous section identified as the most important, namely the solar wind dynamic pressure, the IMF cone angle and

magnitude, the AE and SYMH indices, the dipole tilt angle, and a three-component n-vector, representing the position of each

MPC. The vector is normalized and points from the center of the Earth to the respective MPC position. The target variable360

is the observed magnetopause distance. The maximal zenith angle is again limited to 30◦, leaving a total of 32,667 MPCs.

80% of the crossings are used to train the model, the remaining 20% are the test set. SVR is a supervised machine learning

algorithm that extends the principles of Support Vector Machines (SVM) to regression problems. SVR aims to find a function

that approximates the relationship between input features and a continuous target variable while maintaining a margin of tol-

erance defined by the hyperparameter ε. Only data points with prediction errors larger than ε contribute to the cost function,365

promoting sparsity in the solution. The hyperparameter C controls the trade-off between model complexity and the degree to

which deviations larger than ε are penalized; higher values of C allow the model to fit the training data more closely, at the risk

of overfitting. The kernel coefficient γSVR defines the influence of individual training samples: lower values imply a smoother
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Figure 6. Ceteris Paribus plot of the subsolar standoff distance for each of the six non-positional parameters used to train the SVR model. Per

panel, every parameter but the analyzed one is kept constant at the respective mean value. The n-vector has values of (nx,ny,nz) = (1,0,0),

representing the subsolar point. The plot range is chosen to be from the 1% to the 99% quantile of each parameter.

model, while higher values lead to more localized influence and greater model flexibility. Wang et al. (2013) utilize a SVR

model to establish a global 3D magnetopause model, functioning as a proof of concept for the method of SVR. The authors370

used the solar wind dynamic pressure, the IMF Bz component and Earth’s dipole tilt angle in combination with a n-vector as

input parameters. The hyperparameter ε is set to 0, while C = 20 and γSVR = 1 are found by visual inspection of the resulting

models. In this work, the optimal model parameters are found by hyperparmeter tuning to be ε= 0.1,C = 20 and γSVR = 0.01.

For SVR, it is important to standardize the input parameters and the target value by removing the mean and scaling to unit

variance. The respective values used for scaling each parameter can be found in Table 1. After the prediction, the resulting375

r0 values and the input features need to be scaled inversely. The trained SVR model has an RMSE of 0.68RE, calculated for

the 32,667 subsolar MPCs. Therewith, the error is decreased by approx. 17% with respect to the Lin10 model, the one with

the smallest error of the compared models (refer Figure 4). Note that the model is not able to make accurate predictions for

parameter inputs outside the ranges specified in Table 1.

The dependency of r0 on different parameters is depicted in Figure 6 in form of Ceteris Paribus plots. In a Ceteris Paribus380

plot, all parameters but the one on the x-axis is kept constant at a given value. In this case, the mean value (see Table 1) of the

respective parameters is chosen. Doing so allows to investigate the influence of each parameter independently. The n-vector

is set to (nx,ny,nz) = (1,0,0), representing the subsolar point. The plot range of the abscissae is defined by the 1% (99%)

quantile of the training data for the lower (upper) bound. All general trends of the individual parameters agree with the color-

coding of the SHAP values from Figure 5. Additionally, the ranges of the ordinates largely reflect the relative importance of385

the features, with pdyn showing the widest range and less important parameters smaller ranges. The fact that two different ML

approaches result in qualitatively similar results underscores the validity of the observed patterns and increases confidence in

15



the interpretability of the models. It further suggests that the identified relationships are not model-dependent artifacts.

Figure 6 panel (a) shows the influence of the solar wind dynamic pressure on r0. The typical non-linear decrease of r0 with

increasing pdyn is present. A log-log representation of the same plot (not shown) reveals that the dependency is not linear, in-390

dicating that the relationship does not follow a power-law of the form r0 ∝ p
−1/k
dyn with constant k, as assumed in all previously

compared models. In fact, k is larger for low and high dynamic pressures (k > 10 for pdyn < 1.4nPa and pdyn > 9.6nPa) and

smaller for the intermediate dynamic pressure range (k < 6 for 3nPa< pdyn < 7.2nPa). Aghabozorgi Nafchi et al. (2024)

chose a similar approach to find the response of r0 to different parameters and found k varying for different values of pdyn too,

likewise did Wang et al. (2013).395

The dependence of the subsolar standoff distance on the AE index is shown in Figure 6 (b). Specifically, r0 decreases as AE

increases. This trend aligns with established solar wind–magnetosphere coupling physics: elevated AE values correspond to in-

creased substorm-related reconnection, which enhances magnetospheric current systems and erodes the dayside magnetopause

(Tsurutani and Gonzalez, 1997). Therefore, less magnetic flux is present on the dayside during high AE intervals. The AE

index may therefore capture magnetospheric processes that are not reflected by other parameters directly.400

A high (low, meaning strongly negative) SYMH index is the result of a quiet (enhanced) ring current. The subsolar stand-

off distance decreases for high SYMH values, as shown in Figure 6 (c). Aghabozorgi Nafchi et al. (2024) observe a similar

relationship, but with the Dst* rather than the SYMH index, which reflects a related underlying principle, but do not discus

possible reasons. We suggest that a stronger ring current is due to more particles being injected into the near–Earth magneto-

sphere. Therefore, the pressure just inside the magnetopause increases. To restore the pressure balance, the magnetopause has405

to move outward, explaining the identified relationship between SYMH and r0.

High IMF magnitude corresponds to high magnetic pressure, pushing the magnetopause earthward. Despite the magnetic pres-

sure being small in comparison to the dynamic pressure, it is included in more recent magnetopause models. The SHAP value

analysis shows that instead of the magnetic pressure, the IMF magnitude has a more severe impact on the magnetopause stand-

off distance, visible in Figure 6 (d). As expected, r0 decreases with increasing IMF magnitude, agreeing with results from, e.g.,410

Aghabozorgi Nafchi et al. (2024).

The influence of the dipole tilt angle is investigated by Liu et al. (2012), who performed MHD simulations for typical solar

wind configurations. The authors conclude that the dipole tilt angle has little to no effect on the magnetopause position and

shape for the equatorial magnetopause. The same conclusion is drawn by Aghabozorgi Nafchi et al. (2024), stating that the

influence of the tilt angle is small and can therefore be neglected. Our analysis (see Figure 6 (e)) shows that the typical influence415

of the dipole tilt angle is about 0.4RE, up to 1RE for some cases (Figure 1), which is too much to be ignored. The relationship

between r0 and γ is similar to the two aforementioned studies. They find a symmetric dependency with the maximum value

of r0 at γ = 0◦ (Aghabozorgi Nafchi et al., 2024) and a cosine relationship (Liu et al., 2012). In our case, the curve is also

symmetric but peaks at γ ≈−4◦. Note that the exact functional form of the dependency in our case is influenced by the values

of the other parameters. One observation is that with increasing dynamic pressure, the impact of other parameters reduces.420

This is due to the fact that the dynamic pressure is the main driver of the magnetopause location. If it is weak, other parameters

have a greater impact and vice versa. Therefore, the impact of the dipole tilt angle varies with other parameters - not only in
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magnitude, but also in functional form (Wang et al., 2013).

Figure 6 panel (f) depicts the influence of the cone angle. Values near 0◦ correspond to radial IMF, Parker spiral configuration

is at θcone ≈ 45◦ and larger values reflect quasi perpendicular IMF at the subsolar point. The results indicate that the mag-425

netopause is located farther from Earth under quasi-radial IMF conditions, while it moves closer under perpendicular IMF

orientations. This is in good agreement with former studies (Dušík et al., 2010; Samsonov et al., 2012; Grygorov et al., 2017;

Baraka et al., 2021; Aghabozorgi Nafchi et al., 2024).

Despite being classified as not important, the solar wind speed v shall be discussed briefly. SHAP values indicate increased

r0 with faster solar wind (ref. Figure 5). According to pdyn ∝ v2 and r0 decreasing with increasing dynamic pressure, the430

relation seems contradicting at first. However, faster solar wind usually is less dense, resulting in moderate dynamic pressure

(Borovsky, 2020). Also, high solar wind speed increases the convection electric field and dayside reconnection and therewith

the particle intake into the magnetosphere. The increased ring current results in an increase of the subsolar standoff distance,

as discussed for the SYMH index. Lastly, fast solar wind often occurs at times of radial IMF, which in turn coincides with

an extended magnetosphere. Li et al. (2023) find the same relationship between solar wind speed and magnetopause standoff435

distance, but do not discuss the potential reasons.

4.4 On a Global ML Magnetopause Model

Our analysis shows that a machine learning approach is suitable to investigate the influence of certain drivers on the position

of the subsolar magnetopause. On the MPC dataset at hand, the SVR model outperforms the established magnetopause models

from literature regarding the accuracy of the prediction. Additionally, the influence of certain parameters reflects results from440

previous studies, showing that the approach has a potential to improve the understanding of magnetopause dynamics under

varying solar wind conditions. This raises the question of whether a similar methodology could be employed to develop a

global 3D magnetopause model, following examples set by, e.g., Wang et al. (2013).

To do so, a nine parameter SVR model is trained with in total 128,232 dayside MPCs (θ < 90◦). The input parameters and

target value are the same as for the model discussed in the previous subsection. The trained model has an RMSE of 0.75RE,445

which is an improvement of more than 25% compared to the best of the four compared models (ref. Figure 2) and only slightly

worse than the model for the subsolar region. A comparison between the SVR-predicted magnetopause shape and that of the

Lin10 model (see Figure A1) reveals significant discrepancies, especially in the y = 0 plane. This is most likely due to the fact,

that the training dataset has only a few high latitude MPCs, covering, e.g., the cusps or polar regions. Consequently, the SVR

algorithm struggles to accurately reproduce the magnetopause shape in those specific regions. Machine learning models are450

particularly effective at making predictions for parameters that lie within the parameter space seen during training. However,

for uncovered or sparsely populated parameter space volumes, the model cannot predict the target variable accurately. This

applies both to certain regions in space and to parameter combinations that are underrepresented in the training dataset. Since

the majority of the MPCs lie close to the equatorial plane (with full longitudinal coverage on the dayside), this region is

likely the most accurate region of the model. Comparing the equatorial plane with the Lin10 model shows a strong dawn-dusk455

asymmetry, where the dawn flank is up to 3RE closer to Earth than the dusk flank at the terminator. While the dawn–dusk
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asymmetry of Earth’s magnetopause is an active area of research (Walsh et al., 2014; Baraka et al., 2021; Janda et al., 2024),

the extent of the asymmetry continues to be a subject of debate. It therefore remains unclear whether the SVR model accurately

represents the real magnetopause configuration, or whether the pronounced differences arise from artifacts in the data, such as

orbital biases of the satellite missions.460

Summarizing the findings, the discrepancies between our model and the Lin10 model are highest in the high latitude regions

and on the dawn side, where a strong asymmetry is present. While discrepancies from established models are expected in

the development of new magnetopause models, it is challenging to determine which model is more accurate based on visual

inspection alone. Extensive hyperparameter tuning was performed on the SVR model to achieve an optimal trade-off between

accuracy and overfitting. Doing so, the model is evaluated on unseen test data that has not been used for training the model.465

When plotting the residuals over the predicted value or individual parameters, no correlation is noticeable. The analysis also

shows that the model performs equally well for different areas in space and over certain parameter ranges. Therewith, the SVR

model is validated to the best of our abilities. The small RMSE of 0.75RE suggest good prediction capabilities. Subsequently,

the ML approach, utilizing a SVR model, has the potential to model the dayside magnetopause more accurate than ever before.

Nevertheless, the model can potentially lead to false predictions for certain cases, e.g., for uncommon (and therefore unseen470

during training) input parameter combinations (or parameters out of the bounds in Table 1), especially for the high latitude

regions. We suggest that ML models based on the given dataset can be used to predict the equatorial region accurately, but

shall be handled with care when investigating other regions and extreme inputs, as ML models often provide unphysical results

when used outside of the bounds of the training data set (Zhelavskaya et al., 2021).

5 Parameterization of the Subsolar Standoff Distance475

As an alternative to machine learning models, developing a novel parameterization of the subsolar standoff distance based on

key identified parameters may be beneficial, as parameterization directly reveals which parameters contribute in which way

and strength. Also, a simple equation may be able to better extrapolate to extreme values than a ML model. While previously

developed magnetopause models frequently use a power law for the dynamic pressure and a hyperbolic tangent relationship

for the Bz component, we decide on a second order polynomial representation for all parameters including cross and linear480

terms. The chosen six parameters are the same as for the subsolar SVR model: the dynamic pressure, the IMF magnitude,

the AE and SYMH indices, the cone angle and the dipole tilt angle. The zenith angle is limited to 30◦ to only include subso-

lar crossings. Hence, 32,667 MPCs are used to fit the model. The input features are standardized by removing the mean and

scaling to unit variance. Mean values and standard deviations are the same as mentioned in Table 1 of subsection 4.3. The

target value r0 is not scaled and expressed in units of RE. To fit the polynomial, the Python library sciki-learn is used.485

First, the input parameters are expanded into polynomial terms up to degree two with PolynomialFeatures and then

fit by LinearRegression. The resulting 28 unique coefficients (a) have the unit of RE and are represented in Figure 7.

The exact values are presented in Appendix B. A threshold based color coding is applied, with the threshold set to 0.03RE.

Coefficients with an absolute value greater than the threshold are considered more important (colored in blue). The remaining
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Figure 7. Coefficients of the fitted second-order polynomial for r0. The matrix entries represent the polynomial coefficients: the first row

contains the linear terms, the diagonal elements correspond to the quadratic terms, and the top-left cell denotes the bias (intercept) term. The

remaining off-diagonal elements represent the cross terms. All coefficients are expressed in units of RE. Values are color-coded based on a

threshold of 0.03.

coefficients are set equal to zero (colored in red). Doing so reduces the amount of coefficients from 28 to 14, effectively halving490

the complexity of the function. The explicit formula for r0 is obtained by summing the products of the parameters correspond-

ing to the cells colored in blue and the respective coefficient and is presented in Appendix B. Note that since the parameter

values are scaled before fitting the equation, the input values must be scaled in the same manner.

To justify the thresholding, the performances of the complete and simplified parameterization are compared. The complete

formula predicts the magnetopause distance with a RMSE of 0.72RE (⟨∆r⟩ of zero, std(∆r) = 0.72RE), while the simpli-495

fied formula has a RMSE of 0.73RE (⟨∆r⟩= 0.03RE, std(∆r) = 0.73RE), showing that on average the prediction accuracy

remains nearly unchanged even when using the simplified formula. This is further supported by the observation that the differ-

ence in calculated r0 between parameterizations (complete vs. simplified) has a mean value of 0.03RE and a standard deviation

of 0.12RE, indicating that the methods predict similar standoff distances also for individual cases. The threshold value of 0.03

is chosen to balance parameterization complexity with keeping the RMSE as small as possible. Increasing the threshold further500

reduces the amount of necessary parameters but increases the RMSE simultaneously. The RMSE of the parameterization is

similar to the one obtained by the subsolar SVR model, showing that a simpler, non ML approach leads to similar prediction
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accuracy. At the same time, it might be an indication that a RMSE of 0.7RE is difficult to improve further. Still, this value is

the lowest ever obtained on the applied dataset.

The cells colored in blue in Figure 7 indicate important coefficients. It stands out that all coefficients for the linear terms (top505

row) are not set equal to zero. More specifically, the absolute values of the coefficients correspond to the order of parame-

ter importance shown in Figure 5 (ordered left to right from important to less important parameters in Figure 7). Therewith,

the method also seems to be able to quantify the parameter importance. The signs of the linear terms are consistent with the

observed parameter influences; specifically, they match the slope directions of the curves in Figure 6 and align with the color-

coding of the SHAP values in Figure 5.510

The cells on the diagonal correspond to quadratic terms. Only the quadratic terms for the dynamic pressure and the magnetic

field magnitude are included in the simplified formula. Doing so, the curves of the respective parameters resemble a power law

representation more closely, which is how the dynamic pressure is usually used for r0 parameterizations. Among others, the

Lin10 model uses the sum of magnetic and dynamic pressure in a power law representation. Hence, it is reasonable to include

a higher order term for the IMF magnitude too.515

Almost all included cross terms have a contribution of either the AE or the SYMH index. While the exact physical meaning

remains uncertain, it shows that the inclusion of the indices into the parameterization and magnetopause models is in general

justified.

Higher order polynomials to parameterize r0 have been investigated, but they do not decrease the RMSE enough to justify the

increased parameterization complexity. Therefore, the polynomial degree is kept at two. Additionally, the dynamic pressure is520

not included in form of a power law to keep the procedure as simple as possible. Predefining the power law dependency might

help to decrease the RMSE further. Adding more parameters to the equation also does not significantly lower the RMSE. The

included parameters therewith cover the majority of information needed to predict the subsolar standoff distance accurately.

It has to be noted that, similar to the SVR model, the model does not extrapolate well. Due to, e.g., the coefficient of the

quadratic dynamic pressure term being positive, r0 would eventually increase artificially for large values of pdyn, which is not525

physically motivated. In reality, the opposite is the case, where extreme dynamic pressures, e.g., due to the passage of inter-

planetary coronal mass ejections (ICMEs), strongly compress the magnetopause. To ensure correct predictions, we emphasize

to use the model for the applicable parameter ranges specified in Table 1.

The presented parameterization use the AE and SYMH indices. While the parameters are crucial for accurate modeling of the

subsolar standoff distance, they are not available in real time. An operational (nowcasting) version for r0 parameterization, not530

using AE and SYMH, is presented in Appendix C.

6 Conclusions

In this work, an extensive dateset of Earth’s magnetopause crossings has been used to (1) compare the prediction accuracy of

four established magnetopause models for the dayside and subsolar regions; (2) determine which parameters are crucial for

magnetopause modeling; (3) quantify the effect of each parameter on the subsolar standoff distance; and (4) develop a new535
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parameterization of the subsolar standoff distance with a second order polynomial and six input parameters.

The most important findings can be summarized as follows:

1. The magnetopause models by Shue et al. (1998), Lin et al. (2010), Liu et al. (2015), and Nguyen et al. (2022c) yield

similar accuracy in predicting the dayside magnetopause, with RMSEs slightly exceeding 1RE. For the subsolar region

(zenith angle smaller than 30◦), the RMSEs decrease but stay greater than 0.8RE. Despite its relatively simple geometric540

formulation, the Sh98 model performs on par with more recent and structurally complex models. This observation

indicates that advances in magnetopause modeling over the past two and a half decades have yielded only incremental

gains in magnetopause position prediction precision.

2. SHAP values computed from a trained XGBoost regressor model are highly valuable in revealing which parameters are

capable to significantly alter the position of Earth’s magnetopause. The analysis provides new insights into the roles545

of several parameters, including both those previously used in magnetopause modeling and those that have not been

traditionally considered.

3. The geomagnetic AE and SYMH indices are identified as important parameters to include in a magnetopause model.

They both are closely linked to the magnetopause standoff distance and can explain variations of up to 1RE. The AE

index has not been considered for magnetopause models so far - we suggest that it should be in the future. Recent studies550

propose the use of Dst* as a model parameter. However, we opt to include the SYMH index instead, due to its higher

time resolution and practically equivalent physical interpretation.

4. Contrary to common belief, the instantaneous IMF Bz component does not seem to be a crucial parameter concerning

the magnetopause standoff distance. It is therefore not included in the r0 parameterization. We point out that other

representations of Bz , such as its minimum or mean value over a period of time prior to the MPC may play a more555

important role than Bz itself, which should be investigated in the future. The effect of dayside reconnection, the process

Bz is responsible for, is possibly covered by the geomagnetic indices or a combination of other parameters, making Bz

redundant. Instead, the IMF Bx component is classified as an important parameter. It ranks higher than Bz in the SHAP

value analysis and is also indirectly represented by the IMF cone angle. Since the cone angle ranks even higher than Bx,

it is chosen as an input parameter for our model.560

5. Parameter influence on r0 is studied trough SHAP values and a SVR model. Both methods yield consistent results, which

are generally in line with previously published studies and theoretical predictions. The solar wind dynamic pressure has

the biggest influence on the magnetopause standoff distance, but does not follow an exact power law. Increasing AE and

SYMH indices both reduce r0; the same applies to the IMF magnitude. Our analysis further shows that an increasing

IMF cone angle θcone decreases r0. Former studies showed that radial IMF (θcone = 0◦ for purely radial conditions)565

corresponds to larger standoff distances, which is in agreement with our findings. For average solar wind and IMF

conditions we find r0 peaking when Earth’s dipole tilt angle γ is approx. −4◦ and decreasing for increasing |γ|. Past
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studies also show a symmetric dependency, but with the maximum r0 at γ = 0◦. We note that the exact dependence relies

on the other input parameters, which should be studied in the future.

6. Despite promising results achieved by machine learning regression models, a global magnetopause model based on,570

e.g., SVR is not feasible with the available MPC dataset. This is due to the lack of magnetopause crossings in the high

latitude regime including the cusp region and the nightside. Sparse data in those regimes lead to inaccurate predictions.

Additionally, ML models do not extrapolate well on unseen data during training and are therefore only valid in a certain

parameter range. We propose however, that ML models are highly valuable when used correctly, e.g., for a limited sector

as the subsolar region or close to the equatorial plane on the dayside.575

7. A second order polynomial with six input parameters is suitable to fit the subsolar standoff distance for a given range

of each input parameter. Input parameters are the dynamic pressure, AE and SYMH indices, IMF magnitude, Earth’s

dipole tilt angle, and the IMF cone angle. The polynomial has a RMSE of 0.72RE, which is better than that of any of

the four magnetopause models compared in this work. To verify the model performance, future work should benchmark

the model on an independent MPC data set. The polynomial allows for a reduction in complexity by setting half of580

the coefficients (14 of 28) equal to zero while keeping the RMSE and prediction capability almost unchanged. The

coefficients of the linear terms also reflect the same order of parameter importance previously found by SHAP value

analysis.

Despite the valuable insights gained from this study, several issues remain to be addressed. Similar to most other established

magnetopause models, the parameterization of r0 is static, meaning that no time dependency whatsoever is included. While,585

e.g., Gu et al. (2025) and Nguyen et al. (2022b) propose methods for dynamic magnetopause models, the topic is covered

sparsely in the literature. As an intermediate step, it would be a consideration to time shift individual parameters, like the AE

index, before they are used in the model. Typically it takes some time (in the order of minutes to hours, depending on the

parameter) for the magnetopause to respond to a change in the environment. However, brief analysis showed that no signif-

icant improvement is achieved by timeshifting different input parameters. Another problem with magnetopause modeling is590

the uncertainty of, e.g., the IMF or the dynamic pressure at the bow shock (Walsh et al., 2019; Di Matteo and Sivadas, 2022).

Regardless of best effort to propagate space weather parameters from the L1 point to Earth’s bow shock, Aghabozorgi Nafchi

et al. (2024) claim that the intrinsic inaccuracy of magnetopause models stems from insufficient knowledge of the upstream

solar wind parameters. This could also be the case for this work, possibly explaining why the RMSE of our parameteriza-

tion remains at approx. 0.7RE. Future magnetopause models should account for the inherent variability of the magnetopause595

position by providing not only a point prediction, but also an estimated range within which the boundary is likely to reside.

Wang et al. (2013) applied this concept in a SVR model, providing one possible way of incorporating the variability of the

magnetopause. Building on such approaches, future research should prioritize probabilistic modeling and uncertainty quan-

tification to better reflect the dynamic and inherently variable nature of the magnetopause. Additionally, models need to be

more robust in handling extreme input conditions from, e.g., ICMEs, which are able compress the magnetopause to otherwise600

unseen distances. This is particularly important in light of upcoming missions like the Solar Wind Magnetosphere Ionosphere
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Figure A1. An exemplary comparison of the SVR full-dayside model and the Lin10 model under identical input parameters in (a) the termi-

nator, (b) the y = 0, and (c) the equatorial plane in AGSE coordinates. Input conditions are: pdyn = 0.77nPa, γ =−11◦ for both models,

pmag = 0.004nPa, Bz = 0.6nT additionally for Lin10, and B = 3.22nT, AE= 54nT, SYMH=−5nT, θcone = 23.5◦ additionally for

the SVR model. Note the strong differences in magnetopause shape in the high latitude regions in panels (a) and (b). Also, an extensive

dawn-dusk asymmetry is present for the SVR model, visible in panels (a) and (c).

Link Explorer (SMILE) (Wang et al., 2025), which aims to provide continuous global observations of the magnetopause and

will benefit from models that can account for its dynamic and uncertain nature.

Code and data availability. The TH-MPC dataset from Grimmich et al. (2023a) is available at https://osf.io/b6kux/. The CL-MPC dataset

from Grimmich et al. (2024a) can be accessed via https://osf.io/pxctg/. Used geomagnetic indices are available from the WDC for Geomag-605

netism, Kyoto at https://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html. High resolution OMNI datasets are available at https://omniweb.gsfc.nasa.

gov/form/omni_min.html. Data for the F10.7 solar flux can be accessed via https://www.spaceweather.gc.ca/forecast-prevision/solar-solaire/

solarflux/sx-5-en.php. The XGBoost, scikit-learn and SHAP python modules are freely distributed online.

Appendix A: SVR Dayside Model Compared to Lin10

Figure A1 displays the Lin10 and a custom SVR model in three planes for the same MPC. A detailed description can be found610

in the caption.

Appendix B: Equation of the Polynomial Model

The model equation of the subsolar standoff distance is as follows:

23

https://osf.io/b6kux/
https://osf.io/pxctg/
https://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html
https://omniweb.gsfc.nasa.gov/form/omni_min.html
https://omniweb.gsfc.nasa.gov/form/omni_min.html
https://omniweb.gsfc.nasa.gov/form/omni_min.html
https://www.spaceweather.gc.ca/forecast-prevision/solar-solaire/solarflux/sx-5-en.php
https://www.spaceweather.gc.ca/forecast-prevision/solar-solaire/solarflux/sx-5-en.php
https://www.spaceweather.gc.ca/forecast-prevision/solar-solaire/solarflux/sx-5-en.php


Table C1. Same coefficients as in Figure C1 but with more decimal places. In units of RE.

Parameter 1 pdyn B γ θcone

1 11.100116 -0.880311 -0.267848 0.063497 -0.132361

pdyn 0.071166 0.002411* -0.014183* 0.027356*

B 0.027105* -0.003804* 0.017818*

γ 0.000019* -0.019792*

θcone 0.037094

Values marked with * are set to 0 by the threshold of 0.03RE.

r0 = 0.062766p2dyn +0.029063∗AE2 − 0.005244∗SYMH2

+0.036025B2 − 0.007827∗ γ2 +0.024278∗ θ2cone615

+0.042863pdynAE+0.014235∗ pdynSYMH

+0.003292∗ pdynB− 0.011979∗ pdyn γ

+0.021987∗ pdyn θcone +0.018708∗AESYMH

− 0.043601AEB− 0.016090∗AEγ

− 0.000336∗AEθcone +0.017716∗SYMHB620

− 0.045112SYMHγ+0.037957SYMHθcone

+0.006229∗Bγ+0.045304Bθcone

− 0.014665∗ γ θcone − 0.804452pdyn

− 0.307622AE− 0.276234SYMH

− 0.256840B+0.097598γ625

− 0.099100θcone +11.105453. (B1)

Note that the unit of r0 is RE and the input parameters have no unit since they have been transformed using the respective

quantities given in Table 1. Values marked with * are set to 0 by the threshold of 0.03RE.

Appendix C: Operational version of the r0 parameterization

The parameterization presented in section 5 enables retrospective reconstruction of the subsolar standoff distance based on630

known solar wind conditions, IMF, and geomagnetic activity. For the purpose of forecasting r0 under in operational settings, it

is beneficial to utilize a parameterization that does not rely on geomagnetic indices, but only on solar wind and IMF quantities.

The same approach as described in section 5 is utilized to obtain the coefficients shown in Figure C1 (more decimal places
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Figure C1. Coefficients of the fitted second-order polynomial for r0. Same style as Figure 7.

in Table C1). The figure is in the same style as Figure 7. The parameterization predicts the standoff distance with a RMSE

of 0.76RE (mean of ∆r equal to zero) when all 15 terms are included, which is slightly worse than the model including the635

geomagnetic indices. Reducing the complexity to 7 coefficients based on the threshold of 0.03 leads to a RMSE of 0.77RE,

which is only marginally worse than the complete model, and close to the performance of the Lin10 model in the subsolar

region despite its simplified form. The coefficient values are similar to the ones of the model including AE and SYMH.

However, the cone angle seems to be more important such that the corresponding quadratic term is also above the threshold.

Comparing the predictions for r0 across the two different parameterizations (including the indices and not) shows that their640

difference has a mean of zero and a standard deviation of 0.24RE. To conclude, the full formula is likely more accurate, but

using the parameterization without AE and SYMH gives a good first estimate.
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Janda, B., Němec, F., Němeček, Z., and Šafránková, J.: Dawn-Dusk Asymmetry of the Magnetopause Distance Under the Parker Spiral

Configuration of the IMF, Journal of Geophysical Research: Space Physics, 129, e2024JA033 181, https://doi.org/10.1029/2024JA033181,

2024.

King, J. H. and Papitashvili, N. E.: Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data,705

Journal of Geophysical Research: Space Physics, 110, 2004JA010 649, https://doi.org/10.1029/2004JA010649, 2005.

Li, S., Sun, Y., and Chen, C.: An Interpretable Machine Learning Procedure Which Unravels Hidden Interplanetary Drivers of the Low

Latitude Dayside Magnetopause, Space Weather, 21, e2022SW003 391, https://doi.org/10.1029/2022SW003391, 2023.

Lin, R. L., Zhang, X. X., Liu, S. Q., Wang, Y. L., and Gong, J. C.: A three-dimensional asymmetric magnetopause model, Journal of

Geophysical Research: Space Physics, 115, 2009JA014 235, https://doi.org/10.1029/2009JA014235, 2010.710

Lin, Y., Lu, J., Qu, B., Wang, X., and Institute of Space Weather, School of Atmospheric Physics, Nanjing University of Information Science

& Technology, Nanjing 210044, China: Assessing the performance of magnetopause models based on THEMIS data, Earth and Planetary

Physics, 8, 776–786, https://doi.org/10.26464/epp2024053, 2024.

Liu, Z., Lu, J. Y., Kabin, K., Yang, Y. F., Zhao, M. X., and Cao, X.: Dipole tilt control of the magnetopause for south-

ward IMF from global magnetohydrodynamic simulations, Journal of Geophysical Research: Space Physics, 117, 2011JA017 441,715

https://doi.org/10.1029/2011JA017441, 2012.

Liu, Z., Lu, J. Y., Wang, C., Kabin, K., Zhao, J. S., Wang, M., Han, J. P., Wang, J. Y., and Zhao, M. X.: A three-dimensional high Mach

number asymmetric magnetopause model from global MHD simulation, Journal of Geophysical Research: Space Physics, 120, 5645–

5666, https://doi.org/10.1002/2014JA020961, 2015.

Lu, J. Y., Liu, Z., Kabin, K., Jing, H., Zhao, M. X., and Wang, Y.: The IMF dependence of the magnetopause from global MHD simulations,720

Journal of Geophysical Research: Space Physics, 118, 3113–3125, https://doi.org/10.1002/jgra.50324, 2013.

Lundberg, S. M. and Lee, S.-I.: A Unified Approach to Interpreting Model Predictions, in: Advances in Neural In-

formation Processing Systems, vol. 30, Curran Associates, Inc., https://papers.nips.cc/paper_files/paper/2017/hash/

8a20a8621978632d76c43dfd28b67767-Abstract.html, 2017.

28

https://doi.org/10.17605/OSF.IO/PXCTG
https://doi.org/10.5194/angeo-42-371-2024
https://doi.org/10.1016/j.pss.2017.09.011
https://doi.org/10.5194/gmd-18-4215-2025
https://doi.org/10.14989/267216
https://doi.org/10.1029/2024JA033181
https://doi.org/10.1029/2004JA010649
https://doi.org/10.1029/2022SW003391
https://doi.org/10.1029/2009JA014235
https://doi.org/10.26464/epp2024053
https://doi.org/10.1029/2011JA017441
https://doi.org/10.1002/2014JA020961
https://doi.org/10.1002/jgra.50324
https://papers.nips.cc/paper_files/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html


Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., and Lee, S.-I.: From local725

explanations to global understanding with explainable AI for trees, Nature Machine Intelligence, 2, 56–67, https://doi.org/10.1038/s42256-

019-0138-9, 2020.

Machková, A., Němec, F., Němeček, Z., and Šafránková, J.: On the Influence of the Earth’s Magnetic Dipole Eccentricity and

Magnetospheric Ring Current on the Magnetopause Location, Journal of Geophysical Research: Space Physics, 124, 905–914,

https://doi.org/10.1029/2018JA026070, 2019.730

Menvielle, M., Iyemori, T., Marchaudon, A., and Nosé, M.: Geomagnetic Indices, in: Geomagnetic Observations and Models, edited

by Mandea, M. and Korte, M., pp. 183–228, Springer Netherlands, Dordrecht, ISBN 978-90-481-9857-3 978-90-481-9858-0,

https://doi.org/10.1007/978-90-481-9858-0_8, 2011.

Nguyen, G., Aunai, N., Michotte De Welle, B., Jeandet, A., Lavraud, B., and Fontaine, D.: Massive Multi-Mission Statistical Study

and Analytical Modeling of the Earth’s Magnetopause: 2. Shape and Location, Journal of Geophysical Research: Space Physics, 127,735

e2021JA029 774, https://doi.org/10.1029/2021JA029774, 2022a.

Nguyen, G., Aunai, N., Michotte De Welle, B., Jeandet, A., Lavraud, B., and Fontaine, D.: Massive Multi-Mission Statistical Study and Ana-

lytical Modeling of the Earth’s Magnetopause: 3. An Asymmetric Non Indented Magnetopause Analytical Model, Journal of Geophysical

Research: Space Physics, 127, e2021JA030 112, https://doi.org/10.1029/2021JA030112, 2022b.

Nguyen, G., Aunai, N., Michotte De Welle, B., Jeandet, A., Lavraud, B., and Fontaine, D.: Massive Multi-Mission Statistical Study and740

Analytical Modeling of the Earth’s Magnetopause: 4. On the Near-Cusp Magnetopause Indentation, Journal of Geophysical Research:

Space Physics, 127, e2021JA029 776, https://doi.org/10.1029/2021JA029776, 2022c.

Nose, M., Iyemori, T., Sugiura, M., Kamei, T., Matsuoka, A., Imajo, S., and Kotani, T.: Geomagnetic AE index,

https://doi.org/10.17593/15031-54800, World Data Center for Geomagnetism, Kyoto, 2015.
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